JP4435298B2 - 試料解析方法 - Google Patents

試料解析方法 Download PDF

Info

Publication number
JP4435298B2
JP4435298B2 JP2004101357A JP2004101357A JP4435298B2 JP 4435298 B2 JP4435298 B2 JP 4435298B2 JP 2004101357 A JP2004101357 A JP 2004101357A JP 2004101357 A JP2004101357 A JP 2004101357A JP 4435298 B2 JP4435298 B2 JP 4435298B2
Authority
JP
Japan
Prior art keywords
sample
film
dielectric constant
model
ellipsometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101357A
Other languages
English (en)
Other versions
JP2005283502A (ja
Inventor
ナバトバ−ガバイン,ナタリア
誠一 平川
容子 和才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004101357A priority Critical patent/JP4435298B2/ja
Priority to TW093141341A priority patent/TWI278617B/zh
Priority to KR1020050004686A priority patent/KR100822419B1/ko
Priority to US11/089,783 priority patent/US7167242B2/en
Publication of JP2005283502A publication Critical patent/JP2005283502A/ja
Application granted granted Critical
Publication of JP4435298B2 publication Critical patent/JP4435298B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/04Shores or struts; Chocks telescopic
    • E04G25/06Shores or struts; Chocks telescopic with parts held together by positive means
    • E04G25/061Shores or struts; Chocks telescopic with parts held together by positive means by pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G7/00Connections between parts of the scaffold
    • E04G7/30Scaffolding bars or members with non-detachably fixed coupling elements
    • E04G7/302Scaffolding bars or members with non-detachably fixed coupling elements for connecting crossing or intersecting bars or members
    • E04G7/306Scaffolding bars or members with non-detachably fixed coupling elements for connecting crossing or intersecting bars or members the added coupling elements are fixed at several bars or members to connect
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G7/00Connections between parts of the scaffold
    • E04G7/30Scaffolding bars or members with non-detachably fixed coupling elements
    • E04G7/32Scaffolding bars or members with non-detachably fixed coupling elements with coupling elements using wedges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G2025/006Heads therefor, e.g. pivotable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/04Shores or struts; Chocks telescopic
    • E04G2025/045Shores or struts; Chocks telescopic which telescoping action effected by a lever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/213Spectrometric ellipsometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は強誘電体又は高誘電体で形成された誘電体膜を有する試料をエリプソメータを利用して解析する際に、有効媒質近似に基づく空隙を多量に含むモデルを作成して全光学範囲で試料を解析できるようにした試料解析方法に関する。
