JP4446827B2 - 冷却システム - Google Patents

冷却システム Download PDF

Info

Publication number
JP4446827B2
JP4446827B2 JP2004216348A JP2004216348A JP4446827B2 JP 4446827 B2 JP4446827 B2 JP 4446827B2 JP 2004216348 A JP2004216348 A JP 2004216348A JP 2004216348 A JP2004216348 A JP 2004216348A JP 4446827 B2 JP4446827 B2 JP 4446827B2
Authority
JP
Japan
Prior art keywords
storage tank
heat storage
temperature
heat
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004216348A
Other languages
English (en)
Other versions
JP2006038301A (ja
Inventor
義記 西脇
恒男 仲摩
茂 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Suntory Holdings Ltd
Original Assignee
Mayekawa Manufacturing Co
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Suntory Holdings Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP2004216348A priority Critical patent/JP4446827B2/ja
Priority to CNB2005800241990A priority patent/CN100529585C/zh
Priority to US11/632,650 priority patent/US7836721B2/en
Priority to PCT/JP2005/013429 priority patent/WO2006009231A1/en
Priority to EP05762073A priority patent/EP1782007A1/en
Publication of JP2006038301A publication Critical patent/JP2006038301A/ja
Application granted granted Critical
Publication of JP4446827B2 publication Critical patent/JP4446827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷却システム、特に飲料製品の製造時に使用される冷却システムに関する。
アルコール飲料の一種であるビールの醸造においては、仕込工程、発酵工程、貯酒工程および濾過工程の四つの工程が存在している。仕込工程においては、麦芽を含んだ温水を煮沸することにより形成された麦汁に含まれるモロミを濾過して該麦汁が形成される。この麦汁は、続く発酵工程において、冷却された後に酵母が加えられて発酵される。次いで、発酵直後の若ビール等醗酵麦芽飲料は貯酒工程において熟成され、熟成したビール等醗酵麦芽飲料は濾過工程において濾過される。最終的には、濾過されたビール等醗酵麦芽飲料はフィラー(図示しない)によって缶などに充填された後、シーマー機によって密封封止され、製品として出荷される。
ところで、前述した四つの工程においては、各工程に応じて定まる所定の温度での冷却処理が行われている。そして、四つの工程のうちの仕込工程においては、約20℃に至るまでは、いくぶん低温の水、例えば井戸水によって冷却処理が行われているが、いずれの工程における冷却処理についても、仕込工程での井戸水による冷却処理の冷却温度よりも低い温度が要求されるので、このような低い温度を形成することのできる冷却システムが使用されている。なお、これら三つの工程における冷却温度は仕込工程、発酵工程、貯酒工程および濾過工程の順で低くなっている。
図5は従来技術に基づく冷却システムの概略図である。図5に示されるように、従来技術に基づく冷却システム100は、冷媒、例えばグリコール系不凍液であるブラインが充填された蓄熱槽200を備えている。この蓄熱槽200は冷凍機群210によって通路220を通じて冷却される。また、図示されるように、従来技術の冷却システム100においては、互いに略並列に配置された三つの循環通路110、120、130が蓄熱槽200に接続されている。これら循環通路110、120、130は三つの冷却負荷、即ち低温負荷113、中温負荷123、高温負荷133にそれぞれ接続され、熱交換されている。又、冷却負荷温度は、低温負荷113、中温負荷123、高温負荷133の順番で高くなっており、例えば低温負荷113はビール醸造時における貯酒工程および濾過工程、中温負荷123は同発酵工程、そして高温負荷133は仕込工程にそれぞれ該当する。
図5に示される冷却システム100においては、蓄熱槽200内のブラインが冷凍機群210によって低温負荷113において必要とされる冷却温度以下まで冷却される。次いで、冷却されたブラインが図示しないポンプによって循環通路110、120、130をそれぞれ循環する。従って、ブラインが各循環通路110、120、130を通過することにより、低温負荷113、中温負荷123、高温負荷133のそれぞれを適切に冷却することができる。
しかしながら、図5に示される冷却システム100は単一の冷凍機群210のみによって低温負荷113、中温負荷123、高温負荷133の全てに対応できるようにしているので、蓄熱槽200内のブラインを低温負荷113で必要とされる冷却温度以下まで冷却する必要がある。そして、中温負荷123、高温負荷133に関しては、必要以上に低い温度にされたブラインにて、冷却することとなっていた。つまり、従来技術の冷却システム100においては、低温負荷113で必要とされる冷却温度を形成する冷凍機群210を中温負荷123、高温負荷133についても使用しているので、冷却に伴うエネルギ損失が大きい。また、従来技術の冷却システム100においては、単一の冷凍機群210のみによって、低温負荷113、中温負荷123、高温負荷133の全てに対応しているので、ブラインを所定の温度にまで冷却するのに多大な時間およびエネルギを要し、冷凍機群210のランニングコストを大きく悪化させていた。さらに、比較的高粘度のブラインをポンプによって循環通路110、120、130の全てに供給することも、多大なエネルギ損失につながっていた。
ところで、アルコール飲料以外の飲料、例えばウーロン茶、緑茶、炭酸飲料、コーヒー飲料などの清涼飲料を製造する際にも、いくつかの工程においては、冷却処理が行われている。これら冷却処理の中には、いくぶん低温の水、例えば井戸水を用いて冷却される場合もあるが、これら冷却処理の大部分はビール醸造時の場合の中温負荷123、高温負荷133での冷却温度に相当する温度が必要とされるので、アルコール飲料以外の飲料を製造する際にも同様な冷却システムが必要とされる。なお、前述した低温負荷113の必要冷却温度は0℃以下であるが、アルコール飲料以外の飲料は凍結のために0℃以下の温度で冷却することはできず、従って、低温負荷113は必要とされない。
図6は、アルコール飲料以外の飲料の製造時に使用される冷却システムの略図である。図6に示される冷却システム300は、水が充填された蓄熱槽400を備えている。この蓄熱槽400は冷凍機群410によって通路420を通じて冷却される。また、図示されるように、従来技術の冷却システム300においては、互いに略並列に配置された二つの循環通路320、330が蓄熱槽400に接続されている。循環通路320には中温負荷323が接続され、また循環通路330には高温負荷333が接続されている。これら中温負荷323、高温負荷333において要求される冷却温度はこの順番で高くなっているものとする。
図6に示される冷却システム300においては、蓄熱槽400内の水が冷凍機群410によって中温負荷323において必要とされる冷却温度以下まで冷却される。次いで、冷却された水が図示しないポンプによって循環通路320、330をそれぞれ循環する。従って、水が各循環通路320を通過することにより中温負荷323が適切に冷却され、また水が各循環通路330を循環することにより高温負荷333を適切に冷却することができる。なお、図6に示される冷却システム300の中温負荷323および高温負荷333は製造される飲料の種類に応じてその必要冷却温度は異なっているものとする。また、図6の冷却システム300においては二種類の温度負荷、つまり中温負荷323および高温負荷333のみしか示されていないが、製造される飲料の種類によっては、これら温度負荷の種類がさらに増える場合、または中温負荷323および高温負荷333のいずれか一方のみしか必要としない場合もありうる。
周知であるように、アルコール飲料、例えばビールはビール専用のビール製造工場において製造されており、またアルコールを含まない一般的な飲料、例えばウーロン茶、緑茶、炭酸飲料、コーヒー飲料などの清涼飲料は、ビール製造工場とは別個の飲料製造工場において製造されている。ところが、近年では、このようなビール製造工場と飲料製造工場とを同一の敷地内に集約することが考えられている。このような場合には、ビールと他の飲料とを同一の保管倉庫で保管できる上に、一部の工程、例えば検査工程においては同一の装置を共用できるなどの利点が得られると想像される。
しかしながら、前述した冷却システム100または冷却システム300をビール製造時における冷却処理とアルコール以外の飲料の製造時における冷却処理との両方に採用する場合を想定すると、以下のような不具合が生じうる。
例えばビール醸造時に使用される冷却システム100を同時にアルコール以外の飲料製造時に使用することを想定すると、アルコール以外の飲料製造時には低温負荷は存在しないので、冷却システム100の中温負荷123および高温負荷133の容量だけがビール醸造時にのみの場合よりも増す状態となる。しかしながら、冷却システム100においては単一の冷凍機群210のみによって低温負荷113、中温負荷123、高温負荷133の全てに対応するようにしているので、低温負荷の容量が増えない場合であっても、中温負荷123および高温負荷133の容量を増やすためには低温負荷113の容量も同時に増やす必要があり、このために冷凍機群210を大型化させる必要がある。そもそも、低温負荷113における必要冷却温度は0℃以下であり、このような温度を形成するためにブラインを使用しているのである。従って、低温負荷113が存在しないアルコール以外の飲料製造のために低温負荷113の容量を増やすことは多大なエネルギ損失につながる。
また、アルコール以外の他の飲料製造時に使用される冷却システム300を同時にビール醸造時に使用することを想定すると、冷却システム300には低温負荷113が存在していないために、冷却システム300をビール醸造時に使用することはできない。これらのことから、ビールの醸造時とアルコール以外の他の飲料の製造時に使用される新規な冷却システムを開発することが求められている。
本発明はこのような事情に鑑みてなされたものであり、エネルギ損失を低減すると共に、特にビール醸造時の冷却処理と他の飲料製造時の冷却処理とを行う際に有利な冷却システムを提供することを目的とする。
前述した目的を達成するために1番目に記載の発明によれば、水を貯蔵する第一蓄熱槽と、該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第二熱負荷が配置される第二循環通路とを具備し、前記第二熱負荷は前記第一熱負荷よりも熱的に高くなっており、さらに、前記第二循環通路の前記第二熱負荷と前記第一蓄熱槽との間に配置されていて水を貯蔵する第二蓄熱槽とを具備し、前記第二循環通路は前記第二蓄熱槽の上方部分に水を供給すると共に前記第二蓄熱槽の上方部分からの水を前記第一蓄熱槽の上方部分に供給するようになっており、さらに、前記第二循環通路において前記第二蓄熱槽と前記第一蓄熱槽との間に設けられていて前記第二蓄熱槽の上方部分からの水に蓄熱する第二冷凍機とを具備し、該第二冷凍機の冷却出力温度は前記第一冷凍機よりも高く設定されている冷却システムが提供される。
すなわち1番目の発明においては、通常時にはランニングコストを低減することができる。
2番目の発明によれば、水を貯蔵する第一蓄熱槽と、該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第二熱負荷が配置される第二循環通路とを具備し、前記第二熱負荷は前記第一熱負荷よりも熱的に高くなっており、さらに、前記第二循環通路の前記第二熱負荷と前記第一蓄熱槽との間に配置されていて水を貯蔵する第二蓄熱槽とを具備し、前記第二循環通路は前記第二蓄熱槽の上方部分に水を供給すると共に前記第二蓄熱槽の上方部分からの水を前記第一蓄熱槽の上方部分に供給するようになっており、さらに、前記第二循環通路において前記第二蓄熱槽と前記第一蓄熱槽との間に設けられていて前記第二蓄熱槽の上方部分からの水に蓄熱する第二冷凍機群とを具備し、該第二冷凍機群を構成する冷凍機の一部ないし全部の冷却出力温度は前記第一冷凍機よりも高く設定されている冷却システムが提供される。
すなわち2番目の発明においては、通常時にはランニングコストを低減することができる。また、第一熱負荷、つまり中温負荷に対する要求が高い場合には、第二冷凍機群を構成する冷凍機の一部の冷却出力温度を、第一冷凍機の冷却出力温度と同等とすることで、これに対応できる。さらに、第二熱負荷、つまり高温負荷に対する要求が高い場合には、第二冷凍機群において、第一冷凍機の冷却出力温度よりも高い冷凍機の割合を増やすことで、これに対応できる。特に、季節に基づく需給の変動によって中温負荷および高温負荷に対する要求が変動するようなビールと他の飲料とを同一の施設で製造する工場においては、2番目の発明は特に有利である。
3番目の発明によれば、1番目の発明において、さらに、前記第一蓄熱槽の上方部分からの水を前記第二蓄熱槽の下方部分まで供給する供給通路を具備する。
すなわち3番目の発明においては、通常時にはランニングコストを低減することができる。また、第一蓄熱槽、つまり中温用蓄熱槽の上方部分からの水を第二蓄熱槽、つまり高温用蓄熱槽の下方部分まで供給する供給通路によって第二蓄熱槽と第一蓄熱槽とが物理的に接続される。そして、第二蓄熱槽の下方部分の温度と第一蓄熱槽の上方部分の温度とが概ね等しいために、第二蓄熱槽と第一蓄熱槽との両方を一体的な単一の蓄熱槽として使用することができる。従って、3番目の発明においては、第一熱負荷、つまり中温負荷に対する要求が高い場合には、前述した供給通路を用いると共に、第二冷凍機の冷却出力温度を第一冷凍機と同等にすることにより、かかる要求に対応できる。
4番目の発明によれば、2番目の発明において、さらに、前記第一蓄熱槽の上方部分からの水を前記第二蓄熱槽の下方部分まで供給する供給通路を具備する。
すなわち4番目の発明においては、通常時にはランニングコストを低減することができる。また、第一蓄熱槽、つまり中温用蓄熱槽の上方部分からの水を第二蓄熱槽、つまり高温用蓄熱槽の下方部分まで供給する供給通路によって第二蓄熱槽と第一蓄熱槽とが物理的に接続される。そして、第二蓄熱槽の下方部分の温度と第一蓄熱槽の上方部分の温度とが概ね等しいために、第二蓄熱槽と第一蓄熱槽との両方を一体的な単一の蓄熱槽として使用することができる。従って、4番目の発明においては、第一熱負荷、つまり中温負荷に対する要求が高い場合、または第二熱負荷、つまり高温負荷に対する要求が高い場合には、前述した供給通路を用いると共に、第二冷凍機群の一部ないし全部の冷凍機の冷却出力温度を第一冷凍機と同等にすることにより、かかる要求に対応できる。
5番目の発明によれば、2番目または4番目のいずれかの発明において、さらに、前記第一蓄熱槽の上方部分から該第一蓄熱槽の下方部分までを循環するサブ循環通路を具備し、前記第二冷凍機群が前記サブ循環通路に設けられている。
すなわち5番目の発明においては、サブ循環通路によって、第二冷凍機群、つまり高温用冷凍機群を第一蓄熱槽、つまり中温用蓄熱槽のために用いることができる。従って、5番目の発明においては、第一熱負荷、つまり中温負荷に対する要求が高い場合には、第二冷凍機群のうちの一部ないし全部の冷凍機の冷却出力温度を第一冷凍機と同等にすることにより、かかる要求に対応できる。また、第一冷凍機が不作動となった場合であっても第二冷凍機群を同様に設定することにより、第二冷凍機群を第一冷凍機のバックアップとして使用することができる。
6番目の発明によれば、1番目から5番目のいずれかの発明において、さらに、ブラインを貯蔵するブライン蓄熱槽と、該ブライン蓄熱槽に接続されていて該ブライン蓄熱槽のブラインに蓄熱するブライン用冷凍機と、前記ブライン蓄熱槽の下方部分から該ブライン蓄熱槽の上方部分までを循環していて第三熱負荷が配置される第三循環通路とを具備し、前記第三熱負荷は前記第一熱負荷よりも熱的に低くなっている。
7番目の発明によれば、6番目の発明において、さらに、前記ブライン蓄熱槽と前記第一蓄熱槽との間で熱交換する熱交換器を具備する。
すなわち6番目および7番目の発明においては、熱交換器によって、ブライン蓄熱槽の冷熱を第一蓄熱槽、つまり中温用蓄熱槽に伝えることができ、従って、中温負荷に対する要求が高い場合および第一冷凍機群が不作動となった場合であっても、ブライン蓄熱槽をバックアップとして使用することによって、これに対応することができる。
8番目の発明によれば、水を貯蔵する第一蓄熱槽と、該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、さらに、ブラインを貯蔵するブライン蓄熱槽と、該ブライン蓄熱槽に接続されていて該ブライン蓄熱槽のブラインに蓄熱するブライン用冷凍機と、前記ブライン蓄熱槽の下方部分から該ブライン蓄熱槽の上方部分までを循環していて第三熱負荷が配置される第三循環通路とを具備し、前記第三熱負荷は前記第一熱負荷よりも熱的に低くなっている。
9番目の発明によれば、8番目の発明において、さらに、前記ブライン蓄熱槽と前記第一蓄熱槽との間で熱交換する熱交換器を具備する冷却システムが提供される。
すなわち8番目および9番目の発明においては、熱交換器によって、ブライン蓄熱槽の冷熱を第一蓄熱槽、つまり中温用蓄熱槽に伝えることができ、従って、中温負荷に対する要求が高い場合および第一冷凍機が不作動となった場合であっても、ブライン蓄熱槽をバックアップとして使用することによって、これに対応することができる。
各発明によれば、通常時にはランニングコストを低減することができるという効果を奏しうる。
さらに、2番目の発明によれば、第一熱負荷または第二熱負荷に対する要求が高い場合には、これに対応できるという効果を奏しうる。
さらに、3番目の発明によれば、第一熱負荷に対する要求が高い場合には、前述した供給通路を用いると共に、第二冷凍機の冷却出力温度を第一冷凍機と同等にすることにより、かかる要求に対応できるという効果を奏しうる。
さらに、4番目の発明によれば、第一熱負荷に対する要求が高い場合、または第二熱負に対する要求が高い場合には、前述した供給通路を用いると共に、第二冷凍機群の一部ないし全部の冷凍機の冷却出力温度を第一冷凍機と同等にすることにより、かかる要求に対応できるという効果を奏しうる。
さらに、5番目の発明によれば、第二冷凍機群を第一冷凍機のバックアップとして使用することができるという効果を奏しうる。
さらに、6番目および7番目の発明によれば、中温負荷に対する要求が高い場合および第一冷凍機群が不作動となった場合であっても、ブライン蓄熱槽をバックアップとして使用することによって、これに対応することができるという効果を奏しうる。
さらに、8番目および9番目の発明によれば、中温負荷に対する要求が高い場合および第一冷凍機群が不作動となった場合であっても、ブライン蓄熱槽をバックアップとして使用することによって、これに対応することができるという効果を奏しうる。
以下、添付図面を参照して本発明の実施形態を説明する。以下の図面において同一の部材には同一の参照符号が付けられている。理解を容易にするために、これら図面は縮尺を適宜変更している。
図1は、本発明の実施形態に基づく冷却システムの概略図である。この冷却システム10は、図1の右方に示される低温負荷91と、図1の左方に示される中温負荷92および高温負荷93とを適切に冷却するのに使用される。
これら負荷において冷却負荷温度は高温負荷93、中温負荷92および低温負荷91の順で低くなっている。前述したようにビール醸造時においては、冷却システムを用いて冷却処理を必要とする工程、つまり仕込工程、発酵工程、貯酒工程および濾過工程が存在している。仕込工程において麦汁を冷却するのに必要な温度は約12℃〜約8℃であるので、仕込工程における前述した井戸水による冷却処理後の麦汁は冷却システム10における高温負荷93とされる。また、発酵工程において若ビールを熟成するのに必要な温度は約10℃から約6℃であるので、発酵工程において熟成される若ビールは冷却システム10における中温負荷92とされる。さらに、貯酒工程、濾過工程におけるビールを冷却するのに必要な温度は約0℃からビール凍結温度までであるので、貯酒工程、濾過工程におけるビールは冷却システム10における低温負荷91とされるものとする。
また、詳細には説明しないものの、ビール以外の飲料、例えばコーヒーまたはウーロン茶などの清涼飲料を製造する際にも冷却システム10による冷却処理を必要とする工程が存在し、このときの温度は約10℃から約8℃程度である。従って、清涼飲料の製造時に、冷却されるべき飲料は主として冷却システム10における中温負荷92及び高温負荷93とされる。
図1に示されるように、本発明に基づく冷却システム10は、低温負荷91を冷却するのに用いられる低温用蓄熱槽20を含んでいる。低温用蓄熱槽20には、冷媒、例えばグリコール系不凍液であるブラインが充填されている。図示されるように、低温用蓄熱槽20は通路22を介して低温用冷凍機群21に接続されている。低温用蓄熱槽20は、さらに、循環通路23を介して低温負荷91に接続されている。また、低温用蓄熱槽20内のブラインは低温用冷凍機群21によって冷却される。このブラインの冷熱は循環通路23を循環するときに低温負荷91に伝えられる。低温用冷凍機群21によって冷却される低温用蓄熱槽20内のブラインの温度は、所定の温度、例えば約−6℃から約−3℃であり、この温度は、低温負荷91を約0℃からビール凍結温度までの温度に冷却するのに適している。
さらに、図1における冷却システム10は、中温負荷92を冷却するのに用いられる中温用蓄熱槽40を含んでいる。中温用蓄熱槽40には水が充填されている。低温用蓄熱槽20の場合と同様に、中温用蓄熱槽40も通路42を介して中温用冷凍機群41に接続されている。図1に示されるように、循環通路43が中温用蓄熱槽40の下方部分から延びていて中温用蓄熱槽40の上方部分に接続しており、循環通路43には中温負荷92が設けられている。中温用蓄熱槽40内の水は中温用冷凍機群41によって冷却され、この水の冷熱は循環通路43を循環するときに中温負荷92に伝えられる。また、中温用冷凍機群41によって冷却される中温用蓄熱槽40内の水の温度は、所定の温度、例えば5℃であり、この温度は中温負荷92を約10℃から約6℃に冷却するのに適している。
さらに、中温用蓄熱槽40には別の循環通路44も接続されている。図1に示されるように、循環通路44は通路44a、通路44bおよび通路44cから構成されている。図1においては、中温用蓄熱槽40の下方部分から延びる通路44aは分岐点49までは循環通路43と同じであって、分岐点49以降は別の通路として示されている。図示されるように、分岐点49の下流における通路44aには高温負荷93が設けられている。中温用冷凍機群41により冷却された水の冷熱は通路44aに設けられた高温負荷93に伝えられる。さらに、通路44aは、冷却システム10に備えられた高温用蓄熱槽50の上方部分に接続している。循環通路44の一部分である通路44aには中温用蓄熱槽40からの水が流れているので、高温用蓄熱槽50にも水が充填されることとなる。さらに、図1から分かるように、高温用蓄熱槽50の上方部分から延びる循環通路44の一部の通路44bは高温用冷凍機群51に接続している。さらに、図1に示されるように、高温用冷凍機群51から延びる循環通路44の一部の通路44cは中温用蓄熱槽40の上方部分に接続している。
図2は、中温用冷凍機群を拡大して示す拡大概略図である。図2に示される中温用冷凍機群41は複数の冷凍機Aから冷凍機Kより構成されている。これら冷凍機AからKは、冷却システム10の動作時に全て使用されるとは限らず、要求される熱負荷に応じて冷凍機AからKの一部またはこれら全てが使用されるものとする。中温用冷凍機群41に関連する熱負荷、例えば中温負荷92の要求冷却度合が比較的小さい場合、つまり中温負荷92の容量が比較的小さい場合には一部の冷凍機群、例えば冷凍機AからCのみを使用し、中温負荷92の要求冷却度合いが比較的大きい場合、つまり中温負荷92の容量が比較的大きい場合には例えば全ての冷凍機AからKを使用できるように設定できる。また、予め、中温用冷凍機群41を一の冷凍機のみから構成していてもよい。
高温用冷凍機群51、中温用冷凍機群41、ならびに低温用冷凍機群21をそれぞれ構成する個々の冷凍機は、いずれも同等の冷却出力を得ることのできる仕様とされている。ここに、冷却出力温度とは、これら冷凍機を通った後における、ブラインや水等の冷媒の温度を意味する。即ち、高温冷凍機群51を構成する個々の冷凍機、中温冷凍機群41を構成する個々の冷凍機は、いずれも、冷凍機の冷媒の膨張等の条件を適宜設定することで、低温冷凍機群21を構成する個々の冷凍機と同等の冷却出力温度を得ることも出来る。そして、本発明においては、中温用冷凍機群41は、中温用冷凍機群41を構成する一又は複数の冷凍機の冷却出力温度が低温用冷凍機群21を構成する個々の冷凍機よりも高くなるよう設定されている。この為、低温用冷凍機群21のみを用いるのに比べ、ランニングコストを安価にできる。また、高温用冷凍機群51は、高温用冷凍機群51の、一又は複数の冷凍機の冷却出力温度が、中温用冷凍機群41を構成する個々の冷凍機よりも高くなるよう設定されている。この為、低温用冷凍機群21および中温用冷凍機群41のみを用いるのに比べ、更にランニングコストを安価にできる。尚、図面には示さないものの、高温用冷凍機群51も低温用冷凍機群21も、中温用冷凍機群41と同様に複数の冷凍機AからKより構成されており、一の冷凍機のみから構成してもよい。
再び図1を参照すると、中温用蓄熱槽40の上方部分から延びるサブ循環通路61が高温用冷凍機群51を通って中温用蓄熱槽40の下方部分に接続している。
さらに、図1に示されるように、別の循環通路31が低温用蓄熱槽20に設けられており、さらに別の循環通路32が中温用蓄熱槽40に設けられている。そして、図1から分かるように、これら循環通路31、32は熱交換器30によって互いに熱的に接続されている。
さらに、図1においては、中温用蓄熱槽40の上方部分から高温用蓄熱槽50の下方部分までを接続する供給通路65が示されている。なお、低温用蓄熱槽20内のブライン、ならびに中温用蓄熱槽40および高温用蓄熱槽50内の水はそれぞれ図示しないポンプによって図1に示される矢印の方向に適宜圧送されているものとする。この場合、高粘度のブラインは循環通路23においてのみ循環されるので、低温用蓄熱槽20に使用されるポンプは従来技術の場合よりも小容量のポンプで足りる。
図示される冷却システム10の動作時には、前述したビール醸造時の麦汁、若ビール等が低温負荷91、中温負荷92または高温負荷93として、および他の飲料製造時の飲料が中温負荷92又は高温負荷93として冷却システム10に接続される。次いで、低温用冷凍機群21、中温用冷凍機群41および高温用冷凍機群51のそれぞれを駆動する。これにより、低温用蓄熱槽20内のブラインは約−5℃にまで冷却され、中温用蓄熱槽40内の水は約5℃にまで冷却されると共に高温用蓄熱槽50内の水は約10℃から13℃にまで冷却される。
低温用蓄熱槽20における温度が約−5℃のブラインは低温用蓄熱槽20の下方部分から循環通路23に流入する。循環通路23を循環するときには、ブラインは低温負荷91を例えば約0℃からビール凍結温度までの温度に冷却する。低温負荷91通過後のブラインは約−2℃にまで温度上昇して、循環通路23を通じて低温用蓄熱槽20の上方部分に流入する。ブラインは低温用蓄熱槽20において低温用冷凍機群21により再び冷却される。
同様に、中温用蓄熱槽40における温度が約5℃の水は中温用蓄熱槽40の下方部分から循環通路43に流入する。この水は循環通路43における中温負荷92を約10℃から約6℃の温度にまで冷却し、水自体は約10℃から約13℃にまで温度上昇して、循環通路43を通じて中温用蓄熱槽40の上方部分に流入する。同様に中温用蓄熱槽40内の水は中温用冷凍機群41によって冷却される。
さらに、中温用蓄熱槽40において温度が約5℃の水は分岐点49において分岐して循環通路44の一部の通路44aに流入する。次いで、水は通路44aの高温負荷93を約10℃にまで冷却し、水自体は約20℃程度にまで温度上昇して高温用蓄熱槽50の上方部分に流入する。次いで、水は高温用蓄熱槽50の上方部分から通路44bを通じて高温用冷凍機群51に流入し、高温用冷凍機群51において約10℃から約13℃に冷却される。次いで、水は高温用冷凍機群51から通路44cを通じて中温用蓄熱槽40の上方部分に流入する。
ここで、図3(a)は中温用蓄熱槽を拡大して示す拡大略図である。前述したように、中温用蓄熱槽40の下方部分から流出する水の温度は約5℃であるが、この水は中温負荷92を冷却するときに温度上昇するので、循環通路43を通じて中温用蓄熱槽40の上方部分に再び流入するときの水の温度は約10℃から約13℃になる。また、高温用蓄熱槽50からの水も高温用冷凍機群51によって約10℃から約13℃にまで冷却されて、通路44cを通じて中温用蓄熱槽40の上方部分に流入する。一方、中温用蓄熱槽40の上方部分に在る温度約10℃から約13℃の水は、中温用冷凍機群41によって温度約5℃にまで冷却されて中温用蓄熱槽40の下方部分に戻る。周知であるように、流体は温度の高いものが上方に集まると共に温度の低いものが下方に集まる傾向がある。従って、中温用蓄熱槽40内における水は成層している。つまり、図3(a)に示されるように、中温用蓄熱槽40においては、温度約10℃から約13℃程度の上方層45と温度約5℃程度の下方層46とが形成されるようになる。実際には、上方層45と下方層46との間には複数の温度分布層が形成されるが、理解を容易にするために、これら温度分布層については図示および説明を省略する。
図3(b)は、高温用蓄熱槽を拡大して示す拡大略図である。前述したように通路44a内の水の温度は約5℃であるが、この水は高温負荷93を冷却するときに温度上昇するので、高温用蓄熱槽50の上方部分に流入するときの温度は約20℃である。この水は通路44bを通じて高温用冷凍機群51に供給され、高温用冷凍機群51において約10℃から約13℃に冷却された後で通路44cを通じて中温用蓄熱槽40の上方部分に流入する(図3(a)を参照されたい)。そして、図1に示される供給通路65によって、中温用蓄熱槽40の上方部分に在る水(温度約10℃から約13℃)が高温用蓄熱槽50の下方部分に供給される。従って、中温用蓄熱槽40の場合と同様に、水は高温用蓄熱槽50内において成層し、図3(b)に示されるように、温度約20℃程度の上方層55と温度約10℃から約13℃程度の下方層56とが形成されるようになる。この場合にも上方層55と下方層56との間には複数の温度分布層が形成されるが、理解を容易にするために、これら温度分布層については図示および説明を省略する。
このように、本発明においては、供給通路65によって高温用蓄熱槽50の下方部分と中温用蓄熱槽40の上方部分とを接続している。そして、前述したように高温用蓄熱槽50の下方層56の温度と、中温用蓄熱槽40の上方層45の温度とは概ね等しい。つまり、このような場合には、高温用蓄熱槽50が中温用蓄熱槽40の上方に配置されて、これら蓄熱槽50、40が擬似的に一体化していると解釈することができる。すなわち、本発明の冷却システムの一部を拡大して示す拡大概念図である図4に示されるように、高温用蓄熱槽50と中温用蓄熱槽40とは、供給通路65(図4には示さない)によって一体化された単一蓄熱層70として解釈することが可能である。
また、このような場合には、高温用冷凍機群51は通路44bによって高温用蓄熱槽50の上方層55に接続されており、さらに高温用冷凍機群51は通路44cによって中温用蓄熱槽40の上方層45に接続されているといえる。さらに、中温用冷凍機群41は通路42によって中温用蓄熱槽40の上方層45と下方層46とに接続されているといえる。
ここで、単一蓄熱層70内部に着目すると、高温用蓄熱槽50の下方層56と中温用蓄熱槽40の上方層45との温度が概ね等しいので、これら下方層56と上方層45とは事実上一体的な層であると解釈できる。従って、単一蓄熱層70内においては、温度約20℃程度の上方層55、温度約10℃から約13℃の下方層56と上方層45とからなる層、および温度約5℃程度の下方層46の三つの層が存在していると解釈することができる。
ところで、ビールの必要冷却量は、夏季において高くなっているとともに、冬季においては、低くなっている。一方、例えば、コーヒー飲料等の清涼飲料の必要冷却量も、夏季において高くなっているとともに、冬季においては、低くなっている。
しかしながら、清涼飲料を製造する際には、低温負荷91に対する冷却要求はなく、また、清涼飲料の生産品目(コーヒー飲料、炭酸飲料、ウーロン茶、緑茶等)毎に、中温負荷92または高温負荷93に対する冷却要求の程度が異なり、この為、生産品目の数量割合が変動すれば、当然に、中温負荷92または高温負荷93に対する冷却要求の割合も大きく変動することになる。従って、ビールと清涼飲料とを製造する工場においては、ビールないし清涼飲料を専用で製造する工場に比べて、季節や生産品目に応じて、大きく変動する低温負荷91、中温負荷92および高温負荷93に対する冷却要求に対応できるように冷却システムを調節することが望まれている。
この点に関し、本発明においては前述した供給通路65を採用することにより、単一蓄熱槽70を擬似的に形成している。前述したように、通常は、冷却システム10の高温用冷凍機群51は、中温用冷凍機群41よりも、冷却出力温度の高い冷凍機を多くした構成とされている。ところが、高温用冷凍機群51、中温用冷凍機群41、ならびに低温用冷凍機群21をそれぞれ構成する個々の冷凍機は、いずれも同等の冷却出力温度を得ることのできる仕様とされているので、高温用冷凍機群51の冷凍機の一部の冷却出力温度を、中温用冷凍機群41の個々の冷凍機の冷却出力温度と同等の冷却出力温度に設定することも可能である。
例えば、高温負荷93に対する冷却要求が高い場合には、下方層46および上方層55とから成る層が大きくなるように、高温用冷凍機群51のうちの、個々の冷凍機の冷却出力温度を、中温用冷凍機群41の個々の冷凍機の冷却出力温度より高くなる設定としておくことで、このような冷却要求に対応することができる。同様に、中温負荷92に対する要求が高い場合には、上方層45および下方層56とが大きくなるように、高温用冷凍機群51の中温蓄熱槽40に近接する側にある幾つかの冷凍機の冷却出力温度を、中温用冷凍機群41の個々の冷凍機の冷却出力温度と同等とすることで、対応することができる。このため、季節に基づく需給の変動によって、中温負荷92および高温負荷93に対する冷却要求が変動するようなビールと清涼飲料とを製造する工場においては、供給通路65を供えた構成の冷却システム10はこのような要求に容易に対応することができる。
また、中温負荷92に対する要求が高い場合には、高温用冷凍機群51の中温蓄熱槽40に近接する側にある幾つかの冷凍機の冷却出力温度を、中温用冷凍機群41の個々の冷凍機の冷却出力温度と同等とするとともに、中温用蓄熱槽40の上方層45の水(約10℃から約13℃)をサブ循環通路61によって、この中温用冷凍機群41の個々の冷凍機の冷却出力温度と同等とされた高温用冷凍機群51の冷凍機に供給し、水を約5℃程度にまで冷却し、サブ循環通路61を通じて、中温用蓄熱槽40の下方層46に戻すようにする。これにより、本発明の冷却システム10においては、中温負荷92に対する冷却要求が高い場合であっても、これに容易に対応することができる。同様に、例えば中温用冷凍機群41が不作動となった場合にも、サブ循環通路61を用いることによって、高温用冷凍機群51を中温用冷凍機群41のバックアップとして使用できる。
さらに、本発明においては、低温用蓄熱槽20の冷熱を循環通路31、熱交換器30および循環通路32を介して中温用蓄熱槽40に伝えられるようになっている。前述したように低温用蓄熱槽20のブラインの温度は中温用蓄熱槽40内の水の温度よりも低いので、低温用蓄熱槽20の冷熱を中温用蓄熱槽40に伝えることにより、中温用冷凍機群41による中温用蓄熱槽40の冷却作用を補完することが可能となる。従って、本発明の冷却システム10においては、例えば中温負荷92に対する冷却要求が高い場合、および中温用冷凍機群41が不作動となった場合であっても、低温用蓄熱槽20内ブラインの冷熱を中温用冷凍機群41のバックアップとして使用し、このような事態に対応することが可能となる。なお、当然のことながら、前述した部材のいくつかを適宜組み合わせることが本発明の範囲に含まれるのは明らかである。
本発明の実施形態に基づく冷却システムの概略図である。 中温用冷凍機群を拡大して示す拡大概略図である。 (a)中温用蓄熱槽を拡大して示す拡大略図である。(b)高温用蓄熱槽を拡大して示す拡大略図である。 本発明の冷却システムの一部を拡大して示す拡大概念図である。 従来技術に基づく冷却システムの概略図である。 アルコール飲料以外の飲料の製造時に使用される冷却システムの略図である。
符号の説明
10 冷却システム
20 低温用蓄熱槽(ブライン蓄熱層)
21 低温用冷凍機群(ブライン用冷凍機群)
23 循環通路(第三循環通路)
24 熱交換器
30 熱交換器
31、32 循環通路
40 中温用蓄熱槽(第一蓄熱層)
41 中温用冷凍機群(第一冷凍機群)
43 循環通路(第一循環通路)
44 循環通路(第二循環通路)
44a、44b、44c 通路
45 上方層
46 下方層
50 高温用蓄熱槽(第二蓄熱層)
51 高温用冷凍機群(第二冷凍機群)
55 上方層
56 下方層
61 サブ循環通路
65 供給通路
91 低温負荷(第三熱負荷)
92 中温負荷(第一熱負荷)
93 高温負荷(第二熱負荷)
100 冷却システム

Claims (9)

  1. 水を貯蔵する第一蓄熱槽と、
    該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、
    前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、
    前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第二熱負荷が配置される第二循環通路とを具備し、前記第二熱負荷は前記第一熱負荷よりも熱的に高くなっており、
    さらに、
    前記第二循環通路の前記第二熱負荷と前記第一蓄熱槽との間に配置されていて水を貯蔵する第二蓄熱槽とを具備し、前記第二循環通路は前記第二蓄熱槽の上方部分に水を供給すると共に前記第二蓄熱槽の上方部分からの水を前記第一蓄熱槽の上方部分に供給するようになっており、
    さらに、
    前記第二循環通路において前記第二蓄熱槽と前記第一蓄熱槽との間に設けられていて前記第二蓄熱槽の上方部分からの水に蓄熱する第二冷凍機とを具備し、該第二冷凍機の冷却出力温度は前記第一冷凍機よりも高く設定されている冷却システム。
  2. 水を貯蔵する第一蓄熱槽と、
    該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、
    前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、
    前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第二熱負荷が配置される第二循環通路とを具備し、前記第二熱負荷は前記第一熱負荷よりも熱的に高くなっており、
    さらに、
    前記第二循環通路の前記第二熱負荷と前記第一蓄熱槽との間に配置されていて水を貯蔵する第二蓄熱槽とを具備し、前記第二循環通路は前記第二蓄熱槽の上方部分に水を供給すると共に前記第二蓄熱槽の上方部分からの水を前記第一蓄熱槽の上方部分に供給するようになっており、
    さらに、
    前記第二循環通路において前記第二蓄熱槽と前記第一蓄熱槽との間に設けられていて前記第二蓄熱槽の上方部分からの水に蓄熱する第二冷凍機群とを具備し、該第二冷凍機群を構成する冷凍機の一部ないし全部の冷却出力温度は前記第一冷凍機よりも高く設定されている冷却システム。
  3. さらに、前記第一蓄熱槽の上方部分からの水を前記第二蓄熱槽の下方部分まで供給する供給通路を具備する請求項1に記載の冷却システム。
  4. さらに、前記第一蓄熱槽の上方部分からの水を前記第二蓄熱槽の下方部分まで供給する供給通路を具備する請求項2に記載の冷却システム。
  5. さらに、前記第一蓄熱槽の上方部分から該第一蓄熱槽の下方部分までを循環するサブ循環通路を具備し、前記第二冷凍機群が前記サブ循環通路に設けられている請求項2又は4に記載の冷却システム。
  6. さらに、ブラインを貯蔵するブライン蓄熱槽と、
    該ブライン蓄熱槽に接続されていて該ブライン蓄熱槽のブラインに蓄熱するブライン用冷凍機と、
    前記ブライン蓄熱槽の下方部分から該ブライン蓄熱槽の上方部分までを循環していて第三熱負荷が配置される第三循環通路とを具備し、前記第三熱負荷は前記第一熱負荷よりも熱的に低くなっている請求項1から5のいずれか一項に記載の冷却システム。
  7. さらに、前記ブライン蓄熱槽と前記第一蓄熱槽との間で熱交換する熱交換器を具備する請求項6に記載の冷却システム。
  8. 水を貯蔵する第一蓄熱槽と、
    該第一蓄熱槽に接続されていて該第一蓄熱槽の水に蓄熱する第一冷凍機と、
    前記第一蓄熱槽の下方部分から該第一蓄熱槽の上方部分までを循環していて第一熱負荷が配置される第一循環通路と、
    さらに、
    ブラインを貯蔵するブライン蓄熱槽と、
    該ブライン蓄熱槽に接続されていて該ブライン蓄熱槽のブラインに蓄熱するブライン用冷凍機と、
    前記ブライン蓄熱槽の下方部分から該ブライン蓄熱槽の上方部分までを循環していて第三熱負荷が配置される第三循環通路とを具備し、前記第三熱負荷は前記第一熱負荷よりも熱的に低くなっている冷却システム。
  9. さらに、前記ブライン蓄熱槽と前記第一蓄熱槽との間で熱交換する熱交換器を具備する請求項8に記載の冷却システム。
JP2004216348A 2004-07-23 2004-07-23 冷却システム Active JP4446827B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004216348A JP4446827B2 (ja) 2004-07-23 2004-07-23 冷却システム
CNB2005800241990A CN100529585C (zh) 2004-07-23 2005-07-14 冷却系统
US11/632,650 US7836721B2 (en) 2004-07-23 2005-07-14 Cooling system
PCT/JP2005/013429 WO2006009231A1 (en) 2004-07-23 2005-07-14 Cooling system
EP05762073A EP1782007A1 (en) 2004-07-23 2005-07-14 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216348A JP4446827B2 (ja) 2004-07-23 2004-07-23 冷却システム

Publications (2)

Publication Number Publication Date
JP2006038301A JP2006038301A (ja) 2006-02-09
JP4446827B2 true JP4446827B2 (ja) 2010-04-07

Family

ID=35169870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216348A Active JP4446827B2 (ja) 2004-07-23 2004-07-23 冷却システム

Country Status (5)

Country Link
US (1) US7836721B2 (ja)
EP (1) EP1782007A1 (ja)
JP (1) JP4446827B2 (ja)
CN (1) CN100529585C (ja)
WO (1) WO2006009231A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234876B2 (en) 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
US7681404B2 (en) * 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
ES2363288B1 (es) * 2010-01-15 2012-02-27 Abengoa Solar New Technologies S.A. Receptor solar de sales fundidas y procedimiento para reducir el gradiente térmico en dicho receptor.
EP2715478A4 (en) 2011-05-26 2014-10-29 Ice Energy Inc SYSTEM AND METHOD FOR INCREASING A GRID EFFICIENCY BY A STATISTICAL DISTRIBUTION CONTROL
WO2012174411A1 (en) 2011-06-17 2012-12-20 Ice Energy, Inc. System and method for liquid-suction heat exchange thermal energy storage
CN107513475A (zh) * 2017-07-05 2017-12-26 杭州千岛湖啤酒有限公司 一种啤酒生产用冷媒节能系统
JP7358131B2 (ja) * 2019-09-12 2023-10-10 三菱重工サーマルシステムズ株式会社 冷媒冷却システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH475533A (de) * 1967-05-10 1969-07-15 Sulzer Ag Verfahren und Einrichtung zum intermittierenden Abkühlen von Massen grossen Wärmeeinhaltes
US3869870A (en) * 1973-07-02 1975-03-11 Borg Warner Refrigeration system utilizing ice slurries
US4291757A (en) * 1980-05-28 1981-09-29 Westinghouse Electric Corp. Multiple heat pump and heat balancing system for multi-stage material processing
CA2211525C (en) * 1991-04-23 2001-01-30 Asahi Breweries Ltd. Refrigeration system consisting of a plurality of refrigerating cycles
US5372011A (en) * 1993-08-30 1994-12-13 Indoor Air Quality Engineering, Inc. Air conditioning and heat pump system utilizing thermal storage
JP3259273B2 (ja) * 1995-10-24 2002-02-25 ダイキン工業株式会社 空気調和装置
JPH10332246A (ja) 1997-06-03 1998-12-15 Ke Corp:Kk 冷却装置
JP3748674B2 (ja) * 1997-06-18 2006-02-22 株式会社東洋製作所 蓄熱式ブラインタンクを有する冷却設備
DE19748985C2 (de) * 1997-11-06 1999-11-25 Reisner Gmbh Kaeltetechnischer Kühlanlage
JP3095377B2 (ja) * 1997-12-24 2000-10-03 イノテック株式会社 チラー装置
JP2000035272A (ja) * 1998-07-16 2000-02-02 Mayekawa Mfg Co Ltd 食品の冷却設備
JP3710712B2 (ja) * 2001-01-12 2005-10-26 麒麟麦酒株式会社 飲料製品冷却用ダイナミック冷却システム
DE20318865U1 (de) * 2003-12-03 2004-02-26 Hackman Metos Oy Ab Vorrichtung zum Kühlen zumindest eines Küchengeräts mit Eisbrei

Also Published As

Publication number Publication date
CN100529585C (zh) 2009-08-19
EP1782007A1 (en) 2007-05-09
JP2006038301A (ja) 2006-02-09
WO2006009231A1 (en) 2006-01-26
US20070251258A1 (en) 2007-11-01
CN1989381A (zh) 2007-06-27
US7836721B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
US7836721B2 (en) Cooling system
JP6478544B2 (ja) 自動販売機
JP2013515466A (ja) エネルギーの回収のための装置および方法
US8011190B2 (en) Product cooling
CN101806528A (zh) 小包装啤酒、饮料快速冷却装置
CN108362057A (zh) 一种套板式蓄冷板
CN104257170B (zh) 用于超市的相变蓄冷冰鲜系统
CN105222470B (zh) 即热即冷式跨临界循环自动售货装置及其供货方法
JP3810036B2 (ja) ビールを含む炭酸含飲料製造工場における工場排熱を回収利用する省エネルギーシステム
JP3710712B2 (ja) 飲料製品冷却用ダイナミック冷却システム
CN104755602A (zh) 脱气的水的提供方案
CN201359419Y (zh) 小包装啤酒、饮料快速冷却装置
CN102822059B (zh) 用于在液态食物产品的热灌装中回收能量的方法和装置
CN105637079B (zh) 用于在制造食品过程中将热从介质传递给热载体的方法和系统及相应的用途
KR102261780B1 (ko) 얼음 생맥주 제조 시스템 및 그 방법
CN105303702B (zh) 即热即冷式冷热两用自动售货装置及其供货方法
CN206847214U (zh) 一种制冷式啤酒机
CN104276538A (zh) 新鲜啤酒供应设备及方法
CN113616080A (zh) 一种冷热共享风味饮料萃取系统
CN201977129U (zh) 一种带冷却装置的冷却桌
JP2021107757A (ja) 廃熱回収給湯システム及び廃熱回収給湯方法
JP3053623B1 (ja) 生鮮食料品の貯蔵装置
JP7358131B2 (ja) 冷媒冷却システム
Zhou et al. Applied research of cool storage and energy conservation technology on cold storage
JP2003135042A (ja) 飲用液体の冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4446827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250