JP4447377B2 - 絶縁ゲート型半導体装置およびその製造方法 - Google Patents

絶縁ゲート型半導体装置およびその製造方法 Download PDF

Info

Publication number
JP4447377B2
JP4447377B2 JP2004158575A JP2004158575A JP4447377B2 JP 4447377 B2 JP4447377 B2 JP 4447377B2 JP 2004158575 A JP2004158575 A JP 2004158575A JP 2004158575 A JP2004158575 A JP 2004158575A JP 4447377 B2 JP4447377 B2 JP 4447377B2
Authority
JP
Japan
Prior art keywords
trench
insulating layer
semiconductor device
forming
deposited insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004158575A
Other languages
English (en)
Other versions
JP2005340552A (ja
Inventor
秀史 高谷
恭輔 宮城
公守 濱田
康嗣 大倉
規仁 戸倉
晃 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2004158575A priority Critical patent/JP4447377B2/ja
Publication of JP2005340552A publication Critical patent/JP2005340552A/ja
Application granted granted Critical
Publication of JP4447377B2 publication Critical patent/JP4447377B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は,トレンチゲート構造を有する絶縁ゲート型半導体装置およびその製造方法に関する。さらに詳細には,半導体層にかかる電界を緩和することにより,高耐圧化と低オン抵抗化との両立を図った絶縁ゲート型半導体装置およびその製造方法に関するものである。
従来から,パワーデバイス用の絶縁ゲート型半導体装置として,トレンチゲート構造を有するトレンチゲート型半導体装置が提案されている。このトレンチゲート型半導体装置では,一般的に高耐圧化と低オン抵抗化とがトレードオフの関係にある。
そこで,本出願人は,トレードオフの問題を解決したトレンチゲート型半導体装置として,図3に示すような絶縁ゲート型半導体装置900を提案している(特願2003−349806号)。この絶縁ゲート型半導体装置900では,P- ボディ領域41を貫通してなるゲートトレンチ21が設けられている。そして,ゲートトレンチ21の底部から不純物(ボロン等)を注入することによって形成されるP- フローティング領域51が設けられている。絶縁ゲート型半導体装置900では,このP- フローティング領域51により電界強度のピーク値を低減することができる。
この絶縁ゲート型半導体装置900では,ゲートトレンチ21のようにトレンチ内部の所定の深さまで絶縁物を埋め込んだトレンチを有している。このようなトレンチを形成するためには,一旦全てのトレンチに対して絶縁物を充填し,その後にゲートトレンチ21内に充填した絶縁物の一部を除去する工程(エッチバック)が必要となる。
この絶縁物のエッチバックの際,堆積絶縁層23の中央部分に図4に示すようなくさび状の溝81が形成されることがある。このくさび状の溝81が形成されてしまう主な理由は次のとおりである。ゲートトレンチ21内の堆積絶縁層23は,CVD法にてゲートトレンチ21の壁面に絶縁物を堆積させることにより形成される。そのため,堆積絶縁層23の中央部分にはシームやボイドが生じる。そして,シームやボイドが生じている堆積絶縁膜23に対してウェットエッチングにてエッチバックを行うと,中央部分にてエッチングが急速に進行する。これにより,堆積絶縁層23の中央部分にくさび状の溝81が形成されてしまうのである。
さらに,くさび状の溝81が形成された堆積絶縁層23上にゲート電極22を形成すると,そのくさび状の溝81内にゲート材が進入することとなる。そして,くさび状の溝81内にゲート材が進入すると,半導体層内の空乏層の伸び方が設計と異なってしまう。その結果,所望の電界分布が形成されず,ドレイン−ソース間の耐圧の低下を招いてしまう。
そこで,堆積絶縁層内に発生するシームやボイドの影響を回避する技術が幾つか提案されている。例えば,一般的な方法として,リン添加ガラス(PSG),ボロン・リン添加ガラス(BPSG)等の不純物をドープした材料を堆積絶縁層の主原料として利用する方法(例えば,特許文献1)がある。この方法は,埋め込み後の熱処理(リフロー)により,埋め込まれた酸化膜が溶融する性質を利用している。
また,この他にボイドやシームの影響を回避する技術として,例えば特許文献2に開示されている半導体装置の製造方法がある。この半導体装置の製造方法では,ドライエッチングにてエッチバックを行い,さらにドライエッチング時のエッチングガスに水素を含むガスを利用している。
特開平8−227935号公報 特開平8−203871号公報
しかしながら,前記した絶縁物の埋め込み方法には,次のような問題があった。すなわち,絶縁ゲート型半導体装置900では,その埋め込み酸化膜がチャネル領域に隣接することとなる。そのため,BPSG等の不純物をドープした酸化膜を絶縁ゲート型半導体装置900に適用する場合,リフロー時にボロン,リン等の不純物がチャネル領域となるシリコン層へ拡散し,素子特性に悪影響を与えることが懸念される。
また,特許文献2に開示された技術は,あくまでドライエッチングによって生じる不具合を回避するものである。しかしながら,絶縁ゲート型半導体装置900のようにトレンチ部の壁面にチャネル領域を設ける半導体装置では,ドライエッチングを行うことによって生じるデポ物や逆スパッタ物等を除去するための洗浄処理を行う必要がある。具体的には,ウェットエッチングを行ってトレンチ部に付着したデポ物や逆スパッタ物等を除去する必要がある。そのため,堆積絶縁層はウェットエッチングにも耐えるものである必要がある。しかし,特許文献2に開示された技術はウェットエッチングによるくさび状の溝の発生を抑制しえない。そのため,素子特性のばらつきの問題が解消するまでには至らない。
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,堆積絶縁層内の膜質を改善し,堆積絶縁層内のシームやボイドの影響による素子特性の劣化を抑制した絶縁ゲート型半導体装置の製造方法を提供することにある。
この課題の解決を目的としてなされた絶縁ゲート型半導体装置の製造方法は,トレンチ型電極構造を有する絶縁ゲート型半導体装置の製造方法であって,半導体基板の上面からトレンチ部を形成するトレンチ部形成工程と,トレンチ部形成工程にてトレンチ部を形成した後に,そのトレンチ部の底部から不純物を注入する不純物注入工程と,不純物注入工程にて不純物を注入した後に,そのトレンチ部内に絶縁物の堆積による堆積絶縁層を形成する絶縁物堆積工程と,絶縁物堆積工程にて堆積絶縁層を形成した後に,堆積絶縁層の一部を除去するエッチバック工程と,エッチバック工程にて堆積絶縁層の一部を除去した後に,水素と酸素との混合気体の酸化性雰囲気中,900℃から1000℃の範囲内の温度にてアニール処理を行うアニール工程と,アニール工程にてアニール処理を行った後に,ウェットエッチングにて表面の酸化膜層を除去するウェットエッチング工程と,ウェットエッチング工程にて酸化膜を除去した後に,トレンチ部の壁面に沿って絶縁膜を形成する絶縁膜形成工程と,絶縁膜形成工程にて絶縁膜を形成した後に,堆積絶縁層の上面上に電極層を形成する電極層形成工程と含んでいる。
本発明の絶縁ゲート型半導体装置の製造方法では,トレンチ部形成工程にてトレンチ部を形成した後に,絶縁物堆積工程にてそのトレンチ部内に絶縁物を堆積している。ここで,トレンチ部内に堆積する絶縁物としては,ボロンやリン等の不純物が添加されていない絶縁物が適しており,例えばシランガスやTEOSを主原料としてCVD法によってトレンチ部の壁面に堆積する酸化膜が該当する。そして,堆積絶縁層を形成した後にエッチバック工程にて堆積絶縁層の一部を除去する。具体的に堆積絶縁層は,ドライエッチングによりのエッチバックされる。
その後,酸化性雰囲気にてアニール処理を行う。例えば,H2 とO2 との混合気体の雰囲気中で酸化アニール処理を行う。このアニール処理によって,シリコン層の表面に酸化膜が成長し,堆積絶縁層中のシームが消滅する。さらに,酸化性雰囲気中にてアニール処理を行っているため,堆積絶縁層の表層部に含まれるシリコン原子の未結合子がSiO2 結合に置換される。すなわち,堆積絶縁層の表層部の化学的結合力が強化される。これにより,その後のウェットエッチング工程にてウェットエッチングを行ったとしても,堆積絶縁層中にくさび状の溝は形成されない。よって,電極形成工程にて形成される電極層の形状は安定している。従って,素子特性にばらつきは生じない。なお,電極層は,絶縁膜を形成した後に,ポリシリコンの堆積,不純物拡散,ポリシリコンのドライエッチング,キャップ酸化等を経て形成される。
また,本発明の絶縁ゲート型半導体装置の製造方法は,絶縁物堆積工程にて堆積絶縁層を形成する前であってトレンチ部形成工程にてトレンチ部を形成した後に,そのトレンチ部の底部から不純物を注入する不純物注入工程を含んでいるとよりよい。すなわち,トレンチ部の底部から不純物を注入することにより,半導体基板の厚さ方向の所望の位置にフローティング領域を設けることができる。このフローティング領域によって,電界集中を緩和し,耐圧を向上させることができる。
また,本発明のトレンチ部形成工程では,テーパ形状のトレンチ部を形成することとするとよりよい。すなわち,トレンチ部の形状がテーパ形状であるため,エッチバック工程時にトレンチ部の肩部が削られて丸みをおびる。そのため,トレンチ部の肩部での電界集中が回避され,高耐圧化を図ることができる。また,そのトレンチ部のテーパの角度が85度から89度までの範囲内であることとするとよりよい。すなわち,テーパの角度が85度より小さいと不純物注入工程にてトレンチ部の壁面に不純物が入り易く,素子特性の変動が大きい。一方,テーパの角度が89度より大きいと絶縁物堆積工程にて絶縁物の埋め込み性が悪い。よって,テーパの角度が85度から89度までの範囲内であれば,酸化膜の埋め込み性が良く,かつイオン注入による素子特性の変動は小さい。
また,本発明の絶縁ゲート型半導体装置は,半導体基板内の上面側に位置し第1導電型半導体であるボディ領域と,ボディ領域の下面と接し第2導電型半導体であるドリフト領域と,半導体基板の上面からボディ領域を貫通しその底部がボディ領域の下面より下方に位置するトレンチ部と,ドリフト領域に囲まれるとともにトレンチ部の底部を包含し,第1導電型半導体であるフローティング領域とを有する絶縁ゲート型半導体装置であって,トレンチ部は,テーパ形状であって,そのテーパの角度が85度から89度までの範囲内であり,トレンチ部内には,絶縁物を堆積してなる堆積絶縁層と,堆積絶縁層上に位置し,ボディ領域と対面する電極層と,電極層とボディ領域とを隔離する絶縁膜とが形成されており,トレンチ部の壁面は,半導体基板の厚さ方向の,堆積絶縁層と電極層との界面の位置にて段状をなしていることを特徴としている
本発明によれば,堆積絶縁層のエッチバックを行った後に酸化性雰囲気中でアニール処理を行っている。これにより,堆積絶縁層の表層部の化学的結合力を強化し,ウェットエッチングによるくさび状の溝の発生を抑制している。従って,堆積絶縁層内の膜質を改善し,堆積絶縁層内のシームやボイドの影響による素子特性の劣化を抑制した絶縁ゲート型半導体装置の製造方法が実現されている。
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,絶縁ゲートへの電圧印加により,ドレイン−ソース間(DS間)の導通をコントロールするパワーMOSに本発明を適用したものである。
実施の形態に係る絶縁ゲート型半導体装置100(以下,「半導体装置100」とする)は,図1の断面図に示す構造を有している。なお,本明細書においては,N+ 基板11(N+ ドレイン領域11)と,N+ 基板11上にエピタキシャル成長により形成した単結晶シリコンの部分とを合わせた全体を半導体基板と呼ぶこととする。
半導体装置100では,半導体基板内における図1中の上面側に,N+ ソース領域31が設けられている。一方,下面側にはN+ ドレイン領域11が設けられている。それらの間には上面側から順に,P- ボディ領域41およびN- ドリフト領域12が設けられている。なお,P- ボディ領域41およびN- ドリフト領域12を合わせた領域(以下,「エピタキシャル層」とする)の厚さは,DS耐圧が70V程度ではおよそ5.5μm(そのうち,P- ボディ領域41の厚さは,およそ1.0μm)である。
また,半導体基板の上面側の一部を掘り込むことによりトレンチ部が形成されている。具体的には,セルエリアにゲートトレンチ21が,終端エリアに終端トレンチ61がそれぞれ設けられている。各トレンチの深さはおよそ2.3μmであり,P- ボディ領域41を貫通している。また,各トレンチは,トレンチ形成直後の段階でその開口部の幅がおよそ0.4μmであり,厚さ方向のドレイン電極側(下面側)に向けてその幅が狭くなる形状,いわゆるテーパ形状に設けられている。また,そのテーパの角度は,85度から89度までの範囲内である。また,ゲートトレンチ21の幅は広い部位でおよそ0.7μmであり,アスペクト比は3以上となっている。
また,ゲートトレンチ21の底部には,絶縁物の堆積による堆積絶縁層23が形成されている。具体的に本形態の堆積絶縁層23では,ゲートトレンチ21の底部からおよそ1.1μmの高さの位置まで酸化シリコンを堆積させている。また,終端トレンチ61には,絶縁物の堆積による堆積絶縁層63が形成されている。終端トレンチ61の内部は,堆積絶縁層63によって充填されている。この堆積絶縁層23および堆積絶縁層63は,シランガスあるいはTEOSを主原料としてCVD法による酸化シリコンの堆積によって形成されたものである。なお,詳細については後述する。
さらに,堆積絶縁層23上には,ポリシリコンの堆積によるゲート電極22が形成されている。また,ゲートトレンチ21の壁面の形状は,堆積絶縁層23とゲート電極22との界面の位置で段状となっている。そして,ゲートトレンチ21の壁面には,その段差より上方の位置にゲート酸化膜24が,下方の位置に熱酸化膜83がそれぞれ形成されている。また,ゲート電極22は,ゲート絶縁膜24を介して半導体基板のN+ ソース領域31およびP- ボディ領域41と対面している。すなわち,ゲート電極22は,ゲート絶縁膜24によりN+ ソース領域31およびP- ボディ領域41から絶縁されている。
このような構造を持つ半導体装置100では,ゲート電極22への電圧印加によりP- ボディ領域41にチャネル効果を生じさせ,もってN+ ソース領域31とN+ ドレイン領域11との間の導通をコントロールしている。
さらに,半導体装置100には,N- ドリフト領域12に囲まれたフローティング領域が形成されている。具体的には,セルエリアにPフローティング領域51が,終端エリアにPフローティング領域53がそれぞれ設けられている。これらのPフローティング領域は,ゲートトレンチ21あるいは終端トレンチ61の底部からボロン等をイオン注入し,その後の熱拡散処理を経て形成された領域であり,各Pフローティング領域は,図1中の正面から見てゲートトレンチ21あるいは終端トレンチ61の底部を中心とした略円形形状となっている。また,隣り合うPフローティング領域間には,十分なスペースがある。よって,オン状態において,Pフローティング領域51の存在がドレイン電流に対する妨げとなることはない。また,Pフローティング領域51の半径は,堆積絶縁層23の厚さの1/2以下である。従って,堆積絶縁層23の上端は,Pフローティング領域51の上端よりも上方に位置する。よって,堆積絶縁層23上に堆積するゲート電極22とPフローティング領域51とは対面していない。
本形態の半導体装置100は,Nー ドリフト領域12内にPフローティング領域51が設けられていることにより,それを有しない絶縁ゲート型半導体装置と比較して,次のような特性を有する。すなわち,DS間への印加電圧によって,N- ドリフト領域12とP- ボディ領域41との間のPN接合箇所からドレイン電極に向けて空乏層が広がる。このとき,そのPN接合箇所の近傍が電界強度のピークとなる。そして,空乏層の先端がPフローティング領域51に到達すると,Pフローティング領域51がパンチスルー状態となってその電位が固定される。さらに,DS間の印加電圧が高い場合には,Pフローティング領域51の下端部からも空乏層が形成される。そして,N- ドリフト領域12とP- ボディ領域41との間のPN接合箇所とは別に,Pフローティング領域51の下端部の近傍も電界強度のピークとなる。すなわち,電界のピークを2箇所に形成でき,最大ピーク値を低減することで高耐圧化を図ることができる。また,高耐圧であることから,N- ドリフト領域12の不純物濃度を上げて低オン抵抗化を図ることができる。
また,半導体装置100では,トレンチ21内に所定の厚みを有する堆積絶縁層23を設けることが必要となる。すなわち,Pフローティング領域51は,後述するようにトレンチ21の底部からのイオン注入等により形成される。そのため,ゲートトレンチ21の底部には少なからず損傷が生じている。そこで,堆積絶縁層23を設けることにより,ゲートトレンチ21の底部の損傷による影響を回避し,素子特性の劣化や信頼性の低下を防止するのである。また,堆積絶縁層23にてゲート電極22とPフローティング領域51との対面による影響を緩和し,Pー ボディ領域41内のオン抵抗を低減している。
続いて,図1に示した半導体装置100の製造プロセスについて,図2のプロセス説明図を基に説明する。なお,図2はゲートトレンチ21の形成プロセスを説明するための説明図であり,P- ボディ領域41,N+ ソース領域31,Pフローティング領域51等の半導体層の構成要素については省略している。また,本製造プロセスでは,N+ ドレイン領域11となるN+ 基板上にN- 型シリコン層をエピタキシャル成長により形成し,その後のイオン注入や熱拡散処理等によりP- ボディ領域41が形成された半導体基板を出発基板とする。なお,P- ボディ領域41,N+ ソース領域31,コンタクトP+ 領域は,ゲートトレンチ21の形成前に形成することもゲートトレンチ21の形成後に形成することもできる。
まず,所望のパターンを転写したマスク材を半導体基板上に形成し,図2(a)に示すようにドライエッチングによりゲートトレンチ21を形成する。このとき,ゲートトレンチ21をテーパ形状となるようにエッチングする。具体的には,ゲートトレンチ21の開口部から下面側に向けて0.5μmまでの範囲で測定したテーパの角度(図2(a)中のθ1)およびゲートトレンチ21の底部から上面側に向けて0.5μmまでの範囲で測定したテーパの角度(図2(a)中のθ2)がともに85度から89度までの範囲内となるようにエッチングする。
なお,テーパの角度を85度から89度までの範囲内とする理由は次のとおりである。すなわち,テーパの角度を85度より小さくするとその後の酸化膜の埋め込み性は向上するが,その後のイオン注入時にゲートトレンチ21の壁面に不純物が注入されてしまう。特に,ゲートトレンチ21の壁面のうちのチャネル領域となる部分に不純物を注入してしまうと素子特性が大幅に変化する。また,テーパの角度を小さくしすぎるとゲートトレンチ21の底部が尖った形状となってしまうため,Pフローティング領域51のサイズをコントロールすることが困難となる。また,深さが深いゲートトレンチ21を形成すると必然的にゲートトレンチ21の開口部が広くなり,半導体装置自体のコンパクト化の妨げとなる。一方,テーパの角度を89度より大きくするとこれらの問題は生じないが,酸化膜の埋め込み性が低下する。そのため,テーパの角度は,85度から89度までの範囲内とすることが適当である。
次に,CDE(ケミカルドライエッチング)等の等方的なエッチング法を利用して各トレンチの壁面を平滑化し,その後に所望の厚さの犠牲酸化膜を形成する。ゲートトレンチ21の底面から不純物のイオン注入を行う。これにより,ゲートトレンチ21の下方にN- ドリフト領域12に囲まれたPフローティング領域51が形成される。犠牲酸化膜の形成後にイオン注入を行うのは,ゲートトレンチ21の側壁に不純物を注入しないようにするためである。イオン注入後は,犠牲酸化膜を除去する。
次に,図2(b)に示すようにゲートトレンチ21の壁面に沿って厚さが30nm〜50nmのシリコン酸化膜85を形成する。すなわち,ゲートトレンチ21内に酸化膜を埋め込む前に,半導体基板の表面上にシリコン酸化膜85を形成する。このシリコン酸化膜85により,後述する絶縁膜の埋め込み性が向上するとともに界面準位の影響を排除することが可能となる。
次に,図2(c)に示すようにゲートトレンチ21に対して不純物がドープされていない,いわゆるノンドープの絶縁膜の埋め込みを行う。この絶縁膜の埋め込み処理では,シリコン酸化膜85上に埋め込み絶縁膜を堆積することでその埋め込み絶縁膜とシリコン酸化膜85とが一体化し,半導体基板上に600nm程度の膜厚の堆積絶縁層23が形成される。具体的には,例えば反応ガスをTEOSとO2 とを含む混合ガスとし,成膜温度を600℃〜680℃として,減圧CVD法によって半導体基板上にTEOS系の酸化膜を形成する。
次に,半導体基板のうちの終端エリアにレジストを形成した後,図2(d)に示すように堆積絶縁層23に対してドライエッチングを行う。これにより,堆積絶縁層23の一部が除去(エッチバック)され,ゲート電極22を形成するためのスペースが確保される。ドライエッチングの手段としては,例えば高選択比エッチングが可能なRIE(反応性イオンエッチング)法が用いられる。すなわち,RIE法にてエッチバックを行うことで,シームの有無に関わらず酸化膜が厚さ方向に均等に除去される。なお,エッチバックに利用するエッチングガスは,エッチングされる材料により適宜選択される。例えば,本形態のようにシリコン酸化膜を除去するには,C48が使用される。また、エッチングガスにはO2 ,Ar等のその他のガスを添加してもよい。
次に,不要なレジストを除去し,絶縁膜が形成された半導体基板に対し,酸化性雰囲気にてアニール処理を行う。具体的には,例えばH2 とO2 との混合気体の雰囲気中,900℃〜1000℃の範囲内の温度により,20分程度の時間,酸化アニール処理を行う。このアニール処理によって堆積絶縁層23の緻密化が図られる。さらに,酸化性雰囲気中にてアニール処理を行っていることから,図2(e)に示すようにゲートトレンチ21の壁面に沿って熱酸化膜83が形成される。この熱酸化膜83の成長により,ゲートトレンチ21中の壁面上に堆積する絶縁膜がそのトレンチの中央部分に向けて押し出される。さらに,堆積絶縁層23の表層部(上面部)では,シリコン原子の未結合子が酸素と反応することでSiO2 結合に置換される。これにより,堆積絶縁層23の表層部では,堆積絶縁層23中のシームが消滅するとともに化学的結合力が強化され,後述するウェットエッチングに対する耐性が向上する。なお,酸化アニール処理の方法としては,例えば水素燃焼酸化法やドライ酸化法がある。
なお,酸化膜を埋め込んだ直後に酸化アニール処理を行うとしてもボイドやシームを消滅させることができるが,本形態のようにエッチバック後に酸化アニール処理を行う方が次の点で有利である。すなわち,酸化膜を埋め込んだ直後に酸化アニール処理では,ゲートトレンチ21内の深い位置に生じたボイド等を消滅させることができないことがある。一方,エッチバック後のアニール処理によれば,ウェットエッチングに対する耐性を強化したい部分について確実にボイド等を消滅させることができるとともに膜質を改善させることができる。よって,より確実にくさび状の溝の発生を抑制することができる。さらに,エッチバック後の酸化アニール処理では,酸化膜を埋め込んだ直後の酸化アニール処理と比較して,低温でかつ短時間で行うことができるために熱負荷が小さい。また,半導体基板に生じる残留応力も小さい。
次に,半導体基板の表面に対して洗浄処理を行う。具体的には,フッ酸系の薬液(例えばBHF(緩衝フッ酸))によるウェットエッチングを行う。このウェットエッチングにより,酸化アニール処理にて半導体基板の表面に形成された熱酸化膜83や堆積絶縁層23の表層部が除去される。これにより,エッチバック時のドライエッチングにてゲートトレンチ21の壁面に生じる付着物やダメージ層が熱酸化膜83とともに除去される。なお,先の酸化アニール処理によって,堆積絶縁層23ではシームが消滅している。そのため,堆積絶縁層23に対してウェットエッチングを行ったとしても,堆積絶縁膜23にくさび状の溝(図4参照)は形成されない。なお,この洗浄処理によってゲートトレンチ21の壁面のうちの露出している部分が僅かに後退する。これにより,図2(f)に示すようにゲートトレンチ21の壁面の形状が段状となる。
その後,熱酸化処理を行い,図2(g)に示すようにエピタキシャル層の表面に膜厚が100nm程度の酸化膜24を形成する。この酸化膜24がゲート酸化膜24となる。具体的には,H2 とO2 との混合気体の雰囲気中,900℃〜1100℃の範囲内の温度にて熱酸化処理を行う。
次に,エッチバックにて確保したスペースに対し,図2(h)に示すようにゲート材22を堆積する。具体的にゲート材22の成膜条件としては,例えば反応ガスをSiH4 を含む混合ガスとし,成膜温度を580℃〜640℃とし,常圧CVD法によって800nm程度の膜厚のポリシリコン膜を形成する。このポリシリコン膜がゲート電極22となる。なお,ゲート電極22を形成する方法としては,導体を直接ゲートトレンチ21内に堆積する方法の他,一旦高抵抗の半導体を堆積させた後にその絶縁層に対して不純物を拡散させる方法がある。最後に,ゲート材22に対してエッチングを行い,その後にソース電極,ドレイン電極等を形成することにより,図1に示したような半導体装置100が作製される。
以上詳細に説明したように,本形態の製造方法にて製造される半導体装置100は,従来の半導体装置の製造方法と比較して,次のような特性を有する。すなわち,ノンドープの堆積絶縁層23を形成し,その堆積絶縁層23の一部をエッチバックした後に酸化アニール処理を行うことにより,ゲートトレンチ21の壁面沿いに熱酸化膜83を形成することとしている。この酸化アニール処理により,堆積絶縁層23の表層部の化学的結合力を強化している。そのため,エッチバック後の洗浄処理(ウェットエッチング)にて,堆積絶縁層23中にくさび状の溝は形成されない。この製造方法によると,アスペクト比が高いトレンチ部内に絶縁物を充填する場合,すなわちトレンチ部内の深い部分にシームが発生する場合であっても確実にくさび状の溝の発生を抑制することができる。そのため,ゲート電極22の形状は安定し,素子特性にばらつきは生じない。よって,堆積絶縁層内の膜質を改善し,堆積絶縁層内のシームやボイドの影響による素子特性の劣化を抑制した絶縁ゲート型半導体装置の製造方法が実現されている。
また,ドライエッチング時にゲートトレンチ21の壁面に生じる付着物やダメージ層の除去は,一般的にCDE(ケミカルドライエッチング)や,犠牲酸化後のウェットエッチングや,これらの併用によって行われる。しかしながら,本形態の製造方法によると,酸化性雰囲気でのアニール処理によってゲートトレンチ21の壁面に熱酸化膜83を成長させている。そして,この熱酸化膜83にエッチバック時のドライエッチングによる付着物やダメージ層が取り込まれる。そのため,熱酸化膜83のウェットエッチング時に,エッチバック時の付着物やダメージ層の除去を兼ねることが可能である。よって,製造工程が簡素化される。
また,ゲートトレンチ21は,85度から89度の範囲内のテーパ角度を有するテーパ形状となっている。この範囲内であれば,酸化膜の埋め込み性が良く,かつイオン注入による素子特性の変動は小さい。
また,犠牲酸化処理や埋め込み前酸化処理を低温で行うと,ゲートトレンチ21の肩部が尖り易い。そして,その肩部が尖れば尖るほどゲート耐圧は低下する。しかし,ゲートトレンチ21の形状をテーパ形状とすることにより,エッチバック時のドライエッチングの際,ゲートトレンチ21の肩部が削られて丸みをおびる。そのため,ゲート耐圧の低下が抑制される。
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,各半導体領域については,P型とN型とを入れ替えてもよい。また,ゲート絶縁膜24については,酸化膜に限らず,窒化膜等の他の種類の絶縁膜でもよいし,複合膜でもよい。また,半導体についても,シリコンに限らず,他の種類の半導体(SiC,GaN,GaAs等)であってもよい。また,実施の形態の絶縁ゲート型半導体装置は,P型基板を用いたパワーMOSやIGBTに対しても適用可能である。
また,本実施の形態では,イオン注入直後にPフローティング領域51を形成しているが,これに限るものではない。すなわち,Pフローティング領域51の形成を後の酸化アニール工程で兼用してもよい。
実施の形態に係る絶縁ゲート型半導体装置の構造を示す断面図である。 実施の形態に係る絶縁ゲート型半導体装置の製造工程を示す図である。 従来の絶縁ゲート型半導体装置の構造を示す断面図である。 くさび状の溝が形成された堆積絶縁層を示す断面図である。
符号の説明
11 N+ ドレイン領域
12 N- ドリフト領域
21 トレンチ(トレンチ部)
22 ゲート電極(電極層)
23 堆積絶縁層(堆積絶縁層)
24 ゲート絶縁膜(絶縁膜)
31 N+ ソース領域
41 P- ボディ領域
51 Pフローティング領域
81 くさび状の溝
82 ボイド
83 熱酸化膜
100 絶縁ゲート型半導体装置

Claims (3)

  1. トレンチ型電極構造を有する絶縁ゲート型半導体装置の製造方法において,
    半導体基板の上面からトレンチ部を形成するトレンチ部形成工程と,
    前記トレンチ部形成工程にてトレンチ部を形成した後に,そのトレンチ部の底部から不純物を注入する不純物注入工程と,
    前記不純物注入工程にて不純物を注入した後に,そのトレンチ部内に絶縁物の堆積による堆積絶縁層を形成する絶縁物堆積工程と,
    前記絶縁物堆積工程にて堆積絶縁層を形成した後に,堆積絶縁層の一部を除去するエッチバック工程と,
    前記エッチバック工程にて堆積絶縁層の一部を除去した後に,水素と酸素との混合気体の酸化性雰囲気中,900℃から1000℃の範囲内の温度にてアニール処理を行うアニール工程と,
    前記アニール工程にてアニール処理を行った後に,ウェットエッチングにて表面の酸化膜層を除去するウェットエッチング工程と,
    前記ウェットエッチング工程にて酸化膜を除去した後に,トレンチ部の壁面に沿って絶縁膜を形成する絶縁膜形成工程と,
    前記絶縁膜形成工程にて絶縁膜を形成した後に,堆積絶縁層の上面上に電極層を形成する電極層形成工程と含むことを特徴とする絶縁ゲート型半導体装置の製造方法。
  2. 請求項1に記載する絶縁ゲート型半導体装置の製造方法において,
    前記トレンチ部形成工程では,テーパの角度が85度から89度までの範囲内であるテーパ形状のトレンチ部を形成することを特徴とする絶縁ゲート型半導体装置の製造方法。
  3. 半導体基板内の上面側に位置し第1導電型半導体であるボディ領域と,前記ボディ領域の下面と接し第2導電型半導体であるドリフト領域と,半導体基板の上面から前記ボディ領域を貫通しその底部が前記ボディ領域の下面より下方に位置するトレンチ部と,前記ドリフト領域に囲まれるとともに前記トレンチ部の底部を包含し,第1導電型半導体であるフローティング領域とを有する絶縁ゲート型半導体装置において,
    前記トレンチ部は,テーパ形状であって,そのテーパの角度が85度から89度までの範囲内であり,
    前記トレンチ部内には,
    絶縁物を堆積してなる堆積絶縁層と,
    前記堆積絶縁層上に位置し,前記ボディ領域と対面する電極層と,
    前記電極層と前記ボディ領域とを隔離する絶縁膜とが形成されており,
    前記トレンチ部の壁面は,半導体基板の厚さ方向の,前記堆積絶縁層と前記電極層との界面の位置にて段状をなしていることを特徴とする絶縁ゲート型半導体装置。
JP2004158575A 2004-05-28 2004-05-28 絶縁ゲート型半導体装置およびその製造方法 Expired - Fee Related JP4447377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158575A JP4447377B2 (ja) 2004-05-28 2004-05-28 絶縁ゲート型半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158575A JP4447377B2 (ja) 2004-05-28 2004-05-28 絶縁ゲート型半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005340552A JP2005340552A (ja) 2005-12-08
JP4447377B2 true JP4447377B2 (ja) 2010-04-07

Family

ID=35493760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158575A Expired - Fee Related JP4447377B2 (ja) 2004-05-28 2004-05-28 絶縁ゲート型半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP4447377B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450241B2 (ja) 2007-03-20 2010-04-14 株式会社デンソー 炭化珪素半導体装置の製造方法
JP2008270365A (ja) * 2007-04-17 2008-11-06 Toyota Motor Corp 半導体装置とその製造方法
WO2009067364A1 (en) 2007-11-20 2009-05-28 S.O.I.Tec Silicon On Insulator Technologies Transfer of high temperature wafers
JP5353174B2 (ja) * 2008-10-08 2013-11-27 トヨタ自動車株式会社 半導体装置の製造方法
JP5483693B2 (ja) * 2009-12-17 2014-05-07 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US9640655B2 (en) 2013-01-24 2017-05-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of semiconductor device
JP2020047729A (ja) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2005340552A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
TWI580052B (zh) 具有豎直電荷補償結構和次級表面連接層的半導體裝置以及方法
US7459365B2 (en) Method for fabricating a semiconductor component
KR101632938B1 (ko) 밀봉 플러그를 구비한 반도체 트렌치 구조와 방법
JP4404709B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
US20100200912A1 (en) Mosfets with terrace irench gate and improved source-body contact
JP5790573B2 (ja) 炭化珪素半導体装置およびその製造方法
JP4735414B2 (ja) 絶縁ゲート型半導体装置
JP5054735B2 (ja) 半導体基材内に材料層を製造する方法
KR20200018301A (ko) 수직 전원 장치의 접촉 임플란트 외부 확산 감소를 위한 산소 삽입형 Si 층
JP2022088613A (ja) 半導体装置の製造方法
JP4500558B2 (ja) 絶縁ゲート型半導体装置の製造方法
JP2013182934A (ja) 半導体装置およびその製造方法
JP4447377B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
US9691864B1 (en) Semiconductor device having a cavity and method for manufacturing thereof
JP4595345B2 (ja) 半導体装置の製造方法
JP5446297B2 (ja) 半導体装置の製造方法
JP4500598B2 (ja) 絶縁ゲート型半導体装置の製造方法
US11171231B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
JP4491307B2 (ja) 半導体装置およびその製造方法
JP4622905B2 (ja) 絶縁ゲート型半導体装置の製造方法
US10707342B2 (en) Transistor having at least one transistor cell with a field electrode
JP2005252204A (ja) 絶縁ゲート型半導体装置およびその製造方法
JP5055722B2 (ja) 半導体装置および半導体装置の製造方法
TWI460823B (zh) 製造溝槽式金屬氧化物半導體場效電晶體的方法
JP5353174B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4447377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees