JP4450147B2 - レーザ装置を備えた露光装置 - Google Patents

レーザ装置を備えた露光装置 Download PDF

Info

Publication number
JP4450147B2
JP4450147B2 JP2001524135A JP2001524135A JP4450147B2 JP 4450147 B2 JP4450147 B2 JP 4450147B2 JP 2001524135 A JP2001524135 A JP 2001524135A JP 2001524135 A JP2001524135 A JP 2001524135A JP 4450147 B2 JP4450147 B2 JP 4450147B2
Authority
JP
Japan
Prior art keywords
light
wavelength
laser
optical
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001524135A
Other languages
English (en)
Inventor
朋子 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Application granted granted Critical
Publication of JP4450147B2 publication Critical patent/JP4450147B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094015Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with pump light recycling, i.e. with reinjection of the unused pump light back into the fiber, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

技術分野
本発明は、紫外光を発生するレーザ装置を備えた露光装置に関し、特に半導体素子、撮像素子(CCDなど)、液晶表示素子、プラズマディスプレイ素子、及び薄膜磁気ヘッドなどのマイクロデバイスを製造するためのフォトリソグラフィ工程で使用される露光装置に使用して好適なものである。
背景技術
例えば半導体集積回路を製造するためのフォトリソグラフィ工程で使用される露光装置は、マスクとしてのレチクル(フォトマスク)上に精密に描かれた回路パターンを、基板としてのフォトレジストを塗布したウエハ上に光学的に縮小して投影露光する。この露光時におけるウエハ上での最小パターン寸法(解像度)を小さくするのに最も単純かつ有効な方法の一つは、露光光の波長(露光波長)を短くすることである。ここで露光光の短波長化の実現と合わせて、露光光源を構成する上で備えるべきいくつかの条件につき説明する。
第1に、例えば数ワットの光出力が求められる。これは集積回路パターンの露光、転写に要する時間を短くして、スループットを高めるために必要である。
第2に、露光光が波長300nm以下の紫外光の場合には、投影光学系の屈折部材(レンズ)として使用できる光学材料が限られ、色収差の補正が難しくなってくる。このため露光光の単色性が必要であり、露光光のスペクトル線幅は1pm程度以下にすることが求められる。
第3に、このスペクトル線幅の狭帯化に伴い時間的コヒーレンス(可干渉性)が高くなるため、狭いスペクトル線幅(波長幅)の光をそのまま照射すると、スペックルと呼ばれる不要な干渉パターンが生ずる。従ってこのスペックルの発生を抑制するために、露光光源では空間的コヒーレンスを低下させる必要がある。
これらの条件を満たす従来の短波長の光源の一つは、レーザの発振波長自身が短波長であるエキシマレーザを用いた光源であり、もう一つは赤外又は可視域のレーザの高調波発生を利用した光源である。
このうち、前者の短波長光源としては、KrFエキシマレーザ(波長248nm)が使用されており、現在では更に短波長のArFエキシマレーザ(波長193nm)を使用する露光装置の開発が進められている。更に、エキシマレーザの仲間であるFレーザ(波長157nm)の使用も提案されている。しかし、これらのエキシマレーザは大型であること、発振周波数が現状では数kHz程度であるため、単位時間当たりの照射エネルギーを高めるためには1パルス当たりのエネルギーを大きくする必要があり、このためにいわゆるコンパクション等によって光学部品の透過率変動等が生じやすいこと、メインテナンスが煩雑でかつ費用が高額となることなどの種々の問題があった。
また後者の方法としては、非線形光学結晶の2次の非線形光学効果を利用して、長波長の光(赤外光、可視光)をより短波長の紫外光に変換する方法がある。例えば文献「”Longitudinally diode pumped continuous wave 3.5W green laser”,L.Y.Liu,M.Oka,W.Wiechmann and S.Kubota;Optics Letters,vol.19,p189(1994)」では、半導体レーザ光で励起された固体レーザからの光を波長変換するレーザ光源が開示されている。この従来例では、Nd:YAGレーザの発する1064nmのレーザ光を、非線形光学結晶を用いて波長変換し、4倍高調波の266nmの光を発生させる方法が記載されている。なお、固体レーザとは、レーザ媒質が固体であるレーザの総称である。
また、例えば特開平8−334803号公報及び対応する米国特許第5,838,709号では、半導体レーザを備えたレーザ光発生部と、このレーザ光発生部からの光を非線形光学結晶により紫外光に波長変換する波長変換部とから構成されるレーザ要素を複数個、マトリックス状(例えば10×10)に束ねたアレイレーザが提案されている。
このような構成の従来のアレイレーザでは、個々のレーザ要素の光出力を低く抑えつつ、装置全体の光出力を高出力とすることができ、各非線形光学結晶への負担を軽減することができる。しかし、一方では、個々のレーザ要素が独立していることから、露光装置への適用を考慮した場合には、レーザ要素全体でその発振スペクトルを全幅で1pm程度以下まで一致させる必要がある。
このため、例えば、各レーザ要素に自律的に同一波長の単一縦モード発振をさせるためには、各々のレーザ要素の共振器長を調整し、あるいは共振器中に波長選択素子を挿入したりする必要があった。しかし、これらの方法は、その調整が微妙であること、構成するレーザ要素が多くなればなるほど全体を同一波長で発振させるのに複雑な構成が必要になること等の問題があった。
一方、これら複数のレーザを能動的に単一波長化する方法としてインジェクションシード法がよく知られている(例えば、「Walter Koechner;Solid−state Laser Engineering,3rd Edition,Springer Series in Optical Science,Vol.1,Springer−Verlag,ISBN 0−387−53756−2,pp.246−249」 参照)。これは、発振スペクトル線幅の狭い単一のレーザ光源からの光を複数のレーザ要素に分岐し、このレーザ光を誘導波として用いることにより、各レーザ要素の発振波長を同調させ、かつスペクトル線幅を狭帯域化するという方法である。しかし、この方法では、シード光を各レーザ要素に分岐する光学系や、発振波長の同調制御部を必要とするため構造が複雑になるという問題があった。
更に、このようなアレイレーザは、従来のエキシマレーザに比べて装置全体を格段に小さくすることが可能だが、それでもアレイ全体の出力ビーム径を数cm以下におさえるパッケージングは困難であった。また、このように構成されたアレイレーザでは、各アレイごとに波長変換部が必要となるため高価となること、アレイを構成するレーザ要素の一部にアライメントずれが生じた場合や構成する光学素子に損傷が発生した場合に、このレーザ要素の調整をするためには、一度アレイ全体を分解してこのレーザ要素を取り出し、調整した上で再度アレイを組み立て直す必要があること、などの課題があった。
また、そのような光源を光ファイバーを用いて構成することも考えられるが、単に光ファイバーを用いて強度の強い光を伝播させると、光ファイバーの非線形効果に起因したSelf Phase Modulation(以下、「SPM」と言う)、Stimulated Raman Scattering(以下、「SRS」と言う)、Stimulated Brillouin Scattering(以下、「SBS」と言う)等の影響で伝播光の波長幅が広がるという不都合がある。このような波長幅の広がりによって、露光光のスペクトル線幅を1pm程度以下にするための余裕度(マージン)が低下することになる。
本発明は斯かる点に鑑み、露光装置の光源に使用できると共に、装置を小型化でき、かつメンテナンスの容易なレーザ装置を備えた露光装置を提供することを第1の目的とする。
更に本発明は、使用する光学素子の非線形効果に起因した波長幅の広がりを抑制できるレーザ装置を備えた露光装置を提供することを第2の目的とする。
更に本発明は、発振周波数を高くして、かつ空間的コヒーレンスを低減できると共に、全体としての発振スペクトル線幅を簡単な構成で狭くできるレーザ装置を備えた露光装置を提供することを第3の目的とする。
更に本発明は、そのような露光装置を用いた露光方法、デバイスの製造方法、及びそのような露光装置の効率的な製造方法を提供することをも目的とする。
発明の開示
本発明による第1の露光装置は、レーザ装置からの紫外光で第1物体(163)のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体(166)を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器(22,25)と、この複数段の光ファイバー増幅器の間に配置された狭帯域フィルタ(24A)及びアイソレータ(IS3)とを有する光増幅部(18)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを備えたものである。
この場合、複数段の光ファイバー増幅器間にはASE(Amplified Spontanious Emission)を時間的に取り除くために、パルス光が通過するときだけオンにするゲートの働きを行う素子、例えば音響光学素子(AOM)や電気光学素子(EOM)を挿入してもよい。
また、本発明による第2の露光装置は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を増幅する複数の増幅用光ファイバー(22,25)と、複数の増幅用の励起光を発生する励起光発生光源(23A)と、その複数の増幅用光ファイバーの間に配置された狭帯域フィルタ(24A)又はアイソレータ(IS3)と、この狭帯域フィルタ又はアイソレータと並列にその励起光を通過させるためのバイパス部材(21B,21C,30)とを有する光増幅部(18A;18B)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを備えたものである。
また、本発明による第3の露光装置は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器(22,25)と、この複数段の増幅用光ファイバーのそれぞれのために励起光を発生する複数の励起光発生光源(23A,23D)と、その複数段の増幅用光ファイバーの間に配置された狭帯域フィルタ(24A)とを備え、狭帯域フィルタの両側に結合された光ファイバー端に励起光を反射するための反射膜が形成された光増幅部(18C)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを備えたものである。
また、本発明による第4の露光装置は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を所定周波数で所定幅のパルス光に変換する光変調部(12)と、この光変調部を通過したレーザ光を増幅する光ファイバー増幅器(22,25)を有する光増幅部(18−1)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを備え、その光変調部で変換されるパルス光の幅は、最終的に発生する紫外光で所定の波長幅を得るためのパルス幅よりも広く設定されるものである。
また、本発明の第5の露光装置は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を増幅する光ファイバー増幅器(25)と、この光ファイバー増幅器で増幅されたレーザ光を伝播する伝送用光ファイバー(26)と、その光ファイバー増幅器とその伝送用光ファイバーとの間に配置された狭帯域フィルタ(24A)とを有する光増幅部(18D)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを備えたものである。
また、本発明の第6の露光装置は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体を経た紫外光で第2物体を露光する露光装置であって、そのレーザ装置は、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、そのレーザ光を複数に分岐する光分岐装置と、その複数に分岐されたレーザ光をそれぞれ独立に増幅する複数の光ファイバー増幅器と、その増幅されたレーザ光を紫外光に波長変換する波長変換部(20)とを有し、その複数に分岐されたレーザ光の出力をほぼ均一とするように、その複数の光ファイバー増幅器の少なくとも1つでの増幅利得を調整する調整装置を備えるものである。
斯かる本発明の各露光装置によれば、そのレーザ装置中のレーザ光発生部としては、例えば発振波長が制御されたDFB(Distributed feed back)半導体レーザ、又はファイバーレーザ等の小型で発振スペクトルの狭い光源を使用することができる。そして、そのレーザ光発生部からの単一波長のレーザ光を複数段の光ファイバー増幅器で増幅した後、非線形光学結晶で紫外光に変換することによって、高出力で単一波長の狭いスペクトル幅の紫外光を得ることができる。従って、小型でかつメンテナンスの容易なレーザ装置を備えた露光装置を提供できる。
この場合、光ファイバー増幅器としては、例えばエルビウム(Er)・ドープ・光ファイバー増幅器(Erbium−Doped Fiber Amplifier:EDFA)、イッテルビウム(Yb)・ドープ・光ファイバー増幅器(YDFA)、プラセオジム(Pr)・ドープ・光ファイバー増幅器(PDFA)、又はツリウム(Tm)・ドープ・光ファイバー増幅器(TDFA)等を使用することができるが、これらの光ファイバー増幅器に強い光を伝播させると、非線形効果に起因して波長幅が広がる恐れがある。
その非線形効果中でSPM(Self Phase Modulation)、及びSRS(Stimulated Raman Scattering)による波長幅広がりはファイバー長が長いほど大きくなる。例えば、簡単なモデルでは、SPMによる波長幅広がりはファイバー長に比例する。従ってファイバー長を短くすることでSPMによる波長幅広がりを小さく抑えることができる。また、SRSが起こり始める光強度をSRS閾値とすると、SRS閾値はファイバー長に反比例する。従ってファイバー長を短くすることでSRS閾値を増加させ、SRSが起こりにくくすることで、光ファイバー増幅器出力の波長幅広がりを抑える効果が得られる。SPM,SRS何れの場合にもファイバー長を短くすることで、波長幅広がりを低減できる。
次に、SRS及びSBS(Stimulated Brillouin Scattering)は、ファイバーを伝播する光がフォノンによる散乱を受け、フォノン・サイドバンドに散乱される現象である。フォノン・サイドバンドに散乱された光の波長は、フォノンの波長分だけ元の波長とは異なり、元の波長幅に対して波長幅が広がることになる。更に、SRS及びSBSではフォノン・サイドバンドに散乱された光がコヒーレントに増幅され、強度が大きくなる。特に、フォノン・サイドバンドに相当する波長のノイズが存在する場合には、それが種(シード光)となって増幅を受けるため散乱光の強度が大きくなり、SRS,SBSによる波長幅広がりの影響が顕著になる。従って、SRS,SBSの影響を低減するためには種となるノイズを低減することが必要である。
そこで、上記の本発明においては、先ず複数段の光ファイバー増幅器の接続部に狭帯域フィルタ及びアイソレータを挿入することによって、Amplified Spontanious Emission(以下、「ASE」と言う)ノイズを軽減する。これによって、SRS及びSBSを低減できる。
また、別の方法として複数段の光ファイバー増幅器の間にアイソレータを挿入することによってもASEを小さくできるため、SRS及びSBSの影響を低減できる。更に、複数段の光ファイバー増幅器の間に狭帯域フィルタを挿入することによってASEを小さくできると共に、狭帯域フィルタはラマン(Raman)散乱によって散乱された光をブロックできるために、散乱光がコヒーレントに増幅されることがなくなって、SRSの影響も低減される。
これらの場合に、アイソレータ又は狭帯域フィルタにより励起光の伝播が阻止される。そこで、励起光をアイソレータ又は狭帯域フィルタの前後の光ファイバー増幅器に伝播できるようにバイパス部材を設けている。このバイパス部材では、カップリング用の波長分割多重(Wavelength Division Multiplexing:WDM)素子を用いることによって、励起光を効率的に使用することができる。
次に、双方向励起構造の光ファイバー増幅器においても、その接続部に狭帯域フィルタを配置することで非線形効果による波長幅の広がりが低減される。更に、その狭帯域フィルタの両端に結合された光ファイバーの端面に励起光を反射する膜を形成しておくと、前方と後方との両側から注入された励起光はそれぞれ反射されて逆向きに伝播して、元の光ファイバー増幅器に戻る。これによって、上記の励起光のバイパスのためのWDM用の合波器等が不要になり、構成が簡略化されると共に、WDMの挿入損失も無くなる。
次に、更に別の方法として、光変調部で変換されるパルス光の波形を、最終的に発生する紫外光で所定の波長幅を得るためのパルス幅、即ち必要な周波数幅のトランスファー・リミットで決まるパルス幅より数倍長い幅(例えば、2nsから5ns程度)を持つと共に、パルス過渡時間がほぼ最大になる波形を使用する方法もある。この場合には、最終段の光ファイバー増幅器での利得のブリーチングを利用することによって、出力光のパルス幅は短くなる。
即ち、SPMによる周波数広がりは光強度の時間変化に比例するので、光強度の時間変化が緩やかなパルス過渡時間が長いパルスほど周波数広がりが小さくなる。従って、パルス幅が長く、過渡時間が長いパルスを使用することでSPMの影響を低減できる。一方、パルス幅が広いほどSBSの影響が大きくなるというトレードオフがある。簡単なモデルでは、SBSが起こり始める光強度である閾値は、パルス幅に反比例する。しかし、SBSが最も問題となる最終段の光ファイバー増幅器では利得のブリーチングがおこるため、出力光のパルス幅は短くなり、パルス幅が広いための悪影響は軽減される。
更に、別の方法として最終段の高出力の光ファイバー増幅器から伝送用の光ファイバーへのSRSの伝播を抑えるために、その接続部に狭帯域フィルタを挿入する方法がある。その狭帯域フィルタによってASEを低減できると共にSRSの伝播が抑えられて、伝播光の波長幅の広がりが小さくなる。
また、光ファイバー増幅器として、例えばエルビウム・ドープ・光ファイバー増幅器(EDFA)を使用する場合、励起光としては(980±10)nm及び(1480nm±30)nmの光を使用できる。ところが、励起波長として、980nm帯を用いる場合、1480nm帯を用いる場合に比較して、単位長さ当たりの利得が大きくなる。従って、所望の利得を得るために必要なファイバー長を短くすることができ、ノイズの主要因であるASEを小さくできる。このため、980nm帯の励起では1480nm帯の励起に比較して、光ファイバー増幅器のノイズを低減できる。
なお、イッテルビウム(Yb)・ドープ・光ファイバー、及びエルビウムとイッテルビウムとをコ・ドープした光ファイバーの励起光としては(970±10)nmの光が使用できる。
これらの各レーザ装置においては、そのレーザ光発生部から発生するレーザ光を複数に分岐する光分岐装置(14,16−1〜16−m)を更に備え、その光増幅部(18−1〜18−n)はその複数に分岐されたレーザ光のそれぞれに独立に設けられると共に、その波長変換部は、その複数の光増幅部から出力されたレーザ光の束をまとめて波長変換することが望ましい。このように光分岐装置で分岐したレーザ光に順次所定の光路長差を付与することで、最終的に束ねられるレーザ光の空間的コヒーレンスが低減できる。また、各レーザ光は共通のレーザ光発生部から発生しているため、最終的に得られる紫外光のスペクトル線幅は狭くなっている。
更に、そのレーザ光は光変調器等によって例えば100kHz程度の高い周波数で容易に変調することができる。また、各パルス光は所定の時間間隔の例えば100個程度のパルス光の集合体である。従って、エキシマレーザ光(周波数は数kHz程度)を使用する場合に比べて、同じ照度を得るためにはパルスエネルギーを1/1000〜1/10000程度にできるため、露光光源として用いた場合に、コンパクション等による光学部材の透過率変動が殆ど無くなり、安定にかつ高精度に露光を行うことができる。
次に、本発明の波長変換部の構成については、複数の非線形光学結晶の2次高調波発生(SHG)及び和周波発生(SFG)の組み合わせによって、基本波に対して任意の整数倍の周波数(波長は整数分の1)の高調波よりなる紫外光を容易に出力することができる。
そして、例えばレーザ光発生部で波長が1.5μm、特に1.544〜1.552μmに限定されたレーザ光を放射し、波長変換部でその基本波の8倍高調波の発生を行う構成によって、ArFエキシマレーザと実質的に同一波長の193〜194nmの紫外光が得られる。また、レーザ光発生部として波長が1.5μm付近、特に1.57〜1.58μmに限定されたレーザ光を放射し、波長変換部でその基本波の10倍高調波の発生を行う構成によって、Fレーザと実質的に同一波長の157〜158nmの紫外光が得られる。同様に、例えばレーザ光発生部として波長が1.1μm付近、特に1.099〜1.106μmに限定されたレーザ光を放射し、波長変換部でその基本波の7倍高調波の発生を行う構成によって、Fレーザと実質的に同一波長の紫外光が得られる。
そして、本発明の露光装置は、更に、そのレーザ装置からの紫外光をマスク(163)に照射する照明系(162)と、そのマスクのパターンの像を基板(166)上に投影する投影光学系(165)とを有し、そのマスクのパターンを通過した紫外光でその基板を露光するものである。本発明のレーザ装置の使用によって、露光装置全体を小型化でき、かつメンテナンスが容易になる。
また、本発明の露光方法によれば、そのレーザ装置からの紫外光がその露光装置の例えばTTR(スルー・ザ・レチクル)方式のアライメント系のアライメント光として使用される。このアライメント光は実質的に連続光にできるため、アライメントが容易になる。
次に、本発明による第1の露光装置の製造方法は、レーザ装置からの紫外光で第1物体(163)のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体(166)を露光する露光装置の製造方法であって、そのレーザ装置を、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器(22,25)と、この複数段の光ファイバー増幅器の間に配置された狭帯域フィルタ(24A)及びアイソレータ(IS3)とを有する光増幅部(18)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを所定の位置関係で配置して構成したものである。
また、本発明による第2の露光装置の製造方法は、レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置の製造方法であって、そのレーザ装置を、赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部(11)と、このレーザ光発生部から発生されたレーザ光を増幅する複数の増幅用光ファイバー(22,25)と、複数の増幅用の励起光を発生する励起光発生光源(23A)と、その複数の増幅用光ファイバーの間に配置された狭帯域フィルタ(24A)又はアイソレータ(IS3)と、この狭帯域フィルタ又はアイソレータと並列にその励起光を通過させるためのバイパス部材(21B,21C,30)とを有する光増幅部(18A;18B)と、この光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部(20)とを所定の位置関係で配置して構成したものである。
また、本発明のデバイスの製造方法は、本発明の露光装置を用いてマスクパターンを基板上に転写する工程を含むものである。
発明を実施するための最良の形態
以下、本発明の好適な実施の形態の一例につき図面を参照して説明する。本例は、ステッパーやステップ・アンド・スキャン方式等の投影露光装置、又はアライメントや各種検査用の光源として使用できる紫外光発生装置に本発明を適用したものである。
図1(a)は、本例の紫外光発生装置を示し、この図1(a)において、レーザ光発生部としての単一波長発振レーザ11からスペクトル幅の狭い単一波長の連続波(CW)よりなる波長1.544μmのレーザ光LB1が発生する。このレーザ光LB1は、逆向きの光を阻止するためのアイソレータIS1を介して光変調器としての光変調素子12に入射し、ここでパルス光のレーザ光LB2に変換されて光分岐増幅部4に入射する。
光分岐増幅部4に入射したレーザ光LB2は、先ず前段の光増幅部としての光ファイバー増幅器13を通過して増幅された後、アイソレータIS2を介して第1の光分岐素子としての平面導波路型のスプリッタ14に入射して、m本のほぼ同一強度のレーザ光に分岐される。mは2以上の整数であり、本例ではm=4である。光ファイバー増幅器13としては、単一波長発振レーザ11から発生されるレーザ光LB1と同じ波長域(本例では1.544μm付近)の光を増幅するために、エルビウム・ドープ・光ファイバー増幅器(Erbium−Doped Fiber Amplifier:EDFA)が使用されている。なお、光ファイバー増幅器13には不図示のカップリング用の波長分割多重素子を介して不図示の励起用の半導体レーザからの波長980nmの励起光が供給されている。エルビウム・ドープ・光ファイバー増幅器(EDFA)には(980±10)nm又は(1480nm±30nm)の励起光が使用できる。しかしながら、非線形効果による波長の広がりを防止するためには、励起光として波長(980±10)nmのレーザ光を使用して、ファイバー長を短くすることが望ましい。これによって、更に1480nm帯の光を励起光に使用する場合に比べてASE(Amplified Spontanious Emission)による光ファイバー増幅器13のノイズを小さくできる点でも望ましい。これは後段の光ファイバー増幅器についても同様である。
スプリッタ14から射出されたm本のレーザ光は、互いに異なる長さの光ファイバー15−1,15−2,…,15−mを介してそれぞれ第2の光分岐素子としての平面導波路型のスプリッタ16−1,16−2,…,16−mに入射して、それぞれほぼ同一強度のn本のレーザ光に分岐される。nは2以上の整数であり、本例ではn=32である。第1の光分割素子(14)及び第2の光分割素子(16−1〜16−m)が本発明の一実施形態における光分岐装置に対応する。その結果、単一波長発振レーザ11から射出されるレーザ光LB1は、全体としてn・m本(本例では128本)のレーザ光に分割される。
そして、スプリッタ16−1から射出されたn本のレーザ光LB3は、互いに異なる長さの光ファイバー17−1,17−2,…,17−nを介してそれぞれ後段の光増幅部としての光増幅ユニット18−1,18−2,…,18−nに入射して増幅される。光増幅ユニット18−1〜18−nは、単一波長発振レーザ11から発生されるレーザ光LB1と同じ波長域(本例では1.544μm付近)の光を増幅する。同様に他のスプリッタ16−2〜16−mから射出されたn本のレーザ光も、それぞれ互いに異なる長さの光ファイバー17−1〜17−nを介して後段の光増幅部としての光増幅ユニット18−1〜18−nに入射して増幅される。
m組の光増幅ユニット18−1〜18−nで増幅されたレーザ光は、それぞれ光増幅ユニット18−1〜18−n内の所定の物質がドープされた光ファイバー(後述)の射出端の延長部を伝播し、これらの延長部が光ファイバー・バンドル19を構成する。光ファイバー・バンドル19を構成するm組のn本の光ファイバーの延長部の長さは互いにほぼ同一である。但し、光ファイバー・バンドル19をm・n本の互いに同じ長さの無ドープの光ファイバーを束ねて形成すると共に、光増幅ユニット18−1〜18−nで増幅されたレーザ光をそれぞれ対応する無ドープの光ファイバーに導いてもよい。光ファイバー増幅器13から光ファイバー・バンドル19までの部材より光分岐増幅部4が構成されている。
光ファイバー・バンドル19から射出されたレーザ光LB4は、非線形光学素子を有する波長変換部20に入射して紫外光よりなるレーザ光LB5に変換され、このレーザ光LB5が露光光、アライメント光、又は検査用の光として外部に射出される。m組の光増幅ユニット18−1〜18−nがそれぞれ本発明の光増幅部に対応しているが、この光増幅部に光ファイバー・バンドル19の光ファイバーを含める場合もある。
また、光ファイバー・バンドル19の出力端19aは、図1(b)に示すように、m・n本(本例では128本)の光ファイバーを密着するように、かつ外形が円形になるように束ねている。実際には、その出力端19aの形状及び束ねる光ファイバーの数は、後段の波長変換部20の構成、及び本例の紫外光発生装置の使用条件等に応じて定められる。光ファイバー・バンドル19を構成する各光ファイバーのクラッド直径は125μm程度であることから、128本を円形に束ねた場合の光ファイバー・バンドル19の出力端19aの直径d1は、約2mm以下とすることができる。なお、光分岐増幅部4は図1の構成に限られるものではなく、例えば光分岐装置として時分割型光分岐素子(Time Division Multiplexer)などを用いてもよい。
また、本例の波長変換部20では、入射するレーザ光LB4を8倍高調波(波長は1/8)、又は10倍高調波(波長は1/10)よりなるレーザ光LB5に変換する。単一波長発振レーザ11から射出されるレーザ光LB1の波長は1.544μmであるため、8倍高調波の波長はArFエキシマレーザと同じ193nmとなり、10倍高調波の波長はFレーザ(フッ素レーザ)の波長(157nm)とほぼ同じ154nmとなる。なお、レーザ光LB5の波長をよりFレーザ光の波長に近付けたい場合には、波長変換部20で10倍高調波を生成すると共に、単一波長発振レーザ11では波長1.57μmのレーザ光を発生すればよい。
実用的には、単一波長発振レーザ11の発振波長を1.544〜1.552μm程度に規定して、8倍波に変換することにより、ArFエキシマレーザと実質的に同一波長(193〜194nm)の紫外光が得られる。そして、単一波長発振レーザ11の発振波長を1.57〜1.58μm程度に規定して、10倍波に変換することによってFレーザと実質的に同一波長(157〜158nm)の紫外光が得られる。従って、これらの紫外光発生装置をそれぞれArFエキシマレーザ光源、及びFレーザ光源に代わる安価でメンテナンスの容易な光源として使用することができる。
なお、最終的にArFエキシマレーザ、又はFレーザ等に近い波長域の紫外光を得る代わりに、例えば製造対象の半導体デバイス等のパターンルールより最適な露光波長(例えば160nm等)を決定し、この理論的に最適な波長の紫外光を得るように単一波長発振レーザ11の発振波長や波長変換部20における高調波の倍率を決定するようにしてもよい。即ち、波長変換部20から発生する紫外光はその波長が任意(一例としては200nm程度以下)でよいし、8倍波及び10倍波以外でもよく、波長変換部20の構成は任意で構わない。
以下、本実施形態についてより詳細に説明する。図1(a)において、単一波長で発振する単一波長発振レーザ11としては、例えば発振波長1.544μm、連続波出力(以下、「CW出力」ともいう)で出力が20mWのInGaAsP構造のDFB(Distributed feedback:分布帰還型)半導体レーザを用いる。ここでDFB半導体レーザとは、縦モード選択性の低いファブリーペロー型共振器の代わりに、回折格子を半導体レーザ内に形成したもので、どのような状況下であっても単一縦モード発振を行うように構成されている。DFB半導体レーザは、基本的に単一縦モード発振をすることから、その発振スペクトル線幅は0.01pm以下に抑えられる。なお、単一波長発振レーザ11としては、同様の波長領域で狭帯域化されたレーザ光を発生する光源、例えばエルビウム(Er)・ドープ・ファイバー・レーザ等をも使用することができる。
更に、本例の紫外光発生装置の出力波長は用途に応じて特定波長に固定することが望ましい。そのため、マスター発振器(Master Oscillator)としての単一波長発振レーザ11の発振波長を一定波長に制御するための発振波長制御装置を設けている。本例のように単一波長発振レーザ11としてDFB半導体レーザを用いる場合には、DFB半導体レーザの温度制御を行うことにより発振波長を制御することができ、この方法により発振波長を更に安定化して一定の波長に制御したり、あるいは出力波長を微調整することができる。
通常、DFB半導体レーザなどはヒートシンクの上に設けられ、これらが筐体内に収納されている。そこで本例では、単一波長発振レーザ11(DFB半導体レーザなど)に付設されるヒートシンクに温度調整部5(例えばヒータ等の加熱素子、ペルチェ素子等の吸熱素子、及びサーミスタ等の温度検出素子よりなる)を固定し、その温度調整部5の動作をコンピュータよりなる制御部1が制御して、そのヒートシンク、ひいては単一波長発振レーザ11の温度を高精度に制御する。ここで、DFB半導体レーザなどではその温度を0.001℃単位で制御することが可能である。また、制御部1は、ドライバ2を介して単一波長発振レーザ11を駆動するための電力(DFB半導体レーザでは駆動電流)を高精度に制御する。
DFB半導体レーザの発振波長は0.1nm/℃程度の温度依存性を持つため、そのDFB半導体レーザの温度を例えば1℃変化させると、基本波(波長1544nm)ではその波長が0.1nm変化する。従って、8倍波(193nm)ではその波長が0.0125nm変化し、10倍波(157nm)ではその波長が0.01nm変化することになる。なお、レーザ光LB5を露光装置に使用する場合には、例えば露光装置が設置される環境の大気圧差による結像特性の誤差、又は結像特性の変動による誤差等を補正するために、その中心波長に対して±20pm程度変化できることが望ましい。このためには、DFB半導体レーザの温度を8倍波では±1.6℃程度、10倍波では±2℃程度変化させればよく、これは実用的である。
そして、この発振波長を所定の波長に制御する際のフィードバック制御のモニター波長としては、DFB半導体レーザの発振波長、あるいは後述する波長変換部20内での波長変換後の高調波出力(2倍波、3倍波、4倍波等)の内から所望の波長制御を行うに当たって必要な感度を与え、かつ最もモニターしやすい波長を選択すればよい。単一波長発振レーザ11として例えば発振波長1.51〜1.59μmのDFB半導体レーザを使用する場合に、この発振レーザ光の3倍波は503nm〜530nmの波長になるが、この波長帯はヨウ素分子の吸収線が密に存在する波長域に該当しており、ヨウ素分子の適切な吸収線を選んでその波長にロックすることにより精密な発振波長制御を行うことが可能である。そこで、本例では波長変換部20内の所定の高調波(望ましくは3倍波)をヨウ素分子の適切な吸収線(基準波長)と比較し、その波長のずれ量を制御部1にフィードバックし、制御部1ではそのずれ量が所定の一定値になるように単一波長発振レーザ11の温度を制御する。逆に、制御部1では、その単一波長発振レーザ11の発振波長を積極的に変化させてその出力波長を調整可能にしてもよい。
本例の紫外光発生装置を例えば露光装置の露光光源に適用する場合、前者によれば、波長変動による投影光学系の収差の発生、又はその変動が防止され、パターン転写中にその像特性(像質などの光学的特性)が変化することがなくなる。また、後者によれば、露光装置が組立、調整される製造現場と露光装置の設置場所(納入先)との標高差や気圧差、更には環境(クリーンルーム内の雰囲気)の違いなどに応じて生じる投影光学系の結像特性(収差など)の変動を相殺でき、納入先で露光装置の立ち上げに要する時間を短縮することが可能になる。更に後者によれば、露光装置の稼働中に、露光用照明光の照射、大気圧変化、及び照明光学系によるレチクルの照明条件(即ち、照明光学系の瞳面上での露光用照明光の光量分布)の変更などに起因して生じる投影光学系の収差、投影倍率、及び焦点位置などの変動も相殺でき、常に最良の結像状態でパターン像を基板上に転写することが可能となる。
単一波長発振レーザ11から出力される連続光よりなるレーザ光LB1は、例えば電気光学光変調素子や音響光学光変調素子などの光変調素子12を用いて、パルス光よりなるレーザ光LB2に変換される。光変調素子12の動作は、制御部1によってドライバ3を介して制御されている。本構成例では一例として、この光変調素子12によってパルス幅1ns、繰り返し周波数100kHz(パルス周期10μs)のパルス光に変調させた場合について説明を行う。この様な光変調を行った結果、光変調素子12から出力されるパルス光のピーク出力は20mW、平均出力は2μWとなる。ここでは、光変調素子12の挿入による損失がないものとしたが、実際にはその挿入損失がある。例えば損失が−3dBである場合、パルス光のピーク出力は10mW、平均出力は1μWとなる。
なお、光変調素子12として電気光学変調素子を用いる場合には、屈折率の時間変化に伴うチャープによる半導体レーザ出力の波長広がりが小さくなるように、チャープ補正を行った電極構造を持つ電気光学変調素子(例えば二電極型変調器)を用いることが好ましい。また、繰り返し周波数を100kHz程度以上に設定することにより、後述する光増幅ユニット18−1〜18−n内の光ファイバー増幅器においてASE(Amplified Spontaneous Emission:自然放出光)ノイズの影響による増幅率低下を阻止することができる。更に、最終的に出力される紫外光の照度が従来のエキシマレーザ光(パルス周波数は数kHz程度)と同程度でよい場合には、本例のようにパルス周波数を高め、各パルス光を例えば128個の遅延したパルス光の集合体とすることによって、各パルス当たりのエネルギーを1/1000〜1/10000程度に小さくすることができ、コンパクション等による光学部材(レンズ等)の屈折率変動等を小さくすることができる。従って、そのような変調器構成とすることが望ましい。
更に、半導体レーザなどではその電流制御を行うことで、出力光をパルス発振させることができる。このため、本例では単一波長発振レーザ11(DFB半導体レーザなど)の電力制御と光変調素子12とを併用してパルス光を発生させることが好ましい。そこで、単一波長発振レーザ11の電流制御によって、例えば10〜20ns程度のパルス幅を有するパルス光を発振させると共に、光変調素子12によってそのパルス光からその一部のみを切り出す、即ち本例ではパルス幅が1nsのパルス光に変調する。
これにより、光変調素子12のみを用いる場合に比べて、パルス幅が狭いパルス光を容易に発生させることが可能になると共に、パルス光の発振間隔や発振の開始及びその停止などをより簡単に制御することが可能になる。特に、光変調素子12のみを用いてパルス光をオフの状態にしてもその消光比が充分でない場合には、単一波長発振レーザ11の電力制御を併用することが望ましい。
このようにして得たパルス光出力を、初段のエルビウム・ドープの光ファイバー増幅器13に接続し、35dB(3162倍)の光増幅を行う。このときパルス光は、ピーク出力約63W、平均出力約6.3mWとなる。なお、この光ファイバー増幅器13の代わりに複数段の光ファイバー増幅器を使用してもよい。
その初段の光ファイバー増幅器13の出力を、スプリッタ14でまずチャネル0〜3の4個の出力(本例ではm=4)に並列分割する。このチャネル0〜3の各出力を、各々長さの異なる光ファイバー15−1〜15−4に接続することにより、各光ファイバーからの出力光には、光ファイバー長に対応した遅延時間が与えられる。例えば本実施形態では、光ファイバー中の光の伝搬速度を2×10m/sであるとし、チャネル0、1、2、3にそれぞれ0.1m、19.3m、38.5m、57.7mの長さの光ファイバー15−1〜15−4を接続する。この場合、各光ファイバーの出口での隣り合うチャネル間の光の遅延は96nsとなる。なおここでは、この様に光を遅延させる目的で使用する光ファイバー15−1〜15−4を、便宜的に「遅延ファイバー」と呼ぶ。
次に、その4本の遅延ファイバーの出力を、4個のスプリッタ16−1〜16−4で更にn個(本例ではn=32)の出力に並列分割(各スプリッタでチャネル0〜31)し、合計4×32個(=128個)のチャネルに分割する。そして、各スプリッタ16−1〜16−4のチャネル0〜31の出力端に再び互いに長さの異なる光ファイバー(遅延ファイバー)17−1〜17−32を接続して、隣接するチャネル間に3nsの遅延時間を与える。これによって、チャネル31の出力には、93nsの遅延時間が与えられる。一方、第1から第4までの各スプリッタ16−1〜16−4間には、前記のように遅延ファイバーによって、各スプリッタの入力時点で各々96nsの遅延時間が与えられている。この結果、全体で総計128チャネルの出力端で、隣り合うチャネル間に3nsの遅延時間を持つパルス光が得られる。
この結果、本例では光ファイバー・バンドル19から射出されるレーザ光LB4の空間的コヒーレンスが、単に単一波長発振レーザ11から射出されるレーザ光LB1の断面形状を拡大した場合に比べてほぼ1/128のオーダで低下する。従って、最終的に得られるレーザ光LB5を露光光として用いた場合に生じるスペックルの量は極めて少ない利点がある。
以上の分岐及び遅延により、総計128チャネルの出力端では、隣り合うチャネル間で3nsの遅延時間を持つパルス光が得られるが、このとき各々の出力端で観測される光パルスは、光変調素子12によって変調されたパルス光と同じ100kHz(パルス周期10μs)である。従って、レーザ光発生部全体として見ると、128パルスが3ns間隔で発生した後、9.62μsの間隔を置いて次のパルス列が発生するという繰り返しが100kHzで行われる。
なお本実施形態では、分割数を128とし、また遅延ファイバーとして短いものを用いた例について説明した。このため各パルス列の間に9.62μsの無発光の間隔が生じたが、分割数m,nを増加させる、又は遅延ファイバーをより長くして適切な長さとする、あるいはこれらを組み合わせて用いることにより、パルス間隔を完全な等間隔とすることも可能である。
以上より本例のスプリッタ14、光ファイバー15−1〜15−m、スプリッタ16−1〜16−m、及びm組の光ファイバー17−1〜17−nは、全体として時分割多重(Time Division Multiplexing:TDM)手段を構成しているともみなすことができる。なお、その本例では時分割多重手段を2段のスプリッタによって構成しているが、それを3段以上のスプリッタで構成してもよく、又は分割数は少なくなるが1段のスプリッタのみで構成してもよい。また、本例のスプリッタ14,16−1〜16−mは平板導波路型であるが、それ以外に例えばファイバースプリッタや、部分透過鏡を用いたビームスプリッタ等も使用することができる。
また、本例では光変調素子12に印加するドライブ用電圧パルスのタイミングを制御することによって、光源(パルス光)の発振タイミング、即ち繰り返し波数fを調整することができる。更に、この発振タイミングの変更に伴ってパルス光の出力が変動し得る場合には、光変調素子12に印加するドライブ用電圧パルスの大きさも同時に調整してその出力変動を補償するようにしてもよい。このとき、単一波長発振レーザ11の発振制御のみ、あるいは前述した光変調素子12の制御との併用によってそのパルス光の出力変動を補償するようにしても良い。
図1(a)において、m組の遅延ファイバー(光ファイバー17−1〜17−n)を通過したレーザ光はそれぞれ光増幅ユニット18−1〜18−nに入射して増幅される。本例の光増幅ユニット18−1〜18−nは光ファイバー増幅器を備えているが、特に最終段の光ファイバー増幅器のように、強度の大きな光が光ファイバー中を伝播する場合には、光ファイバーの非線形効果に起因したSPM(Self Phase Modulation)、SRS(Stimulated Raman Scattering)、及びSBS(Stimulated Brillouin Scattering)等の影響で伝播光の波長幅が広がってしまう。そこで、以下の実施の形態では、その非線形効果の影響を軽減して波長幅の広がりを抑えるための構成例を示す。以下では、光増幅ユニット18−1として使用できる光増幅ユニットのいくつかの構成例につき説明するが、これらは他の光増幅ユニット18−2〜18−nとしても同様に使用することができる。
図2は、第1の構成例の光増幅ユニット18を示し、この図2において、光増幅ユニット18は基本的に2段のそれぞれエルビウム・ドープ・光ファイバー増幅器(Erbium−Doped Fiber Amplifier:EDFA)よりなる光ファイバー増幅器22及び25を接続して構成されている。光ファイバー増幅器22,25は「増幅用光ファイバー」とも呼ぶことができる。そして、1段目の光ファイバー増幅器22の両端部には、励起光をカップリングするための波長分割多重(Wavelength Division Multiplexing:WDM)素子(以下、「WDM素子」と言う)21A及び21Bが接続され、WDM素子21A及び21Bによってそれぞれ励起光源としての半導体レーザ23Aからの励起光EL1及び半導体レーザ23Bからの励起光が、光ファイバー増幅器22に前後から供給されている。同様に、2段目の光ファイバー増幅器25の両端部にも、カップリング用のWDM素子21C及び21Dが接続され、WDM素子21C及び21Dによってそれぞれ半導体レーザ23C及び23Dからの励起光が光ファイバー増幅器25に前後から供給されている。即ち、光ファイバー増幅器22,25は共に双方向励起型である。
光ファイバー増幅器22,25はそれぞれ入射するレーザ光LB3(本例では波長1.544μm)の波長を含む例えば約1.53〜1.56μm程度の波長域の光を増幅する。また、光ファイバー増幅器22,25の境界部であるWDM素子21BとWDM素子21Cとの間に、狭帯域フィルタ24A及び戻り光を阻止するためのアイソレータIS3が配置されている。狭帯域フィルタ24Aとしては多層膜フィルタ、又はファイバー・ブラッグ・グレーティング(Fiber Bragg Grating)が使用できる。
本例において、図1(a)の光ファイバー17−1からのレーザ光LB3は、WDM素子21Aを介して増幅用光ファイバー22に入射して増幅される。この増幅用光ファイバー22で増幅されたレーザ光LB3は、WDM素子21B、狭帯域フィルタ24A、アイソレータIS3、及びWDM素子21Cを介して増幅用光ファイバー25に入射して再び増幅される。増幅されたレーザ光LB3は、WDM素子21Dを介して図1(a)の光ファイバー・バンドル19を構成する1本の光ファイバー(増幅用光ファイバー25の射出端の延長部でもよい)を伝播する。
この場合、2段の増幅用光ファイバー22及び25による合計の増幅利得は一例として約46dB(39810倍)である。そして、図1(b)のスプリッタ16−1〜16−mから出力される全チャネル数(m・n個)を128個として、各チャネルの平均出力を約50μWとすると、全チャネル合計での平均出力は約6.4mWとなる。その各チャネルのレーザ光をそれぞれ約46dBで増幅すると、各光増幅ユニット18−1〜18−nから出力されるレーザ光の平均出力はそれぞれ約2Wとなる。これをパルス幅1ns、パルス周波数100kHzでパルス化したものとすると、各レーザ光のピーク出力は20kWとなる。また、光ファイバー・バンドル19から出力されるレーザ光LB4の平均出力は約256Wとなる。
ここでは、図1(a)のスプリッタ14,16−1〜16−mでの結合損失を考慮していないが、その結合損失がある場合にはその損失分だけ光ファイバー増幅器22,25の少なくとも1つの増幅利得を上げることにより、各チャネルのレーザ光の出力を上記の値(例えばピーク出力20kWなど)に均一化することができる。なお、図2の光ファイバー増幅器22及び25による増幅利得を変化させることで、図1(a)の単一波長発振レーザ11の出力(基本波の出力)を前述した値よりも大きくしたり、あるいは小さくしたりすることができる。
図2の構成例において、狭帯域フィルタ24Aは、図1(a)の光ファイバー増幅器13及び図2の光ファイバー増幅器22でそれぞれ発生するASE(Amplified Spontanious Emission)光をカットし、かつ図1(a)の単一波長発振レーザ11から出力されるレーザ光(波長幅は1pm程度以下)を透過させることで、透過光の波長幅を実質的に狭帯化するものである。これにより、ASE光が後段の光ファイバー増幅器25に入射してレーザ光の増幅利得を低下させるのを防止することができる。ここで、狭帯域フィルタ24Aはその透過波長幅が1pm程度であることが好ましいが、ASE光の波長幅は数十nm程度であるので、現時点で得られる透過波長幅が100pm程度の狭帯域フィルタを用いても実用上問題がない程度にASE光をカットすることができる。
また、図1(a)の単一波長発振レーザ11の出力波長を積極的に変化させる場合、その出力波長に応じて狭帯域フィルタ24Aを交換するようにしてもよいが、その出力波長の可変幅(露光装置では一例として前述した±20pm程度)に応じた透過波長幅(可変幅と同程度以上)を持つ狭帯域フィルタを用いることが好ましい。
また、アイソレータIS3によって戻り光の影響が低減される。更に、図2の構成例においては、狭帯域フィルタ24A及びアイソレータIS3を用いることによってASEノイズが低減しているために、最終段の光ファイバー増幅器25の他の非線形効果であるSRS(Stimulated Raman Scattering)及びSBS(Stimulated Brillouin Scattering)の影響も低減されるため、波長幅の広がりが抑制される。光増幅ユニット18は例えば3段以上の光ファイバー増幅器を接続して構成することも可能であるが、この場合にも隣接する2つの光ファイバー増幅器の境界部の全てに狭帯域フィルタ24A及びアイソレータIS3を挿入することが望ましい。
また、本例では多数の光増幅ユニット18の出力光を束ねて使用するため、各出力光の強度の分布を均一化することが望ましい。このためには、例えばWDM素子21Dから射出されるレーザ光LB3の一部を分離し、この分離された光を光電変換することによって、射出されるレーザ光LB3の光量をモニタし、この光量が全部の光増幅ユニット18でほぼ均一になるように、各光増幅ユニット18における励起光源(半導体レーザ23A〜23D)の出力を制御すればよい。
次に、図3を参照して第2の構成例の光増幅ユニット18Aにつき説明する。図3において図2に対応する部分には同一符号を付してその詳細説明を省略する。図3において、光増幅ユニット18Aも2段の光ファイバー増幅器22及び25を接続して構成され、前段の光ファイバー増幅器22にはWDM素子21Aを介して前方から半導体レーザ23Aからの励起光EL1が供給されている。また、光ファイバー増幅器22から光ファイバー増幅器25にかけて順次WDM素子21B、アイソレータIS3、及びWDM素子21Cが接続され、カップリング用のWDM素子21Bと21Cとの間にバイパス用の光ファイバー30が接続されている。
本例では、入射したレーザ光LB3は、光ファイバー増幅器22で増幅された後、アイソレータIS3を通過して光ファイバー増幅器25で増幅される。この際に、光ファイバー増幅器22を通過した励起光EL1は、バイパス用の光ファイバー30を介して後段の光ファイバー増幅器25を通過するため、励起光源を少なくした簡単な構成でありながら光ファイバー増幅器25でも高い増幅利得が得られる。また、アイソレータIS3の使用によってASEを小さくできるため、SRS及びSBSの影響も低減される。
次に、図4を参照して第3の構成例の光増幅ユニット18Bにつき説明する。図4において図3に対応する部分には同一符号を付してその詳細説明を省略する。図4の光増幅ユニット18Bは、図3の光増幅ユニット18Aにおいて、2段の光ファイバー増幅器22,25の間のアイソレータIS3を狭帯域フィルタ24Aで置き換えたものである。この構成でもASEを小さくすることができる。更に、狭帯域フィルタ24Aは光ファイバー中でラマン散乱によって散乱された光をブロックするため、散乱光がコヒーレントに増幅されることが阻止されて、SRSの影響が低減される。この例でも、バイパス用の光ファイバー30を介して励起光EL1が増幅用光ファイバー25にも供給されている。また、図4の狭帯域フィルタ24Aとしては、ノイズを低減するために、特に多層膜フィルタ、又はファイバー・ブラッグ・グレーティングが望ましい。
次に、図5を参照して第4の構成例の光増幅ユニット18Cにつき説明する。図5において図2に対応する部分には同一符号を付してその詳細説明を省略する。図5の光増幅ユニット18Cは、図2の光増幅ユニット18において、WDM素子21B,21C、励起用の半導体レーザ23B,23C、及びアイソレータIS3を省いたものである。更に、図5において、狭帯域フィルタ24Aの両端面24Aa,24Abに結合された光ファイバーの端面には、それぞれ半導体レーザ23Aからの励起光EL1及び半導体レーザ23Dからの励起光EL4を反射する高反射膜がコーティングされている。本例の光ファイバー増幅器22,25はエルビウム・ドープ・光ファイバーであるため、励起光EL1及びEL4としては波長980nmのレーザ光が使用される。そのため、狭帯域フィルタの両端に結合された光ファイバーの端面にはそれぞれ980nmの光に対する高反射膜がコーティングされている。
この構成例では、入射したレーザ光LB3は、光ファイバー増幅器22から狭帯域フィルタ24Aを通過して更に光ファイバー増幅器25を通過する。また、一方の励起光EL1は前方から光ファイバー増幅器22を通過して励起を行った後、狭帯域フィルタ24Aの面24Aaで反射されて再び光ファイバー増幅器22を励起し、他方の励起光EL4は後方から光ファイバー増幅器25を通過して励起を行った後、面24Abで反射されて再び光ファイバー増幅器25を励起するため、光ファイバー増幅器22,25ではそれぞれ高い増幅利得が得られる。
この際に、狭帯域フィルタ24Aの使用によってASEが小さくなり、SRSの影響が低減されている。更に、図5の構成例では、図4の構成例と比べてバイパス用のWDM素子21B,21Cを挿入する必要が無くなり、構成が簡素化できると共に、WDM素子の挿入損失も無くなっている。
次に、図6を参照して第5の構成例の光増幅ユニット18Dにつき説明する。図6において図2に対応する部分には同一符号を付してその詳細説明を省略する。図6の光増幅ユニット18Dにおいて、光ファイバー増幅器25の前後にカップリング用のWDM素子21C、及び狭帯域フィルタ24Aが接続され、WDM素子21Cを介して半導体レーザ23Cからの励起光EL3が光ファイバー増幅器25に供給されている。また、狭帯域フィルタ24Aはカップリング用の波長分割多重(Wavelength Division Multiplexing:WDM)素子を兼用しており、狭帯域フィルタ24Aを介して半導体レーザ23Dからの励起光EL4が光ファイバー増幅器25に供給されている。そして、本例では狭帯域フィルタ24Aの射出端が図1(a)の光ファイバー・バンドル19を構成する1本の無ドープの光ファイバー26に接続されている。なお、不図示であるが、WDM素子21Cの前段には図2の光ファイバー増幅器22及びこの励起用の部材が接続されている。
図6において、入射したレーザ光LB3は、光ファイバー増幅器25で増幅された後、狭帯域フィルタ24Aを介して光ファイバー26を伝播する。この際に、狭帯域フィルタ24AはWDM素子を兼用しているため、構成が簡素化されている。更に、狭帯域フィルタ24Aの使用によって無ドープの光ファイバー26内でのSRS(Stimulated Raman Scattering)の影響が軽減されるため、全体として波長幅の広がりが抑制される。
次に、本発明の実施の形態の他の例につき図1、図2及び図7を参照して説明する。上記の実施の形態では、図1(a)の光変調素子12から出力されるレーザ光のパルス幅は1ns程度に設定されている。このようにパルス幅が短い場合に、ピーク出力を高くすると、特に後段の光ファイバー増幅器においてSPM(Self Phase Modulation)による周波数広がりが大きくなる恐れがある。そこで、本例では、光変調素子12における出力パルスの幅を、必要な周波数幅のトランスファー・リミットで決まるパルス幅(本例では1ns程度)の数倍、例えば2ns〜5ns程度に設定すると共に、パルス波形をパルス過渡時間が最大になるようにする。
図7は、本例の各部のパルス波形の一例を示し、図1(a)の光変調素子12から出力されるレーザ光LB2の時間tに対する強度変化は、図7(b)の実線の波形28Aのようになる。この波形28Aのパルス幅ΔtAは、所望のレーザ光の周波数幅のトランスファー・リミットで決まる点線で示す波形28Bのパルス幅ΔtBの2倍程度に設定されている。この場合に、図1(a)の単一波長発振レーザ11から出力されるレーザ光LB1は、図7(a)の実線で示すようにCW波でもよいが、2点鎖線の波形27で示すようにパルス幅ΔtAよりも広い幅のパルス光としておくことによって、レーザ光の利用効率を高めることができる。
また、本例の図1(a)の光増幅ユニット18−1として図2の光増幅ユニット18が使用されるものとすると、上記のようにレーザ光LB2のパルス幅が広くなると、特に最終段の光ファイバー増幅器25においてSPMの影響が低減される反面で、SBS(Stimulated Brillouin Scattering)の影響が大きくなる。ところが、その最終段の光ファイバー増幅器25では利得のブリーチングが起こるために、光増幅ユニット18から出力されるレーザ光LB3のパルス幅は、図7(c)の実線の波形29Aで示すように、レーザ光LB2の波形にそのまま対応する点線の波形29Bに比べて短くなる。従って、光変調素子12でパルス幅を広くしたことの悪影響は軽減され、全体として最終的に出力される紫外光の波長幅を狭くすることができる。
なお、上記の実施の形態では、単一波長発振レーザ11として発振波長が1.544μm程度のレーザ光源が使用されているが、その代わりに発振波長1.099〜1.106μm程度のレーザ光源を使用してもよい。このようなレーザ光源としては、DFB半導体レーザあるいはイッテルビウム(Yb)・ドープ・ファイバーレーザが使用できる。この場合には、後段の光増幅部中の光ファイバー増幅器としては、その波長を含む990〜1200nm程度の波長域で増幅を行うイッテルビウム(Yb)・ドープ・光ファイバー(YDFA)を使用すればよい。この場合には、図1(b)の波長変換部20において、7倍波を出力することによって、Fレーザと実質的に同一の波長157〜158nmの紫外光が得られる。実用的には、発振波長を1.1μm程度とすることで、Fレーザとほぼ同一波長の紫外光が得られる。
更には、単一波長発振レーザ11での発振波長を990nm付近として、波長変換部20で基本波の4倍波を出力するようにしてもよい。これによって、KrFエキシマレーザと同一の波長248nmの紫外光を得ることが可能である。
なお、上記の実施形態における最終段の高ピーク出力の光ファイバー増幅器(例えば図2の光増幅ユニット18中の光ファイバー増幅器25)においては、ファイバー中での非線形効果による増幅光のスペクトル幅の増加を避けるため、ファイバーモード径が通常通信で用いられているもの(5〜6μm)よりも広い、例えば20〜30μmの大モード径ファイバーを使用することが望ましい。
更に、最終段の光ファイバー増幅器(例えば図2の光ファイバー増幅器25)において高出力を得るためには、その大モード径ファイバーに代えて、ファイバー・クラッドが二重構造となったダブル・クラッド・ファイバーを用いるようにしてもよい。この光ファイバーでは、コアの部分にレーザ光の増幅に寄与するイオンがドープされており、増幅されるレーザ光(信号)がこのコア内を伝搬する。そして、コアを取り巻く第1クラッドに励起用半導体レーザをカップリングする。この第1クラッドはマルチモードであり、断面積も大きいため高出力の励起用半導体レーザ光の伝導が容易であり、マルチモード発振の半導体レーザを効率よくカップリングし、励起用光源を効率よく使用することができる。その第1クラッドの外周には第1クラッドの導波路を形成するための第2クラッドが形成されている。
また、上記の実施の形態の光ファイバー増幅器として石英ファイバー、又はシリケイト系ファイバーを用いることができるが、これらの他にフッ化物系ファイバー、例えばZBLANファイバーを用いるようにしてもよい。このフッ化物系ファイバーでは、石英やシリケイト系などに比べてエルビウム・ドープ濃度を大きくすることができ、これにより増幅に必要なファイバー長を短縮することができる。このフッ化物系ファイバーは、特に最終段の光ファイバー増幅器(図2の光ファイバー増幅器25)に適用することが望ましく、ファイバー長の短縮により、パルス光のファイバー伝播中の非線形効果による波長幅の広がりを抑えることができ、例えば露光装置に必要な波長幅が狭帯化された光源を得ることが可能となる。特に開口数が大きい投影光学系を有する露光装置でこの狭帯化光源が使用できることは、例えば投影光学系を設計、製造する上で有利である。
更に、フォスフェイトガラス、又は酸化ビスマス系ガラス(Bi)を主材とする光ファイバーを、特に最終段の光ファイバー増幅器として用いるようにしてもよい。ここで、フォスフェイトガラス光ファイバーでは、高密度に希土類元素(例えばエルビウム(Er)、又はエルビウム(Er)とイッテルビウム(Yb)との両方)をコアに添加(ドープ)することができ、同一の光増幅率を得るために必要なファイバ長が従来のシリカガラス光ファイバーの1/100程度となる。また、酸化ビスマス系ガラス光ファイバーでは、従来のシリカガラスと比べて、エルビウム(Er)のドープ量を100倍程度以上にすることができ、フォスフェイトガラスの場合と同様の効果を得ることができる。
ところで、前述のように二重構造のクラッドを持つ光ファイバー増幅器の出力波長として1.51〜1.59μmを使用する場合には、ドープするイオンとしてエルビウム(Er)に加えイッテルビウム(Yb)を共にドープすることが好ましい。これは半導体レーザによる励起効率を向上させる効果があるためである。すなわち、エルビウムとイッテルビウムとの両方をドープする場合、イッテルビウムの強い吸収波長が915〜975nm付近に広がっており、この近傍の波長で各々異なる発振波長を持つ複数の半導体レーザを波長分割多重(WDM)により結合させて第1クラッドにカップリングすることで、その複数の半導体レーザを励起光として使用できるため大きな励起強度を実現することができる。
また、光ファイバー増幅器のドープ・ファイバーの設計については、本例のように予め定められた一定の波長で動作する装置(例えば露光装置)では、所望の波長における光ファイバー増幅器の利得が大きくなるように材質を選択することが望ましい。例えば、ArFエキシマレーザと同じ出力波長(193〜194nm)を得るための紫外レーザ装置において、光増幅器用ファイバーを用いる場合には所望の波長、例えば1.548μmで利得が大きくなる材質を選ぶことが望ましい。
しかしながら、通信用ファイバーでは波長分割多重化通信のため、1.55μm付近の数十nmの波長領域で、比較的平坦な利得を持つように設計されている。そこで、例えば励起媒質としてエルビウム単一ドープのコアを持つ通信用ファイバーでは、この平坦な利得特性を実現するために、アルミニウムやリンをシリカファイバーにコ・ドープする手法が用いられる。このためこの種のファイバーでは、1.548μmで必ずしも利得が大きくならない。また、ドープ元素のアルミニウムは、1.55μm付近のピークを長波長側にシフトさせ、リンは短波長側にシフトさせる効果を持つ。従って、1.547μm近傍で利得を大きくするためには、少量のリンをドープすればよい。同様に、例えばエルビウムとイッテルビウムとを共にドープ(コ・ドープ)したコアを持つ光増幅器用ファイバー(例えば前記ダブル・クラッド・タイプのファイバー)を用いる場合にも、コアに少量のリンを加えることにより、1.547μm付近でより高い利得を得ることができる。
次に、図1の実施の形態の紫外光発生装置における波長変換部20のいくつかの構成例につき説明する。
図8(a)は、2次高調波発生を繰り返して8倍波を得ることができる波長変換部20を示し、この図8(a)において、光ファイバー・バンドル19の出力端19aから出力された波長1.544μm(周波数をωとする)のレーザ光LB4の基本波は、1段目の非線形光学結晶502に入射し、ここでの2次高調波発生により基本波の周波数ωの2倍の周波数2ω(波長は1/2の772nm)の2倍波が発生する。この2倍波は、レンズ505を経て2段目の非線形光学結晶503に入射し、ここでも再び2次高調波発生により、入射波の周波数2ωの2倍、即ち基本波に対し4倍の周波数4ω(波長は1/4の386nm)を持つ4倍波が発生する。発生した4倍波は更にレンズ506を介して3段目の非線形光学結晶504に進み、ここで再び2次高調波発生によって、入射波の周波数4ωの2倍、即ち基本波に対し8倍の周波数8ωを有する8倍波(波長は1/8の193nm)が発生する。この8倍波は紫外のレーザ光LB5として射出される。即ち、この構成例では、基本波(波長1.544μm)→2倍波(波長772nm)→4倍波(波長386nm)→8倍波(波長193nm)の順に波長変換が行われる。
前記波長変換に使用する非線形光学結晶としては、例えば基本波から2倍波への変換を行う非線形光学結晶502にはLiB(LBO)結晶を、2倍波から4倍波への変換を行う非線形光学結晶503にはLiB(LBO)結晶を、4倍波から8倍波への変換を行う非線形光学結晶504にはSrBe(SBBO)結晶を使用する。ここで、LBO結晶を使用した基本波から2倍波への変換には、波長変換のための位相整合にLBO結晶の温度調節による整合方法(Non−Critical Phase Matching:NCPM)を使用する。NCPMは、非線形光学結晶内での基本波と第二高調波との間の角度ずれである「Walk−off」が起こらないため、高効率で2倍波への変換を可能にし、また発生した2倍波はWalk−offによるビームの変形も受けないため有利である。
なお、図8(a)において、光ファイバー・バンドル19と非線形光学結晶502との間に、レーザ光LB4の入射効率を高めるために集光レンズを設けることが望ましい。この際に、光ファイバー・バンドル19を構成する各光ファイバーのモード径(コア径)は例えば20μm程度であり、非線形光学結晶中で変換効率の高い領域の大きさは例えば200μm程度であるため、各光ファイバー毎に10倍程度の倍率の微小レンズを設けて、各光ファイバーから射出されるレーザ光を非線形光学結晶502中に集光するようにしてもよい。これは以下の構成例でも同様である。
次に、図8(b)は2次高調波発生と和周波発生とを組み合わせて8倍波を得ることができる波長変換部20Aを示し、この図8(b)において、光ファイバー・バンドル19の出力端19aから射出された波長1.544μmのレーザ光LB4の基本波は、LBO結晶よりなり上記のNCPMで制御されている1段目の非線形光学結晶507に入射し、ここでの2次高調波発生により2倍波(波長722nm)が発生する。更に、非線形光学結晶507中を基本波の一部がそのまま透過する。この基本波及び2倍波は、共に直線偏光状態で波長板(例えば1/2波長板)508を透過して、基本波のみが偏光方向が90度回転した状態で射出される。この基本波と2倍波とはそれぞれレンズ509を通って2段目の非線形光学結晶510に入射する。
非線形光学結晶510では、1段目の非線形光学結晶507で発生した2倍波と、変換されずに透過した基本波とから和周波発生により3倍波(波長515nm)を得る。非線形光学結晶510としてはLBO結晶が用いられるが、1段目の非線形光学結晶507(LBO結晶)とは温度が異なるNCPMで使用される。非線形光学結晶510で得られた3倍波と、波長変換されずに透過した2倍波とは、ダイクロイック・ミラー511により分離されて、ダイクロイック・ミラー511で反射された3倍波は、ミラーM1で反射されレンズ513を通って3段目のβ−BaB(BBO)結晶よりなる非線形光学結晶514に入射する。ここで3倍波が2次高調波発生により6倍波(波長257nm)に変換される。
一方、ダイクロイック・ミラー511を透過した2倍波はレンズ512及びミラーM2を経てダイクロイック・ミラー516に入射し、非線形光学結晶514で得られた6倍波もレンズ515を経てダイクロイック・ミラー516に入射し、ここでその2倍波と6倍波とは同軸に合成されて4段目のBBO結晶よりなる非線形光学結晶517に入射する。非線形光学結晶517では、6倍波と2倍波とから和周波発生により8倍波(波長193nm)を得る。この8倍波は紫外のレーザ光LB5として射出される。なお、4段目の非線形光学結晶517として、BBO結晶の代わりにCsLiB10(CLBO)結晶を用いることも可能である。この波長変換部20Aでは、基本波(波長1.544μm)→2倍波(波長772nm)→3倍波(波長515nm)→6倍波(波長257nm)→8倍波(波長193nm)の順に波長変換が行われている。
このように6倍波と2倍波との一方が分岐光路を通って4段目の非線形光学結晶517に入射する構成では、6倍波と2倍波とをそれぞれ4段目の非線形光学結晶517に集光して入射させるレンズ515,512を互いに異なる光路に配置することができる。この場合、3段目の非線形光学結晶514で発生した6倍波はその断面形状がWalk−off現象により長円形になっているため、4段目の非線形光学結晶517で良好な変換効率を得るためには、その6倍波のビーム整形を行うことが望ましい。そこで本例のように、レンズ515,512を別々の光路に配置することにより、例えばレンズ515としてシリンドリカルレンズ対を用いること等が可能となり、6倍波のビーム整形を容易に行うことができる。このため、4段目の非線形光学結晶(BBO結晶)517での2倍波との重なり部を増加させて、変換効率を高めることが可能である。
なお、2段目の非線形光学結晶510と4段目の非線形光学結晶517との間の構成は図8(b)に限られるものではなく、4段目の非線形光学結晶517に6倍波と2倍波とが同時に入射するように、6倍波と2倍波とでその光路長が等しくなっていれば、いかなる構成であってもよい。更に、例えば2段目の非線形光学結晶510と同一光軸上に3段目及び4段目の非線形光学結晶514,517を配置し、3段目の非線形光学結晶514で3倍波のみを2次高調波発生により6倍波に変換して、波長変換されない2倍波と共に4段目の非線形光学結晶517に入射させてもよく、これによりダイクロイック・ミラー511,516を用いる必要がなくなる。
また、図8(a)及び(b)に示した波長変換部20,20Aについてそれぞれ各チャネル当たりの8倍波(波長193nm)の平均出力を実験的に求めて見た。基本波の出力は前述の実施形態で説明した通り各チャネルの出力端で、ピーク・パワー20kW、パルス幅1ns、パルス繰り返し周波数100kHz、及び平均出力2Wである。この結果、各チャネル当たりの8倍波の平均出力は、図8(a)の波長変換部20では229mW、図8(b)の波長変換部20Aでは38.3mWであった。従って、全128チャネルを合わせたバンドルからの平均出力は、波長変換部20では29W、波長変換部20Aでは4.9Wとなり、何れの波長変換部20,20Aであっても露光装置用光源として十分な出力の、波長193nmの紫外光を提供することができる。
なお、波長変換部20,20Aと同様の構成によって、基本波(波長1.544μm)→2倍波(波長772nm)→4倍波(波長386nm)→6倍波(波長257nm)→8倍波(波長193nm)の順に波長変換することも可能である。更に、基本波(波長1.544μm)→2倍波(波長772nm)→3倍波(波長515nm)→4倍波(波長386nm)→7倍波(波長221nm)→8倍波(波長193nm)の順に波長変換することも可能であり、基本波(波長1.544μm)→2倍波(波長772nm)→3倍波(波長515nm)→4倍波(波長386nm)→6倍波(波長257nm)→7倍波(波長221nm)→8倍波(波長193nm)の順に波長変換することによっても8倍波を得ることができる。これらの中から変換効率が高く、構成が簡素化できるものを使用することが望ましい。
次に、Fレーザ(波長157nm)とほぼ同一の波長の紫外光を得るための波長変換部の構成例につき説明する。この場合には、図1(a)の単一波長発振レーザ11において発生する基本波の波長を1.57μmとして、波長変換部20として10倍波の発生を行う波長変換部を使用すればよい。
図9(a)は、2次高調波発生と和周波発生とを組み合わせて10倍波を得ることができる波長変換部20Bを示し、この図9(b)において、光ファイバー・バンドル19の出力端19aから射出された波長1.57μmのレーザ光LB4の基本波は、LBO結晶よりなる1段目の非線形光学結晶602に入射し、2次高調波発生により2倍波に変換される。この2倍波は、レンズ603を介してLBOよりなる第2の非線形光学結晶604に入射して、2次高調波発生による4倍波に変換され、一部は2倍波のままで透過する。
非線形光学結晶604を透過した4倍波及び2倍波は、ダイクロイック・ミラー605に向かい、ダイクロイック・ミラー605で反射された4倍波は、ミラーM1で反射されレンズ608を通って3段目のSrBe(SBBO)結晶よりなる非線形光学結晶609に入射して、2次高調波発生により8倍波に変換される。一方、ダイクロイック・ミラー605を透過した2倍波はレンズ606及びミラーM2を経てダイクロイック・ミラー607に入射し、非線形光学結晶609で得られた8倍波もレンズ610を経てダイクロイック・ミラー607に入射し、ここでその2倍波と8倍波とは同軸に合成されて4段目のSBBO結晶よりなる非線形光学結晶611に入射し、ここで8倍波と2倍波とからの和周波発生により10倍波(波長157nm)が得られる。この10倍波は紫外のレーザ光LB5として射出される。即ち、波長変換部20Bでは、基本波(波長1.57μm)→2倍波(波長785nm)→4倍波(波長392.5nm)→8倍波(波長196.25nm)→10倍波(波長157nm)の順に波長変換が行われる。
この構成例においても、ダイクロイック・ミラー605,607を用いずに4つの非線形光学結晶602,604,609,611を同一光軸上に配置してもよい。但し、本例では2段目の非線形光学結晶604で発生した4倍波はその断面形状がWalk−off現象により長円形になっている。このため、このビームを入力とする4段目の非線形光学結晶611で良好な変換効率を得るためには、入射ビームとなる4倍波のビーム形状を整形し、2倍波との重なり部を広くすることが望ましい。本例では、集光用のレンズ606,608を別々の光路に配置することができるので、例えばレンズ608としてシリンドリカルレンズを用いることによって、4倍波のビーム整形を容易に行うことができる。このため、変換効率を高めることが可能である。
また、Fレーザ(波長157nm)とほぼ同一波長の紫外光を得るためには、図1(a)の単一波長発振レーザ11において発生する基本波の波長を1.099μmとして、波長変換部20として7倍波の発生を行う波長変換部を使用する方法も考えられる。
図9(b)は、2次高調波発生と和周波発生とを組み合わせて7倍波を得ることができる波長変換部20Cを示し、この図9(b)において、光ファイバー・バンドル19の出力端19aから射出された波長1.099μmのレーザ光LB4(基本波)は、LBO結晶よりなる1段目の非線形光学結晶702に入射し、ここでの2次高調波発生により2倍波が発生し、基本波の一部はそのまま透過する。この基本波及び2倍波は、共に直線偏光状態で波長板(例えば1/2波長板)703を透過して、基本波のみの偏光方向が90度回転する。基本波及び2倍波はレンズ704を介してLBO結晶よりなる第2の非線形光学結晶705に入射し、ここでの和周波発生により3倍波が発生すると共に、2倍波の一部がそのまま透過する。
非線形光学結晶705から発生される2倍波と3倍波とはダイクロイック・ミラー706で分岐され、ここを透過した3倍波はレンズ707及びミラーM2を経てダイクロイック・ミラー708に入射する。一方、ダイクロイック・ミラー706で反射された2倍波は、ミラーM1及びレンズ709を通ってSBBO結晶よりなる第3の非線形光学結晶710に入射し、2次高調波発生により4倍波に変換される。この4倍波は、レンズ711を経てダイクロイック・ミラー708に入射し、ダイクロイック・ミラー708で同軸に合成された3倍波及び4倍波は、SBBO結晶よりなる第4の非線形光学結晶712に入射し、ここでの和周波発生により7倍波(波長157nm)に変換される。この7倍波は紫外のレーザ光LB5として射出される。即ち、この構成例では、基本波(波長1.099μm)→2倍波(波長549.5nm)→3倍波(波長366.3nm)→4倍波(波長274.8nm)→7倍波(波長157nm)の順に波長変換される。
この構成例においても、ダイクロイック・ミラー706,708を用いずに4つの非線形光学結晶702,705,710,712を同一光軸上に配置してもよい。また、この例でも、3段目の非線形光学結晶710で発生した4倍波はその断面形状がWalk−off現象により長円形になっている。このため、このビームを入力とする4段目の非線形光学結晶712で良好な変換効率を得るためには、レンズ711としてシリンドリカルレンズを用いることによって、3倍波と4倍波との重なり部を最大にすればよい。
なお、上記の実施の形態では、図1(a)より分かるようにm組のn個の光増幅ユニット18−1〜18−nの出力の合成光を一つの波長変換部20で波長変換している。しかしながら、その代わりに、例えばm’個(m’は2以上の整数)の波長変換部を用意し、m組の光増幅ユニット18−1〜18−nの出力をn’個ずつm’個のグループに分けて、各グループ毎に1つの波長変換部で波長変換を行い、得られたm’個(本例では例えばm’=4又は5等)の紫外光を合成するようにしてもよい。即ち、波長変換部20は上記構成に限られるものではなく任意でよいし、非線形光学結晶として上記以外、例えばCBO結晶(CsB)、四ほう酸リチウム(Li)、KAB(KAl)、GdYCOB(GdxY−xCaO(BO)などを用いてもよい。
上記の実施の形態の紫外光発生装置によれば、図1(a)の光ファイバー・バンドル19の出力端の直径が全チャネルを合わせても2mm程度以下であるため、1個、又は数個の波長変換部20ですべてのチャネルの波長変換を行うことが可能である。しかも、出力端が柔軟な光ファイバーを使用しているため、波長変換部、単一波長発振レーザ、及びスプリッタ等の構成部を分けて配置することが可能となるなど、配置の自由度が極めて高い。従って、本例の紫外光発生装置によれば、安価でコンパクト、かつ単一波長でありながら空間的コヒーレンスの低い紫外レーザ装置が提供できる。
次に、図1(a)の紫外光発生装置を用いた露光装置の一例につき説明する。図10は、本例の露光装置を示し、この図10において、露光光源161としては、図1(a)の紫外光発生装置で出力されるレーザ光の波長を193nm、157nm、又はそれ以外の紫外域とした装置を使用することができる。露光光源161から射出されたレーザ光LB5は露光光ILとして照明系162に入射する。照明系162は、露光光ILの照度分布を均一化するオプティカル・インテグレータ(ホモジナイザー)、開口絞り、リレーレンズ、視野絞り(レチクルブラインド)、及びコンデンサレンズ等から構成され、照明系162から射出された露光光ILが、マスクとしてのレチクル163のパターン面のスリット状の照明領域を均一な照度分布で照明する。この際に本例の露光光ILは空間コヒーレンスが低いため、照明系162中の空間コヒーレンスを低下させるための部材の構成を簡素化でき、露光装置を更に小型化できる。
レチクル163はレチクルステージ164上に載置されており、レチクル163を透過した露光光ILは投影光学系165を介して被露光基板としてのウエハ(wafer)166上に照明領域の内のパターンの縮小像を倍率MRw(例えば1/4,1/5,1/6等)で投影する。投影光学系165としては、屈折系、反射系、又は反射屈折系が使用できる。但し、露光光ILが波長200nm程度以下の真空紫外光である場合には高透過率の材料が限定されるため、投影光学系を小型化して、かつ結像性能を高めるために反射屈折系を使用してもよい。ウエハ166にはフォトレジストが塗布されており、ウエハ166は、例えば半導体(シリコン等)又はSOI(silicon on insulator)等の円板状の基板である。
ウエハ166は、ウエハステージ167上に保持され、ウエハ166の3次元的な位置は駆動部169によって駆動されるウエハステージ167によって設定される。そして、露光時には、ウエハステージ167のステップ移動によってウエハ166の位置決めを行った後、照明領域に対してレチクルステージ164を介してレチクル163を所定方向に走査し、ウエハ166をウエハステージ167を介して倍率MRWを速度比として走査するというステップ・アンド・スキャン方式で、ウエハ166上の各ショット領域にレチクル163のパターンの像が転写される。このように本例の露光装置は走査露光型であるが、露光光源161はステッパー等の一括露光型の露光装置にも適用できることは明らかである。
この場合、本例の露光光源161は小型であるため、照明系162を支持する架台に露光光源161の少なくとも一部(例えば波長変換部20など)を一緒に固定しても良い。あるいは露光光源161を単独で架台に固定しても良い。但し、露光光源161に接続される電源などは別置きにしておくことが好ましい。
以上のように、本例の紫外光発生装置を用いた露光装置は従来の他の方式(エキシマレーザやアレイレーザを用いた露光装置)にくらべて小型であり、また、各要素が光ファイバーで接続されて構成されているため、装置を構成する各ユニットの配置の自由度が高い利点がある。
ところで、前述の走査露光時における露光量制御では、図1(a)の光変調素子12によって規定されるパルス繰り返し周波数fと、遅延素子(光ファバイー15−1〜15−m,17−1〜17−n)によって規定されるチャネル間の遅延時間との少なくとも一方を調整して、走査露光中に基本波発生部171から複数のパルス光を等時間間隔で発振させるようにしてもよい。更に、フォトレジストの感度特性に応じて、ウエハ166上でのパルス光の強度、ウエハ166の走査速度、パルス光の発振間隔(周波数)、及びウエハ166の走査方向に関するパルス光(即ちその照射領域)の幅の少なくとも1つを調整し、ウエハ上の各点が照射領域を横切る間に照射される複数のパルス光の積算光量を適正露光量に制御する。このとき、スループットを考慮して、ウエハ166の走査速度がウエハステージ167の最高速度にほぼ維持されるように、他の制御パラメータ、即ちパルス光の強度、発振周波数、及び照射領域の幅の少なくとも1つを調整することが好ましい。
図11は、本例の紫外光発生装置を用いた他の露光装置を示し、この図11において、図1(a)の紫外光発生装置は分離されて装着されている。即ち、図10に対応する部分に同一符号を付して示す図11において、図1(a)の波長変換部20に対応する波長変換部172は露光機本体に載置されている。一方、図1(a)の単一波長発振レーザ11から光分岐増幅部4までの部材に対応する光源本体部171が露光装置本体の外部に設けられ、これらの間が接続用光ファイバー173で接続されている。接続用光ファイバー173は、図1(a)の光ファイバー・バンドル19に対応するものである。
このような構成とすることにより、光ファイバー増幅器の励起用半導体レーザや半導体レーザのドライブ用電源、温度コントローラ等の発熱を伴う主要な構成部分を露光機本体の外に配設することができる。従って、露光装置本体が露光光源である紫外光発生装置からの発熱の影響を受けて光軸のアライメントがずれる等の熱に起因する問題を抑制することができる。
また、図11に示すようにレチクル163を保持するレチクルステージ164は駆動機構168によってX方向、Y方向に移動可能で、かつ微小回転可能に構成されている。そして、ウエハステージ167を駆動する駆動部169、及びレチクルステージ164の駆動機構168の動作は主制御系177によって制御されている。
また、ウエハステージ167上には基準マーク板FMが設けられており、この基準マーク板FMは後述するベースライン計測などに用いられる。更に本例では、レチクル163上のアライメントマークを検出するアライメント系180と、投影光学系165を介さないオフ・アクシス方式のアライメント系181とが設けられている。
アライメント系180は、露光光、又はそれと同一波長域の照明光をレチクル163上のアライメントマーク、及び投影光学系165を通して基準マーク板FM上の基準マーク(又はウエハ166上のアライメントマーク)にそれぞれ照射すると共に、両マークから発生する光を撮像素子(CCD)で受光してその位置ずれを検出するものであり、レチクル163のアライメントやアライメント系181のベースライン計測などに用いられる。
オフ・アクシス方式のアライメント系181は、例えば550〜750nm程度の波長幅を持つ白色光(ブロードバンド光)をウエハ166上のアライメントマークに照射すると共に、その内部に設けられる指標マークの像とアライメントマークの像とを撮像素子(CCD)上に結像させて両マークの位置ずれを検出するものである。
なお、アライメント系180,181でそれぞれ基準マーク板FM上の基準マークを検出することで、その検出結果からアライメント系181のベースライン量(検出中心と露光中心との間隔)を計測することができる。なお、ベースライン計測はウエハの露光開始前に行われるが、ウエハを交換するたびにベースライン計測を行ってもよいし、あるいは複数枚のウエハの露光動作に1回程度の割合でベースライン計測を行うようにしてもよい。但し、レチクル交換後には必ずベースライン計測が行われる。
さて、本例では光源本体部171からのレーザ光の一部を分岐して光ファイバー178を介して波長変換部179に供給する。波長変換部179としては、図1(a)の波長変換部20と同様で、かつ小型の波長変換部を使用する。波長変換部179はアライメント系180を保持する架台に一体に設けておき、波長変換部179から射出される紫外光をアライメント系180の照明光として使用する。
これにより、アライメント系180の光源を別途用意する必要がなくなると共に、露光光と同一波長の照明光を用いて基準マーク又はアライメントマークを検出でき、高精度なマーク検出が可能となる。
なお、前述した実施形態で用いる光ファイバー(光ファイバー増幅器などを含む)はその表面を脱ガスが少ないテフロン、又はフッ素系樹脂などで被覆しておくことが好ましい。これは、光ファイバーから発生する異物(繊維などを含む)が露光装置を汚染する物質となり得るため、そのような汚染物質の発生を防止するためである。但し、テフロンなどで被覆する代わりに、チャンバー内に配置される光ファイバーをまとめてステンレス製の筐体に収納するようにしてもよい。
また、上記の実施の形態の例えば図11の露光装置では、レチクル163上のマークあるいはレチクルステージ164に設けられる基準マークを露光光と同一波長の照明光で照明し、投影光学系165によって形成されるマーク像をウエハステージ167に設けられる開口(スリットなど)を介して検出する空間像計測系を設けるようにしてもよい。この空間像計測系用の照明光を発生する光源として前述の光源(171,179)と同一構成の光源(図1の紫外光発生装置と同様の光源)を別途用意してもよいし、光源本体部171〜照明系162よりなる露光用光源を兼用してもよい。
なお、前述の実施形態では図1のレーザ装置を露光装置の露光用光源、あるいはアライメント系又は空間像計測系の光源として用いるものとしたが、これら以外のマーク検出系や光学系などの調整用光源などとして用いてもよいし、デバイス製造工程で用いられる露光装置や検査装置などだけでなく、用途などに関係なく各種装置(一例としてはエキシマレーザを光源とするもの、例えば角膜の曲率や凹凸を矯正して近眼、乱視などの治療を行うレーザ治療装置など)の光源として用いてもよい。
また、複数のレンズから構成される照明光学系、投影光学系を露光装置本体に組み込み光学調整をすると共に、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより本実施の形態の露光装置を製造することができる。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、半導体デバイスは、デバイスの機能・性能設計を行うステップ、このステップに基づいたレチクルを製造するステップ、シリコン材料からウエハを制作するステップ、前述した実施の形態の露光装置によりレチクルのパターンをウエハに露光するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。
更に、本発明は液晶表示素子やプラズマディスプレイ素子等の表示素子、薄膜磁気ディスク、及びマイクロマシーン、DNAチップ等のデバイスを製造する際にも適用することができる。また、投影露光装置用のフォトマスクを製造する際にも本発明を適用することができる。
なお、本発明の露光光源としてのレーザ装置は、例えばウエハ上に形成された回路パターンの一部(ヒューズなど)を切断するために用いられるレーザリペア装置などにも用いることができる。また、本発明によるレーザ装置は可視光または赤外光を用いる検査装置などにも適用することができる。そしてこの場合には前述の波長変換部をレーザ装置に組み込む必要がない。即ち、本発明は紫外光発生装置だけでなく、可視域または赤外域の基本波を発生する、波長変換部がないレーザ装置に対しても有効なものである。
なお、本実施の形態の露光装置として、投影光学系を用いることなくマスクと基板とを密接させてマスクのパターンを露光するプロキシミティ露光装置にも適用することができる。
なお、本発明は上述の実施の形態に限定されることなく、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。また、明細書、特許請求の範囲、図面、及び要約を含む1999年9月10日付け提出の日本国特許出願第11−258131号の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
産業上の利用の可能性
本発明によれば、光ファイバー増幅器を用いているため、小型で、かつメンテナンスの容易なレーザ装置を露光光源として備えた露光装置を提供することができる。
また、使用する光学素子の非線形効果に起因した波長幅の広がりを抑制できる。
更に、レーザ光発生部から発生するレーザ光を複数に分岐する光分岐装置を更に備え、光増幅部をその複数に分岐されたレーザ光のそれぞれに独立に設けると共に、波長変換部は、その複数の光増幅部から出力されたレーザ光の束をまとめて波長変換することによって、出力光の発振周波数を高くして、かつ空間的コヒーレンスを低減できると共に、全体としての発振スペクトル線幅を簡単な構成で狭くできる。
【図面の簡単な説明】
図1は、本発明の実施の形態の一例の紫外光発生装置を示す図である。図2は、図1中の光増幅ユニット18−1〜18−nの第1の構成例を示す図である。図3は、光増幅ユニット18−1〜18−nの第2の構成例を示す図である。図4は、光増幅ユニット18−1〜18−nの第3の構成例を示す図である。図5は、光増幅ユニット18−1〜18−nの第4の構成例を示す図である。図6は、光増幅ユニット18−1〜18−nの第5の構成例を示す図である。図7は、本発明の実施の形態の他の例の各部のレーザ光の波形を示す図である。図8において、(a)は図1中の波長変換部20の第1の構成例を示す図、(b)はその波長変換部20の第2の構成例を示す図である。図9において、(a)は波長変換部20の第3の構成例を示す図、(b)は波長変換部20の第4の構成例を示す図である。図10は、上記の実施の形態の紫外光発生装置を適用した露光装置の一例を示す構成図である。図11は、上記の実施の形態の紫外光発生装置を適用した露光装置の他の例を示す構成図である。

Claims (28)

  1. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器と、該複数段の光ファイバー増幅器の間に配置された狭帯域フィルタ及びアイソレータとを有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を備えたことを特徴とする露光装置。
  2. 前記レーザ装置は、前記複数段の光ファイバー増幅器の少なくとも1つで用いられる励起光を発生する励起光発生光源を有し、前記光増幅器は、前記励起光を反射する反射膜が前記狭帯域フィルタに結合される光ファイバー端に形成されることを特徴とする請求の範囲1に記載の露光装置。
  3. 前記狭帯域フィルタ及びアイソレータはフォノン・サイドバンドに相当する波長のノイズを低減することを特徴とする請求の範囲1に記載の露光装置。
  4. 前記複数段の光ファイバー増幅器は少なくとも3段設けられ、各光ファイバー増幅器間にそれぞれ狭帯域フィルタ及びアイソレータを設けることを特徴とする請求の範囲1に記載の露光装置。
  5. 前記複数段の光ファイバー増幅器の間に、ASE(Amplified Spontanious Emission)を時間的に取り除くためのゲート素子を更に設けることを特徴とする請求の範囲1に記載の露光装置。
  6. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を順次増幅する複数段の増幅用光ファイバーと、該複数段の増幅用光ファイバーの少なくとも一段の増幅用光ファイバー用の励起光を発生する励起光発生光源と、前記複数段の増幅用光ファイバーの間に配置された狭帯域フィルタ又はアイソレータと、該狭帯域フィルタ又はアイソレータと並列に前記励起光を通過させるためのバイパス部材とを有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を備えたことを特徴とする露光装置。
  7. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器と、該複数段の光ファイバー増幅器のそれぞれのために励起光を発生する複数の励起光発生光源と、前記複数段の光ファイバー増幅器の間に配置される狭帯域フィルタとを有し、該狭帯域フィルタの両側に結合された光ファイバー端に励起光を反射するための反射膜が形成された光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を備えたことを特徴とする露光装置。
  8. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を所定の繰り返し周波数で所定幅のパルス光に変換する光変調部と、
    該光変調部を通過したレーザ光を増幅する光ファイバー増幅器を有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部とを備え、
    前記光変調部で変換されるパルス光の幅は、最終的に発生する紫外光で所定の波長幅を得るためのパルス幅よりも広く設定されることを特徴とする露光装置。
  9. 前記光変調部で変換されるパルス光の幅は、2〜5nsであることを特徴とする請求の範囲8に記載の露光装置。
  10. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を増幅する光ファイバー増幅器と、該光ファイバー増幅器で増幅されたレーザ光を伝播する伝送用光ファイバーと、前記光ファイバー増幅器と前記伝送用光ファイバーとの間に配置された狭帯域フィルタとを有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を備えたことを特徴とする露光装置。
  11. 前記狭帯域フィルタは、前記光ファイバー増幅器に励起光を供給するための合波用の波長分割多重素子としても兼用されることを特徴とする請求の範囲10に記載の露光装置。
  12. 前記レーザ装置は、前記レーザ光発生部から発生するレーザ光をパルス光に変換するとともに、該パルス光の幅を前記紫外光で所定の波長幅を得るためのパルス幅よりも広く設定する光変調部を有することを特徴とする請求の範囲1、6、7、10、及び11のいずれか一項に記載の露光装置。
  13. 前記レーザ装置は、前記レーザ光発生部から発生するレーザ光を複数に分岐する光分岐装置を有するとともに、前記光増幅部は前記複数に分岐されたレーザ光のそれぞれ独立に設けられ、
    前記複数に分岐されたレーザ光の出力をほぼ均一とするように、前記光増幅部の増幅利得を調整する調整装置を更に備えることを特徴とする請求の範囲12に記載の露光装置。
  14. 前記光ファイバー増幅部は、エルビウム・ドープ・光ファイバー増幅器であり、該増幅器用の励起光として波長(980±10)nmのレーザ光を使用することを特徴とする請求の範囲1〜11の何れか一項記載の露光装置。
  15. 前記狭帯域フィルタとして多層膜フィルタ又はファイバー・ブラッグ・グレーティングを使用することを特徴とする請求の範囲1〜8、10、及び11の何れか一項記載の露光装置。
  16. 前記レーザ光発生部は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生する単一波長発振レーザと、前記発生するレーザ光の発振波長を一定波長に制御する発振波長制御手段とを備えることを特徴とする請求の範囲1〜11の何れか一項記載の露光装置。
  17. 前記レーザ装置は、前記レーザ光発生部から発生するレーザ光を複数に分岐する光分岐装置を更に備え、
    前記光増幅部は前記複数に分岐されたレーザ光のそれぞれに独立に設けられると共に、
    前記波長変換部は、前記複数の光増幅部から出力されたレーザ光の束をまとめて波長変換することを特徴とする請求の範囲1〜11の何れか一項記載の露光装置。
  18. 前記複数に分岐されたレーザ光の出力をほぼ均一とするように、前記光増幅部の増幅利得を調整する調整装置を更に備えることを特徴とする請求の範囲17に記載の露光装置。
  19. 前記調整装置は、前記光増幅部内で光ファイバー増幅器に用いられる励起光の出力を変更することを特徴とする請求の範囲17に記載の露光装置。
  20. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体を経た紫外光で第2物体を露光する露光装置であって、
    前記レーザ装置は、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、前記レーザ光を複数に分岐する光分岐装置と、前記複数に分岐されたレーザ光をそれぞれ独立に増幅する複数の光ファイバー増幅器と、前記増幅されたレーザ光を紫外光に波長変換する波長変換部とを有し、
    前記複数に分岐されたレーザ光の出力をほぼ均一とするように、前記複数の光ファイバー増幅器の少なくとも1つでの増幅利得を調整する調整装置を備えることを特徴とする露光装置。
  21. 前記調整装置は、前記少なくとも1つの光ファイバー増幅器で用いられる励起光を発生する励起光発生光源を制御することを特徴とする請求の範囲20に記載の露光装置。
  22. 前記レーザ光発生部は、波長が1.5μm付近の単一波長のレーザ光を発生し、
    前記波長変換部は、前記光増幅部から出力される前記波長1.5μm付近の基本波を、8倍高調波又は10倍高調波の紫外光に変換して出力することを特徴とする請求の範囲1〜11、20、及び21の何れか一項記載の露光装置。
  23. 前記レーザ光発生部は、波長が1.1μm付近の単一波長のレーザ光を発生し、
    前記波長変換部は、的記光増幅部から出力される前記波長1.1μm付近の基本波を、7倍高調波の紫外光に変換して出力することを特徴とする請求の範囲1〜11、20、及び21の何れか一項記載の露光装置。
  24. 請求の範囲1〜11、20、及び21の何れか一項記載の露光装置であって、
    前記レーザ装置からの紫外光を前記第1物体としてのマスクに照射する照明系と、前記マスクのパターンの像を前記第2物体としての基板上に投影する投影光学系とを有することを特徴とする露光装置。
  25. 請求の範囲1〜11、20、及び21の何れか一項記載の露光装置を用いた露光方法であって、
    前記レーザ装置からの紫外光で前記第1物体と前記第2物体とのアライメントを行うことを特徴とする露光装置。
  26. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置の製造方法であって、
    前記レーザ装置を
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を順次増幅する複数段の光ファイバー増幅器と、該複数段の光ファイバー増幅器の間に配置された狭帯域フィルタ及びアイソレータとを有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を所定の位置関係で配置して構成したことを特徴とする露光装置の製造方法。
  27. レーザ装置からの紫外光で第1物体のパターンを照明し、該第1物体のパターンを経た紫外光で第2物体を露光する露光装置の製造方法であって、
    前記レーザ装置を、
    赤外域から可視域までの波長範囲内で単一波長のレーザ光を発生するレーザ光発生部と、
    該レーザ光発生部から発生されたレーザ光を順次増幅する複数段の増幅用光ファイバーと、該複数段の増幅用光ファイバーの少なくとも一段の増幅用光ファイバー用の励起光を発生する励起光発生光源と、前記複数段の増幅用光ファイバーの間に配置された狭帯域フィルタ又はアイソレータと、該狭帯域フィルタ又はアイソレータと並列に前記励起光を通過させるためのバイパス部材とを有する光増幅部と、
    該光増幅部によって増幅されたレーザ光を非線形光学結晶を用いて紫外光に波長変換する波長変換部と
    を所定の位置関係で配置して構成したことを特徴とする露光装置の製造方法。
  28. 請求の範囲1〜11、20、及び21の何れか一項記載の露光装置を用いてマスクパターンを基板上に転写する工程を含むデバイスの製造方法。
JP2001524135A 1999-09-10 2000-09-08 レーザ装置を備えた露光装置 Expired - Fee Related JP4450147B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25813199 1999-09-10
PCT/JP2000/006130 WO2001020651A1 (fr) 1999-09-10 2000-09-08 Dispositif d'exposition pourvu d'un dispositif laser

Publications (1)

Publication Number Publication Date
JP4450147B2 true JP4450147B2 (ja) 2010-04-14

Family

ID=17315953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001524135A Expired - Fee Related JP4450147B2 (ja) 1999-09-10 2000-09-08 レーザ装置を備えた露光装置

Country Status (4)

Country Link
US (2) US6947123B1 (ja)
JP (1) JP4450147B2 (ja)
AU (1) AU6875000A (ja)
WO (1) WO2001020651A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020651A1 (fr) * 1999-09-10 2001-03-22 Nikon Corporation Dispositif d'exposition pourvu d'un dispositif laser
US6281471B1 (en) 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US20040134894A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based system for memory link processing with picosecond lasers
US7838794B2 (en) 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US7671295B2 (en) 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
SE518482C2 (sv) * 2001-02-28 2002-10-15 Electrolux Ab Hinderavkänningssystem för en självgående städapparat
US7027155B2 (en) * 2001-03-29 2006-04-11 Gsi Lumonics Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US7563695B2 (en) * 2002-03-27 2009-07-21 Gsi Group Corporation Method and system for high-speed precise laser trimming and scan lens for use therein
DE60316989T2 (de) * 2002-12-10 2008-07-24 Nikon Corp. Ultraviolett-lichtquelle, phototherapievorrichtung mit verwendung einer ultraviolett-lichtquelle und belichtungssystem mit verwendung einer ultraviolett-lichtquelle
JP4370581B2 (ja) * 2003-02-17 2009-11-25 株式会社ニコン 露光装置及び露光装置用光学部材
EP1706920A4 (en) * 2003-12-04 2008-01-23 Optical Air Data Systems Lp PULSE FIBER LASER OF VERY HIGH POWER
US7318778B2 (en) * 2005-06-11 2008-01-15 Owens Mark R Golf putter with removable laser
JP4910328B2 (ja) * 2005-08-03 2012-04-04 住友電気工業株式会社 光増幅装置およびレーザ光源装置
JP2007123477A (ja) * 2005-10-27 2007-05-17 Fujikura Ltd 光増幅用ファイバ及び光増幅器
US7715459B2 (en) * 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US7999915B2 (en) * 2005-11-01 2011-08-16 Cymer, Inc. Laser system
US20090296758A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
JP5506194B2 (ja) * 2005-11-01 2014-05-28 サイマー インコーポレイテッド レーザシステム
US7778302B2 (en) * 2005-11-01 2010-08-17 Cymer, Inc. Laser system
US20090296755A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7885309B2 (en) * 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US7630424B2 (en) * 2005-11-01 2009-12-08 Cymer, Inc. Laser system
US7643529B2 (en) * 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US7746913B2 (en) 2005-11-01 2010-06-29 Cymer, Inc. Laser system
US7920616B2 (en) * 2005-11-01 2011-04-05 Cymer, Inc. Laser system
US20070215575A1 (en) * 2006-03-15 2007-09-20 Bo Gu Method and system for high-speed, precise, laser-based modification of one or more electrical elements
JP5203573B2 (ja) * 2006-03-23 2013-06-05 ミヤチテクノス株式会社 レーザ加工装置
US7529281B2 (en) * 2006-07-11 2009-05-05 Mobius Photonics, Inc. Light source with precisely controlled wavelength-converted average power
US8084706B2 (en) 2006-07-20 2011-12-27 Gsi Group Corporation System and method for laser processing at non-constant velocities
JP4762934B2 (ja) * 2007-02-28 2011-08-31 株式会社新川 ホーン取付用アーム
KR20100017857A (ko) 2007-05-18 2010-02-16 지에스아이 그룹 코포레이션 전도성 링크의 레이저 처리
JP2009141154A (ja) * 2007-12-06 2009-06-25 Canon Inc 走査露光装置及びデバイス製造方法
US8259385B2 (en) * 2009-10-22 2012-09-04 Corning Incorporated Methods for controlling wavelength-converted light sources to reduce speckle
JP5686567B2 (ja) * 2010-10-19 2015-03-18 キヤノン株式会社 露光条件及びマスクパターンを決定するプログラム及び方法
JP6020441B2 (ja) * 2011-03-24 2016-11-02 株式会社ニコン 紫外レーザ装置
US8774236B2 (en) * 2011-08-17 2014-07-08 Veralas, Inc. Ultraviolet fiber laser system
NL2009372A (en) * 2011-09-28 2013-04-02 Asml Netherlands Bv Methods to control euv exposure dose and euv lithographic methods and apparatus using such methods.
US8681427B2 (en) 2012-05-31 2014-03-25 Cymer, Inc. System and method for separating a main pulse and a pre-pulse beam from a laser source
JPWO2014119198A1 (ja) * 2013-01-31 2017-01-26 ギガフォトン株式会社 レーザ装置及び極端紫外光生成装置
LT6140B (lt) * 2013-07-22 2015-04-27 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Šviesos impulsų sutankinimo laike būdas ir įrenginys
FR3013855A1 (fr) * 2013-11-28 2015-05-29 Fastlite Generateur et procede pour la generation d'impulsions optiques de duree inferieure au cycle optique dans l'infrarouge.
JP6802651B2 (ja) * 2016-07-01 2020-12-16 株式会社キーエンス レーザ加工装置、レーザ増幅器、レーザ共振器、主発振器出力増幅器
US9787048B1 (en) 2016-10-17 2017-10-10 Waymo Llc Fiber encapsulation mechanism for energy dissipation in a fiber amplifying system
WO2018158899A1 (ja) 2017-03-02 2018-09-07 ギガフォトン株式会社 固体レーザシステム、及び波長変換システム
DE102017203655B4 (de) * 2017-03-07 2019-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Formung von Strahlung für die Laserbearbeitung
US10826265B2 (en) 2018-09-18 2020-11-03 Korea Advanced Institute Of Science And Technology Optical frequency stabilizer using optical fiber delay line, and method for generating stable optical frequency signal
EP3696606A1 (en) 2019-02-15 2020-08-19 ASML Netherlands B.V. A metrology apparatus with radiation source having multiple broadband outputs
JP7367194B2 (ja) * 2019-09-17 2023-10-23 エーエスエムエル ホールディング エヌ.ブイ. アライメントソースとしてのレーザモジュール、メトロロジシステム、及びリソグラフィ装置
US11372309B2 (en) * 2020-03-04 2022-06-28 Raytheon Company Optical system architecture
CN114488715B (zh) * 2022-02-18 2023-09-29 西湖大学 一种光纤阵列光刻机
DE102022110720A1 (de) * 2022-05-02 2023-11-02 Trumpf Laser Gmbh Lasersystem

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834611B2 (ja) * 1989-01-27 1996-03-29 日本電気株式会社 波長分割光交換方式
US5050949A (en) * 1990-06-22 1991-09-24 At&T Bell Laboratories Multi-stage optical fiber amplifier
JPH0897125A (ja) * 1994-09-29 1996-04-12 Sony Corp 露光照明装置
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
JPH08334803A (ja) 1995-06-07 1996-12-17 Nikon Corp 紫外レーザー光源
JPH09148658A (ja) 1995-11-29 1997-06-06 Nikon Corp レーザー光源
US5838709A (en) * 1995-06-07 1998-11-17 Nikon Corporation Ultraviolet laser source
JPH09114100A (ja) * 1995-10-23 1997-05-02 Sony Corp レーザ露光描画装置
JP3594384B2 (ja) * 1995-12-08 2004-11-24 ソニー株式会社 半導体露光装置、投影露光装置及び回路パターン製造方法
US5745284A (en) 1996-02-23 1998-04-28 President And Fellows Of Harvard College Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation
JPH10135555A (ja) * 1996-10-28 1998-05-22 Hitachi Ltd 露光光源およびそれを用いた露光装置
US6324203B1 (en) 1997-06-13 2001-11-27 Nikon Corporation Laser light source, illuminating optical device, and exposure device
IL138374A (en) * 1998-03-11 2004-07-25 Nikon Corp An ultraviolet laser device and an exposure device that includes such a device
WO2001020651A1 (fr) * 1999-09-10 2001-03-22 Nikon Corporation Dispositif d'exposition pourvu d'un dispositif laser

Also Published As

Publication number Publication date
US7212275B2 (en) 2007-05-01
US20050185683A1 (en) 2005-08-25
US6947123B1 (en) 2005-09-20
WO2001020651A1 (fr) 2001-03-22
AU6875000A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP4450147B2 (ja) レーザ装置を備えた露光装置
JP4517271B2 (ja) レーザ装置を備えた露光装置
US7136402B1 (en) Laser device and exposure method
US7023610B2 (en) Ultraviolet laser apparatus and exposure apparatus using same
JP4232130B2 (ja) レーザ装置並びにこのレーザ装置を用いた光照射装置および露光方法
JP2001083557A (ja) レーザ装置
US7298546B2 (en) Ultraviolet light source, laser treatment apparatus comprising ultraviolet light source, and exposure apparatus comprising ultraviolet light source
JP2001085313A (ja) 露光方法及び装置、並びにデバイスの製造方法
JP4375846B2 (ja) レーザ装置
JP2004086193A (ja) 光源装置及び光照射装置
US7397598B2 (en) Light source unit and light irradiation unit
JP2001352116A (ja) レーザ装置並びにこのレーザ装置を用いた露光装置及び方法
JP2001085314A (ja) 露光方法及び装置、デバイスの製造方法、及び露光装置の製造方法
JP2001148345A (ja) 照明光学装置、並びに該装置を用いた露光方法及び装置
JP2003163393A (ja) 光源装置及び光照射装置
JP2001337356A (ja) 光源装置
JP2001085776A (ja) レーザ装置及び該装置を備えた露光装置
JP2002261361A (ja) 光増幅装置、光源装置、及び光照射装置
JP2001085308A (ja) 照明光学装置及び露光装置
JP2003158324A (ja) 光源装置及び光照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees