WO2018158899A1 - 固体レーザシステム、及び波長変換システム - Google Patents
固体レーザシステム、及び波長変換システム Download PDFInfo
- Publication number
- WO2018158899A1 WO2018158899A1 PCT/JP2017/008220 JP2017008220W WO2018158899A1 WO 2018158899 A1 WO2018158899 A1 WO 2018158899A1 JP 2017008220 W JP2017008220 W JP 2017008220W WO 2018158899 A1 WO2018158899 A1 WO 2018158899A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser beam
- pulse laser
- wavelength
- solid
- pulse
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0092—Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10038—Amplitude control
- H01S3/10046—Pulse repetition rate control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/1666—Solid materials characterised by a crystal matrix borate, carbonate, arsenide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/225—Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
- H01S3/2251—ArF, i.e. argon fluoride is comprised for lasing around 193 nm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
- H01S3/2316—Cascaded amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2375—Hybrid lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0092—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/06835—Stabilising during pulse modulation or generation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
- H01S3/06758—Tandem amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/131—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
- H01S3/134—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
- H01S3/1643—YAG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2383—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/185—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
- H01S5/187—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
Definitions
- the present disclosure relates to a solid-state laser system and a wavelength conversion system.
- exposure apparatuses In recent years, in semiconductor exposure apparatuses (hereinafter referred to as “exposure apparatuses”), improvement in resolution has been demanded as semiconductor integrated circuits have been miniaturized and highly integrated. For this reason, the wavelength of light emitted from the exposure light source is being shortened.
- a gas laser device is used as an exposure light source in place of a conventional mercury lamp.
- a KrF excimer laser device that outputs ultraviolet laser light having a wavelength of 248 nm and an ArF excimer laser device that outputs ultraviolet laser light having a wavelength of 193 nm are used.
- the spontaneous amplitude of the KrF excimer laser device and the ArF excimer laser device is as wide as about 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet rays such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device until the chromatic aberration is negligible. Therefore, a narrowband module (Line ⁇ ⁇ ⁇ Narrow Module: LNM) with a narrowband element (etalon, grating, etc.) is provided in the laser resonator of the gas laser device to narrow the spectral line width. There is.
- a laser device whose spectral line width is narrowed is referred to as a narrow-band laser device.
- a solid-state laser system includes a first solid-state laser device that outputs a first pulse laser beam having a first wavelength, and a second solid-state laser device that outputs a second pulse laser beam having a second wavelength. And the first pulsed laser beam and the second pulsed laser beam are disposed on the first optical path, and the first pulsed laser beam and the second pulsed laser beam are converted into the third frequency by the sum frequency generation process.
- a first nonlinear crystal that outputs a wavelength converted to a third pulsed laser beam having a wavelength of, a second pulsed laser beam, and a third pulsed laser beam are disposed on a second optical path
- a second nonlinear crystal that converts the wavelength of the second pulsed laser beam and the third pulsed laser beam into a fourth pulsed laser beam having a fourth wavelength by a sum frequency generation process and outputs the second nonlinear crystal.
- the wavelength conversion system is disposed on a first optical path in which a first pulse laser beam having a first wavelength and a second pulse laser beam having a second wavelength travel, and the first pulse laser beam and A first non-linear crystal that outputs the second pulse laser beam by converting the wavelength of the second pulse laser beam into a third pulse laser beam having a third wavelength by a sum frequency generation process; a second pulse laser beam;
- the second pulse laser beam and the third pulse laser beam are arranged on the second optical path along which the pulse laser beam travels, and the wavelength of the second pulse laser beam and the third pulse laser beam is changed to the fourth pulse laser beam having the fourth wavelength by the sum frequency generation process.
- a second non-linear crystal that converts and outputs the second pulsed laser light to the second non-linear crystal at a first timing before being incident on the first non-linear crystal, and the second pulse
- the second nonlinear crystal is not used in the sum frequency generation process of the laser light.
- the residual light which has passed through at the second timing later than the first timing to be incident on the first nonlinear crystal.
- FIG. 1 schematically shows a configuration example of a laser apparatus for an exposure apparatus including a solid-state laser system according to a comparative example.
- FIG. 2 schematically shows a configuration example of an amplifier in the laser apparatus for exposure apparatus shown in FIG.
- FIG. 3 schematically shows a more detailed configuration example of the wavelength conversion system in the solid-state laser system according to the comparative example.
- FIG. 4 schematically illustrates an example of a timing chart regarding various trigger signals and various pulsed laser beams in the solid-state laser system according to the comparative example.
- FIG. 5 schematically shows a modification of the wavelength conversion system in the solid-state laser system according to the comparative example.
- FIG. 1 schematically shows a configuration example of a laser apparatus for an exposure apparatus including a solid-state laser system according to a comparative example.
- FIG. 2 schematically shows a configuration example of an amplifier in the laser apparatus for exposure apparatus shown in FIG.
- FIG. 3 schematically shows a more detailed configuration example of the wavelength conversion system in the solid-state laser system
- FIG. 6 schematically illustrates a configuration example of the solid-state laser system according to the first embodiment.
- FIG. 7 schematically illustrates an example of a timing chart regarding various trigger signals and various pulsed laser beams in the solid-state laser system according to the first embodiment.
- FIG. 8 schematically shows a configuration example of the solid-state laser system according to the second embodiment.
- FIG. 9 schematically illustrates an example of a timing chart regarding various trigger signals and various pulsed laser beams in the solid-state laser system according to the second embodiment.
- FIG. 10 schematically illustrates a configuration example of a solid-state laser system according to the third embodiment.
- FIG. 11 schematically shows an example of a timing chart regarding various trigger signals and various pulsed laser beams in the solid-state laser system according to the fourth embodiment.
- FIG. 12 schematically shows an example of the wavelength conversion efficiency of the wavelength conversion system.
- FIG. 13 schematically illustrates a configuration example of a solid-state laser system according to the fifth embodiment.
- FIG. 14 schematically illustrates a configuration example of a solid-state laser system according to the sixth embodiment.
- FIG. 15 schematically shows a configuration example of the first or second semiconductor laser and the first or second semiconductor optical amplifier.
- Embodiment 3> (Wavelength conversion system having a ring-shaped optical path) (FIG. 10) 4.1 Configuration 4.2 Operation 4.3 Action / Effect ⁇ 5.
- Embodiment 4> (Optimization method for wavelength conversion efficiency) (FIGS. 11 to 12) 5.1 Configuration / Operation 5.2 Action / Effect ⁇ 6.
- Embodiment 5> (First Example of Solid-State Laser System Considering Polarization Direction) (FIG. 13) 6.1 Configuration 6.2 Operation, action and effect ⁇ 7.
- Embodiment 6> (Second Example of Solid-State Laser System Considering Polarization Direction) (FIG. 14) 7.1 Configuration 7.2 Operation, Action and Effect ⁇ 8.
- Embodiment 7> (Configuration Example of Semiconductor Laser and Semiconductor Optical Amplifier) (FIG. 15) 8.1 Configuration 8.2 Operation ⁇ 9. Other>
- a laser apparatus for an exposure apparatus there is a configuration including an MO (master oscillator) and a PO (power oscillator).
- MO master oscillator
- PO power oscillator
- a laser using an excimer laser gas as a laser medium can be used for MO and PO.
- MO master oscillator
- PO power oscillator
- the MO is a solid-state laser system that outputs an ultraviolet pulsed laser beam combining a nonlinear crystal and a solid-state laser.
- the structural example of the laser apparatus for exposure apparatuses containing such a solid-state laser system is demonstrated.
- FIG. 1 schematically shows a configuration example of a laser apparatus for an exposure apparatus including a solid-state laser system 1 according to a comparative example.
- FIG. 2 schematically shows a configuration example of the amplifier 2 in the exposure apparatus laser apparatus shown in FIG.
- the exposure apparatus laser apparatus is a laser apparatus that outputs pulsed laser light to the exposure apparatus 4 including the exposure apparatus control unit 5.
- the exposure apparatus laser apparatus includes a solid-state laser system 1, an amplifier 2 such as an ArF laser amplifier, a laser control unit 3, a synchronization control unit 7, and high reflection mirrors 91 and 92.
- the solid-state laser system 1 includes a first solid-state laser device 11, a second solid-state laser device 12, a synchronization circuit unit 13, a solid-state laser control unit 14, a wavelength conversion system 15, a high reflection mirror 16, and a dichroic. And a mirror 17.
- the high reflection mirror 16 and the dichroic mirror 17 may be provided in the wavelength conversion system 15.
- the first solid-state laser device 11 is configured to output a first pulsed laser beam 71A having a first wavelength.
- the first wavelength may be about 257.5 nm.
- the first solid-state laser device 11 includes a first semiconductor laser 20, a first semiconductor optical amplifier (SOA) 23, a Yb fiber amplifier system 24, a Yb: YAG crystal amplifier 25, and an LBO crystal. (LiB 3 O 5 ) 21 and CLBO crystal (CsLiB 6 O 10 ) 22 are included.
- the first semiconductor laser 20 may be a laser that performs CW (Continuous Wave) oscillation or pulse oscillation at a wavelength of about 1030 nm.
- the first semiconductor laser 20 is, for example, a distributed feedback (DFB) semiconductor laser.
- DFB distributed feedback
- the first semiconductor optical amplifier 23 is a semiconductor element that converts CW or pulse seed light into pulse laser light having a predetermined pulse width by flowing a pulse current through a current controller (not shown) in the semiconductor.
- the predetermined pulse width may be about 5 ns or more and 20 ns or less.
- the Yb fiber amplifier system 24 includes a multi-stage optical fiber amplifier doped with Yb, and a CW pumped semiconductor laser (not shown) that emits pumping light by CW oscillation and supplies the pumping light to each optical fiber amplifier.
- the second solid-state laser device 12 is configured to output a second pulse laser beam 71B having a second wavelength.
- the second wavelength may be about 1554 nm.
- the second solid-state laser device 12 includes a second semiconductor laser 40, a second semiconductor optical amplifier (SOA) 41, and an Er fiber amplifier system 42.
- SOA semiconductor optical amplifier
- the second semiconductor laser 40 may be a laser that is in a single longitudinal mode and that performs CW oscillation or pulse oscillation at a wavelength of about 1554 nm.
- the second semiconductor laser 40 is, for example, a distributed feedback (DFB) semiconductor laser.
- DFB distributed feedback
- the second semiconductor optical amplifier 41 is a semiconductor element that converts CW or pulse seed light into pulse laser light having a predetermined pulse width by flowing a pulse current through a current controller (not shown) in the semiconductor.
- the predetermined pulse width may be about 5 ns or more and 20 ns or less.
- the Er fiber amplifier system 42 includes a multistage optical fiber amplifier doped with both Er and Yb, and a CW pumped semiconductor laser (not shown) that emits pumping light by CW oscillation and supplies the pumping light to each optical fiber amplifier. Including.
- the wavelength conversion system 15 includes a first CLBO crystal 18, a second CLBO crystal 19, a dichroic mirror 81, a dichroic mirror 82, and a high reflection mirror 83.
- the high reflection mirror 16 is arranged to highly reflect the second pulse laser beam 71B output from the second solid-state laser device 12 and to enter the dichroic mirror 17.
- the first CLBO crystal 18, the dichroic mirror 81, the second CLBO crystal 19, and the dichroic mirror 82 are arranged in this order on the optical path of the second pulse laser beam 71B.
- the dichroic mirror 17 is coated with a film that highly transmits the first pulse laser beam 71A having a wavelength of about 257.5 nm and highly reflects the second pulse laser beam 71B having a wavelength of about 1554 nm.
- the dichroic mirror 17 is disposed so that the first pulsed laser light 71A and the second pulsed laser light 71B are incident on the wavelength conversion system 15 with their optical path axes being substantially coincident with each other.
- the first CLBO crystal 18 is disposed on the first optical path along which the first pulse laser beam 71A having a wavelength of about 257.5 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm travel.
- the first CLBO crystal 18 converts the first pulse laser light 71A and the second pulse laser light 71B into a third pulse laser light having a third wavelength by a sum frequency generation (SFG) process.
- FSG sum frequency generation
- the third wavelength may be about 220.9 nm.
- the second CLBO crystal 19 is disposed on the second optical path along which the second pulse laser beam 71B having a wavelength of about 1554 nm and the third pulse laser beam having a wavelength of about 220.9 nm travel.
- the second CLBO crystal 19 converts the wavelength of the second pulse laser beam 71B and the third pulse laser beam into the fourth pulse laser beam 71C having the fourth wavelength by the sum frequency generation process, and outputs it.
- the fourth wavelength may be a wavelength of about 193.4 nm.
- the dichroic mirror 81 highly reflects the first pulse laser beam 71A having a wavelength of about 257.5 nm, and receives a second pulse laser beam 71B having a wavelength of about 1554 nm and a third pulse laser beam having a wavelength of about 220.9 nm. A highly permeable membrane is coated.
- the pulse laser beam having a wavelength of about 220.9 nm incident on the dichroic mirror 81 is a third pulse laser beam output from the first CLBO crystal 18, and the first pulse laser beam 71A having a wavelength of about 257.5nm and This is a pulse laser beam having a sum frequency with the second pulse laser beam 71B having a wavelength of about 1554 nm.
- the dichroic mirror 82 highly transmits two pulse laser beams having a wavelength of about 1554 nm and a wavelength of about 220.9 nm that have been transmitted through the second CLBO crystal 19, and the wavelength converted by the second CLBO crystal 19 is about 193.
- the fourth pulse laser beam 71C of 4 nm is disposed so as to be highly reflected.
- the high reflection mirror 83 is arranged so that the fourth pulse laser beam 71C having a wavelength of about 193.4 nm is output from the wavelength conversion system 15.
- the high reflection mirror 91 and the high reflection mirror 92 are arranged so that the fourth pulse laser beam 71C having a wavelength of about 193.4 nm is incident on the amplifier 2.
- the amplifier 2 includes an amplifier control unit 30, a charger 31, a trigger corrector 32, a pulse power module (PPM) 34 including a switch 33, a chamber 35, and a partial reflection mirror 36. And an output coupling mirror 37.
- PPM pulse power module
- the chamber 35 is provided with windows 39a and 39b.
- the chamber 35 contains, for example, a laser gas containing Ar gas, F 2 gas, and Ne gas.
- a pair of discharge electrodes 38 is disposed in the chamber 35. The pair of discharge electrodes 38 is connected to the output terminal of the PPM 34.
- the partial reflection mirror 36 and the output coupling mirror 37 constitute an optical resonator.
- the partial reflection mirror 36 has a configuration in which a partial reflection film having a reflectance of 70% or more and 90% or less is coated on a substrate made of a CaF 2 crystal that transmits light having a wavelength of about 193.4 nm.
- the output coupling mirror 37 has a configuration in which a partial reflection film having a reflectance of 10% or more and 20% or less is coated on a substrate made of a CaF 2 crystal that transmits light having a wavelength of about 193.4 nm.
- the configuration example in which the optical resonator of the amplifier 2 is a Fabry-Perot resonator is shown.
- the present invention is not limited to this example, and the amplifier 2 may be a ring resonator.
- the solid-state laser control unit 14 is connected to the first semiconductor laser 20, the second semiconductor laser 40, and a CW excitation semiconductor laser (not shown) by a signal line (not shown).
- the synchronization control unit 7 is supplied with an oscillation trigger signal Tr0 for instructing the generation timing of the pulsed laser light in the solid-state laser system 1 from the exposure device control unit 5 of the exposure device 4 via the laser control unit 3.
- the synchronization control unit 7 is configured to generate a trigger signal Tr1 based on the oscillation trigger signal Tr0 and output the trigger signal Tr1 to the synchronization circuit unit 13.
- the synchronization control unit 7 is configured to generate a trigger signal Tr2 based on the oscillation trigger signal Tr0 and to output the trigger signal Tr2 to the trigger corrector 32 via the amplifier control unit 30.
- the solid-state laser control unit 14 is configured to output delay data Tr10 indicating first and second delay times Td1 and Td2 to be described later to the synchronization circuit unit 13.
- the synchronization circuit unit 13 Based on the delay data Tr10 from the solid-state laser control unit 14 and the trigger signal Tr1 from the synchronization control unit 7, the synchronization circuit unit 13 includes a first trigger signal Tr11 for the first semiconductor optical amplifier 23, and a second trigger signal Tr11. The second trigger signal Tr12 for the semiconductor optical amplifier 41 is generated and output.
- the laser control unit 3 causes the first semiconductor laser 20, the second semiconductor laser 40, and an excitation semiconductor laser (not shown) to CW oscillate via the solid-state laser control unit 14.
- the synchronization control unit 7 When the synchronization control unit 7 receives the oscillation trigger signal Tr0 from the exposure apparatus control unit 5 of the exposure apparatus 4 via the laser control unit 3, the synchronization control unit 7 outputs the fourth pulse having a wavelength of about 193.4 nm output from the solid-state laser system 1.
- the delay time between the trigger signal Tr1 and the trigger signal Tr2 is controlled so that the pair of discharge electrodes 38 are discharged in synchronization with the laser light 71C being injected into the optical resonator of the amplifier 2.
- CW oscillation light or pulse oscillation light having a wavelength of about 1030 nm is output from the first semiconductor laser 20.
- the CW oscillation light or pulse oscillation light is converted and amplified to a predetermined pulse width by the first semiconductor optical amplifier 23, and enters the Yb fiber amplifier system 24 as pulsed seed light.
- This pulsed seed light is amplified by the Yb fiber amplifier system 24 and the Yb: YAG crystal amplifier 25.
- the amplified pulsed laser light generates fourth harmonic light having a wavelength of about 257.5 nm by the LBO crystal 21 and the CLBO crystal 22.
- the first pulse laser beam 71A having a wavelength of about 257.5 nm is output from the first solid-state laser device 11.
- CW oscillation light or pulse oscillation light having a wavelength of about 1554 nm is output from the second semiconductor laser 40.
- This CW oscillation light or pulse oscillation light is converted and amplified to a predetermined pulse width by the second semiconductor optical amplifier 41, and enters the Er fiber amplifier system.
- the amplified pulsed laser light is further amplified by the Er fiber amplifier system 42 and output from the second solid-state laser device 12 as the second pulsed laser light 71B having a wavelength of about 1554 nm.
- the first pulse laser beam 71A having a wavelength of about 257.5 nm output from the first solid-state laser device 11 and the second pulse laser beam 71B having a wavelength of about 1554 nm output from the second solid-state laser device 12 are high
- the light enters the wavelength conversion system 15 via the reflection mirror 16 and the dichroic mirror 17.
- the delay data Tr10 is transmitted from the solid-state laser control unit 14 to the synchronization circuit unit 13.
- the delay data Tr10 includes first and second delay times Td1, which are set so that the first pulse laser beam 71A and the second pulse laser beam 71B are incident on the first CLBO crystal 18 at substantially the same timing. It includes delay data indicating Td2.
- the synchronization circuit unit 13 transmits the first trigger signal Tr11 to the first semiconductor optical amplifier 23 at a predetermined timing based on the trigger signal Tr1.
- the synchronization circuit unit 13 transmits the second trigger signal Tr12 to the second semiconductor optical amplifier 41 at a predetermined timing based on the trigger signal Tr1.
- the first pulse laser beam 71A and the second pulse laser beam 71B are incident on the first CLBO crystal 18 at substantially the same timing, and the first pulse laser beam 71A and the first pulse laser beam 71A are incident on the first CLBO crystal 18.
- the beam with the second pulse laser beam 71B overlaps.
- the first CLBO crystal 18 generates a third pulse laser beam having a wavelength of about 220.9 nm, which is the sum frequency of the wavelength of about 257.5 nm and the wavelength of about 1554 nm.
- the first pulse laser beam 71A having a wavelength of about 257.5 nm is highly reflected, and both pulse laser beams having a wavelength of about 1554 nm and a wavelength of about 220.9 nm are highly transmitted. Thereby, both pulsed laser beams having a wavelength of about 1554 nm and a wavelength of about 220.9 nm are incident on the second CLBO crystal 19.
- the second CLBO crystal 19 generates a fourth pulse laser beam 71C having a wavelength of about 193.4 nm, which is the sum frequency of a wavelength of about 220.9 nm and a wavelength of about 1554 nm.
- the dichroic mirror 82 highly transmits the third pulse laser beam having a wavelength of about 220.9 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm, and the fourth pulse laser beam 71C having a wavelength of about 193.4 nm is high. Reflected.
- the fourth pulse laser beam 71C having a wavelength of about 193.4 nm is output from the wavelength conversion system 15 via the high reflection mirror 83.
- the fourth pulse laser beam 71C is highly reflected by the high reflection mirror 91, and is injected as a seed light into the optical resonator of the amplifier 2 including the output coupling mirror 37 and the partial reflection mirror 36 through the high reflection mirror 92.
- the trigger corrector 32 adjusts the timing of the switch 33 of the PPM 34 so that the fourth pulsed laser light 71C from the solid-state laser system 1 having a wavelength of about 193.4 nm is efficiently amplified by the amplifier 2.
- the laser beam is amplified and oscillated by the optical resonator of the amplifier 2, and the amplified pulse laser beam is output from the output coupling mirror 37.
- the amplified pulsed laser light is incident on the exposure device 4.
- FIG. 3 schematically shows a more detailed configuration example of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the wavelength conversion system 15 includes condensing lenses 61, 62, 63, high reflection mirrors 16, 83, 86, 87, dichroic mirrors 17, 81, 82, 84, 85, first CLBO crystal 18, 2 CLBO crystal 19 may be included.
- the condensing lens 61 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm between the second solid-state laser device 12 and the dichroic mirror 17.
- the condenser lens 61 is a first pulse having a wavelength of about 257.5 nm that is output from the first solid-state laser device 11 to the first CLBO crystal 18 by the second pulse laser beam 71B via the dichroic mirror 17. It is arranged so as to overlap with the beam of the pulse laser beam 71A.
- the condenser lens 62 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm between the dichroic mirror 84 and the dichroic mirror 85.
- the condensing lens 62 is arranged so that the second pulsed laser light 71B is condensed through the dichroic mirror 85 so as to overlap the beam of the third pulsed laser light having a wavelength of about 220.9 nm.
- the condenser lens 63 is disposed on the optical path of the first pulsed laser light 71A having a wavelength of about 257.5 nm between the first solid-state laser device 11 and the dichroic mirror 17.
- the condensing lens 63 transmits a second pulse having a wavelength of about 1554 nm, which is output from the second solid-state laser device 12 to the first CLBO crystal 18 by the first pulse laser beam 71A via the dichroic mirror 17.
- the laser beam 71B is arranged so as to overlap with the beam of the laser beam 71B.
- the condensing lens 63 may be omitted from the configuration when the beam of the first pulse laser beam 71A having a wavelength of about 257.5 nm is small.
- the high reflection mirror 86 is disposed on the optical path of the third pulse laser beam having a wavelength of about 220.9 nm reflected from the dichroic mirror 84.
- the high reflection mirror 86 is arranged so that the third pulse laser beam having a wavelength of about 220.9 nm is incident on the second CLBO crystal 19 via the dichroic mirror 85.
- the high reflection mirror 86 is coated with a film that highly reflects light having a wavelength of about 220.9 nm.
- the high reflection mirror 87 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm that has passed through the dichroic mirror 84.
- the high reflection mirror 87 is arranged so that the second pulse laser beam 71 ⁇ / b> B enters the second CLBO crystal 19 through the dichroic mirror 85.
- the high reflection mirror 87 is coated with a film that highly reflects light having a wavelength of about 1554 nm.
- the dichroic mirror 84 is disposed on the optical path between the third pulse laser beam having a wavelength of about 220.9 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm that have passed through the dichroic mirror 81.
- the dichroic mirror 84 is coated with a film that highly reflects light having a wavelength of about 220.9 nm and highly transmits light having a wavelength of about 1554 nm.
- the dichroic mirror 85 is disposed on the optical path with the second pulse laser beam 71B having a wavelength of about 1554 nm that has passed through the condenser lens 62.
- the dichroic mirror 85 is coated with a film that highly transmits light having a wavelength of about 220.9 nm and highly reflects light having a wavelength of about 1554 nm.
- FIG. 4 schematically shows an example of a timing chart regarding various trigger signals and various pulse laser beams in the solid-state laser system 1 according to the comparative example.
- 4A shows the timing of the trigger signal Tr1 for the synchronization circuit section 13.
- FIG. (B) shows the timing of the first trigger signal Tr11 for the first semiconductor optical amplifier 23.
- (C) shows the timing of the second trigger signal Tr12 for the second semiconductor optical amplifier 41.
- FIG. (D) and (E) show the incident timing of the incident light to the first CLBO crystal 18.
- (D) shows the incidence timing of the first pulsed laser light 71A having a wavelength of about 257.5 nm to the first CLBO crystal 18.
- (E) shows the incident timing of the second pulsed laser light 71B having a wavelength of about 1554 nm to the first CLBO crystal 18.
- (F) and (G) show the incident timing of the incident light to the second CLBO crystal 19.
- (F) shows the incidence timing of the third pulse laser beam having a wavelength of about 220.9 nm to the second CLBO crystal 19.
- (G) shows the incident timing of the second pulse laser beam 71B having a wavelength of about 1554 nm to the second CLBO crystal 19.
- (H) shows the emission timing from the second CLBO crystal 19 of the fourth pulsed laser light 71C having a wavelength of about 193.4 nm, which is one of the emitted light from the second CLBO crystal 19.
- the horizontal axes of (A) to (H) indicate time.
- the vertical axis of (A) to (C) indicates the on / off state of the trigger signal.
- the vertical axis of (D) to (H) indicates the light intensity.
- the timing of each pulse laser beam in (D) to (H) is shown with reference to the timing at which the light intensity of each pulse laser beam peaks.
- the first delay time Td1 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1 is the first delay time Td1.
- 1 trigger signal Tr11 is output.
- the second trigger signal Tr12 is output at the second delay time Td2 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1.
- the first CLBO of the first pulse laser beam 71A having a wavelength of about 257.5 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm are at the same timing.
- the incident light enters the crystal 18 and the beams of both pulsed laser beams overlap on the first CLBO crystal 18.
- a first pulse laser beam 71A having a wavelength of about 257.5 nm and a second pulse laser beam 71B having a wavelength of about 1554 nm are converted into a third pulse having a wavelength of about 220.9 nm by a sum frequency generation process. Wavelength conversion into laser light.
- the first pulse laser beam 71A having a wavelength of about 257.5 nm is highly reflected by the dichroic mirror 82, and the third pulse laser beam having a wavelength of about 220.9 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm are high.
- the third pulse laser beam having a wavelength of about 220.9 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm are high.
- the third pulse laser beam with a wavelength of about 220.9 nm is highly reflected by the dichroic mirror 84, and the second pulse laser beam 71B with a wavelength of about 1554 nm is highly transmitted.
- the third pulse laser beam having a wavelength of about 220.9 nm is incident on the second CLBO crystal 19 through the high reflection mirror 86 and the dichroic mirror 85.
- the second pulse laser beam 71B having a wavelength of about 1554 nm is incident on the second CLBO crystal 19 through the high reflection mirror 87, the condenser lens 62, and the dichroic mirror 85.
- the second CLBO crystal with the same timing as the third pulse laser beam having a wavelength of about 220.9 nm and the second pulse laser beam 71B having a wavelength of about 1554 nm.
- the beams of both pulse laser beams are incident on the second CLBO crystal 19.
- a third pulse laser beam having a wavelength of about 220.9 nm and a second pulse laser beam 71B having a wavelength of about 1554 nm are generated as a sum frequency.
- the wavelength is converted into the fourth pulse laser beam 71C having a wavelength of about 193.4 nm.
- FIG. 5 schematically shows a modification of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the wavelength conversion system 15 may be configured like the wavelength conversion system 150 shown in FIG. 5 in consideration of the polarization direction of each pulse laser beam.
- the wavelength conversion system 150 further includes a half-wave plate 88 with respect to the wavelength conversion system 15 of FIG.
- the half-wave plate 88 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm between the dichroic mirror 84 and the dichroic mirror 87, for example.
- the first solid-state laser device 11 and the second solid-state laser device 12 emit pulse laser light having the same polarization direction.
- the first CLBO crystal 18 and the second CLBO crystal 19 are arranged so that their optical axes are orthogonal to each other.
- the polarization direction of the first pulsed laser beam 71A and the polarization direction of the second pulsed laser beam 71B are made perpendicular to the paper surface and are incident on the first CLBO crystal 18.
- a third pulse laser beam having a wavelength of about 220.9 nm is output with a polarization parallel to the paper surface.
- the second pulse laser beam 71B that has not contributed to the wavelength conversion by the first CLBO crystal 18 is transmitted through the dichroic mirror 81 and the dichroic mirror 84, and the polarization direction is rotated by 90 ° by the half-wave plate 88.
- the polarization direction is parallel to the paper surface.
- the second pulse laser light 71B having a polarization direction parallel to the paper surface and a third pulse laser light having a polarization direction parallel to the paper surface are incident on the second CLBO crystal 19.
- a fourth pulse laser beam 71C having a wavelength of about 193.4 nm perpendicular to the paper surface is output by the sum frequency generation process.
- a first solid-state laser device 11 that outputs a first pulse laser beam 71A having a wavelength of about 257.5 nm includes a Yb fiber amplifier system 24, a Yb: YAG crystal amplifier 25 that is a solid-state amplifier, and a pulse laser having a wavelength of about 1030 nm.
- An LBO crystal 21 and a CLBO crystal 22 that convert light into fourth harmonic light are included.
- a laser apparatus for an exposure apparatus it is necessary to narrow the spectral line width of laser light until chromatic aberration is negligible.
- the spectrum of each pulse laser beam output from the first solid-state laser device 11 and the second solid-state laser device 12 of the solid-state laser system 1 is used. It is necessary to reduce the line width.
- SBS stimulated Brillouin scattering
- Yb fiber amplifier system 24 it is difficult to increase the pulse energy in order to suppress stimulated Brillouin scattering.
- the pulse energy of the pulse laser beam having a wavelength of about 1030 nm, which is the fundamental wave can be further increased by a solid-state amplifier that does not generate stimulated Brillouin scattering.
- the output of the first pulsed laser light 71A having a wavelength of about 257.5 nm converted into the fourth harmonic light can also be increased.
- the second solid-state laser device 12 suppresses the stimulated Brillouin scattering by the Er fiber amplifier system 42 and the second pulse of the wavelength of about 1554 nm. It is necessary to amplify the laser beam 71B. For this reason, in the second solid-state laser device 12, it is difficult to increase the pulse energy of the second pulsed laser light 71B having a wavelength of about 1554 nm.
- the pulse energy of the fourth pulse laser beam 71C having the wavelength of about 193.4 nm the pulse energy of the first pulse laser beam 71A having the wavelength of about 257.5 nm, which is the fourth harmonic of the wavelength of about 1030 nm. Will be increased.
- the second pulse laser having a wavelength of about 1554 nm is generated in the sum frequency generation process in the first CLBO crystal 18 of the wavelength conversion system 15.
- the amount of pulse energy consumed by the light 71B increases.
- the pulse energy of the second pulsed laser light 71B having a wavelength of about 1554 nm that has not been consumed by the first CLBO crystal 18 is reduced. Therefore, the light intensity of the second pulse laser beam 71B incident on the second CLBO crystal 19 decreases.
- a fourth pulse laser beam 71C having a wavelength of about 193.4 nm is generated using the reduced second pulse laser beam 71B having a wavelength of about 1554 nm.
- the wavelength conversion efficiency in the wavelength conversion system 15 is sufficiently improved. It was difficult.
- the second pulse laser beam 71B is incident on the second CLBO crystal 19 at a first timing before being incident on the first CLBO crystal 18. Then, residual light that has not been used in the sum frequency generation process of the second pulse laser beam 71B, that is, has not been consumed in wavelength conversion and has passed through the second CLBO crystal 19, is later than the first timing. Is incident on the first CLBO crystal 18. As described above, after the second pulse laser beam 71B is first incident on the second CLBO crystal 19, the second pulse laser which has passed through the second CLBO crystal 19 without being consumed by wavelength conversion next. The remaining light of the light 71 ⁇ / b> B is incident on the first CLBO crystal 18. Thus, the fourth pulse laser beam 71C is generated in a state where the decrease in the light intensity of the second pulse laser beam 71B incident on the second CLBO crystal 19 is suppressed.
- the first pulsed laser light 71A having the first wavelength has a wavelength of about 257.5 nm
- the wavelength of 1 may be another value within the range of 220 nm to 400 nm.
- the case where the second pulse laser beam 71B having the second wavelength has a wavelength of about 1554 nm will be described as an example.
- the present invention is not limited to this, and the second wavelength is another value in the range of 1100 nm to 2000 nm. It is good.
- the fourth pulse laser beam 71C having the fourth wavelength has a wavelength of about 193.4 nm will be described as an example.
- the present invention is not limited to this, and the fourth wavelength may be in the range of 150 nm to 300 nm. It is good also as the value of.
- Embodiment 1 (First Example of Solid State Laser System) Next, the solid-state laser system according to Embodiment 1 of the present disclosure will be described. In the following description, substantially the same components as those of the solid-state laser system 1 according to the comparative example are denoted by the same reference numerals, and description thereof is omitted as appropriate.
- FIG. 6 schematically shows a configuration example of the solid-state laser system 1A according to the first embodiment.
- the solid-state laser system 1A includes a wavelength conversion system 15A instead of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the timing at which the first pulse laser beam 71A enters the first CLBO crystal 18 and the first timing at which the second pulse laser beam 71B enters the second CLBO crystal 19 are substantially the same. It is configured to be the same.
- the wavelength conversion system 15A includes a first CLBO crystal 18 and a second CLBO crystal 19, condensing lenses 210, 211, 212, high reflection mirrors 410, 411, 412, 413, 414, and dichroic mirrors 310, 311. , 312, 313, 314 and a collimator lens 510.
- the condensing lens 210 is disposed on the optical path of the second pulsed laser light 71B having a wavelength of about 1554 nm between the collimator lens 510 and the dichroic mirror 313.
- the condenser lens 210 is disposed on the optical path between the collimator lens 510 and the high reflection mirror 412.
- the condensing lens 211 is disposed on the optical path of the second pulsed laser light 71B having a wavelength of about 1554 nm between the second solid-state laser device 12 and the dichroic mirror 310.
- the condensing lens 212 is disposed on the optical path of the first pulsed laser light 71A having a wavelength of about 257.5 nm between the first solid-state laser device 11 and the dichroic mirror 313.
- the condenser lens 212 is disposed on the optical path between the high reflection mirror 410 and the dichroic mirror 313. If the beam spread of the first pulse laser beam 71A having a wavelength of about 257.5 nm is small, the condenser lens 212 may be omitted from the configuration.
- the collimator lens 510 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm between the dichroic mirror 312 and the condenser lens 210.
- the collimator lens 510 is arranged so that the second pulse laser beam 71B having a wavelength of about 1554 nm output from the second CLBO crystal 19 is collimated.
- the dichroic mirror 310 is on the optical path of the second pulsed laser light 71B having a wavelength of about 1554 nm between the condenser lens 211 and the second CLBO crystal 19 and has a wavelength of about 220 when the dichroic mirror 313 is highly reflected. It is arranged on the optical path of the third pulse laser beam of .9 nm.
- the dichroic mirror 310 is coated with a film that highly reflects light having a wavelength of about 220.9 nm and highly transmits light having a wavelength of about 1554 nm.
- the dichroic mirror 310 is arranged so that the condensed beam of the second pulse laser beam 71B having a wavelength of about 1554 nm and the beam of a pulse laser beam having a wavelength of about 220.7 nm overlap each other in the second CLBO crystal 19.
- the dichroic mirror 311 is on the optical path of each pulse laser beam having a wavelength of about 193.4 nm, a wavelength of about 220.9 nm, and a wavelength of about 1554 nm output from the second CLBO crystal 19. It arrange
- the dichroic mirror 311 is coated with a film that highly reflects light having a wavelength of about 193.4 nm and highly transmits light having a wavelength of about 220.9 nm and a wavelength of about 1554 nm.
- the dichroic mirror 312 is disposed on the optical path of each pulsed laser beam having a wavelength of about 220.9 nm and a wavelength of about 1554 nm that has passed through the dichroic mirror 311 so that the reflected light is incident on the highly reflective mirror 411.
- the dichroic mirror 312 is coated with a film that highly transmits light having a wavelength of about 220.9 nm and highly reflects light having a wavelength of about 1554 nm.
- the dichroic mirror 313 is disposed on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm between the high reflection mirror 411 and the first CLBO crystal 18.
- the dichroic mirror 313 is arranged so that the high-reflection mirror 412 and the second pulse laser beam 71B having a wavelength of about 1554 nm reflected by the high-reflection mirror 413 are incident thereon.
- the dichroic mirror 313 is coated with a film that highly transmits light having a wavelength of about 220.9 nm and highly reflects light having a wavelength of about 1554 nm.
- the dichroic mirror 313 is configured so that the condensed beam of the second pulsed laser beam 71B having a wavelength of about 1554 nm and the condensed beam of the first pulsed laser beam 71A having a wavelength of about 257.5 nm overlap each other in the first CLBO crystal 18. Has been placed.
- the dichroic mirror 314 includes a first pulse laser beam 71A having a wavelength of about 257.5 nm, a third pulse laser beam having a wavelength of about 220.9 nm, and a second pulse having a wavelength of about 1554 nm, which are output from the first CLBO crystal 18.
- the reflected light is arranged to enter the dichroic mirror 310.
- the dichroic mirror 314 is coated with a film that highly reflects light having a wavelength of about 220.7 nm and highly transmits light having a wavelength of about 257.5 nm and a wavelength of about 1554 nm.
- the high reflection mirrors 411, 412 and 413 are arranged on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm reflected by the dichroic mirror 312.
- the high reflection mirrors 411, 412, and 413 are arranged so that the second pulse laser beam 71 ⁇ / b> B having a wavelength of about 1554 nm is incident on the first CLBO crystal 18 through the dichroic mirror 313.
- the high reflection mirrors 411, 412, and 143 are coated with a film that highly reflects light having a wavelength of about 1554 nm.
- the second pulse laser light 71B having a wavelength of about 1554 nm is first incident on the second CLBO crystal 19.
- a second pulse laser beam 71B having a wavelength of about 1554 nm that has not been consumed by wavelength conversion in the second CLBO crystal 19 is incident on the first CLBO crystal 18.
- a third pulse laser beam having a wavelength of about 220.9 nm, which has been wavelength-converted in the first CLBO crystal 18, is incident on the second CLBO crystal 19, and the second pulse having a wavelength of about 1554nm that has been previously incident thereon.
- a fourth pulsed laser beam 71C having a wavelength of about 193.4 nm is output by the sum frequency with the laser beam 71B.
- the timing at which the first pulse laser beam 71A having a wavelength of about 257.5 nm is incident on the first CLBO crystal 18 is coincident with the timing at which the second pulse laser beam 71B having a wavelength of about 1554 nm is incident on the second CLBO crystal 19.
- the delay data Tr10 indicating the first and second delay times Td1 and Td2 is set in the synchronization circuit unit 13.
- the optical path length of the second pulsed laser light 71B having a wavelength of about 1554 nm from the second CLBO crystal 19 to the first CLBO crystal 18 is L1.
- the optical path length of the third pulse laser beam having a wavelength of about 220.9 nm from the first CLBO crystal 18 to the second CLBO crystal 19 is L2.
- c is the speed of light
- T1 and T2 are times when the light travels along the optical path L1 and the optical path L2, respectively.
- the optical path length L is preferably 0.9 m or less.
- Top 3 ns.
- Td is the incident timing of the second pulse laser beam 71B having a wavelength of about 1554 nm incident on the second CLBO crystal 19 and the first pulse laser beam 71A having a wavelength of about 257.5 nm incident on the first CLBO crystal 18. It is the timing difference from the incident timing.
- FIG. 7 schematically shows an example of a timing chart regarding various trigger signals and various pulse laser beams in the solid-state laser system 1A according to the first embodiment.
- the meanings indicated by the timings (A) to (H) in FIG. 7 are the same as those in (A) to (H) in FIG.
- the first delay time Td1 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1 is the first delay time Td1.
- 1 trigger signal Tr11 is output.
- the second trigger signal Tr12 is output at the second delay time Td2 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1.
- the incident timing of the first pulsed laser light 71A having a wavelength of about 257.5 nm incident on the first CLBO crystal 18 and the second CLBO crystal 19 are incident.
- the incident timing of the second pulsed laser light 71B having a wavelength of about 1554 nm substantially coincides with the incident timing.
- the second pulse laser beam 71B having a wavelength of about 1554 nm is changed to the first pulse laser beam 71A having a wavelength of about 257.5 nm.
- the first pulse laser light 71A having a wavelength of about 257.5 nm and the second pulse laser light 71B having a wavelength of about 1554 nm are reduced in wavelength by a sum frequency generation process.
- the wavelength is converted into a third pulse laser beam of 220.9 nm.
- the third pulse laser beam having a wavelength of about 220.9 nm is compared with the second pulse laser beam 71B having a wavelength of about 1554 nm.
- a third pulse laser beam having a wavelength of about 220.9 nm and a second pulse laser beam 71B having a wavelength of about 1554 nm are generated as a sum frequency.
- the wavelength is converted into the fourth pulse laser beam 71C having a wavelength of about 193.4 nm.
- D be the pulse widths of the pulse laser beam output from the first solid-state laser device 11 and the pulse laser beam output from the second solid-state laser device 12.
- each pulse width D of the first pulse laser beam 71A output from the first solid-state laser device 11 and the second pulse laser beam 71B output from the second solid-state laser device 12 is about 6 ns.
- Top 3 ns.
- the second pulsed laser light 71B having a wavelength of about 1554 nm is first incident on the second CLBO crystal 19, and then the wavelength conversion by the second CLBO crystal 19 is performed.
- the utilization efficiency of the second pulse laser beam 71B can be greatly improved.
- the ratio Er of the delay Top to the second pulse laser light 71B of the third pulse laser light in the second CLBO crystal 19 with respect to each pulse width D of the first and second pulse laser lights 71A and 71B. Top / D can be reduced. Thereby, it is possible to suppress a decrease in wavelength conversion efficiency due to a difference in incident timing between the second pulse laser beam 71B and the third pulse laser beam in the second CLBO crystal 19.
- the wavelength conversion efficiency of the wavelength conversion system 15A can be improved.
- Second Embodiment> (Second Example of Solid State Laser System) Next, a solid-state laser system according to Embodiment 2 of the present disclosure will be described. In the following description, substantially the same parts as those of the comparative example or the solid-state laser system according to Embodiment 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
- FIG. 8 schematically shows a configuration example of the solid-state laser system 1B according to the second embodiment.
- the solid-state laser system 1B includes a wavelength conversion system 15B instead of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the timing at which the first pulsed laser light 71A enters the first CLBO crystal 18 and the remaining light of the second pulsed laser light 71B that has passed through the second CLBO crystal 19 are the first CLBO.
- the second timing of incidence on the crystal 18 is configured to be substantially the same.
- the configuration of the solid-state laser system 1B relates to the emission timing of the first pulse laser beam 71A from the first solid-state laser device 11 and the emission timing of the second pulse laser beam 71B from the second solid-state laser device 12. Except for the configuration, it may be substantially the same as the solid-state laser system 1A according to the first embodiment.
- the first and second delay times Td1 and Td2 are the incident timing of the first pulse laser beam 71A to the first CLBO crystal 18 and the second pulse to the first CLBO crystal 18. It is set in advance so that the incident timing of the laser beam 71B substantially coincides.
- FIG. 9 schematically shows an example of a timing chart regarding various trigger signals and various pulse laser beams in the solid-state laser system 1B according to the second embodiment.
- the meanings indicated by the timings (A) to (H) in FIG. 9 are the same as those in (A) to (H) in FIG.
- the first delay time Td1 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1 is the first delay time Td1.
- 1 trigger signal Tr11 is output.
- the second trigger signal Tr12 is output with the second delay time Td2 set by the solid-state laser control unit 14 with respect to the trigger signal Tr1.
- the wavelength is converted into a third pulse laser beam having a wavelength of about 220.9 nm by the sum frequency generation process.
- the third pulse laser beam having a wavelength of about 220.9 nm is compared with the second pulse laser beam 71B having a wavelength of about 1554 nm.
- a third pulse laser beam having a wavelength of about 220.9 nm and a second pulse laser beam 71B having a wavelength of about 1554 nm are generated as a sum frequency.
- the wavelength is converted into the fourth pulse laser beam 71C having a wavelength of about 193.4 nm.
- D be the pulse widths of the pulse laser beam output from the first solid-state laser device 11 and the pulse laser beam output from the second solid-state laser device 12.
- each pulse width D of the first pulse laser beam 71A output from the first solid-state laser device 11 and the second pulse laser beam 71B output from the second solid-state laser device 12 is about 6 ns.
- Top 3 ns.
- Embodiment 3> (wavelength conversion system having a ring-shaped optical path)
- a solid-state laser system according to Embodiment 3 of the present disclosure will be described.
- substantially the same components as those of the comparative example or the solid-state laser system according to the first or second embodiment will be denoted by the same reference numerals, and description thereof will be omitted as appropriate.
- FIG. 10 schematically shows a configuration example of a solid-state laser system 1C according to the third embodiment.
- the solid-state laser system 1C includes a wavelength conversion system 15C instead of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the wavelength conversion system 15C is arranged at a position where the optical path of the second pulse laser light 71B and the optical path of the third pulse laser light intersect between the second solid-state laser device 12 and the second CLBO crystal 19.
- a first dichroic mirror transmits the second pulse laser beam 71 ⁇ / b> B toward the second CLBO crystal 19 and reflects the third pulse laser beam toward the second CLBO crystal 19.
- the first dichroic mirror may be a dichroic mirror 321 described later.
- the wavelength conversion system 15C includes a second dichroic mirror that is disposed on the optical path of the residual light of the second pulse laser light 71B and reflects the residual light of the second pulse laser light 71B.
- the second dichroic mirror may be a dichroic mirror 323 described later.
- the wavelength conversion system 15C is disposed on the optical path of the residual light of the second pulse laser light 71B after being reflected by the second dichroic mirror, and reflects the residual light of the second pulse laser light 71B. Includes a mirror.
- This reflection mirror may be a high reflection mirror 420 described later.
- the wavelength conversion system 15C is disposed at a position where the optical path of the residual light of the second pulse laser light 71B after being reflected by the reflection mirror intersects the optical path of the first pulse laser light 71A.
- a third dichroic mirror that reflects the first pulse laser beam 71 ⁇ / b> A toward the first CLBO crystal 18 and transmits the remaining light of the second pulse laser beam 71 ⁇ / b> B toward the first CLBO crystal 18.
- the third dichroic mirror may be a dichroic mirror 320 described later.
- the wavelength conversion system 15C includes condensing lenses 220, 221, 222, high reflection mirrors 420, 421, 422, dichroic mirrors 320, 321, 322, 323, a first CLBO crystal 18, and a second CLBO crystal. 19 and a collimator lens 520.
- a ring-shaped optical path is formed by the dichroic mirrors 320, 321, 322, and 323 and the high reflection mirrors 420 and 421.
- the first CLBO crystal 18 is disposed on the optical path between the dichroic mirror 320 and the dichroic mirror 321.
- the second CLBO crystal 19 is disposed on the optical path between the dichroic mirror 321 and the dichroic mirror 322.
- the collimator lens 520 collimates the second pulsed laser light 71B having a wavelength of about 1554 nm that is not consumed by the second CLBO crystal 19 on the optical path between the dichroic mirror 323 and the high reflection mirror 421. Has been placed.
- the condenser lens 220 is on the optical path between the high reflection mirror 421 and the high reflection mirror 420, and the second pulse laser beam 71 ⁇ / b> B having a wavelength of about 1554 nm collimated by the collimator lens 520 is applied to the first CLBO crystal 18. It arrange
- the dichroic mirror 321 is coated with a film that highly transmits light with wavelengths of about 1554 nm and 257.5 nm and highly reflects light with a wavelength of about 220.9 nm.
- the dichroic mirror 322 is disposed on the optical path between the second CLBO crystal 19 and the dichroic mirror 323.
- the dichroic mirror 322 is coated with a film that highly transmits light having a wavelength of about 1554 nm and a wavelength of about 220.9 nm and highly reflects light having a wavelength of about 193.4 nm.
- the dichroic mirror 323 is arranged on the optical path of the second pulse laser beam 71B having a wavelength of about 1554 nm and the third pulse laser beam having a wavelength of about 220.9 nm.
- the dichroic mirror 323 is coated with a film that highly transmits light having a wavelength of about 220.9 nm and highly reflects light having a wavelength of about 1554 nm.
- the high reflection mirror 420 is on the optical path between the high reflection mirror 421 and the dichroic mirror 320, and directs the second pulse laser light 71 ⁇ / b> B having a wavelength of about 1554 nm reflected by the high reflection mirror 421 toward the dichroic mirror 320. It is arranged to reflect.
- the dichroic mirror 320 highly reflects the first pulse laser beam 71A having a wavelength of about 257.5 nm output from the first solid-state laser device 11. Further, the dichroic mirror 320 transmits the second pulse laser beam 71B having a wavelength of about 1554 nm reflected by the high reflection mirror 420 and transmits the first pulse laser beam 71A having a wavelength of about 257.5 nm and the first pulse laser beam 71A having a wavelength of about 1554 nm.
- the second pulse laser beam 71 ⁇ / b> B and the first CLBO crystal 18 are arranged so as to overlap each other.
- the dichroic mirror 320 is coated with a film that highly reflects light having a wavelength of about 257.5 nm and highly transmits light having a wavelength of about 1554 nm.
- the high reflection mirror 422 is arranged to output the fourth pulse laser beam 71C having a wavelength of about 193.4 nm to the outside.
- the high reflection mirror 422 is coated with a film that highly reflects light having a wavelength of about 193.4 nm.
- the condensing lens 222 is disposed on the optical path between the first solid-state laser device 11 and the dichroic mirror 320.
- the condensing lens 222 allows the first pulsed laser light 71A having a wavelength of about 257.5 nm output from the first solid-state laser device 11 to pass through the dichroic mirror 320 in the first CLBO crystal 18 with a wavelength of about 1554 nm. They are arranged so as to overlap with the focused beam of the second pulse laser beam 71B.
- the condensing lens 221 causes the second pulse laser beam 71B having a wavelength of about 1554 nm to overlap the light beam of the third pulse laser beam having a wavelength of about 220.9 nm on the second CLBO crystal 19 via the dichroic mirror 321. Are arranged so as to collect light.
- the optical path length L of the optical path from the second CLBO crystal 19 to the second CLBO crystal 19 via the first CLBO crystal 18 is as high as that of the dichroic mirrors 320, 321, 322, and 323.
- the optical path length of the ring-shaped optical path by the reflection mirrors 420 and 421 is obtained.
- the setting of the first and second delay times Td1 and Td2 of the first and second trigger signals Tr11 and Tr12 with respect to the trigger signal Tr1 of the synchronization circuit unit 13 is substantially the same as in the first embodiment or the second embodiment. It may be.
- the incident timing of the first pulsed laser light 71A having a wavelength of about 257.5 nm incident on the first CLBO crystal 18 and the second CLBO crystal 19 The first and second delay times Td1 and Td2 may be set so that the incident timing of the second pulse laser beam 71B having an incident wavelength of about 1554 nm substantially coincides.
- the first and second delay times Td1 and Td2 may be set so that the incident timing of the pulse laser beam 71B substantially coincides.
- the first pulsed laser light 71A having a wavelength of about 257.5 nm output from the first solid-state laser device 11 is condensed by the condenser lens 222 onto the first CLBO crystal 18 via the dichroic mirror 320.
- the second pulse laser beam 71B having a wavelength of about 1554 nm that has not been used for wavelength conversion by the second CLBO crystal 19 is collected on the first CLBO crystal 18 via the high reflection mirror 420 and the dichroic mirror 320.
- the light is condensed by the condenser lens 220 so as to overlap the beam of the first pulsed laser light 71A having a wavelength of about 257.5 nm.
- a part of both pulse laser beams is converted into a third pulse laser beam having a wavelength of about 220.9 nm by the sum frequency generation process.
- the second pulsed laser light 71B having a wavelength of about 1554 nm output from the second solid-state laser device 12 is condensed on the second CLBO crystal 19 by the condenser lens 221 via the dichroic mirror 321.
- the third pulse laser beam having a wavelength of about 220.9 nm enters the second CLBO crystal 19 via the dichroic mirror 321 and overlaps with the second pulse laser beam 71B having a wavelength of about 1554 nm.
- a part of both pulsed laser beams is converted into a fourth pulsed laser beam 71C having a wavelength of about 193.4 nm by the sum frequency generation process.
- a fourth pulse laser beam 71C having a wavelength of about 193.4 nm, a third pulse laser beam having a wavelength of about 220.9 nm that was not used for wavelength conversion, and a wavelength conversion are used.
- the second pulsed laser light 71B having a wavelength of about 1554 nm that has not been output is output.
- the fourth pulse laser beam 71C having a wavelength of about 193.4 nm is output via the high reflection mirror 422 by the dichroic mirror 322.
- the third pulse laser beam having a wavelength of about 220.9 nm that has passed through the dichroic mirror 322 is highly transmitted through the dichroic mirror 323.
- the second pulse laser beam 71B having a wavelength of about 1554 nm that has passed through the dichroic mirror 322 is highly reflected by the dichroic mirror 323.
- the second pulse laser beam 71B having a wavelength of about 1554 nm highly reflected by the dichroic mirror 323 is collimated by the collimator lens 520.
- the second pulse laser beam 71B having a wavelength of about 1554 nm is applied to the first CLBO crystal 18 by the condenser lens 220 through the high reflection mirror 421 and the wavelength of about 257.75 through the high reflection mirror 20 and the dichroic mirror 320.
- the beam is focused so as to overlap the beam of the first pulse laser beam 71A of 5 nm.
- the first CLBO crystal 18 and the second CLBO crystal 18 are arranged on the ring-shaped optical path formed by the dichroic mirrors 320, 321, 322, and 323 and the high reflection mirrors 420 and 421.
- a CLBO crystal 19 is arranged.
- the optical path length L from the second CLBO crystal 19 to the second CLBO crystal 19 via the first CLBO crystal 18 can be shortened as compared with the configuration of the optical path in FIG.
- the delay Top of the third pulse laser beam having a wavelength of about 220.9 nm with respect to the second pulse laser beam 71B having a wavelength of about 1554 nm in the second CLBO crystal 19 can be further reduced.
- the wavelength conversion efficiency is improved as compared with the solid state laser system 1A of FIG.
- the high reflection mirror 421 may be omitted from the configuration, and the dichroic mirrors 320, 321, 322, 323 and the high reflection mirror 420 may form a substantially triangular optical path. Thereby, the optical path length L can be further shortened.
- Embodiment 4 (Optimization method for wavelength conversion efficiency) Next, a solid-state laser system according to Embodiment 4 of the present disclosure will be described. In the following description, substantially the same parts as those of the comparative example or the solid-state laser system according to Embodiments 1 to 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
- FIG. 11 schematically illustrates an example of a timing chart regarding various trigger signals and various pulsed laser beams in the solid-state laser system according to the fourth embodiment.
- the meanings indicated by the timings (A) to (H) in FIG. 11 are the same as those in (A) to (H) in FIG.
- the configuration of the solid-state laser system according to Embodiment 4 includes the emission timing of the first pulsed laser light 71A from the first solid-state laser device 11 and the second pulsed laser light 71B from the second solid-state laser device 12. Except for the configuration related to the emission timing, the configuration may be substantially the same as that of the solid-state laser system 1A according to the first embodiment.
- the second pulsed laser light 71B is generated at the first timing before entering the first CLBO crystal 18. 2 is incident on the CLBO crystal 19. Then, residual light that has not been used in the sum frequency generation process of the second pulse laser beam 71B, that is, has not been consumed in wavelength conversion and has passed through the second CLBO crystal 19, is later than the first timing. Is incident on the first CLBO crystal 18.
- the timing at which the first pulse laser beam 71A enters the first CLBO crystal 18 is a timing between the first timing and the second timing. That is, in the solid-state laser system according to the fourth embodiment, the timing at which the first pulsed laser light 71A enters the first CLBO crystal 18 and after the second pulsed laser light 71B has passed through the second CLBO crystal 19 are obtained. The timing before reaching the first CLBO crystal 18 is set. The timing at which the first pulse laser beam 71A enters the first CLBO crystal 18 is preferably an intermediate timing between the first timing and the second timing.
- the incident timing of the second pulsed laser light 71B having a wavelength of about 1554 nm incident on the second CLBO crystal 19 and the first pulsed laser light 71A having a wavelength of about 257.5 nm incident on the first CLBO crystal 18 are obtained.
- the difference from the incident timing is Td.
- the time for the second pulse laser beam 71B having a wavelength of about 1554 nm to travel the optical path length from the second CLBO crystal 19 to the first CLBO crystal 18 is defined as T1.
- FIG. 12 schematically shows an example of the wavelength conversion efficiency of the wavelength conversion system in the solid-state laser system according to the fourth embodiment.
- the horizontal axis represents Td
- the vertical axis represents the wavelength conversion efficiency Eff of the wavelength conversion system.
- the range of Td is preferably 0 ⁇ Td ⁇ T1.
- the maximum conversion efficiency Td may slightly deviate from T1 / 2 depending on the pulse waveforms of the second pulse laser beam 71B having a wavelength of about 1554 nm and the first pulse laser beam 71A having a wavelength of about 257.5 nm. is there.
- the difference between the input timings of the first trigger signal Tr11 for the first solid-state laser device 11 and the second trigger signal Tr12 for the second solid-state laser device 12 is changed to obtain the maximum conversion efficiency.
- the first and second delay times Td1 and Td2 may be set in the synchronization circuit unit 13 by obtaining a difference between the timings of the first trigger signal Tr11 and the second trigger signal Tr12 which are conversion efficiency. .
- the wavelength conversion efficiency of the wavelength conversion system can be further improved.
- Embodiment 5 (First Example of Solid-State Laser System Considering Polarization Direction) Next, a solid-state laser system according to Embodiment 5 of the present disclosure will be described. In the following description, substantially the same parts as those of the comparative example or the solid-state laser system according to Embodiments 1 to 4 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
- FIG. 13 schematically shows a configuration example of a solid-state laser system 1D according to the fifth embodiment.
- the solid-state laser system 1D includes a wavelength conversion system 15D instead of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the wavelength conversion system 15D is configured in consideration of the polarization direction of each pulse laser beam with respect to the wavelength conversion system 15A of FIG.
- the wavelength conversion system 15D further includes a half-wave plate 610 with respect to the wavelength conversion system 15A of FIG.
- the half-wave plate 610 is disposed between the first CLBO crystal 18 and the second CLBO crystal 19 on the optical path of the residual light of the second pulse laser beam 71B.
- the half-wave plate 610 is disposed on the optical path of the residual light of the second pulse laser beam 71 ⁇ / b> B between the collimator lens 510 and the condenser lens 210.
- the first solid-state laser device 11 outputs the first pulsed laser light 71A polarized in the first polarization direction.
- the second solid-state laser device 12 outputs the second pulse laser beam 71B polarized in the second polarization direction orthogonal to the first polarization direction.
- the optical axis of the first CLBO crystal 18 and the optical axis of the second CLBO crystal 19 are arranged so as to be orthogonal to each other.
- the first pulse laser beam 71A and the second pulse laser beam 71B are made incident on the wavelength conversion system 15D so that their polarization directions are orthogonal to each other.
- the first pulse laser beam 71A is incident on the first CLBO crystal 18 with the polarization in the direction perpendicular to the paper surface.
- the second pulse laser beam 71B is incident on the second CLBO crystal 19 with a polarization direction parallel to the paper surface.
- the second pulse laser beam 71B that has not contributed to wavelength conversion by the second CLBO crystal 19 is converted into parallel light by the collimator lens 510 via the dichroic mirrors 311 and 312 and the high reflection mirror 411.
- the polarization direction of the second pulse laser beam 71B is rotated by 90 ° by the half-wave plate 610, and becomes a polarization direction perpendicular to the paper surface.
- Both the second pulse laser beam 71B and the first pulse laser beam 71A are incident on the first CLBO crystal 18 with a polarization in a direction perpendicular to the paper surface, and a third frequency parallel to the paper surface by the sum frequency. Converted into a pulse laser beam.
- Both the third pulsed laser beam and the second pulsed laser beam 71B are incident on the second CLBO crystal 19 with polarization parallel to the paper surface, and have a wavelength of about 193 perpendicular to the paper surface due to the sum frequency.
- a 4 nm fourth pulse laser beam 71C is output.
- Embodiment 6> (Second Example of Solid State Laser System Considering Polarization Direction) Next, a solid-state laser system according to Embodiment 6 of the present disclosure will be described. In the following description, the same reference numerals are given to the same components as those of the comparative example or the solid-state laser system according to Embodiments 1 to 5, and description thereof will be omitted as appropriate.
- FIG. 14 schematically shows a configuration example of the solid-state laser system 1E according to the sixth embodiment.
- the solid-state laser system 1E includes a wavelength conversion system 15E instead of the wavelength conversion system 15 in the solid-state laser system 1 according to the comparative example.
- the wavelength conversion system 15E is configured in consideration of the polarization direction of each pulse laser beam with respect to the wavelength conversion system 15C of FIG.
- the wavelength conversion system 15E further includes a half-wave plate 610 with respect to the wavelength conversion system 15C of FIG.
- the half-wave plate 610 is disposed between the first CLBO crystal 18 and the second CLBO crystal 19 on the optical path of the residual light of the second pulse laser beam 71B.
- the half-wave plate 610 is disposed on the optical path of the remaining light of the second pulse laser beam 71 ⁇ / b> B between the collimator lens 520 and the condenser lens 220.
- the first solid-state laser device 11 outputs the first pulsed laser light 71A polarized in the first polarization direction.
- the second solid-state laser device 12 outputs the second pulse laser beam 71B polarized in the second polarization direction orthogonal to the first polarization direction.
- the optical axis of the first CLBO crystal 18 and the optical axis of the second CLBO crystal 19 are arranged so as to be orthogonal to each other.
- the first pulse laser beam 71A and the second pulse laser beam 71B are made incident on the wavelength conversion system 15E so that their polarization directions are orthogonal to each other.
- the first pulse laser beam 71A is incident on the first CLBO crystal 18 with the polarization in the direction perpendicular to the paper surface.
- the second pulse laser beam 71B is incident on the second CLBO crystal 19 with a polarization direction parallel to the paper surface.
- the second pulse laser light 71B that has not contributed to wavelength conversion by the second CLBO crystal 19 is converted into parallel light by the collimator lens 520 via the dichroic mirror 322 and the dichroic mirror 323.
- the polarization direction of the second pulse laser beam 71B is rotated by 90 ° by the half-wave plate 610, and becomes a polarization direction perpendicular to the paper surface.
- Both the second pulse laser beam 71B and the first pulse laser beam 71A are incident on the first CLBO crystal 18 with a polarization in a direction perpendicular to the paper surface, and a third frequency parallel to the paper surface by the sum frequency. Converted into a pulse laser beam.
- Both the third pulsed laser beam and the second pulsed laser beam 71B are incident on the second CLBO crystal 19 with polarization parallel to the paper surface, and have a wavelength of about 193 perpendicular to the paper surface due to the sum frequency.
- a 4 nm fourth pulse laser beam 71C is output.
- Embodiment 7 (Configuration Example of Semiconductor Laser and Semiconductor Optical Amplifier) Next, a solid-state laser system according to Embodiment 6 of the present disclosure will be described. In the following description, the same reference numerals are given to the same components as those of the comparative example or the solid-state laser system according to Embodiments 1 to 5, and description thereof will be omitted as appropriate.
- FIG. 15 schematically shows a configuration example of the first semiconductor laser 20 and the first semiconductor optical amplifier 23.
- a configuration example of the first semiconductor laser 20 and the first semiconductor optical amplifier 23 will be described, but the second semiconductor laser 40 and the second semiconductor optical amplifier 41 are also configured in a substantially similar manner. It may be.
- the first semiconductor laser 20 includes a semiconductor laser control unit 130, a semiconductor element 131, a temperature sensor 132, a Peltier element 133, a temperature controller 134, and a current controller 135.
- the semiconductor element 131 includes an active layer 136 and a grating 137.
- the first semiconductor laser 20 may be a CW oscillation and a distributed feedback laser that oscillates in a single longitudinal mode.
- the first semiconductor optical amplifier 23 includes a semiconductor element 141, a current controller 143, and a pulse waveform generator 140.
- the semiconductor element 141 includes an active layer 142.
- the semiconductor laser control unit 130 transmits to the temperature controller 134 a temperature set value such that the semiconductor element 131 has a temperature T ⁇ corresponding to a desired oscillation wavelength, here a wavelength of about 1030 nm.
- the temperature controller 134 controls the current flowing through the Peltier element 133 so that the temperature of the temperature sensor 132 becomes T ⁇ .
- the semiconductor laser control unit 130 transmits a predetermined current set value to the current controller 135.
- the CW laser light is incident on the active layer 142 of the semiconductor element 141 of the first semiconductor optical amplifier 23.
- the pulse waveform generator 140 outputs a current control signal 140i having a pulse waveform corresponding to the amplified pulse waveform to the current controller 143 in synchronization with the first trigger signal Tr11 received by the synchronization circuit unit 13.
- a current corresponding to the pulse waveform of the current control signal 140i flows through the semiconductor element 141.
- the seed light of the first semiconductor laser 20 is pulse-amplified, and the amplified pulse laser light is output from the output side of the semiconductor element 141.
- an optical shutter in which a polarizer and an EO Pockels cell are combined may be used.
- the first semiconductor optical amplifier 23 may be omitted from the configuration, and a pulsed current signal may be transmitted to the current controller 135 of the first semiconductor laser 20 to generate a pulse.
- the first semiconductor laser 20 and the first semiconductor optical amplifier 23 may be synchronized to transmit a pulsed current signal to the semiconductor elements 131 and 141 to generate a pulse.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
本開示による固体レーザシステムは、第1の波長の第1のパルスレーザ光を出力する第1の固体レーザ装置と、第2の波長の第2のパルスレーザ光を出力する第2の固体レーザ装置と、第1のパルスレーザ光と第2のパルスレーザ光とが進む第1の光路上に配置され、第1のパルスレーザ光と第2のパルスレーザ光とを、和周波発生過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶と、第2のパルスレーザ光と第3のパルスレーザ光とが進む第2の光路上に配置され、第2のパルスレーザ光と第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光へと波長変換して出力する第2の非線形結晶とを備え、第2のパルスレーザ光を、第1の非線形結晶に入射させる前の第1のタイミングで第2の非線形結晶に入射させ、第2のパルスレーザ光のうち和周波発生過程で使われずに第2の非線形結晶を通過した残余光を第1のタイミングよりも遅い第2のタイミングで第1の非線形結晶に入射させる。
Description
本開示は、固体レーザシステム、及び波長変換システムに関する。
近年、半導体露光装置(以下、「露光装置」という)においては、半導体集積回路の微細化および高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。一般的に、露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられる。例えば、露光用のガスレーザ装置としては、波長248nmの紫外線のレーザ光を出力するKrFエキシマレーザ装置、ならびに波長193nmの紫外線のレーザ光を出力するArFエキシマレーザ装置が用いられる。
次世代の露光技術としては、露光装置側の露光用レンズとウエハとの間が液体で満たされる液浸露光が実用化されている。この液浸露光では、露光用レンズとウエハとの間の屈折率が変化するため、露光用光源の見かけの波長が短波長化する。ArFエキシマレーザ装置を露光用光源として液侵露光が行われた場合、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光(又はArF液浸リソグラフィー)という。
KrFエキシマレーザ装置およびArFエキシマレーザ装置の自然発振幅は、約350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロン、グレーティング等)を有する狭帯域化モジュール(Line Narrow Module:LNM)が設けられる場合がある。以下では、スペクトル線幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
本開示の固体レーザシステムは、第1の波長の第1のパルスレーザ光を出力する第1の固体レーザ装置と、第2の波長の第2のパルスレーザ光を出力する第2の固体レーザ装置と、第1のパルスレーザ光と第2のパルスレーザ光とが進む第1の光路上に配置され、第1のパルスレーザ光と第2のパルスレーザ光とを、和周波発生過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶と、第2のパルスレーザ光と第3のパルスレーザ光とが進む第2の光路上に配置され、第2のパルスレーザ光と第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光へと波長変換して出力する第2の非線形結晶とを備え、第2のパルスレーザ光を、第1の非線形結晶に入射させる前の第1のタイミングで第2の非線形結晶に入射させ、第2のパルスレーザ光のうち和周波発生過程で使われずに第2の非線形結晶を通過した残余光を第1のタイミングよりも遅い第2のタイミングで第1の非線形結晶に入射させる。
本開示の波長変換システムは、第1の波長の第1のパルスレーザ光と第2の波長の第2のパルスレーザ光とが進む第1の光路上に配置され、第1のパルスレーザ光と第2のパルスレーザ光とを、和周波発生過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶と、第2のパルスレーザ光と第3のパルスレーザ光とが進む第2の光路上に配置され、第2のパルスレーザ光と第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光へと波長変換して出力する第2の非線形結晶とを備え、第2のパルスレーザ光を、第1の非線形結晶に入射させる前の第1のタイミングで第2の非線形結晶に入射させ、第2のパルスレーザ光のうち和周波発生過程で使われずに第2の非線形結晶を通過した残余光を第1のタイミングよりも遅い第2のタイミングで第1の非線形結晶に入射させる。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係る固体レーザシステムを含む露光装置用レーザ装置の一構成例を概略的に示す。
図2は、図1に示した露光装置用レーザ装置における増幅器の一構成例を概略的に示す。
図3は、比較例に係る固体レーザシステムにおける波長変換システムのより詳細な構成例を概略的に示す。
図4は、比較例に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示す。
図5は、比較例に係る固体レーザシステムにおける波長変換システムの一変形例を概略的に示す。
図6は、実施形態1に係る固体レーザシステムの一構成例を概略的に示す。
図7は、実施形態1に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示す。
図8は、実施形態2に係る固体レーザシステムの一構成例を概略的に示す。
図9は、実施形態2に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示す。
図10は、実施形態3に係る固体レーザシステムの一構成例を概略的に示す。
図11は、実施形態4に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示す。
図12は、波長変換システムの波長変換効率の一例を概略的に示す。
図13は、実施形態5に係る固体レーザシステムの一構成例を概略的に示す。
図14は、実施形態6に係る固体レーザシステムの一構成例を概略的に示す。
図15は、第1又は第2の半導体レーザと第1又は第2の半導体光増幅器との一構成例を概略的に示す。
<内容>
<1.比較例>(固体レーザシステムを含む露光装置用レーザ装置)(図1~図5)
1.1 露光装置用レーザ装置
1.1.1 構成
1.1.2 動作
1.2 波長変換システムの詳細
1.2.1 構成
1.2.2 動作
1.2.3 変形例
1.3 課題
1.4 実施形態の概要
<2.実施形態1>(固体レーザシステムの第1の例)(図6~図7)
2.1 構成
2.2 動作
2.3 作用・効果
<3.実施形態2>(固体レーザシステムの第2の例)(図8~図9)
3.1 構成
3.2 動作、作用・効果
<4.実施形態3>(リング状の光路を有する波長変換システム)(図10)
4.1 構成
4.2 動作
4.3 作用・効果
<5.実施形態4>(波長変換効率の最適化手法)(図11~図12)
5.1 構成・動作
5.2 作用・効果
<6.実施形態5>(偏光方向を考慮した固体レーザシステムの第1の例)(図13)
6.1 構成
6.2 動作、作用・効果
<7.実施形態6>(偏光方向を考慮した固体レーザシステムの第2の例)(図14)
7.1 構成
7.2 動作、作用・効果
<8.実施形態7>(半導体レーザと半導体光増幅器との構成例)(図15)
8.1 構成
8.2 動作
<9.その他>
<1.比較例>(固体レーザシステムを含む露光装置用レーザ装置)(図1~図5)
1.1 露光装置用レーザ装置
1.1.1 構成
1.1.2 動作
1.2 波長変換システムの詳細
1.2.1 構成
1.2.2 動作
1.2.3 変形例
1.3 課題
1.4 実施形態の概要
<2.実施形態1>(固体レーザシステムの第1の例)(図6~図7)
2.1 構成
2.2 動作
2.3 作用・効果
<3.実施形態2>(固体レーザシステムの第2の例)(図8~図9)
3.1 構成
3.2 動作、作用・効果
<4.実施形態3>(リング状の光路を有する波長変換システム)(図10)
4.1 構成
4.2 動作
4.3 作用・効果
<5.実施形態4>(波長変換効率の最適化手法)(図11~図12)
5.1 構成・動作
5.2 作用・効果
<6.実施形態5>(偏光方向を考慮した固体レーザシステムの第1の例)(図13)
6.1 構成
6.2 動作、作用・効果
<7.実施形態6>(偏光方向を考慮した固体レーザシステムの第2の例)(図14)
7.1 構成
7.2 動作、作用・効果
<8.実施形態7>(半導体レーザと半導体光増幅器との構成例)(図15)
8.1 構成
8.2 動作
<9.その他>
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。
なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。
なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
<1.比較例>(固体レーザシステムを含む露光装置用レーザ装置)
[1.1 露光装置用レーザ装置]
まず、本開示の実施形態に対する比較例の固体レーザシステムを含む露光装置用レーザ装置について説明する。
[1.1 露光装置用レーザ装置]
まず、本開示の実施形態に対する比較例の固体レーザシステムを含む露光装置用レーザ装置について説明する。
露光装置用レーザ装置として、MO(マスタオシレータ)とPO(パワーオシレータ)とを含む構成がある。そのような露光装置用レーザ装置では、MOとPOとに、エキシマレーザガスをレーザ媒質とするレーザが使用され得る。しかしながら、省エネルギの観点から、MOを非線形結晶と固体レーザとを組み合わせた紫外光のパルスレーザ光を出力する固体レーザシステムとする露光装置用レーザ装置の開発が進みつつある。以下では、そのような固体レーザシステムを含む露光装置用レーザ装置の構成例を説明する。
[1.1.1 構成]
図1は、比較例に係る固体レーザシステム1を含む露光装置用レーザ装置の一構成例を概略的に示している。図2は、図1に示した露光装置用レーザ装置における増幅器2の一構成例を概略的に示している。
図1は、比較例に係る固体レーザシステム1を含む露光装置用レーザ装置の一構成例を概略的に示している。図2は、図1に示した露光装置用レーザ装置における増幅器2の一構成例を概略的に示している。
露光装置用レーザ装置は、露光装置制御部5を含む露光装置4に対してパルスレーザ光を出力するレーザ装置である。露光装置用レーザ装置は、固体レーザシステム1と、ArFレーザ増幅器等の増幅器2と、レーザ制御部3と、同期制御部7と、高反射ミラー91,92とを含む。
固体レーザシステム1は、第1の固体レーザ装置11と、第2の固体レーザ装置12と、同期回路部13と、固体レーザ制御部14と、波長変換システム15と、高反射ミラー16と、ダイクロイックミラー17とを含む。高反射ミラー16とダイクロイックミラー17は、波長変換システム15内に設けられていてもよい。
第1の固体レーザ装置11は、第1の波長の第1のパルスレーザ光71Aを出力するように構成されている。第1の波長は波長約257.5nmであってもよい。第1の固体レーザ装置11は、第1の半導体レーザ20と、第1の半導体光増幅器(SOA:Semiconductor Optical Amplifier)23と、Ybファイバ増幅器システム24と、Yb:YAG結晶増幅器25と、LBO結晶(LiB3O5)21と、CLBO結晶(CsLiB6O10)22とを含む。
第1の半導体レーザ20は、波長約1030nmでCW(Continuous Wave)発振もしくはパルス発振するレーザであってもよい。第1の半導体レーザ20は、例えば、分布帰還型(DFB:Distributed Feedback)の半導体レーザである。
第1の半導体光増幅器23は、半導体に図示しない電流制御器によってパルス電流を流すことによって、CWもしくはパルスのシード光を所定のパルス幅のパルスレーザ光に変換する半導体素子である。ここで、例えば、所定のパルス幅は約5ns以上20ns以下であってもよい。
Ybファイバ増幅器システム24は、Ybがドープされた多段の光ファイバ増幅器と、CW発振により励起光を出射し、その励起光を各光ファイバ増幅器に供給する図示しないCW励起半導体レーザとを含む。
第2の固体レーザ装置12は、第2の波長の第2のパルスレーザ光71Bを出力するように構成されている。第2の波長は波長約1554nmであってもよい。第2の固体レーザ装置12は、第2の半導体レーザ40と、第2の半導体光増幅器(SOA)41と、Erファイバ増幅器システム42とを含む。
第2の半導体レーザ40は、シングル縦モードであって、波長約1554nmでCW発振もしくはパルス発振するレーザであってもよい。第2の半導体レーザ40は、例えば、分布帰還型(DFB)の半導体レーザである。
第2の半導体光増幅器41は、半導体に図示しない電流制御器によってパルス電流を流すことによって、CWもしくはパルスのシード光を所定のパルス幅のパルスレーザ光に変換する半導体素子である。ここで、例えば、所定のパルス幅は約5ns以上20ns以下であってもよい。
Erファイバ増幅器システム42は、Er及びYbが共にドープされた多段の光ファイバ増幅器と、CW発振により励起光を出射し、その励起光を各光ファイバ増幅器に供給する図示しないCW励起半導体レーザとを含む。
波長変換システム15は、第1のCLBO結晶18と、第2のCLBO結晶19と、ダイクロイックミラー81と、ダイクロイックミラー82と、高反射ミラー83とを含む。
高反射ミラー16は、第2の固体レーザ装置12から出力された第2のパルスレーザ光71Bを高反射し、ダイクロイックミラー17に入射させるように配置されている。
第1のCLBO結晶18と、ダイクロイックミラー81と、第2のCLBO結晶19と、ダイクロイックミラー82は、この順序で第2のパルスレーザ光71Bの光路上に配置されている。
ダイクロイックミラー17には、波長約257.5nmの第1のパルスレーザ光71Aを高透過し、波長約1554nmの第2のパルスレーザ光71Bを高反射する膜がコートされている。ダイクロイックミラー17は、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを、互いの光路軸を略一致させた状態で波長変換システム15に入射させるように配置されている。
第1のCLBO結晶18は、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとが進む第1の光路上に配置されている。第1のCLBO結晶18は、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを、和周波発生(SFG:Sum Freaquency Generation)過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶である。第3の波長は、波長約220.9nmであってもよい。
第2のCLBO結晶19は、波長約1554nmの第2のパルスレーザ光71Bと波長約220.9nmの第3のパルスレーザ光とが進む第2の光路上に配置されている。第2のCLBO結晶19は、第2のパルスレーザ光71Bと第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光71Cへと波長変換して出力する第2の非線形結晶である。第4の波長は、波長約193.4nmであってもよい。
ダイクロイックミラー81には、波長約257.5nmの第1のパルスレーザ光71Aを高反射し、波長約1554nmの第2のパルスレーザ光71Bと波長約220.9nmの第3のパルスレーザ光とを高透過する膜がコートされている。ダイクロイックミラー81に入射する波長約220.9nmのパルスレーザ光は、第1のCLBO結晶18から出力された第3のパルスレーザ光であり、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとの和周波となるパルスレーザ光である。
ダイクロイックミラー82は、第2のCLBO結晶19を透過した波長約1554nmと波長約220.9nmとの2つのパルスレーザ光を高透過し、第2のCLBO結晶19で波長変換された波長約193.4nmの第4のパルスレーザ光71Cが高反射されるように配置されている。
高反射ミラー83は、波長約193.4nmの第4のパルスレーザ光71Cが波長変換システム15から出力されるように配置されている。
高反射ミラー91と高反射ミラー92は、波長約193.4nmの第4のパルスレーザ光71Cが、増幅器2に入射するように配置されている。
増幅器2は、図2に示したように、増幅器制御部30と、充電器31と、トリガ補正器32と、スイッチ33を含むパルスパワーモジュール(PPM)34と、チャンバ35と、部分反射ミラー36と、出力結合ミラー37とを含む。
チャンバ35にはウインドウ39a,39bが設けられている。チャンバ35の中には例えばArガスとF2ガスとNeガスとを含むレーザガスが入っている。チャンバ35の中には1対の放電電極38が配置されている。1対の放電電極38は、PPM34の出力端子に接続されている。
増幅器2において、部分反射ミラー36と出力結合ミラー37とで光共振器が構成されている。部分反射ミラー36は例えば、波長約193.4nmの光を透過するCaF2結晶からなる基板に、反射率が70%以上90%以下の部分反射膜がコートされた構成となっている。出力結合ミラー37は例えば、波長約193.4nmの光を透過するCaF2結晶からなる基板に反射率が10%以上20%以下の部分反射膜がコートされた構成となっている。
なお、図2では、増幅器2の光共振器がファブリペロー共振器である構成例を示したが、この例に限定されることなく、増幅器2がリング共振器であってもよい。
固体レーザ制御部14は、第1の半導体レーザ20と、第2の半導体レーザ40と、図示しないCW励起半導体レーザとに、図示しない信号ラインで接続されている。
同期制御部7には、レーザ制御部3を介して、固体レーザシステム1におけるパルスレーザ光の生成タイミングを指示する発振トリガ信号Tr0が露光装置4の露光装置制御部5から供給される。
同期制御部7は、発振トリガ信号Tr0に基づいてトリガ信号Tr1を生成し、トリガ信号Tr1を同期回路部13に出力するように構成されている。また、同期制御部7は、発振トリガ信号Tr0に基づいてトリガ信号Tr2を生成し、トリガ信号Tr2を増幅器制御部30を介してトリガ補正器32に出力するように構成されている。
固体レーザ制御部14は、後述する第1及び第2の遅延時間Td1,Td2を示す遅延データTr10を同期回路部13に出力するように構成されている。
同期回路部13は、固体レーザ制御部14からの遅延データTr10と同期制御部7からのトリガ信号Tr1とに基づいて、第1の半導体光増幅器23に対する第1のトリガ信号Tr11と、第2の半導体光増幅器41に対する第2のトリガ信号Tr12とを生成して出力するように構成されている。
[1.1.2 動作]
レーザ制御部3は、固体レーザ制御部14を介して、第1の半導体レーザ20と、第2の半導体レーザ40と、図示しない励起用半導体レーザとをCW発振させる。
レーザ制御部3は、固体レーザ制御部14を介して、第1の半導体レーザ20と、第2の半導体レーザ40と、図示しない励起用半導体レーザとをCW発振させる。
同期制御部7は、レーザ制御部3を介して、露光装置4の露光装置制御部5から発振トリガ信号Tr0を受信すると、固体レーザシステム1から出力された波長約193.4nmの第4のパルスレーザ光71Cが増幅器2の光共振器内に注入されるのに同期して1対の放電電極38が放電するように、トリガ信号Tr1とトリガ信号Tr2との遅延時間を制御する。
第1の固体レーザ装置11では、第1の半導体レーザ20から波長約1030nmのCW発振光もしくはパルス発振光が出力される。このCW発振光もしくはパルス発振光は、第1の半導体光増幅器23によって所定のパルス幅に変換及び増幅されて、パルス状のシード光として、Ybファイバ増幅器システム24に入射する。このパルス状のシード光は、Ybファイバ増幅器システム24とYb:YAG結晶増幅器25とによって増幅される。この増幅されたパルスレーザ光は、LBO結晶21とCLBO結晶22とによって、波長約257.5nmの第4高調波光が生成される。これにより、第1の固体レーザ装置11から波長約257.5nmの第1のパルスレーザ光71Aが出力される。
一方、第2の固体レーザ装置12では、第2の半導体レーザ40から波長約1554nmのCW発振光もしくはパルス発振光が出力される。このCW発振光もしくはパルス発振光は、第2の半導体光増幅器41によって所定のパルス幅に変換及び増幅されて、Erファイバ増幅器システム42に入射する。この増幅されたパルスレーザ光は、Erファイバ増幅器システム42によってさらに増幅され、第2の固体レーザ装置12から波長約1554nmの第2のパルスレーザ光71Bとして出力される。
第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aと第2の固体レーザ装置12から出力された波長約1554nmの第2のパルスレーザ光71Bは、高反射ミラー16及びダイクロイックミラー17を介して、波長変換システム15に入射する。
ここで、固体レーザ制御部14から同期回路部13に、遅延データTr10が送信される。遅延データTr10は、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとが第1のCLBO結晶18に略同じタイミングで入射するように設定された第1及び第2の遅延時間Td1,Td2を示す遅延データを含む。
同期回路部13は、トリガ信号Tr1に基づいて、第1のトリガ信号Tr11を所定のタイミングで第1の半導体光増幅器23に送信する。また、同期回路部13は、トリガ信号Tr1に基づいて、第2のトリガ信号Tr12を所定のタイミングで第2の半導体光増幅器41に送信する。その結果、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとが第1のCLBO結晶18に略同じタイミングで入射し、第1のCLBO結晶18上で第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとのビームが重なる。その結果、第1のCLBO結晶18では波長約257.5nmと波長約1554nmとの和周波である波長約220.9nmの第3のパルスレーザ光が生成される。
ダイクロイックミラー81では、波長約257.5nmの第1のパルスレーザ光71Aが高反射され、波長約1554nmと波長約220.9nmとの両パルスレーザ光が高透過する。これにより、波長約1554nmと波長約220.9nmとの両パルスレーザ光が第2のCLBO結晶19に入射する。
第2のCLBO結晶19では、波長約220.9nmと波長約1554nmとの和周波である波長約193.4nmの第4のパルスレーザ光71Cを生成する。
ダイクロイックミラー82によって、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが高透過され、波長約193.4nmの第4のパルスレーザ光71Cは高反射される。
高反射ミラー83を介して、波長約193.4nmの第4のパルスレーザ光71Cが波長変換システム15から出力される。
第4のパルスレーザ光71Cは、高反射ミラー91を高反射し、高反射ミラー92を介して、シード光として出力結合ミラー37と部分反射ミラー36を含む増幅器2の光共振器中に注入される。この注入に同期して、増幅器2のチャンバ35内では1対の放電電極38による放電で反転分布を生成する。ここで、トリガ補正器32は、波長約193.4nmの固体レーザシステム1からの第4のパルスレーザ光71Cが増幅器2で効率よく増幅されるようにPPM34のスイッチ33のタイミングを調整する。その結果、増幅器2の光共振器によって増幅発振して、出力結合ミラー37から増幅されたパルスレーザ光が出力される。増幅されたパルスレーザ光は、露光装置4に入射する。
[1.2 波長変換システムの詳細]
[1.2.1 構成]
図3は、比較例に係る固体レーザシステム1における波長変換システム15のより詳細な構成例を概略的に示している。
[1.2.1 構成]
図3は、比較例に係る固体レーザシステム1における波長変換システム15のより詳細な構成例を概略的に示している。
波長変換システム15は、集光レンズ61,62,63と、高反射ミラー16,83,86,87と、ダイクロイックミラー17,81,82,84,85と、第1のCLBO結晶18と、第2のCLBO結晶19とを含む構成であってもよい。
集光レンズ61は、第2の固体レーザ装置12とダイクロイックミラー17との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。集光レンズ61は、ダイクロイックミラー17を介して、第2のパルスレーザ光71Bが第1のCLBO結晶18に対して、第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aのビームと重なり合って集光するように配置されている。
集光レンズ62は、ダイクロイックミラー84とダイクロイックミラー85との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。集光レンズ62は、ダイクロイックミラー85を介して、第2のパルスレーザ光71Bが波長約220.9nmの第3のパルスレーザ光のビームと重なり合って集光するように配置されている。
集光レンズ63は、第1の固体レーザ装置11とダイクロイックミラー17との間の波長約257.5nmの第1のパルスレーザ光71Aの光路上に配置されている。集光レンズ63は、ダイクロイックミラー17を介して、第1のパルスレーザ光71Aが第1のCLBO結晶18に対して、第2の固体レーザ装置12から出力された波長約1554nmの第2のパルスレーザ光71Bのビームと重なり合って集光するように配置されている。集光レンズ63は、波長約257.5nmの第1のパルスレーザ光71Aのビームの広がりが小さい場合には、構成から省略してもよい。
高反射ミラー86は、ダイクロイックミラー84から反射された波長約220.9nmの第3のパルスレーザ光の光路上に配置されている。高反射ミラー86は、ダイクロイックミラー85を介して、波長約220.9nmの第3のパルスレーザ光が第2のCLBO結晶19に入射するように配置されている。高反射ミラー86には、波長約220.9nmの光を高反射する膜がコートされている。
高反射ミラー87は、ダイクロイックミラー84を透過した波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。高反射ミラー87は、ダイクロイックミラー85を介して、第2のパルスレーザ光71Bが第2のCLBO結晶19に入射するように配置されている。高反射ミラー87には、波長約1554nmの光を高反射する膜がコートされている。
ダイクロイックミラー84は、ダイクロイックミラー81を透過した波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとの光路上に配置されている。ダイクロイックミラー84には、波長約220.9nmの光を高反射し、波長約1554nmの光を高透過する膜がコートされている。
ダイクロイックミラー85は、集光レンズ62を透過した波長約1554nmの第2のパルスレーザ光71Bとの光路上に配置されている。ダイクロイックミラー85には、波長約220.9nmの光を高透過し、波長約1554nmの光を高反射する膜がコートされている。
[1.2.2 動作]
図4は、比較例に係る固体レーザシステム1における各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図4において、(A)は同期回路部13に対するトリガ信号Tr1のタイミングを示す。(B)は第1の半導体光増幅器23に対する第1のトリガ信号Tr11のタイミングを示す。(C)は第2の半導体光増幅器41に対する第2のトリガ信号Tr12のタイミングを示す。(D),(E)は第1のCLBO結晶18への入射光の入射タイミングを示す。特に(D)は波長約257.5nmの第1のパルスレーザ光71Aの第1のCLBO結晶18への入射タイミングを示す。(E)は波長約1554nmの第2のパルスレーザ光71Bの第1のCLBO結晶18への入射タイミングを示す。(F),(G)は第2のCLBO結晶19への入射光の入射タイミングを示す。特に(F)は波長約220.9nmの第3のパルスレーザ光の第2のCLBO結晶19への入射タイミングを示す。(G)は波長約1554nmの第2のパルスレーザ光71Bの第2のCLBO結晶19への入射タイミングを示す。(H)は第2のCLBO結晶19からの出射光の1つである波長約193.4nmの第4のパルスレーザ光71Cの第2のCLBO結晶19からの出射タイミングを示す。図4において、(A)~(H)の横軸は時間を示す。(A)~(C)の縦軸はトリガ信号のオン/オフ状態を示す。(D)~(H)の縦軸は光強度を示す。(D)~(H)における各パルスレーザ光のタイミングは、各パルスレーザ光の光強度がピークとなるタイミングを基準にして示している。
図4は、比較例に係る固体レーザシステム1における各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図4において、(A)は同期回路部13に対するトリガ信号Tr1のタイミングを示す。(B)は第1の半導体光増幅器23に対する第1のトリガ信号Tr11のタイミングを示す。(C)は第2の半導体光増幅器41に対する第2のトリガ信号Tr12のタイミングを示す。(D),(E)は第1のCLBO結晶18への入射光の入射タイミングを示す。特に(D)は波長約257.5nmの第1のパルスレーザ光71Aの第1のCLBO結晶18への入射タイミングを示す。(E)は波長約1554nmの第2のパルスレーザ光71Bの第1のCLBO結晶18への入射タイミングを示す。(F),(G)は第2のCLBO結晶19への入射光の入射タイミングを示す。特に(F)は波長約220.9nmの第3のパルスレーザ光の第2のCLBO結晶19への入射タイミングを示す。(G)は波長約1554nmの第2のパルスレーザ光71Bの第2のCLBO結晶19への入射タイミングを示す。(H)は第2のCLBO結晶19からの出射光の1つである波長約193.4nmの第4のパルスレーザ光71Cの第2のCLBO結晶19からの出射タイミングを示す。図4において、(A)~(H)の横軸は時間を示す。(A)~(C)の縦軸はトリガ信号のオン/オフ状態を示す。(D)~(H)の縦軸は光強度を示す。(D)~(H)における各パルスレーザ光のタイミングは、各パルスレーザ光の光強度がピークとなるタイミングを基準にして示している。
トリガ信号Tr1が同期回路部13に入射すると、図4の(A),(B)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第1の遅延時間Td1で第1のトリガ信号Tr11が出力される。また、図4の(A),(C)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第2の遅延時間Td2で第2のトリガ信号Tr12が出力される。
図4の(D),(E)に示したように、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとが同じタイミングで第1のCLBO結晶18に入射し、両パルスレーザ光のビームは第1のCLBO結晶18上で重なり合う。
第1のCLBO結晶18において、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとが和周波発生過程によって波長約220.9nmの第3のパルスレーザ光に波長変換される。
ダイクロイックミラー82によって、波長約257.5nmの第1のパルスレーザ光71Aは高反射され、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが高透過する。
次に、ダイクロイックミラー84によって、波長約220.9nmの第3のパルスレーザ光は高反射され、波長約1554nmの第2のパルスレーザ光71Bは高透過する。
波長約220.9nmの第3のパルスレーザ光は、高反射ミラー86とダイクロイックミラー85とを介して、第2のCLBO結晶19へ入射する。
一方、波長約1554nmの第2のパルスレーザ光71Bは、高反射ミラー87と、集光レンズ62と、ダイクロイックミラー85とを介して、第2のCLBO結晶19へ入射する。
図4の(F),(G)に示したように、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが同じタイミングで第2のCLBO結晶19に入射し、両パルスレーザ光のビームは第2のCLBO結晶19上で重なり合う。
図4の(H)に示したように、第2のCLBO結晶19において、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが、和周波発生過程によって波長約193.4nmの第4のパルスレーザ光71Cに波長変換される。
[1.2.3 変形例]
図5は、比較例に係る固体レーザシステム1における波長変換システム15の一変形例を概略的に示している。
図5は、比較例に係る固体レーザシステム1における波長変換システム15の一変形例を概略的に示している。
波長変換システム15は、各パルスレーザ光の偏光方向を考慮して図5に示した波長変換システム150のように構成されてもよい。
波長変換システム150は、図3の波長変換システム15に対して、1/2波長板88をさらに含んでいる。1/2波長板88は、例えばダイクロイックミラー84とダイクロイックミラー87との間における波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。
波長変換システム150では、第1の固体レーザ装置11と第2の固体レーザ装置12は、同一の偏光方向のパルスレーザ光を出射する。
波長変換システム150では、第1のCLBO結晶18と第2のCLBO結晶19とを、互いの光学軸が直交するように配置する。
例えば、第1のパルスレーザ光71Aの偏光方向と第2のパルスレーザ光71Bの偏光方向とを紙面に対して垂直な方向として、第1のCLBO結晶18に入射させる。
第1のCLBO結晶18からは、波長約220.9nmの第3のパルスレーザ光が紙面と平行な偏光で出力される。
第1のCLBO結晶18で波長変換に寄与しなかった第2のパルスレーザ光71Bは、ダイクロイックミラー81及びダイクロイックミラー84を透過し、1/2波長板88によって、偏光方向が90°回転して、紙面に対して平行な偏光方向となる。
第2のCLBO結晶19には、紙面に対して平行な偏光方向の第2のパルスレーザ光71Bと紙面に対して平行な偏光方向の第3のパルスレーザ光とが入射する。第2のCLBO結晶19からは、和周波発生過程により紙面に対して垂直な波長約193.4nmの第4のパルスレーザ光71Cが出力される。
[1.3 課題]
波長約257.5nmの第1のパルスレーザ光71Aを出力する第1の固体レーザ装置11は、Ybファイバ増幅器システム24と、固体増幅器であるYb:YAG結晶増幅器25と、波長約1030nmのパルスレーザ光を第4高調波光に変換するLBO結晶21とCLBO結晶22とを含んでいる。
波長約257.5nmの第1のパルスレーザ光71Aを出力する第1の固体レーザ装置11は、Ybファイバ増幅器システム24と、固体増幅器であるYb:YAG結晶増幅器25と、波長約1030nmのパルスレーザ光を第4高調波光に変換するLBO結晶21とCLBO結晶22とを含んでいる。
ところで、露光装置用レーザ装置では、レーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。このような狭帯域化されたスペクトル線幅を実現するためには、固体レーザシステム1の第1の固体レーザ装置11と第2の固体レーザ装置12とから出力されるそれぞれのパルスレーザ光のスペクトル線幅を狭くする必要がある。しかし、スペクトル線幅の狭いパルスレーザ光は、光ファイバ増幅器で増幅すると、誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)が発生して、増幅が抑制されることがある。Ybファイバ増幅器システム24では、誘導ブリルアン散乱を抑制するため、パルスエネルギを高くすることが難しい。しかし、第1の固体レーザ装置11では、誘導ブリルアン散乱が発生しない固体増幅器によって、さらに、基本波である波長約1030nmの波長のパルスレーザ光のパルスエネルギを高くすることができる。その結果、第4高調波光に変換された波長約257.5nmの第1のパルスレーザ光71Aの出力も高くすることができる。
しかし、波長約1554nmの波長域では、適当な固体増幅器が存在しないので、第2の固体レーザ装置12では、Erファイバ増幅器システム42で誘導ブリルアン散乱を抑制しつつ、波長約1554nmの第2のパルスレーザ光71Bを増幅する必要がある。このため、第2の固体レーザ装置12では、波長約1554nmの第2のパルスレーザ光71Bのパルスエネルギを高くすることが困難である。
そのため、波長約193.4nmの第4のパルスレーザ光71Cのパルスエネルギを高くしようとすると、波長約1030nmの第4高調波である波長約257.5nmの第1のパルスレーザ光71Aのパルスエネルギを増やすことになる。
しかし、波長約257.5nmの第1のパルスレーザ光71Aのパルスエネルギを増加させると、波長変換システム15の第1のCLBO結晶18での和周波発生過程において波長約1554nmの第2のパルスレーザ光71Bのパルスエネルギの消費量が増加する。その結果、第1のCLBO結晶18で消費されなかった波長約1554nmの第2のパルスレーザ光71Bのパルスエネルギが減少する。そのため、第2のCLBO結晶19に入射する第2のパルスレーザ光71Bの光強度が減少する。第2のCLBO結晶19では、その減少した波長約1554nmの第2のパルスレーザ光71Bを用いて波長約193.4nmの第4のパルスレーザ光71Cを生成することになる。
このため、第1の固体レーザ装置11から出力される波長約257.5nmの第1のパルスレーザ光71Aのパルスエネルギを増加させたとしても、波長変換システム15における波長変換効率を十分に改善することが困難であった。
[1.4 実施形態の概要]
上記の事情に鑑み、以下の各実施形態では、第2のパルスレーザ光71Bを、第1のCLBO結晶18に入射させる前の第1のタイミングで第2のCLBO結晶19に入射させる。そして、第2のパルスレーザ光71Bのうち和周波発生過程で使われずに、すなわち波長変換で消費されずに第2のCLBO結晶19を通過した残余光を、第1のタイミングよりも遅い第2のタイミングで第1のCLBO結晶18に入射させる。このように、第2のパルスレーザ光71Bを最初に第2のCLBO結晶19に入射させた後、次に、波長変換で消費されずに第2のCLBO結晶19を通過した第2のパルスレーザ光71Bの残余光を第1のCLBO結晶18に入射させる。これにより、第2のCLBO結晶19に入射する第2のパルスレーザ光71Bの光強度の減少を抑制した状態で第4のパルスレーザ光71Cを生成する。
上記の事情に鑑み、以下の各実施形態では、第2のパルスレーザ光71Bを、第1のCLBO結晶18に入射させる前の第1のタイミングで第2のCLBO結晶19に入射させる。そして、第2のパルスレーザ光71Bのうち和周波発生過程で使われずに、すなわち波長変換で消費されずに第2のCLBO結晶19を通過した残余光を、第1のタイミングよりも遅い第2のタイミングで第1のCLBO結晶18に入射させる。このように、第2のパルスレーザ光71Bを最初に第2のCLBO結晶19に入射させた後、次に、波長変換で消費されずに第2のCLBO結晶19を通過した第2のパルスレーザ光71Bの残余光を第1のCLBO結晶18に入射させる。これにより、第2のCLBO結晶19に入射する第2のパルスレーザ光71Bの光強度の減少を抑制した状態で第4のパルスレーザ光71Cを生成する。
なお、以下の各実施形態では、上記比較例と同様に、第1の波長の第1のパルスレーザ光71Aが波長約257.5nmである場合を例に説明するが、これに限らず、第1の波長を、220nm以上400nm以下の範囲内の他の値としてもよい。また、第2の波長の第2のパルスレーザ光71Bが波長約1554nmである場合を例に説明するが、これに限らず、第2の波長は、1100nm以上2000nm以下の範囲内の他の値としてもよい。また、第4の波長の第4のパルスレーザ光71Cが波長約193.4nmである場合を例に説明するが、これに限らず、第4の波長は、150nm以上300nm以下の範囲内の他の値としてもよい。
<2.実施形態1>(固体レーザシステムの第1の例)
次に、本開示の実施形態1に係る固体レーザシステムについて説明する。なお、以下では上記比較例に係る固体レーザシステム1の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態1に係る固体レーザシステムについて説明する。なお、以下では上記比較例に係る固体レーザシステム1の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[2.1 構成]
図6は、実施形態1に係る固体レーザシステム1Aの一構成例を概略的に示している。
図6は、実施形態1に係る固体レーザシステム1Aの一構成例を概略的に示している。
固体レーザシステム1Aは、上記比較例に係る固体レーザシステム1における波長変換システム15に代えて波長変換システム15Aを備えている。
固体レーザシステム1Aは、第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングと、第2のパルスレーザ光71Bが第2のCLBO結晶19に入射する第1のタイミングとが略同じとなるように構成されている。
波長変換システム15Aは、第1のCLBO結晶18及び第2のCLBO結晶19と、集光レンズ210,211,212と、高反射ミラー410,411,412,413,414と、ダイクロイックミラー310,311,312,313,314と、コリメータレンズ510とを含む。
集光レンズ210は、コリメータレンズ510とダイクロイックミラー313との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。図6の例では、集光レンズ210は、コリメータレンズ510と高反射ミラー412との間の光路上に配置されている。
集光レンズ211は、第2の固体レーザ装置12とダイクロイックミラー310との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。
集光レンズ212は、第1の固体レーザ装置11とダイクロイックミラー313との間の波長約257.5nmの第1のパルスレーザ光71Aの光路上に配置されている。図6の例では、集光レンズ212は、高反射ミラー410とダイクロイックミラー313との間の光路上に配置されている。なお、波長約257.5nmの第1のパルスレーザ光71Aのビームの広がりが小さい場合には、集光レンズ212を構成から省略してもよい。
コリメータレンズ510は、ダイクロイックミラー312と集光レンズ210との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。コリメータレンズ510は、第2のCLBO結晶19から出力された波長約1554nmの第2のパルスレーザ光71Bがコリメートされるように配置されている。
ダイクロイックミラー310は、集光レンズ211と第2のCLBO結晶19との間の波長約1554nmの第2のパルスレーザ光71Bの光路上であって、かつ、ダイクロイックミラー313を高反射した波長約220.9nmの第3のパルスレーザ光の光路上に配置されている。ダイクロイックミラー310には、波長約220.9nmの光を高反射し、波長約1554nmの光を高透過する膜がコートされている。ダイクロイックミラー310は、第2のCLBO結晶19における波長約1554nmの第2のパルスレーザ光71Bの集光ビームと波長約220.7nmのパルスレーザ光のビームとが重なり合うように配置されている。
ダイクロイックミラー311は、第2のCLBO結晶19から出力された波長約193.4nm、波長約220.9nm及び波長約1554nmの各パルスレーザ光の光路上であって、反射光が高反射ミラー414に入射するように配置されている。ダイクロイックミラー311には、波長約193.4nmの光を高反射し、波長約220.9nm及び波長約1554nmの光を高透過する膜がコートされている。
ダイクロイックミラー312は、ダイクロイックミラー311を透過した波長約220.9nm及び波長約1554nmの各パルスレーザ光の光路上であって、反射光が高反射ミラー411に入射するように配置されている。ダイクロイックミラー312には、波長約220.9nmの光を高透過し、波長約1554nmの光を高反射する膜がコートされている。
ダイクロイックミラー313は、高反射ミラー411と第1のCLBO結晶18との間の波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。ダイクロイックミラー313は、高反射ミラー412及び高反射ミラー413で反射された波長約1554nmの第2のパルスレーザ光71Bが入射するように配置されている。ダイクロイックミラー313には、波長約220.9nmの光を高透過し、波長約1554nmの光を高反射する膜がコートされている。ダイクロイックミラー313は、第1のCLBO結晶18における波長約1554nmの第2のパルスレーザ光71Bの集光ビームと波長約257.5nmの第1のパルスレーザ光71Aの集光ビームとが重なり合うように配置されている。
ダイクロイックミラー314は、第1のCLBO結晶18から出力された波長約257.5nmの第1のパルスレーザ光71Aと波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとの光路上であって、反射光がダイクロイックミラー310に入射するように配置されている。ダイクロイックミラー314には、波長約220.7nmの光を高反射し、波長約257.5nm及び波長約1554nmの光を高透過する膜がコートされている。
高反射ミラー411,412,413は、ダイクロイックミラー312によって反射された波長約1554nmの第2のパルスレーザ光71Bの光路上に配置されている。高反射ミラー411,412,413は、波長約1554nmの第2のパルスレーザ光71Bがダイクロイックミラー313を介して第1のCLBO結晶18に入射するように配置されている。高反射ミラー411,412,143には、波長約1554nmの光を高反射する膜がコートされている。
その他の構成は、上記比較例に係る固体レーザシステム1と略同様であってもよい。
[2.2 動作]
固体レーザシステム1Aでは、まず、第2のCLBO結晶19に先に波長約1554nmの第2のパルスレーザ光71Bを入射させる。次に、第2のCLBO結晶19において波長変換で消費されなかった波長約1554nmの第2のパルスレーザ光71Bを、第1のCLBO結晶18に入射させる。次に、第1のCLBO結晶18において波長変換された波長約220.9nmの第3のパルスレーザ光を第2のCLBO結晶19に入射させ、先に入射された波長約1554nmの第2のパルスレーザ光71Bとの和周波により波長約193.4nmの第4のパルスレーザ光71Cを出力する。
固体レーザシステム1Aでは、まず、第2のCLBO結晶19に先に波長約1554nmの第2のパルスレーザ光71Bを入射させる。次に、第2のCLBO結晶19において波長変換で消費されなかった波長約1554nmの第2のパルスレーザ光71Bを、第1のCLBO結晶18に入射させる。次に、第1のCLBO結晶18において波長変換された波長約220.9nmの第3のパルスレーザ光を第2のCLBO結晶19に入射させ、先に入射された波長約1554nmの第2のパルスレーザ光71Bとの和周波により波長約193.4nmの第4のパルスレーザ光71Cを出力する。
波長約257.5nmの第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングと波長約1554nmの第2のパルスレーザ光71Bが第2のCLBO結晶19に入射するタイミングとが一致するように同期回路部13に、第1及び第2の遅延時間Td1,Td2を示す遅延データTr10が設定される。
ここで、第2のCLBO結晶19から第1のCLBO結晶18に至るまでの、波長約1554nmの第2のパルスレーザ光71Bの光路長をL1とする。また、第1のCLBO結晶18から第2のCLBO結晶19に至るまでの波長約220.9nmの第3のパルスレーザ光の光路長をL2とする。
第2のCLBO結晶19から第1のCLBO結晶18を経由して第2のCLBO結晶19に至るまでの光路長Lは、以下の式で表される。
L=L1+L2
L=L1+L2
光路長Lを進む光の時間Topは、以下の式で表される。
Top=L/c=T1+T2=L1/c+L2/c
Top=L/c=T1+T2=L1/c+L2/c
ここで、cは光速 T1及びT2はそれぞれ光路L1及び光路L2を光が進む時間である。例えば、光路長Lは0.9m以下が好ましい。光路長Lが0.9mの場合は、Top=3nsとなる。Tdは、第2のCLBO結晶19に入射する波長約1554nmの第2のパルスレーザ光71Bの入射タイミングと第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングとのタイミング差とする。
第1の遅延時間Td1及び第2の遅延時間Td2は、第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングと第2のCLBO結晶19に入射する波長約1554nmの第2のパルスレーザ光71Bの入射タイミングとが略一致するように設定される。この場合はTd=0秒となる。
図7は、実施形態1に係る固体レーザシステム1Aにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図7の(A)~(H)のタイミングが示す意味は、図4の(A)~(H)と同様である。
図7は、波長約257.5nmの第1のパルスレーザ光71Aが第1のCLBO結晶18に入射する入射タイミングと波長約1554nmの第2のパルスレーザ光71Bが第2のCLBO結晶19に入射する入射タイミングとを略一致させた場合、すなわちTd=0の場合のタイミングチャートである。
トリガ信号Tr1が同期回路部13に入射すると、図7の(A),(B)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第1の遅延時間Td1で第1のトリガ信号Tr11が出力される。また、図7の(A),(C)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第2の遅延時間Td2で第2のトリガ信号Tr12が出力される。
図7の(D),(G)に示したように、第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングと第2のCLBO結晶19に入射する波長約1554nmの第2のパルスレーザ光71Bの入射タイミングとが略一致する。
図7の(D),(E)に示したように、第1のCLBO結晶18において、波長約1554nmの第2のパルスレーザ光71Bは波長約257.5nmの第1のパルスレーザ光71Aに比べてT1=L1/cだけ遅れて入射する。第1のCLBO結晶18では、第1のCLBO結晶18において、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとが和周波発生過程によって波長約220.9nmの第3のパルスレーザ光に波長変換される。
図7の(F),(G)に示したように、第2のCLBO結晶19において、波長約220.9nmの第3のパルスレーザ光は波長約1554nmの第2のパルスレーザ光71Bに比べてTop=L/cだけ遅れて入射する。
図7の(H)に示したように、第2のCLBO結晶19において、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが、和周波発生過程によって波長約193.4nmの第4のパルスレーザ光71Cに波長変換される。
例えば、第1の固体レーザ装置11から出力されるパルスレーザ光と第2の固体レーザ装置12から出力されるパルスレーザ光とのそれぞれのパルス幅をDとする。固体レーザシステム1Aでは、パルス幅Dに対して、第2のCLBO結晶19における第3のパルスレーザ光の第2のパルスレーザ光71Bに対する遅れTopの割合Er=Top/D分だけ、波長変換効率が低下し得る。
ここで、第1の固体レーザ装置11から出力される第1のパルスレーザ光71Aと第2の固体レーザ装置12から出力される第2のパルスレーザ光71Bとのそれぞれのパルス幅Dが約6nsであり、Top=3nsの場合を仮定する。この場合、Er=3/6*100=50%であり、第2のパルスレーザ光71Bと第3のパルスレーザ光とのタイミングのずれによる波長変換効率の低下は抑制される。Erの値は、好ましくは、Er=50%以下がよい。
その他の動作は、上記比較例に係る固体レーザシステム1と略同様であってもよい。
[2.3 作用・効果]
実施形態1の固体レーザシステム1Aによれば、第2のCLBO結晶19に先に波長約1554nmの第2のパルスレーザ光71Bを入射させ、次に、第2のCLBO結晶19での波長変換で消費されなかった第2のパルスレーザ光71Bの残余光を第1のCLBO結晶18に入射させることによって、第2のパルスレーザ光71Bの利用効率を大きく改善することができる。
実施形態1の固体レーザシステム1Aによれば、第2のCLBO結晶19に先に波長約1554nmの第2のパルスレーザ光71Bを入射させ、次に、第2のCLBO結晶19での波長変換で消費されなかった第2のパルスレーザ光71Bの残余光を第1のCLBO結晶18に入射させることによって、第2のパルスレーザ光71Bの利用効率を大きく改善することができる。
また、第1及び第2のパルスレーザ光71A,71Bの各パルス幅Dに対して、第2のCLBO結晶19における第3のパルスレーザ光の第2のパルスレーザ光71Bに対する遅れTopの割合Er=Top/Dを小さくし得る。これによって、第2のCLBO結晶19における第2のパルスレーザ光71Bと第3のパルスレーザ光との入射タイミングの差による波長変換効率の低下を抑制できる。
以上のことから、波長変換システム15Aの波長変換効率を改善することができる。
<3.実施形態2>(固体レーザシステムの第2の例)
次に、本開示の実施形態2に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態2に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[3.1 構成]
図8は、実施形態2に係る固体レーザシステム1Bの一構成例を概略的に示している。
図8は、実施形態2に係る固体レーザシステム1Bの一構成例を概略的に示している。
固体レーザシステム1Bは、上記比較例に係る固体レーザシステム1における波長変換システム15に代えて波長変換システム15Bを備えている。
固体レーザシステム1Bは、第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングと、第2のCLBO結晶19を通過した第2のパルスレーザ光71Bの残余光が第1のCLBO結晶18に入射する第2のタイミングとが略同じとなるように構成されている。
固体レーザシステム1Bの構成は、第1の固体レーザ装置11からの第1のパルスレーザ光71Aの出射タイミングと、第2の固体レーザ装置12からの第2のパルスレーザ光71Bの出射タイミングとに関する構成以外は、実施形態1に係る固体レーザシステム1Aと略同様であってもよい。
[3.2 動作、作用・効果]
固体レーザシステム1Bでは、第1及び第2の遅延時間Td1,Td2は、第1のCLBO結晶18への第1のパルスレーザ光71Aの入射タイミングと第1のCLBO結晶18への第2のパルスレーザ光71Bの入射タイミングとが略一致するようにあらかじめ設定される。
固体レーザシステム1Bでは、第1及び第2の遅延時間Td1,Td2は、第1のCLBO結晶18への第1のパルスレーザ光71Aの入射タイミングと第1のCLBO結晶18への第2のパルスレーザ光71Bの入射タイミングとが略一致するようにあらかじめ設定される。
図9は、実施形態2に係る固体レーザシステム1Bにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図9の(A)~(H)のタイミングが示す意味は、図4の(A)~(H)と同様である。
図9は、波長約257.5nmの第1のパルスレーザ光71Aが第1のCLBO結晶18に入射する入射タイミングと波長約1554nmの第2のパルスレーザ光71Bが第1のCLBO結晶18に入射する入射タイミングとを略一致させた場合、すなわちTd=T1の場合のタイミングチャートである。
トリガ信号Tr1が同期回路部13に入射すると、図9の(A),(B)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第1の遅延時間Td1で第1のトリガ信号Tr11が出力される。また、図9の(A),(C)に示したように、トリガ信号Tr1に対して固体レーザ制御部14が設定した第2の遅延時間Td2で第2のトリガ信号Tr12が出力される。
図9の(D),(E)に示したように、第1のCLBO結晶18に対して、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとが、入射タイミングが略一致するようにして入射する。
図9の(F)に示したように、第1のCLBO結晶18において、波長約1554nmの第2のパルスレーザ光71Bと波長約257.5nmの第1のパルスレーザ光71Aとのビームが重なり合い、和周波発生過程によって波長約220.9nmの第3のパルスレーザ光に波長変換される。
図9の(F),(G)に示したように、第2のCLBO結晶19において、波長約220.9nmの第3のパルスレーザ光は波長約1554nmの第2のパルスレーザ光71Bに比べてTop=L/cだけ遅れて入射する。
図9の(H)に示したように、第2のCLBO結晶19において、波長約220.9nmの第3のパルスレーザ光と波長約1554nmの第2のパルスレーザ光71Bとが、和周波発生過程によって波長約193.4nmの第4のパルスレーザ光71Cに波長変換される。
例えば、第1の固体レーザ装置11から出力されるパルスレーザ光と第2の固体レーザ装置12から出力されるパルスレーザ光とのそれぞれのパルス幅をDとする。固体レーザシステム1Bでは、パルス幅Dに対して、第2のCLBO結晶19における第3のパルスレーザ光の第2のパルスレーザ光71Bに対する遅れTopの割合Er=Top/D分だけ、波長変換効率が低下し得る。
ここで、第1の固体レーザ装置11から出力される第1のパルスレーザ光71Aと第2の固体レーザ装置12から出力される第2のパルスレーザ光71Bとのそれぞれのパルス幅Dが約6nsであり、Top=3nsの場合を仮定する。この場合、Er=3/6*100=50%であり、第2のパルスレーザ光71Bと第3のパルスレーザ光とのタイミングのずれによる波長変換効率の低下は抑制される。Erの値は、好ましくは、Er=50%以下がよい。
その他の動作、及び作用・効果は、実施形態1に係る固体レーザシステム1Aと略同様となり得る。
<4.実施形態3>(リング状の光路を有する波長変換システム)
次に、本開示の実施形態3に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1若しくは2に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態3に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1若しくは2に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[4.1 構成]
図10は、実施形態3に係る固体レーザシステム1Cの一構成例を概略的に示している。
図10は、実施形態3に係る固体レーザシステム1Cの一構成例を概略的に示している。
固体レーザシステム1Cは、上記比較例に係る固体レーザシステム1における波長変換システム15に代えて波長変換システム15Cを備えている。
波長変換システム15Cは、第2の固体レーザ装置12と第2のCLBO結晶19との間における第2のパルスレーザ光71Bの光路と第3のパルスレーザ光の光路とが交差する位置に配置された第1のダイクロイックミラーを含んでいる。第1のダイクロイックミラーは、第2のパルスレーザ光71Bを第2のCLBO結晶19に向けて透過させ、第3のパルスレーザ光を第2のCLBO結晶19に向けて反射させる。この第1のダイクロイックミラーは、後述するダイクロイックミラー321であってもよい。
また、波長変換システム15Cは、第2のパルスレーザ光71Bの残余光の光路上に配置され、第2のパルスレーザ光71Bの残余光を反射させる第2のダイクロイックミラーを含んでいる。この第2のダイクロイックミラーは、後述するダイクロイックミラー323であってもよい。
また、波長変換システム15Cは、第2のダイクロイックミラーで反射された後の第2のパルスレーザ光71Bの残余光の光路上に配置され、第2のパルスレーザ光71Bの残余光を反射させる反射ミラーを含んでいる。この反射ミラーは、後述する高反射ミラー420であってもよい。
また、波長変換システム15Cは、上記反射ミラーで反射された後の第2のパルスレーザ光71Bの残余光の光路と第1のパルスレーザ光71Aの光路とが交差する位置に配置され、第1のパルスレーザ光71Aを第1のCLBO結晶18に向けて反射させ、第2のパルスレーザ光71Bの残余光を第1のCLBO結晶18に向けて透過させる第3のダイクロイックミラーを含んでいる。この第3のダイクロイックミラーは、後述するダイクロイックミラー320であってもよい。
波長変換システム15Cは、集光レンズ220,221,222と、高反射ミラー420,421,422と、ダイクロイックミラー320,321,322,323と、第1のCLBO結晶18と、第2のCLBO結晶19と、コリメータレンズ520とを含む。
波長変換システム15Cでは、ダイクロイックミラー320,321,322,323と、高反射ミラー420,421とによってリング状の光路が形成されている。
第1のCLBO結晶18は、ダイクロイックミラー320とダイクロイックミラー321との間の光路上に配置されている。
第2のCLBO結晶19は、ダイクロイックミラー321とダイクロイックミラー322との間の光路上に配置されている。
コリメータレンズ520は、ダイクロイックミラー323と高反射ミラー421との間の光路上であって、第2のCLBO結晶19で消費されなかった波長約1554nmの第2のパルスレーザ光71Bをコリメートするように配置されている。
集光レンズ220は、高反射ミラー421と高反射ミラー420との間の光路上であって、コリメータレンズ520によってコリメートされた波長約1554nmの第2のパルスレーザ光71Bを第1のCLBO結晶18に対して集光するように配置されている。
ダイクロイックミラー321には、波長約1554nm及び257.5nmの光を高透過し、波長約220.9nmの光を高反射する膜がコートされている。
ダイクロイックミラー322は、第2のCLBO結晶19とダイクロイックミラー323との間の光路上に配置されている。ダイクロイックミラー322には、波長約1554nm及び波長約220.9nmの光を高透過し、波長約193.4nmの光を高反射する膜がコートされている。
ダイクロイックミラー323は、波長約1554nmの第2のパルスレーザ光71B、及び波長約220.9nmの第3のパルスレーザ光の光路上に配置されている。ダイクロイックミラー323には、波長約220.9nmの光を高透過し、波長約1554nmの光を高反射する膜がコートされている。
高反射ミラー420は、高反射ミラー421とダイクロイックミラー320との間の光路上であって、高反射ミラー421で反射された波長約1554nmの第2のパルスレーザ光71Bをダイクロイックミラー320に向けて反射するように配置されている。
ダイクロイックミラー320は、第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aを高反射する。また、ダイクロイックミラー320は、高反射ミラー420で反射された波長約1554nmの第2のパルスレーザ光71Bを高透過し、波長約257.5nmの第1のパルスレーザ光71Aと波長約1554nmの第2のパルスレーザ光71Bとのビームが第1のCLBO結晶18において重なるように配置されている。ダイクロイックミラー320には、波長約257.5nmの光を高反射し、波長約1554nmの光を高透過する膜がコートされている。
高反射ミラー422は、波長約193.4nmの第4のパルスレーザ光71Cを外部に出力するように配置されている。高反射ミラー422には、波長約193.4nmの光を高反射する膜がコートされている。
集光レンズ222は、第1の固体レーザ装置11とダイクロイックミラー320との間の光路上に配置されている。集光レンズ222は、第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aが、ダイクロイックミラー320を介して第1のCLBO結晶18において波長約1554nmの第2のパルスレーザ光71Bの集光ビームと重なって集光するように配置されている。
集光レンズ221は、波長約1554nmの第2のパルスレーザ光71Bが、ダイクロイックミラー321を介して、第2のCLBO結晶19で波長約220.9nmの第3のパルスレーザ光の光ビームと重なって集光するように配置されている。
波長変換システム15Cにおける第2のCLBO結晶19から第1のCLBO結晶18を経由して第2のCLBO結晶19に至るまでの光路の光路長Lは、ダイクロイックミラー320,321,322,323と高反射ミラー420,421とによるリング状の光路の光路長となる。
同期回路部13のトリガ信号Tr1に対する第1及び第2のトリガ信号Tr11,Tr12のそれぞれの第1及び第2の遅延時間Td1,Td2の設定は、上記実施形態1又は上記実施形態2と略同様であってもよい。
すなわち、図7に示した実施形態1のタイミングと略同様に、第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングと第2のCLBO結晶19に入射する波長約1554nmの第2のパルスレーザ光71Bの入射タイミングとが略一致するように第1及び第2の遅延時間Td1,Td2を設定してもよい。
または、図9に示した実施形態2のタイミングと略同様に、第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングと波長約1554nmの第2のパルスレーザ光71Bの入射タイミングとが略一致するように第1及び第2の遅延時間Td1,Td2を設定してもよい。
その他の構成は、上記比較例、又は実施形態1若しくは実施形態2に係る固体レーザシステムと略同様であってもよい。
[4.2 動作]
第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aは、集光レンズ222によって、ダイクロイックミラー320を介して第1のCLBO結晶18に集光される。
第1の固体レーザ装置11から出力された波長約257.5nmの第1のパルスレーザ光71Aは、集光レンズ222によって、ダイクロイックミラー320を介して第1のCLBO結晶18に集光される。
一方、第2のCLBO結晶19で波長変換に利用されなかった波長約1554nmの第2のパルスレーザ光71Bは、高反射ミラー420とダイクロイックミラー320とを介して、第1のCLBO結晶18に集光された波長約257.5nmの第1のパルスレーザ光71Aのビームと重なるように、集光レンズ220によって集光される。その結果、和周波発生過程によって、両パルスレーザ光の一部が波長約220.9nmの第3のパルスレーザ光に変換される。
第2の固体レーザ装置12から出力された波長約1554nmの第2のパルスレーザ光71Bは、集光レンズ221によって、ダイクロイックミラー321を介して、第2のCLBO結晶19に集光される。
一方、波長約220.9nmの第3のパルスレーザ光は、ダイクロイックミラー321を介して、第2のCLBO結晶19に入射し、波長約1554nmの第2のパルスレーザ光71Bと重なりあう。その結果、和周波発生過程によって、両パルスレーザ光の一部が波長約193.4nmの第4のパルスレーザ光71Cに変換される。
第2のCLBO結晶19からは、波長約193.4nmの第4のパルスレーザ光71Cと、波長変換に利用されなかった波長約220.9nmの第3のパルスレーザ光と、波長変換に利用されなかった波長約1554nmの第2のパルスレーザ光71Bとが出力される。
ダイクロイックミラー322によって、波長約193.4nmの第4のパルスレーザ光71Cは、高反射ミラー422を介して、出力される。
ダイクロイックミラー322を透過した波長約220.9nmの第3のパルスレーザ光は、ダイクロイックミラー323を高透過する。ダイクロイックミラー322を透過した波長約1554nmの第2のパルスレーザ光71Bは、ダイクロイックミラー323で高反射される。
ダイクロイックミラー323で高反射された波長約1554nmの第2のパルスレーザ光71Bは、コリメータレンズ520によってコリメートされる。
波長約1554nmの第2のパルスレーザ光71Bは、高反射ミラー421を介して集光レンズ220によって、高反射ミラー20及びダイクロイックミラー320を介して第1のCLBO結晶18に対して波長約257.5nmの第1のパルスレーザ光71Aのビームと重なって集光する。
その他の動作は、上記比較例、又は実施形態1若しくは実施形態2に係る固体レーザシステムと略同様であってもよい。
[4.3 作用・効果]
実施形態3の固体レーザシステム1Cによれば、ダイクロイックミラー320,321,322,323と、高反射ミラー420,421とによって形成されたリング状の光路上に第1のCLBO結晶18と第2のCLBO結晶19とが配置される。これにより、図6の光路の構成に比べて、第2のCLBO結晶19から第1のCLBO結晶18を経由して第2のCLBO結晶19に至るまでの光路長Lを短くすることができる。その結果、第2のCLBO結晶19における波長約1554nmの第2のパルスレーザ光71Bに対する波長約220.9nmの第3のパルスレーザ光の遅れTopをより小さくすることができる。その結果、固体レーザシステム1Cによれば、図6の固体レーザシステム1Aに比べて、波長変換効率が改善される。
実施形態3の固体レーザシステム1Cによれば、ダイクロイックミラー320,321,322,323と、高反射ミラー420,421とによって形成されたリング状の光路上に第1のCLBO結晶18と第2のCLBO結晶19とが配置される。これにより、図6の光路の構成に比べて、第2のCLBO結晶19から第1のCLBO結晶18を経由して第2のCLBO結晶19に至るまでの光路長Lを短くすることができる。その結果、第2のCLBO結晶19における波長約1554nmの第2のパルスレーザ光71Bに対する波長約220.9nmの第3のパルスレーザ光の遅れTopをより小さくすることができる。その結果、固体レーザシステム1Cによれば、図6の固体レーザシステム1Aに比べて、波長変換効率が改善される。
その他の作用・効果は、上記比較例、又は実施形態1若しくは2に係る固体レーザシステムと略同様であってもよい。
(その他)
波長変換システム15Cにおいて、高反射ミラー421を構成から省き、ダイクロイックミラー320,321,322,323と、高反射ミラー420とによって略三角形状の光路を形成してもよい。これにより、光路長Lをさらに短くすることができる。
波長変換システム15Cにおいて、高反射ミラー421を構成から省き、ダイクロイックミラー320,321,322,323と、高反射ミラー420とによって略三角形状の光路を形成してもよい。これにより、光路長Lをさらに短くすることができる。
<5.実施形態4>(波長変換効率の最適化手法)
次に、本開示の実施形態4に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし3に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態4に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし3に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[5.1 構成・動作]
図11は、実施形態4に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図11の(A)~(H)のタイミングが示す意味は、図4の(A)~(H)と同様である。
図11は、実施形態4に係る固体レーザシステムにおける各種トリガ信号、及び各種バルスレーザ光に関するタイミングチャートの一例を概略的に示している。図11の(A)~(H)のタイミングが示す意味は、図4の(A)~(H)と同様である。
実施形態4に係る固体レーザシステムの構成は、第1の固体レーザ装置11からの第1のパルスレーザ光71Aの出射タイミングと、第2の固体レーザ装置12からの第2のパルスレーザ光71Bの出射タイミングとに関する構成以外は、実施形態1に係る固体レーザシステム1Aと略同様であってもよい。
実施形態4に係る固体レーザシステムでは、実施形態1に係る固体レーザシステム1Aと略同様に、第2のパルスレーザ光71Bを、第1のCLBO結晶18に入射させる前の第1のタイミングで第2のCLBO結晶19に入射させる。そして、第2のパルスレーザ光71Bのうち和周波発生過程で使われずに、すなわち波長変換で消費されずに第2のCLBO結晶19を通過した残余光を、第1のタイミングよりも遅い第2のタイミングで第1のCLBO結晶18に入射させる。
ここで、実施形態4に係る固体レーザシステムでは、第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングは、第1のタイミングと第2のタイミングとの間のタイミングである。すなわち、実施形態4に係る固体レーザシステムでは、第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングを、第2のパルスレーザ光71Bが第2のCLBO結晶19を通過した後、第1のCLBO結晶18に到達する前のタイミングに設定する。第1のパルスレーザ光71Aが第1のCLBO結晶18に入射するタイミングは、第1のタイミングと第2のタイミングとの間の中間のタイミングであることが好ましい。
ここで、第2のCLBO結晶19に入射する波長約1554nmの第2のパルスレーザ光71Bの入射タイミングと第1のCLBO結晶18に入射する波長約257.5nmの第1のパルスレーザ光71Aの入射タイミングとの差をTdとする。波長約1554nmの第2のパルスレーザ光71Bが第2のCLBO結晶19から第1のCLBO結晶18に至るまでの光路長を進む時間をT1とする。
図12は、実施形態4に係る固体レーザシステムにおける波長変換システムの波長変換効率の一例を概略的に示している。図12において、横軸はTd、縦軸は波長変換システムの波長変換効率Effを示す。
図12に示したように、Tdと波長変換効率Effとの関係から、Tdの範囲は、0≦Td≦T1であることが好ましい。より好ましいTdの値は、Td=T1/2である。
実際には、波長約1554nmの第2のパルスレーザ光71Bと波長約257.5nmの第1のパルスレーザ光71Aのパルス波形によって、最大の変換効率となるTdはT1/2から多少ずれることがある。
最大の変換効率とするために、第1の固体レーザ装置11に対する第1のトリガ信号Tr11と第2の固体レーザ装置12に対する第2のトリガ信号Tr12との入力タイミングの差を変えて、最大の変換効率となる第1のトリガ信号Tr11と第2のトリガ信号Tr12とのタイミングを差を求めて、同期回路部13にそれぞれの第1及び第2の遅延時間Td1,Td2を設定してもよい。
その他の構成、及び動作は、上記比較例、又は実施形態1ないし3に係る固体レーザシステムと略同様であってもよい。
[5.2 作用・効果]
実施形態4の固体レーザシステムによれば、波長変換システムの波長変換効率をより改善することができる。
実施形態4の固体レーザシステムによれば、波長変換システムの波長変換効率をより改善することができる。
その他の作用・効果は、上記比較例、又は実施形態1ないし3に係る固体レーザシステムと略同様であってもよい。
<6.実施形態5>(偏光方向を考慮した固体レーザシステムの第1の例)
次に、本開示の実施形態5に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし4に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態5に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし4に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[6.1 構成]
図13は、実施形態5に係る固体レーザシステム1Dの一構成例を概略的に示している。
図13は、実施形態5に係る固体レーザシステム1Dの一構成例を概略的に示している。
固体レーザシステム1Dは、上記比較例に係る固体レーザシステム1における波長変換システム15に代えて波長変換システム15Dを備えている。
波長変換システム15Dは、図6の波長変換システム15Aに対して各パルスレーザ光の偏光方向を考慮した構成とされている。
波長変換システム15Dは、図6の波長変換システム15Aに対して、1/2波長板610をさらに含んでいる。1/2波長板610は、第2のパルスレーザ光71Bの残余光の光路上における第1のCLBO結晶18と第2のCLBO結晶19との間に配置されている。図13の例では、1/2波長板610は、コリメータレンズ510と集光レンズ210との間における第2のパルスレーザ光71Bの残余光の光路上に配置されている。
固体レーザシステム1Dでは、第1の固体レーザ装置11は、第1の偏光方向に偏光した第1のパルスレーザ光71Aを出力する。第2の固体レーザ装置12は、第1の偏光方向に直交する第2の偏光方向に偏光した第2のパルスレーザ光71Bを出力する。
波長変換システム15Dでは、第1のCLBO結晶18の光学軸と第2のCLBO結晶19の光学軸とが互いに直交するように配置されている。
[6.2 動作、作用・効果]
固体レーザシステム1Dでは、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを互いの偏光方向が直交するように波長変換システム15Dに入射させる。
固体レーザシステム1Dでは、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを互いの偏光方向が直交するように波長変換システム15Dに入射させる。
例えば、第1のパルスレーザ光71Aは、紙面に対して垂直な方向の偏光で第1のCLBO結晶18に入射する。一方、第2のパルスレーザ光71Bは、偏光方向が紙面に対して平行な偏光で、第2のCLBO結晶19に入射する。第2のCLBO結晶19で波長変換に寄与しなかった第2のパルスレーザ光71Bは、ダイクロイックミラー311,312と高反射ミラー411とを介してコリメータレンズ510によって平行光に変換される。この第2のパルスレーザ光71Bは、1/2波長板610によって、偏光方向が90°回転して、紙面に対して垂直な偏光方向となる。
この第2のパルスレーザ光71Bと第1のパルスレーザ光71Aは共に、紙面に対して垂直な方向の偏光で第1のCLBO結晶18に入射し、和周波により紙面に対して平行な第3のパルスレーザ光に変換される。
第3のパルスレーザ光と第2のパルスレーザ光71Bとが共に、紙面に対して平行な偏光で、第2のCLBO結晶19に入射し、和周波により、紙面に対して垂直な波長約193.4nmの第4のパルスレーザ光71Cが出力される。
その他の構成、動作及び作用・効果は、上記比較例、又は実施形態1ないし4に係る固体レーザシステムと略同様であってもよい。
<7.実施形態6>(偏光方向を考慮した固体レーザシステムの第2の例)
次に、本開示の実施形態6に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし5に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態6に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし5に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[7.1 構成]
図14は、実施形態6に係る固体レーザシステム1Eの一構成例を概略的に示している。
図14は、実施形態6に係る固体レーザシステム1Eの一構成例を概略的に示している。
固体レーザシステム1Eは、上記比較例に係る固体レーザシステム1における波長変換システム15に代えて波長変換システム15Eを備えている。
波長変換システム15Eは、図10の波長変換システム15Cに対して各パルスレーザ光の偏光方向を考慮した構成とされている。
波長変換システム15Eは、図10の波長変換システム15Cに対して、1/2波長板610をさらに含んでいる。1/2波長板610は、第2のパルスレーザ光71Bの残余光の光路上における第1のCLBO結晶18と第2のCLBO結晶19との間に配置されている。図14の例では、1/2波長板610は、コリメータレンズ520と集光レンズ220との間における第2のパルスレーザ光71Bの残余光の光路上に配置されている。
固体レーザシステム1Eでは、第1の固体レーザ装置11は、第1の偏光方向に偏光した第1のパルスレーザ光71Aを出力する。第2の固体レーザ装置12は、第1の偏光方向に直交する第2の偏光方向に偏光した第2のパルスレーザ光71Bを出力する。
波長変換システム15Eでは、第1のCLBO結晶18の光学軸と第2のCLBO結晶19の光学軸とが互いに直交するように配置されている。
[7.2 動作、作用・効果]
固体レーザシステム1Eでは、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを互いの偏光方向が直交するように波長変換システム15Eに入射させる。
固体レーザシステム1Eでは、第1のパルスレーザ光71Aと第2のパルスレーザ光71Bとを互いの偏光方向が直交するように波長変換システム15Eに入射させる。
例えば、第1のパルスレーザ光71Aは、紙面に対して垂直な方向の偏光で第1のCLBO結晶18に入射する。一方、第2のパルスレーザ光71Bは、偏光方向が紙面に対して平行な偏光で、第2のCLBO結晶19に入射する。第2のCLBO結晶19で波長変換に寄与しなかった第2のパルスレーザ光71Bは、ダイクロイックミラー322及びダイクロイックミラー323を介してコリメータレンズ520によって平行光に変換される。この第2のパルスレーザ光71Bは、1/2波長板610によって、偏光方向が90°回転して、紙面に対して垂直な偏光方向となる。
この第2のパルスレーザ光71Bと第1のパルスレーザ光71Aは共に、紙面に対して垂直な方向の偏光で第1のCLBO結晶18に入射し、和周波により紙面に対して平行な第3のパルスレーザ光に変換される。
第3のパルスレーザ光と第2のパルスレーザ光71Bとが共に、紙面に対して平行な偏光で、第2のCLBO結晶19に入射し、和周波により、紙面に対して垂直な波長約193.4nmの第4のパルスレーザ光71Cが出力される。
その他の構成、動作及び作用・効果は、上記比較例、又は実施形態1ないし5に係る固体レーザシステムと略同様であってもよい。
<8.実施形態7>(半導体レーザと半導体光増幅器との構成例)
次に、本開示の実施形態6に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし5に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
次に、本開示の実施形態6に係る固体レーザシステムについて説明する。なお、以下では上記比較例、又は実施形態1ないし5に係る固体レーザシステムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[8.1 構成]
図15は、第1の半導体レーザ20と第1の半導体光増幅器23との一構成例を概略的に示している。なお、以下では、第1の半導体レーザ20と第1の半導体光増幅器23との構成例を説明するが、第2の半導体レーザ40と第2の半導体光増幅器41とについても、略同様の構成であってもよい。
図15は、第1の半導体レーザ20と第1の半導体光増幅器23との一構成例を概略的に示している。なお、以下では、第1の半導体レーザ20と第1の半導体光増幅器23との構成例を説明するが、第2の半導体レーザ40と第2の半導体光増幅器41とについても、略同様の構成であってもよい。
第1の半導体レーザ20は、半導体レーザ制御部130と、半導体素子131と、温度センサ132と、ペルチェ素子133と、温度制御器134と、電流制御器135とを含む。半導体素子131は、活性層136と、グレーティング137とを含む。例えば、第1の半導体レーザ20は、CW発振であって、シングル縦モードで発振する分布帰還型レーザであってもよい。
第1の半導体光増幅器23は、半導体素子141と、電流制御器143と、パルス波形生成器140とを含む。半導体素子141は、活性層142を含む。
その他の構成は、上記比較例、又は実施形態1ないし6に係る固体レーザシステムと略同様であってもよい。
[8.2 動作]
半導体レーザ制御部130は、半導体素子131が所望の発振波長、ここでは波長約1030nmに対応する温度Tλとなるような温度設定値を温度制御器134に送信する。
半導体レーザ制御部130は、半導体素子131が所望の発振波長、ここでは波長約1030nmに対応する温度Tλとなるような温度設定値を温度制御器134に送信する。
温度制御器134は、温度センサ132の温度がTλとなるように、ペルチェ素子133に流れる電流を制御する。
半導体レーザ制御部130は、所定の電流設定値を電流制御器135に送信する。
半導体素子131には、一定の電流が流れ、波長λのCWレーザ光が出力される。CWレーザ光は、第1の半導体光増幅器23の半導体素子141の活性層142に入射する。
パルス波形生成器140は、同期回路部13が受信した第1のトリガ信号Tr11に同期して、増幅されるパルス波形に応じたパルス波形の電流制御信号140iを電流制御器143に出力する。半導体素子141には、電流制御信号140iのパルス波形に応じた電流が流れる。その結果、第1の半導体レーザ20のシード光がパルス増幅され、半導体素子141の出力側から増幅されたパルスレーザ光が出力される。
その他の動作は、上記比較例、又は実施形態1ないし6に係る固体レーザシステムと略同様であってもよい。
(その他)
半導体光増幅器の代わりに、偏光子とEOポッケルスセルとを組合せた光シャッタを用いてもよい。
半導体光増幅器の代わりに、偏光子とEOポッケルスセルとを組合せた光シャッタを用いてもよい。
第1の半導体光増幅器23を構成から省略して、第1の半導体レーザ20の電流制御器135に、パルス状の電流信号を送信して、パルスを生成してもよい。また、第1の半導体レーザ20と第1の半導体光増幅器23とを同期させて、半導体素子131,141にパルス状の電流信号を送信して、パルスを生成してもよい。
<9.その他>
上記の説明は、制限ではなく単なる例示を意図している。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
上記の説明は、制限ではなく単なる例示を意図している。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
Claims (14)
- 第1の波長の第1のパルスレーザ光を出力する第1の固体レーザ装置と、
第2の波長の第2のパルスレーザ光を出力する第2の固体レーザ装置と、
前記第1のパルスレーザ光と前記第2のパルスレーザ光とが進む第1の光路上に配置され、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを、和周波発生過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶と、
前記第2のパルスレーザ光と前記第3のパルスレーザ光とが進む第2の光路上に配置され、前記第2のパルスレーザ光と前記第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光へと波長変換して出力する第2の非線形結晶と
を備え、
前記第2のパルスレーザ光を、前記第1の非線形結晶に入射させる前の第1のタイミングで前記第2の非線形結晶に入射させ、前記第2のパルスレーザ光のうち前記和周波発生過程で使われずに前記第2の非線形結晶を通過した残余光を前記第1のタイミングよりも遅い第2のタイミングで前記第1の非線形結晶に入射させる
固体レーザシステム。 - 請求項1に記載の固体レーザシステムであって、
前記第1のパルスレーザ光が前記第1の非線形結晶に入射するタイミングと、前記第1のタイミングとが略同じである。 - 請求項1に記載の固体レーザシステムであって、
前記第1のパルスレーザ光が前記第1の非線形結晶に入射するタイミングと、前記第2のタイミングとが略同じである。 - 請求項1に記載の固体レーザシステムであって、
前記第1のパルスレーザ光が前記第1の非線形結晶に入射するタイミングは、前記第1のタイミングと前記第2のタイミングとの間のタイミングである。 - 請求項4に記載の固体レーザシステムであって、
前記第1のパルスレーザ光が前記第1の非線形結晶に入射するタイミングは、前記第1のタイミングと前記第2のタイミングとの間の中間のタイミングである。 - 請求項1に記載の固体レーザシステムであって、
前記第2の波長は、1100nm以上、2000nm以下である。 - 請求項6に記載の固体レーザシステムであって、
前記第2の固体レーザ装置は、Erファイバ増幅器を含む。 - 請求項6に記載の固体レーザシステムであって、
前記第1の波長は、220nm以上、400nm以下である。 - 請求項8に記載の固体レーザシステムであって、
第4の波長は、150nm以上、300nm以下である。 - 請求項1に記載の固体レーザシステムであって、
前記第2の固体レーザ装置と前記第2の非線形結晶との間における前記第2のパルスレーザ光の光路と前記第3のパルスレーザ光の光路とが交差する位置に配置され、前記第2のパルスレーザ光を前記第2の非線形結晶に向けて透過させ、前記第3のパルスレーザ光を前記第2の非線形結晶に向けて反射させる第1のダイクロイックミラー、
をさらに備える。 - 請求項10に記載の固体レーザシステムであって、
前記第2のパルスレーザ光の前記残余光の光路上に配置され、前記第2のパルスレーザ光の前記残余光を反射させる第2のダイクロイックミラーと、
前記第2のダイクロイックミラーで反射された後の前記第2のパルスレーザ光の前記残余光の光路上に配置され、前記第2のパルスレーザ光の前記残余光を反射させる反射ミラーと、
前記反射ミラーで反射された後の前記第2のパルスレーザ光の前記残余光の光路と前記第1のパルスレーザ光の光路とが交差する位置に配置され、前記第1のパルスレーザ光を前記第1の非線形結晶に向けて反射させ、前記第2のパルスレーザ光の前記残余光を前記第1の非線形結晶に向けて透過させる第3のダイクロイックミラーと
をさらに備える。 - 請求項1に記載の固体レーザシステムであって、
前記第2のパルスレーザ光の前記残余光の光路上における前記第1の非線形結晶と前記第2の非線形結晶との間に配置された1/2波長板、
をさらに備える。 - 請求項12に記載の固体レーザシステムであって、
前記第1の固体レーザ装置は、第1の偏光方向に偏光した前記第1のパルスレーザ光を出力し、
前記第2の固体レーザ装置は、前記第1の偏光方向に直交する第2の偏光方向に偏光した前記第2のパルスレーザ光を出力し、
前記第1の非線形結晶の光学軸と前記第2の非線形結晶の光学軸とが互いに直交するように配置されている。 - 第1の波長の第1のパルスレーザ光と第2の波長の第2のパルスレーザ光とが進む第1の光路上に配置され、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを、和周波発生過程により第3の波長の第3のパルスレーザ光へと波長変換して出力する第1の非線形結晶と、
前記第2のパルスレーザ光と前記第3のパルスレーザ光とが進む第2の光路上に配置され、前記第2のパルスレーザ光と前記第3のパルスレーザ光とを、和周波発生過程により第4の波長の第4のパルスレーザ光へと波長変換して出力する第2の非線形結晶と
を備え、
前記第2のパルスレーザ光を、前記第1の非線形結晶に入射させる前の第1のタイミングで前記第2の非線形結晶に入射させ、前記第2のパルスレーザ光のうち前記和周波発生過程で使われずに前記第2の非線形結晶を通過した残余光を前記第1のタイミングよりも遅い第2のタイミングで前記第1の非線形結晶に入射させる
波長変換システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780085496.9A CN110249261B (zh) | 2017-03-02 | 2017-03-02 | 固体激光系统和波长转换系统 |
JP2019502375A JP6952103B2 (ja) | 2017-03-02 | 2017-03-02 | 固体レーザシステム、及び波長変換システム |
PCT/JP2017/008220 WO2018158899A1 (ja) | 2017-03-02 | 2017-03-02 | 固体レーザシステム、及び波長変換システム |
US16/534,722 US10879663B2 (en) | 2017-03-02 | 2019-08-07 | Solid-state laser system and wavelength conversion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008220 WO2018158899A1 (ja) | 2017-03-02 | 2017-03-02 | 固体レーザシステム、及び波長変換システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/534,722 Continuation US10879663B2 (en) | 2017-03-02 | 2019-08-07 | Solid-state laser system and wavelength conversion system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018158899A1 true WO2018158899A1 (ja) | 2018-09-07 |
Family
ID=63370646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008220 WO2018158899A1 (ja) | 2017-03-02 | 2017-03-02 | 固体レーザシステム、及び波長変換システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10879663B2 (ja) |
JP (1) | JP6952103B2 (ja) |
CN (1) | CN110249261B (ja) |
WO (1) | WO2018158899A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020181923A (ja) * | 2019-04-26 | 2020-11-05 | 株式会社日本製鋼所 | 半導体膜の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07170009A (ja) * | 1993-12-15 | 1995-07-04 | Nikon Corp | 光源装置 |
WO2001020651A1 (fr) * | 1999-09-10 | 2001-03-22 | Nikon Corporation | Dispositif d'exposition pourvu d'un dispositif laser |
US6219363B1 (en) * | 1998-04-29 | 2001-04-17 | Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. | Method of frequency conversion of the radiation of a pulsed optical parametric oscillator (OPO) and device for executing the method |
JP2004006434A (ja) * | 2001-07-12 | 2004-01-08 | National Institute Of Advanced Industrial & Technology | パルスレーザーの時間同期装置および任意波形生成装置 |
JP2009058782A (ja) * | 2007-08-31 | 2009-03-19 | Osaka Univ | レーザ光発生装置およびレーザ光発生方法 |
JP2009145791A (ja) * | 2007-12-18 | 2009-07-02 | Lasertec Corp | 波長変換装置、検査装置及び波長変換方法 |
WO2016143071A1 (ja) * | 2015-03-10 | 2016-09-15 | 国立大学法人 東京大学 | 固体レーザ装置、ファイバ増幅器システム、および固体レーザシステム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079550A (ja) * | 1996-09-03 | 1998-03-24 | Matsushita Electric Ind Co Ltd | 半導体レーザ励起固体レーザ装置 |
US6628684B2 (en) * | 2001-07-12 | 2003-09-30 | National Institute Of Advanced Industrial Science And Technology | Timing synchronization device of a pulsed laser and an optical synthesizer |
US20110134944A1 (en) * | 2009-12-08 | 2011-06-09 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Efficient pulse laser light generation and devices using the same |
CN102175334B (zh) * | 2011-03-01 | 2014-01-08 | 复旦大学 | 基于非谐波长波长取样光的脉冲信噪比单次测量装置 |
JP6311720B2 (ja) * | 2013-10-25 | 2018-04-18 | 株式会社ニコン | レーザ装置、該レーザ装置を備えた露光装置及び検査装置 |
US9859675B2 (en) * | 2014-02-13 | 2018-01-02 | Spectronix Corporation | Laser light-source apparatus and laser pulse light generating method |
WO2017175344A1 (ja) * | 2016-04-07 | 2017-10-12 | ギガフォトン株式会社 | 固体レーザ装置、固体レーザシステム、及び露光装置用レーザ装置 |
-
2017
- 2017-03-02 WO PCT/JP2017/008220 patent/WO2018158899A1/ja active Application Filing
- 2017-03-02 JP JP2019502375A patent/JP6952103B2/ja active Active
- 2017-03-02 CN CN201780085496.9A patent/CN110249261B/zh active Active
-
2019
- 2019-08-07 US US16/534,722 patent/US10879663B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07170009A (ja) * | 1993-12-15 | 1995-07-04 | Nikon Corp | 光源装置 |
US6219363B1 (en) * | 1998-04-29 | 2001-04-17 | Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. | Method of frequency conversion of the radiation of a pulsed optical parametric oscillator (OPO) and device for executing the method |
WO2001020651A1 (fr) * | 1999-09-10 | 2001-03-22 | Nikon Corporation | Dispositif d'exposition pourvu d'un dispositif laser |
JP2004006434A (ja) * | 2001-07-12 | 2004-01-08 | National Institute Of Advanced Industrial & Technology | パルスレーザーの時間同期装置および任意波形生成装置 |
JP2009058782A (ja) * | 2007-08-31 | 2009-03-19 | Osaka Univ | レーザ光発生装置およびレーザ光発生方法 |
JP2009145791A (ja) * | 2007-12-18 | 2009-07-02 | Lasertec Corp | 波長変換装置、検査装置及び波長変換方法 |
WO2016143071A1 (ja) * | 2015-03-10 | 2016-09-15 | 国立大学法人 東京大学 | 固体レーザ装置、ファイバ増幅器システム、および固体レーザシステム |
Also Published As
Publication number | Publication date |
---|---|
US20190363504A1 (en) | 2019-11-28 |
JPWO2018158899A1 (ja) | 2019-12-26 |
JP6952103B2 (ja) | 2021-10-20 |
CN110249261B (zh) | 2022-11-18 |
US10879663B2 (en) | 2020-12-29 |
CN110249261A (zh) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10587089B2 (en) | Solid-state laser device, solid-state laser system, and laser device for exposure device | |
US7593440B2 (en) | MOPA laser apparatus with two master oscillators for generating ultraviolet radiation | |
JP4450147B2 (ja) | レーザ装置を備えた露光装置 | |
JP5100990B2 (ja) | 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置 | |
WO2015140901A1 (ja) | レーザシステム | |
US20210226411A1 (en) | Laser system and electronic device manufacturing method | |
JP2012199425A (ja) | マスタオシレータ、レーザシステム、およびレーザ生成方法 | |
JP2001083557A (ja) | レーザ装置 | |
WO2016121281A1 (ja) | 固体レーザシステム | |
JP6592784B2 (ja) | 固体レーザシステムおよびエキシマレーザシステム | |
JP2001085313A (ja) | 露光方法及び装置、並びにデバイスの製造方法 | |
JP2013222173A (ja) | レーザ装置 | |
WO2016143071A1 (ja) | 固体レーザ装置、ファイバ増幅器システム、および固体レーザシステム | |
JP2012204818A (ja) | レーザシステムおよびレーザ生成方法 | |
JP4375846B2 (ja) | レーザ装置 | |
JP2004253800A (ja) | レーザーパルス形成用レーザー装置 | |
US20240186760A1 (en) | Laser apparatus and electronic device manufacturing method | |
WO2016103483A1 (ja) | チタンサファイヤレーザ装置、及び露光装置用レーザ装置、並びにチタンサファイヤ増幅器 | |
WO2018158899A1 (ja) | 固体レーザシステム、及び波長変換システム | |
WO2023112308A1 (ja) | レーザシステム、パルスレーザ光の生成方法、及び電子デバイスの製造方法 | |
JPWO2019186767A1 (ja) | 波長変換システム及び加工方法 | |
WO2017046860A1 (ja) | レーザシステム | |
JP2002223018A (ja) | レーザ波長の制御システム、及び、レーザ波長の制御方法 | |
WO2023199514A1 (ja) | レーザ装置及び電子デバイスの製造方法 | |
JP2000347235A (ja) | 固体レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899183 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502375 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899183 Country of ref document: EP Kind code of ref document: A1 |