従来、試料に関する情報を解析するためにエリプソメータを使用することがある。エリプソメータは試料に偏光状態の光を入射させ、入射光及び反射光の偏光状態の変化を測定することで、位相差(Δデルタ)及び振幅比(Ψプサイ)を求めるものである。解析対象の試料には、基板単体のもの、基板上に膜が形成されたもの等がある。
図9は、シリコン基板上に酸化シリコン膜が形成された試料をエリプソメータで測定した結果を示すグラフである。横軸は試料への入射光の波長(nmナノメートル)、右縦軸は測定した位相差(Δデルタ)、左縦軸は測定した振幅比(Ψプサイ)を夫々示したものである。なお、入射される光の波長が633nmのときで、酸化シリコン膜の光学的な測定に基づいた複素誘電率(static dielectric constant)は、約2.1である。
また、上述したエリプソメータの測定により求められた位相差及び振幅比からでは、試料に対する唯一の組で膜の屈折率(n)、消衰係数(k)、及び膜厚(d)を直接求めることができない。そのため、唯一の組で膜の屈折率、消衰係数、及び膜厚を求めるためには、エリプソメータによる測定に加えて、試料に応じたモデルを作成し、このモデルから理論的に求められる位相差及び振幅比と、エリプソメータの測定で求められた位相差及び振幅比との比較を行う。なお、モデルの作成には、試料の物性に応じた条件を設定することで行われ、設定される条件の項目には基板及び膜の材質、各膜層の膜厚、基板及び膜の光学定数がある。また、各項目の設定には試料に応じた既知のリファレンス、誘電率の波長依存性を示し且つ複数のパラメータを有する所要の分散式等が通常用いられる。
さらに、上記比較に対して、両者の相異する程度が最小となるように分散式のパラメータ及びモデルの各膜層の膜厚等を変更するプロセスを行う(フィッティングと称す)。両者の相異は通常、最小二乗法を用いた演算で求めており、フィッティングにより最小二乗法で得られた結果がある程度小さくなったと判断された場合、そのときの分散式のパラメータの値から膜の屈折率及び消衰係数を求めると共に、そのときの膜厚を試料が有する膜の膜厚として特定する。なお、モデルの作成、最小二乗法による演算、フィッティング等はコンピュータを用いて所要のプログラムに基づき手動又は自動で行うことが一般的である(特許文献1、2参照)。
上述した解析方法は、図10(a)に示すように試料Sを構成する基板S1及び膜S2の境界が平面であり、膜S2が平行膜であると共に膜S2を構成する物質が均質かつ連続している場合、支障なく行える。しかし、図10(b)に示すように、実際の試料Sは、膜S2の表面に凹凸(ラフネス)が存在するため、ラフネスの程度によっては、上述した解析方法をそのまま行っても良好な結果が得られないことがある。
よって、このような場合には有効媒質近似と云う考え方を用いて、図10(b)のラフネスを有する膜S2を、図10(c)に示すように、膜S2に係る物質が均質かつ連続し、膜厚がd1であると云う第1膜S2aと、膜S2に係る物質Mの中に空隙Vが所要の率(空隙率、以下ボイドと称す)で存在し、膜厚がd2である第2膜S2bとに置き換えたモデルを形成する。このように形成したモデルに対して第1膜S2aの膜厚d1、第2膜S2bの膜厚d2、第2膜S2b中の物質M及び空隙の混合比(void fraction)、及び試料に応じた分散式のパラメータをフィッティングして試料の解析を行う。
モデルに対して設定するボイドの数値は、ラフネスの大きさに基づき決められるが、膜の成立が可能な範囲を考慮するとボイドの最大値は一般的には約40〜55%と考えられており、通常は50%と云う数値が用いられることが多い。なお、試料の膜表面にラフネスが存在するか否かが不明な場合は、上述した有効媒質近似を用いた解析方法と、有効媒質近似を用いない解析方法の両方を行い、いずれの解析結果の方が実際の試料に対し適合性が高いかを最小二乗法の演算結果等を用いて見極め、ラフネスの有無を判断することが一般的である。
また、有効媒質近似は試料の膜表面にラフネスが存在する場合だけでなく、基板と膜との間の界面又は膜層間の界面にラフネスが存在する場合における界面層に対し適用されることがある。さらに、有効媒質近似はラフネスの存在には関係なく、解析を実際に行う上でのテクニックとして屈折率の値を下げるために用いられることもある。この場合も有効媒質近似を用いるか否かは、有効媒質近似に基づく空隙を有するモデルによる解析結果を判断して、有効媒質近似を用いるか否かを判断することになる。
例えば、ガラス基板にアモルファスシリコンの第1膜が形成されると共に、この第1膜の上に自然酸化膜の第2膜が形成された試料を解析する場合を考える。この試料に対して先ず、第1膜の膜厚を2000オングストローム、第2膜の膜厚を20オングストロームに設定すると共に既知のアモルファスシリコンのリファレンスを用いてモデルを作成し、このモデルに対してフィッティングを行った場合、最小二乗法の演算結果(平均二乗誤差χ2に相当)が16.6になったとする。
次に、第1膜及び第2膜の膜厚を上記と同じにし、ラフネスに関係無く有効媒質近似を用いて第1膜のアモルファスシリコンの占有率を50%、第1膜のボイドを50%に設定すると共に既知のアモルファスシリコンのリファレンスを用いてモデルを作成し、上記と同様にフィッティングを行った場合、最小二乗法の演算結果が10.6になると共に、第1膜のアモルファスシリコンの占有率が約86%になったとする。最小二乗法の演算結果は数値が小さい方が良好であるため、既知のリファレンスを用いると共に有効媒質近似に基づく空隙を設けたモデルを作成して解析を行うことにより、最初の場合に比べて解析結果(フィッティング結果)は良好になったことが分かる。
最後に、第1膜及び第2膜の膜厚を最初の場合と同じにし、ラフネスに関係なく有効媒質近似を用いると共に2回目の場合のアモルファスシリコンの占有率を考慮して第1膜のアモルファスシリコンの占有率を86%、第1膜のボイドを14%に設定し、リファレンスではなく分散式を用いてモデルを作成して、上記と同様にフィッティングを行ったとする。その結果、最小二乗法の演算結果が0.14になると共に、第1膜のアモルファスシリコンの占有率が約99.16%になったとすれば、最小二乗法の演算結果は非常に良好になったが、ボイドがほぼ0%に近くなることから、空隙を設けてモデルを作成したことに意味がなくなったことが分かる。よって、このようなときは、一般的に空隙を形成しないモデルを分散式を用いて作成し解析を行うことになる。
特開2002−340789号公報 特開2002−340528号公報
従来のエリプソメータを用いた光学的な測定に基づいた解析方法では、電気的な測定に基づいた誘電率が50以上である高誘電体膜又は強誘電体膜を試料が有する場合、所要の光学範囲で複素誘電率を求めることができないため、複素誘電率に基づいて試料の物性を解析できなかったと云う問題がある。
即ち、従来のエリプソメータを用いた解析方法では、光の波長に係る全光学範囲(DUV(Deep Ultraviolet)〜NIR(Near Infrared):190nm〜1700nm、光子エネルギー範囲では0.75eV〜6.5eVに相当)中の248nm〜826nmを一般に解析範囲としている。高誘電体及び強誘電体は、電子分極率として電子分極率、イオン分極率、及び双極子分極率の3部分が存在する。400nm以下の光学範囲では高誘電体及び強誘電体に対し光学的に屈折率及び消衰係数を測定して急激なピークを有する測定結果が得られることが分かっている。しかし、このような測定結果に対応し得る分散式及びリファレンスは、現状では見つけられていないと一般には考えられている。そのため400nm以下の光学範囲(248nm〜400nmの範囲)で高誘電体及び強誘電体を解析できず、400nm以下の光学範囲で高誘電体及び強誘電体の屈折率及び消衰係数が、どのように変化するかを正確に記した書籍、文献等が見当たらないのが実情である。なお、電気的測定は、光学的な測定範囲に含まれる近赤外線範囲を外れた100kHz〜1MHzの周波数範囲で誘電率の測定行うものであり、電気的測定と光学的測定との両者の測定範囲は全く相異している。
また、試料の誘電率は測定範囲に応じて変動することから、光学的な測定範囲中の400nm以下で上述した問題が生じている。そのため、400nm以下の光学測定範囲における高誘電体又は強誘電体の物性の解析は、高価且つ解析時間の要する他の装置を用いて行う必要がある。
本発明は斯かる問題に鑑み、本発明者が高誘電体及び強誘電体の解析に対して鋭意研究を続けた結果の末になされたものであり、ラフネスの存在に関係なく有効媒質近似を用いたモデルを作成すると共にボイドの数値を通常考えられる範囲を超えた値に設定することで、400nm以下の光学測定範囲でも高誘電体又は強誘電体を解析できるようにした試料解析方法を提供することを目的とする。
上記課題を解決するために、第1発明に係る試料解析方法は、エリプソメータで、基板上に電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料へ偏光状態の光を入射するステップと、前記試料に対する入射光及び反射光の偏光状態の変化値を測定するステップと、前記試料に応じた条件を設定して、電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料を、入射光の波長が400nm以下の範囲においても解析すべく有効媒質近似に基づく空隙が60%以上90%以下の範囲で存在するモデルを作成するステップと、作成されたモデルに基づき前記エリプソメータで測定した偏光状態の変化値に対応した値を算出するステップと、算出した値と前記エリプソメータで測定した変化値とを比較するステップと、比較した両値の相異が小さくなるように前記有効媒質近似に係る演算式及び前記モデルに係る分散式による演算を行うステップと、前記演算の結果に基づき試料の解析を行うステップとを備えることを特徴とする。
第1発明にあっては、電気的な測定に基づいた誘電率が50以上の高誘電体膜又は強誘電体膜を有する試料をエリプソメータで測定すると共に、有効媒質近似に基づき空隙が誘電体膜に応じた膜に60%以上90%以下で存在するモデルを作成して試料を解析する。このような60%以上90%以下の空隙は、物理的な観点に基づけば膜の形成が困難となり通常設定されない値である。しかし、敢えて上述した範囲の数値を設定することで、高誘電体膜又は強誘電体膜を有する試料に対して、急激なピークを有する測定結果に対応し得るフィッティングを数学的に行うことが可能となり、フィッティングの結果より従来不可能であった400nm以下の光学的な測定範囲でも試料を解析できるようになる。
本発明者の研究によれば、65%以上75%以下の範囲で空隙が存在するように設定すると、最小二乗法により得られる差が小さくなりやすいことが判明しており、本発明者は、特に70%前後となる67%以上73%以下の範囲で空隙を設定することがフィッティングを効率的に行えることから好適であると判断している。
第2発明に係る試料解析方法は、前記分散式は、光学的な測定範囲に対する誘電率に係るパラメータを含み、該誘電率に係るパラメータの数値に基づき試料の誘電体膜の光学的な測定範囲に対する誘電率を解析することを特徴とする。
第2発明にあっては、分散式が有する誘電率に係るパラメータに対して設定された値を参照することで電気的な測定に基づいた誘電率が50以上の誘電体膜の400nm以下の光学的な測定範囲での誘電率を特定できる。その結果、従来のように高価且つ時間の要する他の装置を用いて物性の解析を行うことが不要になり、特定した誘電率に基づき高誘電体又は強誘電体に対する物性の解析を、従来に比べて迅速且つ容易に行えるようになる。
第1発明にあっては、電気的な測定に基づいた誘電率が50以上である誘電体膜を有する試料に対して有効媒質近似に基づき空隙が60%以上90%以下で存在するモデルを作成し、エリプソメータで測定した値に対してフィッティングを行うことで、従来不可能であった400nm以下の光学測定範囲でも試料を解析できる。
また、第2発明にあっては、電気的な測定に基づいた誘電率が50以上である誘電体膜を有する試料に対し400nm以下の光学的な測定範囲で誘電率を求めて物性を解析でき、誘電率に基づいた試料の物性解析に係るコスト、時間及び手間等を従来に比べて大幅に低減できる。
図1は本発明の実施形態に係る試料解析方法で使用されるエリプソメータ1及びコンピュータ10の全体的な構成を示す概略図である。エリプソメータ1は、図2(a)に示すように基板S1に膜S2を形成した試料Sに偏光状態の光を入射させて、入射光の偏光状態と反射光の偏光状態の変化より、各光の位相差Δ及び振幅比Ψを測定する。本発明は、電気的な測定に基づいた誘電率が50以上の強誘電体又は高誘電体の膜S2を形成した試料Sを解析対象にしており、図2(a)に示す構造以外にも、基板S1上に複数の膜が形成され且つそれらの膜の少なくとも一つが前記強誘電体又は高誘電体である試料も解析の対象とする。
また、コンピュータ10は、試料に応じたモデルを分散式及びリファレンス等を用いて作成すると共に、そのモデルから位相差及び振幅比を求め、エリプソメータ1で測定された位相差及び振幅比との比較によりフィッティングを行い、膜厚、膜の光学定数として屈折率、消衰係数及び複素誘電率を解析するものである。本実施形態のコンピュータ10は、モデルの作成に有効媒質近似(EMA:Effective Medium Approximation)を用いて、60%以上90%以下の範囲で空隙を誘電体膜に設けたモデルを作成してフィッティングを行う。
最初に、本発明で使用可能なエリプソメータの一例である図1に示すエリプソメータ1の構造を説明する。エリプソメータ1は、キセノンランプ2及び光照射器3を第1光ファイバケーブル15aで接続し、ステージ4上に載置した試料Sへ偏光した状態の光を入射させると共に、試料Sで反射した光を光取得器5で取り込むようにしている。光取得器5は第2光ファイバケーブル15bを介して分光器7に接続されており、光取得器5で取り込んだ光の偏光状態を分光器7で測定する。分光器7は測定した偏光状態をアナログ信号としてデータ取込機8へ伝送し、データ取込機8でアナログ信号を所要値に変換して、エリプソメータ1の測定値をコンピュータ10へ伝送する。
また、ステージ4、光照射器3、光取得器5及び分光器7には、第1モータM1〜第6モータM6が夫々設けられており、各モータM1〜M6の駆動は、コンピュータ10と接続されたモータ制御機9により制御される。なお、モータ制御機9は、コンピュータ10のCPU11aから出力される指示に基づき各モータM1〜M6の制御を行う。
エリプソメータ1のキセノンランプ2は多数の波長成分を含む白色光源であり、発生させた白色光を光照射器3へ送る。
光照射器3は円弧状のレール6上に配置され、内部には偏光子3aを有しており、白色光を偏光子3aで偏光し試料Sへ入射させる。また、光照射器3は、第4モータM4が駆動されることでレール6に沿って移動し、入射光の試料Sの表面Saの垂線Hに対する角度(入射角度φ)が調節される。
ステージ4は、第1モータM1〜第3モータM3の駆動により試料Sを載置する載置面4aにおいて90度相異する方向であるX、Y方向(図1参照)及び高さ方向となるZ方向へ夫々移動可能にしている。このようにステージ4を移動させることで、試料Sの所要箇所に光を入射させて試料Sの複数箇所を測定できるようにしている。
光取得器5は光照射器3と同様にレール6上に配置されており、PEM(Photo Elastic Modulator:光弾性変調器)5a及び検光子5bを内蔵し、試料Sで反射された光をPEM5aを介して検光子5bへ導いている。また、光取得器5は、第5モータM5によりレール6に沿って移動可能であり、試料Sで反射した光を確実に捉えられるようにしている。光取得器5の移動は光照射器3の移動に連動するようにモータ制御機9で制御されており、反射角度φと入射角度φとが同角度になる。なお、光取得器5に内蔵されたPEM5aは、取り込んだ光を所要周波数(例えば50kHz)で位相変調することにより直線偏光から楕円偏光を得ており、このような偏光を得ることで測定速度及び測定精度の向上を図っている。また、検光子5bは、PEM5aで位相変調された各種偏光の中から特定の偏光を透過させている。
分光器7は、図3に示すように反射ミラー7a、回折格子7b、フォトマルチプライヤー(PMT:光電子倍増管)7c及び制御ユニット7dを備えており、光取得器5より第2光ファイバケーブル15bを通じて送られた光を反射ミラー7aで反射して回折格子7bへ導いている。回折格子7bは図1で示す第6モータM6により角度を変更できるようにされており、角度変更により導かれた光の回折方向が変わるため、回折格子7bで出射する光の波長を変更できるようにしている。なお、図3では図示していないが、回折格子7bの変更した角度に対応した波長を数字的に示せるように、回折格子7bの角度を機械的にsin変換してダイヤル表示を行うサインバー機構が連携されている。また、分光器7は、フォトマルチプライヤー7cとフォトダイオードアレイ(PDA)とを組み合わせて用いることも可能である。
回折格子7bで出射された光はPMT7cで測定され、制御ユニット7dでは、測定された波長に応じたアナログ信号を生成してデータ取込機8へ送出する。このように分光器7では、回折格子7bの角度を可変にして各波長の測定を行うため、測定精度は良好となる。その結果、分光器7は、試料が有する膜層の膜厚に応じて波長を変更して測定でき、例えば、膜厚が厚いときには細かいステップで波長を変更できる。なお、分光器7には、相異する波長に対応した複数(32個又は64個等)のフォトマルチプライヤーを回折格子に対し扇状に配列した構成のものを適用することも可能である。
データ取込機8は、分光器7からの信号に基づき測定された反射光の偏光状態(p偏光、s偏光)の位相差Δ及び振幅比Ψを算出し、算出した結果をコンピュータ10へ送出する。なお、位相差Δ及び振幅比Ψは、p偏光の振幅反射係数Rp及びs偏光の振幅反射係数Rsに対し以下の数式(1)の関係が成立する。
Rp/Rs=tanΨ・exp(i・Δ)・・・(1)
但し、iは虚数単位である(以下同様)。また、Rp/Rsは偏光変化量ρと云う。
一方、コンピュータ10は、コンピュータ本体11、ディスプレイ12、キーボード13及びマウス14等から構成されており、コンピュータ本体11は内部にCPU11a、記憶部11b、RAM11c、ROM11d等を内部バスで接続されている。CPU11aは記憶部11bに記憶された各種コンピュータプログラムに従って後述する種々の処理を行うものである。RAM11cは処理に係る各種データ等を一時的に記憶し、ROM11dにはコンピュータ10の機能に係る内容等を記憶している。なお、記憶部11bには、各種コンピュータプログラムに加えて、試料Sの製造工程に係る既知のデータ、モデルの作成に利用される複数の分散式、各種試料に応じたリファレンスデータ等が記憶されている。
コンピュータ10は、データ取込機8から伝送された位相差Δ及び振幅比Ψから、試料Sの周囲と基板S1の複素屈折率を既知とした場合に、記憶部11bに予め記憶されているモデリングプログラムを用いることで図2(a)に示す試料Sの材料構造に応じたモデルを作成して膜S2の膜厚d及び膜S2の複素屈折率Nを求める。本実施形態ではモデル作成に対して、試料Sのラフネスの有無に関係なく有効媒質近似を用いて、図2(b)に示すように、基板S1′上に電気的測定に基づく誘電率が50以上の誘電体の物質M(誘電体成分)の中に空隙V(空気成分)が存在する膜S2′を形成した構造のモデルS′を作成する。
なお、複素屈折率Nは、膜に係る屈折率n及び消衰係数kとすると、以下の光学式で表した数式(2)の関係が成立する。
N=n−ik・・・(2)
また、エリプソメータ1の光照射器3が照射する光の波長をλとすると、データ取込機8で算出された位相差Δ及び振幅比Ψは、試料Sの膜に係る膜厚d、屈折率n及び消衰係数kと以下の数式(3)の関係が成立する。
(d,n,k)=F(ρ)=F(Ψ(λ,φ),Δ(λ,φ))・・・(3)
また、コンピュータ10は、試料Sの膜に係る膜厚と複数のパラメータを有する複素誘電率の波長依存性を示す分散式とを用いて、作成したモデルから理論的に得られるモデルスペクトル(ΨM (λi )、ΔM (λi ))と、エリプソメータ1の測定結果に係る測定スペクトル(ΨE (λi )、ΔE (λi ))との差が最小になるように膜厚、分散式のパラメータ等を変化させる処理(フィッティング)を行う。なお、フィッティングの結果、モデルに係る値が変化して定まり、変化する値には設定した空隙の混合比等も含まれる。また、本実施形態の場合では下記の数式(4)を分散式として適用している。
Figure 0004435298
数式(4)において左辺のεは複素誘電率を示し、ε、εs は誘電率を示し、Γ0 、ΓD 、γj は粘性力に対する比例係数(damping factor)を示し、ωoj、ωt 、ωp は固有角振動数(oscillator frequency, transverse frequency, plasma frequency)を示す。なお、εは高周波における誘電率(high frequency dielectric constant)であり、εs は低周波における誘電率(static dielectric constant)である。
本実施形態の場合では、モデルの空隙Vのボイドを60%〜90%の範囲に設定して、数式(4)の分散式で第2項におけるεs、ωt 、Γ0のパラメータをフィッティングし、他のパラメータには既知の値を用いて、第1項のεを「1」に、第3項及び第4項は「0」にして演算を行う。フィッティングの結果、膜厚等が求まり、分散式のパラメータからは材料の複素誘電率εを数式(4)から求めることができる。なお、複素誘電率ε(ε(λ)に相当)と複素屈折率N(N(λ)に相当)とは、下記の数式(5)の関係が成立する。
ε(λ)=N2 (λ)・・・(5)
なお、フィッティングの内容について説明すると、エリプソメータ1による試料Sを測定した場合でT個の測定データ対をExp(i=1,2...,T)とし、T個のモデルの計算データ対をMod(i=1,2...,T)としたとき、測定誤差は正規分布するとして、標準偏差をσi とした際の最小二乗法に係る平均二乗誤差χ2 は下記の数式(6)で求められる。なおPはパラメータの数である。平均二乗誤差χ2 の値が小さいときは、測定結果と形成したモデルの一致度が大きいことを意味するため、複数のモデルについて比較するときに、平均二乗誤差χ2 の値が最も小さいものがベストモデルに相当する。
Figure 0004435298
上述したコンピュータ10が行う一連の処理は、記憶部11bに記憶されたコンピュータプログラムに規定されており、このコンピュータプログラムには、図4に示すように、試料の物性に対応して作成するモデルの条件の項目である膜厚、ボイド等を入力して設定するメニュー20をディスプレイ12の画面に表示させる処理もプログラミングされている。なお、本実施形態では、図2(b)の膜S2′に対しボイドを設定すると膜S2′を形成する物質Mの割合も自動的に設定できると共に、膜S2′の物質Mの割合を設定すると膜S2′のボイドも自動的に設定されるようになっている。そのため膜S2′に対してはボイド又は膜を構成する物質Mのいずれかの数値を設定するだけでよい。例えば、膜S2′の物質Mを30%と設定すれば、膜S2′のボイドは自動的に70%と設定される。
次に、上述した構成のエリプソメータ1及びコンピュータ10を用いた本発明の試料解析方法の一連の手順を図5のフローチャートに基づき説明する。
先ず、エリプソメータ1のステージ4に誘電率が50以上の誘電体膜を基板上に形成した試料Sを載置する(S1)。次に、解析に係る項目として試料Sの測定箇所、入射角度φ、試料に応じたモデル作成のための条件(基板の材質、誘電体の膜厚、光学定数等)等をコンピュータ10に入力する(S2)。本発明では、前記条件にボイドの数値も入力されており、本発明では60%以上90%以下の範囲の数値(例えば70%)が入力される。また、このように条件が入力されることで、有効媒質近似に基づく空隙が入力された数値の混合比で存在する誘電体膜を形成したモデル(図2(b)参照)が作成される(S3)。
それから、エリプソメータ1は、入射角度φ及び反射角度φが入力された数値になるように光照射器3及び光取得器5を移動させると共にステージ4を移動して、偏光状態の光を試料に入射させて(S4)、位相差ΔE、振幅比ΨE を測定する(S5)。また、コンピュータ10は、作成されたモデルから位相差ΔM、振幅比ΨMを算出し(S6)、エリプソメータ1の測定値とモデルから得られた算出値とを比較する(S7)。比較された各値の相異が小さくなるように、モデルの誘電体膜における空隙の混合比、誘電体の混合比、膜厚及び分散式のパラメータのフィッティングを行う(S8)。
フィッティングにより最小二乗法で求めた差が所要の値に収まれば(十分小さくなれば)、そのときの膜厚、分散式のパラメータ、ボイド、混合比の数値等から試料の膜厚及び光学定数等を求める(S9)。このように膜厚及び光学定数を求めることで本発明は試料を解析している。なお、分散式中の各パラメータは、誘電体膜中の誘電体成分に係るものであり、誘電体成分の誘電率を前記各パラメータより求め、誘電体膜の全体に係る誘電率は、誘電体成分の誘電率及び空気成分の誘電率を用いて有効媒質近似に係る演算式で求めている。
次に、上述した本発明の試料解析方法を用いて強誘電体膜を形成した試料に対して行った解析例を説明する。先ず、試料としては、Pt(白金)膜を蒸着により表面に設けたSi(シリコン)基板の上にPZT膜を形成したものを用いた。なお、PZTとは、チタン酸鉛(PbTiO3 )とジルコン酸鉛(PbZrO3)とを混合した物質であり、強誘電体に属するものである。
また、本解析例では、図2(b)に示すような構造で前記試料に応じたモデルS′として、有効媒質近似に基づきPZT(物質M)が30%(混合比は0.3)、空隙Vが70%(混合比は0.7)存在する膜S2′がSi基板のPt膜S1′の上に形成されたモデルS′を作成し、膜S2′の膜厚d′を900オングストロームに設定した。なお、モデル作成にあたり、基板上のPt膜に関しては既知のリファレンスを用いると共に、PZT膜の複素誘電率εに対しては、下記の有効媒質近似に係る演算式である数式(7)及び上述した数式(4)の分散式を用いた。また、空隙は屈折率に空気と同等の数値(約1.003)を用いた。
Figure 0004435298
なお、数式(7)において、εはPZT膜(膜S2′)の有効複素誘電率であり、εa はPZT膜中のPZT(物質M:PZT成分)の誘電率、εb はPZT膜中の空隙(空気成分)Vの誘電率であり、fa はPZTの混合比、fb は空隙の混合比であり、PZT膜の全体的な有効複素誘電率を数式(7)に基づき求めた。
図6(a)のグラフは、上述した試料に対するエリプソメータ1による測定値と、最初に作成したモデルから理論的に算出した算出値とを示すものである。図6(a)のグラフに示すように、測定値及び算出値を比較すると、位相差Δ及び振幅比Ψに係る測定値と算出値との間には明確な相異が存在している。このような状態から、膜S2′の膜厚d′、空隙の混合比、PZTの混合比、及び数式(4)の分散式のパラメータのフィッティングを行った。なお、本解析例の場合、分散式に対しては数式(4)のパラメータの中でεs 、ωt 、Γ0 だけをフィッティングした。
図6(b)はフィッティング後のグラフであり、図7はフィッティングに係る結果を示す図表である。図6(b)のグラフに示すように、フィッティング後のモデルから算出した算出値は、約250nm〜400nmの範囲でもエリプソメータ1の測定値とほぼ一致した状態になっており、図7の表中の平均二乗誤差χ2 の値も約6.57となって、十分に小さい値になった。また、この状態で膜S2′にPZTが占める割合は約28.7%であることから、空隙が約71.3%存在することが分かる。さらに、膜S2′のPZT成分の低周波における誘電率(εs)は約372.79であった。
図8は、上述したフィッティングにより特定された値から、算出したPZT膜の屈折率n及び消衰係数kを示すグラフである。このように、本発明の試料解析方法を用いることで、従来解析が不可能であった、400nm以下の範囲においても解析できるようになり、248nm〜826nmの範囲で安定した解析を実現できる。なお、図8のグラフの横軸は波長から変換できる光子エネルギーを単位に用いている(5eV=約248nm)。
また、本発明の試料解析方法は、電気的な測定に基づいた誘電率が50以上の誘電体膜を基板上に形成している試料を解析できるため、上述したPZT膜を有する試料以外にもSrBi4 Ti4 15膜を有する試料も好適に解析でき、複数の誘電体膜(電気的な測定に基づいた誘電率が50以上)を有する試料に対しては、図2(b)に示すようなモデル構造を各誘電体の膜層毎に適用すると共に上記と同様な演算を行うことにより支障無く解析できる。さらに、分散式に係る数式(4)及び有効媒質近似に係る数式(7)は、あくまで一例であり、解析を行う試料に適した周知の数式を適宜用いるようにしてもよい。
なお、本発明の試料解析方法では、上述したように一度に全てのパラメータをフィッティングする場合以外に、複数の段階毎に各パラメータをフィッティングして試料を解析することも可能である。一度に全てのパラメータをフィッティングする場合は、試料の分散式が判明しているとき、最初に作成したモデルからの算出値とエリプソメータの測定値との相異が少ないとき等に好適である。段階毎にフィッティングを行う場合は、試料の分散式が判明していないとき、作成したモデルからの算出値とエリプソメータの測定値との相異が大きいとき等に好適である。
本発明において段階毎にフィッティングを行うときの一例としては、まず、空隙を形成した膜に対してボイドが60%、70%、80%、90%の4種類のモデルを立てて、各モデルから算出した値とエリプソメータ1の測定結果とを比較し、最小二乗法により差が小さくなるモデル(ボイド)を特定する。次に、この特定したボイドに対して、膜厚及び分散式のパラメータをフィッティングすることで系統立てた解析を行う。さらに、このようにボイドを特定した次に、複数種類の膜厚を設定して同様に相異が小さくなるモデル(膜厚)を特定し、特定したボイド及び膜厚に対して分散式のパラメータのみをフィッティングして解析を行うことも可能である。
本発明の試料解析方法に使用されるエリプソメータ及びコンピュータの構成を示す概略図である。 (a)は試料の断面図であり、(b)は有効媒質近似に基づく空隙を有するモデルの構造を示す概略図である。 分光器の内部構成を示す概略図である。 膜厚、ボイド等の設定メニューを示す概略図である。 本発明の試料解析方法に係る処理を示すフローチャートである。 (a)は最初に作成したモデルからの算出値及びエリプソメータによる測定値を示すグラフであり、(b)はフィッティング後の算出値及び測定値を示すグラフである。 フィッティングに係る結果を示す図表である。 屈折率及び消衰係数を示すグラフである。 酸化シリコンに対するエリプソメータの測定結果を示すグラフである。 (a)は、試料の構造を示す概略図であり、(b)は膜表面にラフネスを有する試料の概略図であり、(c)は有効媒質近似に基づく空隙を有するモデルの構造を示す概略図である。
符号の説明
1 エリプソメータ
3 光照射器
4 ステージ
5 光取得器
7 分光器
8 データ取込機
10 コンピュータ
S 試料
S′ モデル
S1 基板
S2、S2′ 膜
M 物質
V 空隙

Claims (2)

  1. エリプソメータで、基板上に電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料へ偏光状態の光を入射するステップと、
    前記試料に対する入射光及び反射光の偏光状態の変化値を測定するステップと、
    前記試料に応じた条件を設定して、電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料を、入射光の波長が400nm以下の範囲においても解析すべく有効媒質近似に基づく空隙が60%以上90%以下の範囲で存在するモデルを作成するステップと、
    作成されたモデルに基づき前記エリプソメータで測定した偏光状態の変化値に対応した値を算出するステップと、
    算出した値と前記エリプソメータで測定した変化値とを比較するステップと、
    比較した両値の相異が小さくなるように前記有効媒質近似に係る演算式及び前記モデルに係る分散式による演算を行うステップと、
    前記演算の結果に基づき試料の解析を行うステップと
    を備えることを特徴とする試料解析方法。
  2. 前記分散式は、光学的な測定範囲に対する誘電率に係るパラメータを含み、
    該誘電率に係るパラメータの数値に基づき試料の誘電体膜の光学的な測定範囲に対する誘電率を解析する請求項1に記載の試料解析方法。
JP2004101357A 2004-03-30 2004-03-30 試料解析方法 Expired - Fee Related JP4435298B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004101357A JP4435298B2 (ja) 2004-03-30 2004-03-30 試料解析方法
TW093141341A TWI278617B (en) 2004-03-30 2004-12-30 Method for analyzing sample
KR1020050004686A KR100822419B1 (ko) 2004-03-30 2005-01-18 시료 해석 방법
US11/089,783 US7167242B2 (en) 2004-03-30 2005-03-25 Sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101357A JP4435298B2 (ja) 2004-03-30 2004-03-30 試料解析方法

Publications (2)

Publication Number Publication Date
JP2005283502A JP2005283502A (ja) 2005-10-13
JP4435298B2 true JP4435298B2 (ja) 2010-03-17

Family

ID=35053911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101357A Expired - Fee Related JP4435298B2 (ja) 2004-03-30 2004-03-30 試料解析方法

Country Status (4)

Country Link
US (1) US7167242B2 (ja)
JP (1) JP4435298B2 (ja)
KR (1) KR100822419B1 (ja)
TW (1) TWI278617B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616567B2 (ja) * 2004-03-11 2011-01-19 株式会社堀場製作所 測定方法、解析方法、測定装置、解析装置、エリプソメータ及びコンピュータプログラム
JP4317558B2 (ja) * 2006-08-23 2009-08-19 株式会社堀場製作所 試料解析方法、試料解析装置及びプログラム
TWI331213B (en) 2005-11-29 2010-10-01 Horiba Ltd Sample analyzing method, sample analyzing apparatus,and recording medium
JP5461020B2 (ja) * 2008-03-05 2014-04-02 株式会社堀場製作所 分光エリプソメータ
KR101443058B1 (ko) 2008-06-25 2014-09-24 삼성전자주식회사 막질 디멘젼 분석에서의 반도체 제조설비 및 그의 제조방법
JP5397693B2 (ja) * 2010-02-25 2014-01-22 大日本スクリーン製造株式会社 水素含有率取得装置および水素含有率取得方法
JP2016128780A (ja) * 2015-01-09 2016-07-14 株式会社堀場製作所 情報処理装置、情報処理方法及びプログラム
JP6494031B2 (ja) * 2015-07-21 2019-04-03 富士フイルム株式会社 積層構造体及びそれを備えた圧電素子、積層構造体の製造方法、評価方法
US10429296B2 (en) * 2017-07-25 2019-10-01 Kla-Tencor Corporation Multilayer film metrology using an effective media approximation
US10663286B2 (en) * 2017-08-22 2020-05-26 Kla-Tencor Corporation Measuring thin films on grating and bandgap on grating
CN110514599B (zh) * 2019-08-23 2020-11-03 浙江大学 一种掺氟氧化锡镀膜玻璃的光学参数检测方法
US11714045B2 (en) * 2021-07-21 2023-08-01 Meta Platforms Technologies, Llc Techniques for characterizing films on optically clear substrates using ellipsometry

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332833A (en) * 1980-02-29 1982-06-01 Bell Telephone Laboratories, Incorporated Method for optical monitoring in materials fabrication
JP3532165B2 (ja) 2001-05-22 2004-05-31 株式会社堀場製作所 分光エリプソメータを用いた薄膜計測方法
JP3556183B2 (ja) 2001-05-22 2004-08-18 株式会社堀場製作所 基板上の化合物半導体層の組成決定方法
US6808742B2 (en) * 2002-03-07 2004-10-26 Competitive Technologies, Inc. Preparation of thin silica films with controlled thickness and tunable refractive index

Also Published As

Publication number Publication date
KR20050096847A (ko) 2005-10-06
TWI278617B (en) 2007-04-11
KR100822419B1 (ko) 2008-04-16
TW200538715A (en) 2005-12-01
US20050219529A1 (en) 2005-10-06
US7167242B2 (en) 2007-01-23
JP2005283502A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100822419B1 (ko) 시료 해석 방법
US7280210B2 (en) Measuring method, analyzing method, measuring apparatus, analyzing apparatus, ellipsometer, and computer program
EP1435517B1 (en) Method for analyzing thin-film layer structure using spectroscopic ellipsometer
US6485872B1 (en) Method and apparatus for measuring the composition and other properties of thin films utilizing infrared radiation
KR101841776B1 (ko) 광학 특성 측정 장치 및 광학 특성 측정 방법
US8199336B2 (en) Optical measurement apparatus, spectroscopic ellipsometer, recording medium, and measurement method
US7280208B2 (en) Optical characteristic analysis method, sample measuring apparatus and spectroscopic ellipsometer
JP4490777B2 (ja) 製膜条件特定方法
US7271901B2 (en) Thin-film characteristic measuring method using spectroellipsometer
KR100883876B1 (ko) 시료 해석 방법
JP4136740B2 (ja) 分光エリプソメータを用いた薄膜3層構造の解析方法
JP3556183B2 (ja) 基板上の化合物半導体層の組成決定方法
JP3983093B2 (ja) 分光エリプソメータを用いた多結晶化合物半導体の組成決定方法
JP3613707B2 (ja) 超薄膜および薄膜計測方法
JP2016128780A (ja) 情報処理装置、情報処理方法及びプログラム
JP2004093436A (ja) 分光エリプソメータを用いた薄膜多層構造の解析方法
JP4587690B2 (ja) 超薄膜および薄膜計測方法
Sinclair et al. Light scattering from sol-gel Pb (Zr, Ti) O3 thin films: Surface versus volume scattering
McGahan et al. Optical characterization of TiN thin films
Petrik et al. High Sensitivity Optical Characterization of Thin Films with Embedded Si Nanocrystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees