JP4411892B2 - 光源装置およびこれを用いた車両用前照灯 - Google Patents

光源装置およびこれを用いた車両用前照灯 Download PDF

Info

Publication number
JP4411892B2
JP4411892B2 JP2003272618A JP2003272618A JP4411892B2 JP 4411892 B2 JP4411892 B2 JP 4411892B2 JP 2003272618 A JP2003272618 A JP 2003272618A JP 2003272618 A JP2003272618 A JP 2003272618A JP 4411892 B2 JP4411892 B2 JP 4411892B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
source device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003272618A
Other languages
English (en)
Other versions
JP2005032661A (ja
Inventor
和憲 渡邉
正人 小野
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2003272618A priority Critical patent/JP4411892B2/ja
Publication of JP2005032661A publication Critical patent/JP2005032661A/ja
Application granted granted Critical
Publication of JP4411892B2 publication Critical patent/JP4411892B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

本発明は、発光素子を用いた光源装置に関するもので、とくにある特定の範囲を配光性よく照射することを目的とする光源装置であって、さらに車両用のヘッドランプを含む車両用前照灯に用いることのできる光源装置である。
近年、発光素子の高輝度化が進み、発光素子はわれわれの生活の中で様々な光源用途として用いられるようになってきた。例えば特定の範囲を照射することを目的とする光源装置として、発光素子と反射面202とを組み合わせることで、発光素子からの光を配光させた光源装置を形成することができる(例えば特許文献1の2〜3頁、図1、図5)。このような光源装置に求められる特性としては、高輝度や高光束の光を光源装置から発光させる必要があるが、これらの特性を満足し、種々の用途として用いるまでにはいたっていない。
また発光素子の高輝度化に加えて、白色を呈する発光素子が実用化されたことにより、従来のハロゲンランプに変わる光源としての期待も高まっている。たとえば、ハロゲンランプなどが用いられている車両用ランプとして、特に前照灯となるヘッドランプとして用いることが考えられている。しかしながら光の配光や照度などの点において、発光素子を用いた光源装置は、まだまだ車両用のヘッドランプまた前照灯としての特性を満たしておらず、実用化が望まれるところである。
特開2001―155510号公報
そこで、本発明は特定の範囲を照射することを目的とした発光素子を用いた光源装置であって、特に配光性に優れた光源装置を提供することにある。さらには、高輝度の発光素子を用いた光源装置として、放熱性に優れた光源装置とし、長寿命の光源装置を提供することにある。また、前記光源装置を用いた、配光性および寿命特性に優れた車両用前照灯を提供する。
本発明の光源装置は、次の(1)〜(19)の特徴を有する。
(1)本発明の光源装置は、回路基板201と、前記回路基板にサブマウントを介して実装され、かつ回路基板201と電気的に接続されてなる発光素子200と、前記発光素子200から発光された光を照射方向に導く反射面202と、を少なくとも有する光源装置であって、前記発光素子200は、n型半導体とp型半導体とが少なくとも積層され、積層方向に垂直となる2つの主面と、積層方向に平行となる側面とを有し、前記照射方向は前記発光素子200の側面方向であって、前記発光素子200と前記回路基板201との電気的接続手段の少なくとも1つが、発光素子200から見て照射方向を通過し、かつ、前記発光素子が固定された前記サブマウントから前記回路基板に接続されていることを特徴とする。
(2)本発明の光源装置は、(1)であってさらに、電気的接続手段の少なくとも1つは、金属ワイヤー203であることを特徴とする。
(3)本発明の光源装置は、(1)または(2)であってさらに、前記反射面202は、前記発光素子200に焦点を有し、照射方向を軸とする回転放物面であることを特徴とする。
(4)本発明の光源装置は、(1)または(2)であってさらに、前記反射面202は、前記発光素子200に焦点を有し、照射方向を軸とする楕円放物面であることを特徴とする。
(5)本発明の光源装置は、(1)または(2)であってさらに、前記反射面202は、前記発光素子200に焦点を有し、照射方向を軸とする回転楕円面であることを特徴とする。
(6)本発明の光源装置は、(1)または(2)であってさらに、前記反射面202は、前記発光素子200に焦点を有し、照射方向を軸とする三軸楕円面であることを特徴とする。
(7)本発明の光源装置は、(1)乃至(6)のいずれかであってさらに、前記反射面202は、回路基板201に実装されてなることを特徴とする。
(8)本発明の光源装置は、(1)乃至(7)のいずれかであってさらに、前記発光素子200の側面は、前記反射面202に対向する第1の領域とそれ以外の第2の領域に分けたとき、前記照射方向は、第2の領域の側面方向となることを特徴とする。
(9)本発明の光源装置は、(1)乃至(8)のいずれかであってさらに、前記発光素子200の2つの主面のうち一方の主面は、前記反射面202に対向してなることを特徴とする。
(10)本発明の光源装置は、(1)乃至(9)のいずれかであってさらに、前記回路基板201において前記発光素子200を有する側表面の照射方向端部には、前記反射面2002で反射された光の一部を遮光するシェード315が形成されていることを特徴とする。
(11)本発明の光源装置は、(1)乃至(10)のいずれかであってさらに、前記発光素子200は、前記2つの主面のうち一方の面に、正電極305と負電極306とを有し、導電性パターンが形成されたサブマウント301の正負両電極にそれぞれ対向させて固定されてなることを特徴とする。

(12)本発明の光源装置は、(1)乃至(11)のいずれかであってさらに、前記電気的接続手段の1つは、樹脂308で覆われていることを特徴とする。
(13)本発明の光源装置は、前記(1)から(12)のいずれかであってさらに、前記発光素子200は樹脂308で覆われていることを特徴とする。
(14)本発明の光源装置は、前記(1)から(13)のいずれかであってさらに、前記発光素子200は、発光素子200が中心となる半球状の樹脂308で覆われていることを特徴とする。
(15)本発明の光源装置は、前記(1)から(14)のいずれかであってさらに、前記発光素子200は、発光素子が中心となる半球状でかつ内部が樹脂308で充填されたガラス309または樹脂で覆われてなることを特徴とする。
(16)本発明の光源装置は、前記(1)から(12)のいずれかであってさらに、前記発光素子200は、発光素子が中心となる半球状でかつ中空のガラス309または樹脂で覆われてなることを特徴とする。
(17)本発明の光源装置は、(1)乃至(16)であってさらに、前記発光素子200は、前記照射方向に対して垂直な方向に複数個並べられてなることを特徴とする。
(18)本発明の光源装置は、(1)乃至(17)であってさらに、前記発光素子200は、窒化ガリウム系の半導体素子であることを特徴とする。
(19)本発明の光源装置は、(1)乃至(18)であってさらに、前記発光素子200は、白色を呈することを特徴とする。
また本発明の(1)〜(19)の光源装置を、次のように用いる。
(20)本発明の(1)〜(19)のいずれかの光源装置を用いた車両用前照灯。
(21)本発明の(1)〜(19)のいずれかの光源装置を複数個並べて用いた車両用前照灯。
本発明の光源装置によって、配光性に優れた光源装置が得られると共に、高輝度の発光素子200を用いた光源装置として、長寿命の光源装置が得られる。また、本発明の光源装置を用いることによって、配光性および寿命特性に優れた車両用の前照灯が得られる。
次に本発明の実施の形態を詳細に説明する。
図1は本発明の一実施の形態を示す光源装置を模式的に示した断面図である。また、図2は本発明の一実施の形態を示す光源装置の模式的に示した斜視図であり、回路基板201上に発光素子200が実装されており、さらに発光素子200を覆うように反射面202が形成されている。さらに反射面202は回路基板201に実装されている。このように反射面202を形成すると、発光素子200から発光された光のうち、反射面202に入射した光は、反射面202において反射し、光の方向を変える。そしてこのように発光素子200と回路基板201と反射面202を配置することで、Aの方向を照射方向とし、発光素子200からの光が照射方向Aに好適に進む構造となっている。図2において、この照射方向をX、回路基板201上で照射方向Xに対して垂直な方向をY、XとYに垂直な方向で回路基板201上の発光素子200の設置方向をZと定義すると、図1がY方向から本実施の形態を見たときの模式的な断面図となり、また図3がX方向から本実施の形態を見たときの模式的な断面図となり、また図4がZ方向から本実施の形態を見たときの模式的な断面図となる。いずれの断面図も少なくとも発光素子200を通る断面図を示している。そして、発光素子200と回路基板201とを電気的に接続する電気的接続手段として金属ワイヤー203が、発光素子200から見て照射方向を通る構造となっている。このような構造の光源装置とすることで、配光性に優れた光源装置が得られる。これについて、次に説明する。
発光素子200は、n型半導体とp型半導体とが少なくとも積層され、積層方向に垂直となる2つの主面と、積層方向に平行となる側面とを有しており、2つの主面のうち一方の主面は反射面202側に形成され、他方の主面が回路基板201に実装されている。さらに2つの主面に垂直に側面を有し、照射方向Aは発光素子200の側面方向になる。発光素子200は、n型半導体層から電子がキャリアとなり、p型半導体層から正孔がキャリアとなり、n型半導体層とp型半導体層との界面において発光する。つまり2つの主面に平行な発光素子200内の面が発光することとなり、2つの主面のうち、回路基板201に実装されていない他方の主面から、また側面においては、特にpn接合界面から、強い光が発光されることとなる。
発光素子200のこれらの面から出される発光は、照射方向Aにむけて進むが、その光は、反射面202で反射して照射方向に進む光と、反射面202で反射せず、直接発光素子200から照射方向に進む光との、それぞれが進むようになる。反射面202で反射した光は、反射面202の形状を変えることによって、光束の密度と光の方向を変化させることができ、種々の配光を作ることができ、反射面202の形状によって、配光の制御が可能である。配光とは光源から出た光の光度(光の強さ)の分布を示すもので、本発明においては照射方向に強い光が照射される。これと異なり、発光素子200から直接照射方向に進む光は、発散光となり、反射面による配光を制御できない。また反射面202で反射して照射方向に進む光は、光の方向や密度を制御でき、平行光や集光された光となるため、光の光度も強く、照射方向遠方を照射できるのに対し、発光素子200から直接照射方向に進む光は、発散光として進むにつれて光が広がるため、照射方向遠方を照射しにくい。
また一方、発光素子200は回路基板201などに実装するが、その実装する側に発光素子200から電気的接続手段を設ける。もっとも一般的には金属ワイヤー203を用い、また他には発光素子200の側面に沿って形成された金属板などを設けることがある。このように金属ワイヤー203や金属板などを設けると、発光素子200からの発光を遮蔽してしまう。発光素子200からの発光に対し、このような遮蔽物を有する場合、この遮蔽物によって、配光への影響を受ける恐れがある。特に、発光素子200からの光のうち、光源装置の照射方向に向かう光の光路上に遮蔽物があると、光の配光は影響を受けてしまう。つまり光路上の遮蔽物の存在は、配光において、光の光度の弱い領域を形成してしまい、配光が乱れてしまうのである。
そこで本発明は、発光素子200と回路基板201とを接続する電気的接続手段を光源装置の照射方向を通るように設けることで、配光の乱れの問題を解決することができた。つまり、上記説明したように、本発明の光源装置は、反射面202で反射して照射方向に進む光と、直接発光素子200から照射方向に進む光、つまり発散光とのそれぞれが進むが、電気的接続手段を、発光素子200から直接照射方向に進む光に対して遮蔽物とし、反射面202で反射して照射方向に進む光を遮蔽しないような構成とすることにより、配光性に優れた光源装置が実現できたものである。
本発明の電気的接続手段は、金属ワイヤー203であるときに、とくに大きな効果を奏するが、発光素子200の側面に沿って形成される金属板などにおいても、金属板で光が反射される点を考慮すると本発明の構成による効果を有する。
図1〜4で説明すると、発光素子200と回路基板201とを電気的に接続する金属ワイヤー203を光の照射方向Aを通過するように形成する。
またさらに好ましい形態として、本発明の光源装置は、反射面202を、発光素子200に焦点を有し、照射方向を軸とする回転放物面とする。これにより、発光素子200から発光された光のうち、反射面202で反射した光は、さらに効率良く照射方向に進み、平行光や集光した光を形成することができる。言いかえれば、反射面202を回転放物面とすることで、照射方向に進む光の光束の密度を高くすることができる。
また反射面202を、発光素子200に焦点を有し、照射方向を軸とする楕円放物面とする。楕円放物面とすることで、光の広がりを制御できるようになる。
またさらに反射面202を、発光素子200に焦点を有し、照射方向を軸とする回転楕円面とすることで、照射方向に進む光を集光させた光として形成することができる。反射面202を回転楕円面とするとき、発光素子200は、楕円を形成する反射面202に近い側の楕円の焦点位置に形成することが好ましい。これにより、反射面202で反射した光は、反射面202に遠い側の楕円の焦点位置に集光するように形成でき、制御性が増す。
反射面202を回転放物面もしくは回転楕円面とするとき、図1のY方向から見た図、および図4のZ方向から見た図の反射面202の軌跡が放物曲線、もしくは楕円となる。
また本発明の反射面202については、別の実施の形態として、三軸楕円面を形成してもよい。三軸楕円とは、三次元的に見て、X−Y−Zのそれぞれが楕円で形成されるもので、本発明では、図1のY方向と図4のZ軸方向の反射面202の軌跡のみならず、図3のX方向から見たときの反射面202の軌跡も楕円とするものである。このように反射面202を三軸楕円面としたとき、X方向が横長の楕円とすれば、光源からの光の配光も横長の楕円となり、所望の形状の配光性を容易に形成することが可能となる。
また、本発明の光源装置は、発光素子200であって、発光面は前記記載の他方の主面および側面となり、複数の発光面を有する。そこで本発明の反射面202は、反射面202の放物曲線もしくは楕円の焦点位置を、それぞれ点において、最も近い発光面を焦点とする放物曲線および楕円の軌跡を形成してもよい。つまり、反射面202は、他方の主面に焦点を有する放物曲線または楕円と、反射面202に対向する側面に焦点を有する放物曲線または楕円とすることで、さらに配光性のよい光源装置を得ることができる。ここで、好ましくは、他方の主面に焦点を有する放物曲線または楕円と側面に焦点を有する放物曲線または楕円とは、できるだけ連続面になるように形成することが好ましい。このように2つ以上の反射面のそれぞれの特徴を生かした自由曲面とすることで、照射ムラが少なく良好な配光を得ることができる。
本発明の光源装置は、さらに好ましい形態として、反射面202が回路基板201に実装されてなる。反射面202を直接回路基板201に実装することにより、発光素子200が発光することによって発生する熱の一部を効果的に発散できる。発光素子200は発光することによって、発熱する。発光素子200は温度特性によって、特性が変わることがあり、高温になるほど、また高温で長時間保持されると、発光素子200を取り巻く金属ワイヤー203や保護膜として機能する樹脂308などが劣化してしまい、寿命が短くなる傾向がある。そこで、反射面202を直接回路基板201に実装することで、反射面202が放熱板としても機能し、大気にさらされる面積が増えることで発光素子200で発生した熱を、回路基板201に向けて、さらには反射面202に向けて放熱することが可能となり、発光素子200の寿命特性が向上する。ここで、回路基板201は好ましくは、熱伝導率の高い材料を選択することが好ましく、さらには反射面202も熱伝導率の高い材料を選択して形成することが好ましい。また、本発明において、反射面202を回路基板201に実装することで、さらに次のような効果も奏する。発光素子200で発生した熱は、前記他方の主面を実装した回路基板201にむけて放熱されるが、回路基板201に放熱された熱は、さらに回路基板201と接する反射面202のほうに効率良く伝わっていく。このとき、金属ワイヤー203などの電気的接続手段は、回路基板201上で発光素子200から見て、反射面202のないところで回路基板201に接続されているため、回路基板201上の放熱経路上にない。すなわち、回路基板201に接続された電気的接続手段は、高温になりにくくなり、熱による劣化を防ぐことができる。回路基板の材料としては、回路パターンが形成しやすく、かつ熱伝導率の高い材料が好ましく用いられ、例えば、Al、Cu、AlN、Al−SiC等が挙げられる。また反射面は、AlまたはAg等が好適に用いられ、単体もしくは熱伝導率の高い材料の表面で発光素子からの光が入射される面にAlもしくはAgが形成されていることが好ましく、特に酸化しにくいなどの点においては、Alを用いることが最も好ましい。
また、本発明の光源装置において、発光素子200は図1〜4に示すように、2つの主面に垂直な側面は、4つ存在し、主面側から見て四角形となっている。そしてそのうちの1つの面が照射方向に対向して設置されている。しかしながら、発光素子200の形状はこれに限るものではなく、主面側から見て三角形や、多角形、円形となるような側面を有してもよく、また四角形の頂点が照射方向を向くように設置してもよい。その場合の電気的接続手段は次のように形成する。図5は光源装置をZ方向から見たときの反射面202と発光素子200との関係を模式的に示す図である。ここでは発光素子200はZ方向から見て円形となるような側面について示している。発光素子200の中心を基準として、発光素子200の側面が反射面202と対向する位置が領域I(第1の領域)で、領域I以外、つまり側面が反射面202と対向しない位置が領域II(第2の領域)で示されている。このように発光素子200の側面を領域Iと領域IIとにわけて、側面のうち、領域II(第2の領域)を通る電気的接続手段を設けることで、配光性に優れた本発明の光源装置とすることができる。ここでは円形で説明したが、同様に三角形、多角形、その他の形状においても、発光素子200の中心を基準として、発光素子200の側面を領域Iと領域IIとし、側面のうち、領域IIを通る電気的手段を設けることで同様のことがいえる。また発光素子200は前述のように、複数の発光面を有することから、それぞれの発光面を焦点とする放物曲面、または楕円曲面で反射面202を形成するときは、それぞれの焦点を基準として領域Iと領域IIとをわけるとよい。
また本発明の光源装置は、発光素子200の2つの主面のうち、一方の主面は、反射面202に対向してなることを特徴とする。つまり一方の主面から発光した光を効果的に反射することができる。この反射面202は、一方の主面に対向する位置からさらに照射方向に延在する反射面202とすることで、発光素子200から発光された光のうち、反射面202に入射する光を増すことができるので好ましい。
また本発明の光源装置は、さらに好ましい形態として、発光素子200は回路基板201にサブマウント301を介して実装されてなることが好ましい。図6は回路基板201上に発光素子200をサブマウント301を介して実装したときを模式的に示す断面図である。このようにサブマウント301を設けることで、発光点となる発光素子200を回路基板201から離して形成することができる。さらに反射面202を発光素子200を焦点とし、照射方向を軸とする回転放物面もしくは回転楕円面とするとき、発光素子200を回路基板201に直接実装したときと比べて、反射面202の面積を大きくとくことができ、発光面に入射する発光素子200の光量を多くすることができる。つまり光源装置から出される光の配光特性を見たときの光の光度が増す。特に図3のX方向から見たときの、発光素子200の側面に対向する反射面202の面積が増加分がこの効果をとくにもたらす。図6においても、発光素子200と回路基板201との電気的接続手段としての金属ワイヤー203は発光素子200の他方の主面から、照射方向の側面を通過して回路基板201に接続されている。また、サブマウント301を設けた光源装置としての金属ワイヤー203は図12や図13のような別の形態とすることもできる。図12は、発光素子200の他方の主面とサブマウント301とが、さらにサブマウント301と回路基板201とが金属ワイヤー203によって接続されてなる。また図13は、発光素子200と回路基板201とが、さらにサブマウント301と回路基板201とが金属ワイヤー203によって接続されている。いずれの場合も、金属ワイヤー203は発光素子200から見て照射方向の発光素子200の側面を通るように形成されている。サブマウント301は、発光素子200との接合面において、発光素子200の面積よりサブマウント301の面積のほうが大きいことが必要である。これにより発光ダイオードからの熱が好適にサブマウント301に放熱される。さらに好ましくは、サブマウント301は発光素子200から離れるにつれて広がっていく形状とし、その広がり角は45°以上であることが方熱の点で最も好ましい。サブマウントの材料としては、絶縁体で熱伝導率の高い材料を選択し、例えばAlN、Al−SiC、Cu−W、Cu−Mo、Al2O3等が挙げられる。
また本発明の光源装置は、さらに好ましい形態として、発光素子200は、前記2つの主面のうち一方の面に、正電極305と負電極306とを有し、導電性パターンが形成されたサブマウント301の正負両電極それぞれ対向させて固定されてなり、前記サブマウント301と回路基板201が、前記電気的接続手段として、金属ワイヤー203で接続されてなることを特徴とする。図7はこの発光素子200を示す模式的な断面図であり、発光波長に対して透明な基板上に、n型半導体層とp型半導体層が、n型半導体層とP型半導体層との間には、活性層が形成され、さらにp型半導体層の表面からn型半導体層の一部が露出するようにエッチングされ、エッチングされた露出面にn電極が、さらにp型半導体層の表面にはp電極が形成されてなる発光素子200が、サブマウント301上の導電パターンのそれぞれと共晶はんだ307により固定されている。またサブマウント301上の導電パターンには、回路基板201と電気的に接続されてなる金属ワイヤー203が形成されている。図7の断面図はサブマウント301に実装されてなる発光素子200を説明する図であり、ここで示す金属ワイヤー203は、光源装置とした場合、いずれの金属ワイヤー203も照射方向の発光素子200側面を通るように形成される。また図8は、このときの光源装置を示す模式的な断面図であり、図8からもわかるように金属ワイヤー203は発光素子200が固定されたサブマウント301から回路基板201に接続されることで、発光素子200からみて照射方向の発光素子200側面のみを通るようになり、特に好ましい。
また、本発明の光源装置は、さらに好ましくは、発光素子200を照射方向に対して垂直な方向に複数個と並べてなることを特徴とする。発光素子200を回路基板201上、反射面202内に1つ設置するだけでなく、複数個設置することで、光度を高めることができる。照射面に対して垂直な方向に複数個並べることで、発光点を擬似的に線状の光源とすることができ、線状で均一な発光を得ることができる。特に線状の発光が得られることで、光学部品として、フィラメントを用いた電球に用いられる光学部品をそのままもしくは簡単に変更することで、本発明の発光素子200を用いた光源装置の光学部品として用いることが可能となる。配光の設計においても、電球での光学設計をもとに容易に設計することも可能となる。発光素子を複数個設ける場合、発光素子同士は、直列また並列いずれで接続してもよい。
また、発光素子200は照射方向に対して垂直な方向に複数個並べるだけでなく照射方向に複数個並べてもよく、これにより発光素子200の上述の他方の主面に対向する反射面202を有効に用いることができるので、好ましい。
このように回路基板201上に複数個の発光素子200を並べて設置することで、光度を高くすることができ、照射方向に強い光が発光される光源装置とすることができる。発光素子200の並べ方としては、照射方向をX、回路基板201上でXに垂直な方向をYと定義したとき、(X、Y)=(1、2)、(2、4)のようにマトリックス状に種々の形態を取ることができる。図9は(X、Y)=(1、2)を示す光源装置の模式的な斜視図であり、図10は(X,Y)=(2、4)を示す光源装置の模式的な斜視図である。このように(X、Y)のマトリックス状に形成する場合、好ましくはX<Yとすることで、配光特性はY方向に長く、強い光を照射することが可能となる。
また本発明の光源装置は、さらに好ましい形態として、電気的接続手段の1つは、樹脂308で覆われていることを特徴とする。電気的接続手段を樹脂308で覆うことで、短絡や電気的不具合を防止することができる。特に金属ワイヤー203が樹脂308で覆われることで、金属ワイヤー203の短絡等を防止できる効果は大きい。金属ワイヤーの材料としては、AuやAl等が用いられる。
また本発明の光源装置は、さらに好ましい形態として、発光素子200が樹脂308で覆われていることを特徴とする。図11は発光素子200が樹脂308で覆われた光源装置を模式的に示す断面図である。このように発光素子200を樹脂308で覆うことで、発光素子200の短絡等を防止できるので好ましい。また電気的接続手段としての金属ワイヤー203も樹脂308で覆われている。またこの樹脂308は例えばシリコーンやエポキシなどの樹脂308を用いることにより、発光素子200が大気に覆われている場合と比べて、光の取り出し効率を高めることができるという点で特に好ましい。樹脂としては、熱硬化性樹脂を選択することで、成型がしやすく、例えばエポキシやシリコーンが、特に好ましくはシリコーンが用いられる。
また本発明の光源装置は、さらに好ましい形態として、発光素子200は発光素子からの発光に対し、発光素子200を中心とする半球状の樹脂308で覆われていることを特徴とする。発光素子200を中心とする半球状の樹脂308で覆うことで、無指向性の発光ダイオードの光源が得られ、指向性なく反射面202に光が入射するようになり、反射面202全面に均一な光が入射するようになり、配光性のよい光源装置とすることができる。このように樹脂308は、発光素子200を中心とする真球をもとに形成することで、無指向性を得ることができる。またさらに好ましく、無指向性とするためには、発光素子200は上述のように発光面を複数有するため、樹脂308の外形は各点において、それに最も近い発光面に対して無指向性を有するように調整することが好ましい。
また本発明の光源装置は、発光素子200が樹脂308で覆われた形態と別の形態として好ましくは、発光素子200は、半球状でかつ中空のガラス309または樹脂で覆われてなることを特徴とする。このように半球状でかつ中空のガラス309または樹脂で覆うことにより、発光素子200および電気的接続手段を保護することができるほか、とくに中空であることで、中を樹脂で覆う場合よりも発光素子200を小さくとることができる。中を樹脂で覆う場合は発光素子200は大きく見えてしまい、反射面202に対する発光面が大きくなる傾向にあるが、中空とすることで、反射面202に対する発光面は比較的小さくとることができるという点で、配光性に優れた光源装置が得られる。
また、本発明の光源装置は、発光素子200は無指向性の樹脂308で覆われた形態、および半球状でかつ中空のガラス309または樹脂で覆われた形態とすることで、それぞれ別の効果を奏するが、これらを組み合わせて、例えば半球状のガラス309で発光素子200が覆われ、さらにガラス309内部がシリコン樹脂で覆われたような、樹脂308とガラス309とを組み合わせて設けてもよい。ちなみに樹脂の内部を樹脂308で覆うときには、それぞれの樹脂は異なる材質のものからなる。
本発明の光源装置は、さらに好ましくは、発光素子200は、窒化ガリウム系の半導体素子とする。窒化ガリウム系の半導体としては、少なくともGaとNを含み、AlInGaNで形成することができる。このような窒化ガリウム系の半導体は、特に460nm程度を中心に、紫外光から可視光において、強い発光を示す。また、蛍光体302を効率良く励起できる比較的短波長を効率よく発光可能である。
次に本発明の光源装置に用いることのできる発光素子200の好ましい形態を詳述する。
本発明の光源装置として用いる発光素子200は、素子構造体として、例えば図14に示すように、素子構造体は、基板10上に、第1導電型層11、発光層(活性層)12、第2導電型層13が順に積層された積層構造を有するものであり、このとき、電極形成面内において、発光構造部は、図に示すように積層方向に第1,2導電型層が発光層を挟む構造の他、第1,2導電型層が横方向に接合されていてもよく、またこれらを組み合わせたものでもよい。また、発光素子構造として、MIS構造、p−n接合構造、ホモ接合構造、ヘテロ接合構造(ダブルヘテロ構造)、PIN構造などを用いることができ、またユニポーラ素子にも適用できるが、好ましくは、第1,2導電型層が互いに異なる導電型層となるp−n接合構造などのn型、p型層で活性層を挟む構造を用いることが好ましい。
素子構造体を構成する積層構造の半導体材料は、InAlGaP系材料、InP系材料、AlGaAs系材料、これらの混晶材料でもよく、GaN系窒化物半導体材料でもよい。GaN系窒化物半導体材料として具体的には、GaN、AlN、もしくはInN、又はこれらの混晶であるIII−V族窒化物半導体(InαAlβGa1−α−βN、0≦α、0≦β、α+β≦1)で表され、またこれに加えて、III族元素として一部若しくは全部にBを用いたり、V族元素としてNの一部をP、As、Sbで置換したりした混晶でもよい。以下、窒化物半導体を用いて説明するが、他の材料系にも適用される。
発光層としては、InGaN系材料を用いることができ、ワイドバンドギャップの発光層により、緑色、青色の可視光域から紫色、それより短波長の紫外域に発光するものが得られる。
各実施形態では、第1,2導電型層11,12を、n型層、p型層としているが、この逆でも良い。また、半導体積層構造の成長方法として具体的にはMOVPE(有機金属気相成長法)、HVPE(ハライド気相成長法)、MBE(分子線エピタキシー法)、MOCVD(有機金属化学気相成長法)があり、好ましくはMOCVD,MBEである。
本発明の半導体積層構造の成長方法に用いる基板、特にエピタキシャル成長用の基板10としては、窒化物半導体と異なる材料の異種基板として、例えば、C面、R面、及びA面のいずれかを主面とするサファイア、スピネル(MgA124)のような絶縁性基板、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、Si、及び窒化物半導体と格子整合する酸化物基板等、窒化物半導体を成長させることが可能で従来から知られており、窒化物半導体と異なる基板材料を用いることができ、好ましくはサファイア、スピネルであり、また異種基板以外として、GaN、AlNなどの窒化物半導体基板なども用いることができる。他の半導体材料においては従来知られた同じ材料系の基板、若しくはSiなどの異種基板を用いることができる。
(半導体積層構造)
発光素子を形成する半導体積層構造としては、上記基板10上に下地層などを介して成長され、このとき、下地層14を素子構造101として動作部に含めても良いが、通常素子構造の成長用のみ形成されて素子として機能しない非動作部として設けられる。下地層は、特に異種基板を用いた場合、結晶核形成、核成長層として、低温成長バッファ層を用い、好適な条件はAlGa1−xN(0≦x≦1)を低温(200〜900℃)で成長させるものであり、続いて高温で層成長させて、膜厚50Å〜0.1μm程度(単結晶、高温成長層)で形成する。また、ELO(Epitaxial Lateral Overgrowth)として知られるように、基板上、若しくは下地層上に、島状部(凸部、マスク開口部)などの成長部を他の領域に比べて優先的、若しくは選択的に成長させて、各選択成長部が横方向に成長して接合、会合することで層を形成するような成長層を下地層若しくは、素子積層構造に用いることもでき、これにより結晶性、特に結晶欠陥を低減させた素子構造とできる。
窒化物半導体に用いるドーパントとして、n型不純物としては、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用いることができ、好ましくはSi、Ge、Snを、さらに最も好ましくはSiを用いる。また、p型不純物としては、特に限定されないが、Be、Zn、Mn、Cr、Mg、Caなどが挙げられ、好ましくはMgが用いられる。これら、アクセプター、ドナーの各ドーパントを添加することにより、各導電型の窒化物半導体層を形成し、後述する各導電型層を構成する。また、窒化物半導体は不純物をドープしない無添加層であってもn型層として用いることができ、さらにAlGaAsなどの他の材料系にはそれに適したドーパント用いる。本発明における第1導電型層、第2導電型層には、部分的にアンドープの層、半絶縁性の層が積層されていても良く、電流阻止層のよう逆導電型の埋込層に、各導電型層内に部分的に寄生な素子部分を形成していても良い。
(第1導電型層11=n型半導体層)
上記実施形態の素子構造で示すように、第1導電型層11として、各導電型のドーパントを含有させ、電極形成面内及び活性層へのキャリアの供給、拡散を実現するような層構造を形成すると良く、特に電極形成部から発光構造部にキャリアを面内に拡散して供給する層(コンタクト層)には、他の領域より高濃度にドープされることが好ましい。また、このような電荷供給・面内拡散層(コンタクト層及びその近傍層)の他に、上記実施形態で示すように、積層方向において発光層へ電荷を移動・供給させる介在層、若しくは第2導電型のキャリアを発光層に閉じこめるクラッド層などを、コンタクト層とは別に設けることが好ましい。このような発光層12と面内拡散層(領域)のコンタクト層との間に設ける層として、窒化物半導体素子の場合には、面内拡散層(領域)より低濃度ドーパント量若しくはアンドープの低不純物濃度層(アンドープ層)、及び/又は多層膜層を設けることが好ましい。これは、低不純物層でもって、高不純物層(面内拡散層)による結晶性悪化を回復させてその上に成長させるクラッド層、発光層の結晶性を良好にし、駆動時にあっては高濃度層に隣接して低濃度層が設けられることで面内拡散を促進させ、また、耐圧性も向上させることができる。多層膜層は、少なくとも2種の層を交互に積層させたような周期構造で形成すること、具体的には、Inを含む窒化物半導体層とそれとは異なる組成の層の周期構造、好ましくはInGa1−xN/InGa1−yN(0≦x<y<1)で構成することで、発光層、特にInを含む窒化物半導体層、好ましくはそれを井戸層として複数用いた場合において、その結晶性を向上させることができる。このような多層膜としては、組成が異なる層による周期構造の他、組成傾斜構造、また、これらの構造において不純物濃度を変調させた構造、膜厚を変動させた構造なども採用でき、好ましくは、20nm以下の膜厚の層を積層した構造、さらに好ましくは10nm以下の膜厚の層を積層した構造で形成することが、上記結晶性に有利となる。
(発光層(活性層)12)
本発明の素子構造としては、第1,2導電型層との間に、発光層を設けて、発光層で発光させる素子構造とすることが好ましく、特に窒化物半導体においてはInを含む窒化物半導体を発光層に用いたものが、紫外域から可視光(赤色光)の領域において好適な発光効率が得られ好ましく、特にInGaN層を用いること、特にInの混晶比を変化させて所望の発光波長を得ることが好ましい。このほかの窒化物半導体材料として、GaN,AlGaNなどのInGaNよりも高バンドギャップの材料を用いて、紫外域において使用する発光素子としても良い。
さらに好ましい発光層としては、量子井戸構造の活性層を用いることであり、井戸層が1つの単一量子井戸構造、さらに好ましくは、複数の井戸層が障壁層を介して積層した構造の多重量子井戸構造を採用することが好ましい。井戸層については上記発光層と同様に、好ましくはInGaN層を用いることであり、障壁層として、井戸層よりバンドギャップエネルギーが大きくなるような層として、例えばInGaN、GaN、AlGaNを設けることが好ましい。このとき、井戸層、障壁層の膜厚としては、30nm以下、好ましくは20nm以下、さらに井戸層において好ましくは10nm以下とすることで、量子効率に優れた発光層が得られる。また、井戸層、障壁層に、各導電型層のドーパントがドープされていても良く、障壁層は、井戸層間に一層以上設けても良い。
(第2導電型層13=p型半導体層)
第2導電型層13としては、キャリアを発光層に閉じこめるクラッド層、電極が形成されるコンタクト層を、設けることが好ましく、この時両層を別々に設けてコンタクト層をクラッド層よりも発光層より遠くに設け、高濃度にドーパントをドープすることが好ましい。窒化物半導体においては、クラッド層として好ましくはAlを含む窒化物半導体、さらに好ましくはAlGaN層を用いることが好ましく、さらに発光層に近接して、好ましくは接して形成されることで発光層の効率を高めることができ好ましい。さらに、コンタクト層とクラッド層との間にそれらの層より低不純物濃度の層を介在させることで、耐圧性に優れた素子とでき、またコンタクト層を高濃度にドープしても結晶性を改善できるため好ましい。コンタクト層は、電極形成面内で発光部として設けられるため、その面内でキャリアを拡散させる層としても機能しうるが、本発明では、電極2を設けて、該電極2内及び電極3aにより面内での電流拡散として機能させることで、窒化物半導体における低い移動度のp型キャリアの拡散を補助し、また、コンタクト層の膜厚を他の層(クラッド層、介在低濃度層)よりも小さくして、且つ他の層よりも高濃度に不純物ドープすることで、高キャリア濃度の層を形成して、電極から良好な電荷注入を実現でき好ましい。
図14において、n型半導体層11、活性層12、p型半導体層13の一実施例として具体的な構成例を示す。
本例では、まず、基板10上にアンドープAlGaNをバッファ層として100Åの厚さに成長させる。
そして、アンドープAlGaNからなるバッファ層の上に、n型層11を構成する、アンドープGaN層(15000Å)、SiドープGaN(41000Å)、アンドープGaN層(3000Å)、SiドープGaN(300Å)、アンドープGaN層(500Å)、アンドープGaN(40Å)/InGaN(20Å)10ペアからなる層を順に成長させる。
次に、n型層11の上に、活性層12を構成する、アンドープGaN層(250Å)及びアンドープInGaN(30Å)/GaN(265Å)6ペアからなる層を成長させる。
続いて、活性層12の上に、p型層13を構成する、Mgドープ(ドープ量:5×1019cm−3)AlGaN(40Å)/InGaN(25Å)5ペアからなる層、アンドープAlGaN層(2800Å)、Mgドープ(ドープ量:1×1020cm−3)GaN(1200Å)を成長させる。
また次に示すような特有の電極構造を有している。
図14は、本発明の光源装置として用いる好ましい発光素子200の一実施の形態の平面図であり、本形態の特有の電極構造を示している。また、図15は図14のX−X’線についての断面図である。
本形態の発光素子200に係る実施の形態は、サファイア基板10上にそれぞれ窒化物半導体からなるn型層11、活性層12及びp型層13がその順に積層されてなり、n側電極は、互いに分離された複数のnライン電極1により構成され、p側電極は透光性のpオーミック電極2とそのpオーミック電極2の上に形成された複数の電流拡散導体3により構成されている。
詳細に説明すると、本実施の形態の発光素子200では、n型層11、活性層12及びp型層13からなる積層体において、p型層13及び活性層12の一部がライン状に除去されることにより複数のスリットSnが形成されて、n型層がライン状に露出され、そのスリットSnにより露出されたn型層上にそれぞれnライン電極1が形成される。また、スリットに平行な1つの辺(発光素子の1つの辺:以下第1の辺という。)に沿って、所定の幅にn型層が露出され、そこにも1つのnライン電極1が形成される。
以下、第1の辺に沿って、所定の幅にn型層が露出されたnライン電極が形成されるn型層表面を第1領域といい、この第1領域に形成されたnライン電極を第1nライン電極という。また、本明細書において、第1の辺に対向する辺は、第2の辺という。
ここで、本実施の形態において、第1領域と複数のスリットSnは互いに平行でかつ第1領域とスリットSnとの間隔及び隣接するスリットSn間の間隔は互いに等しくなるように形成される。
また、実施の形態1において、各nライン電極1はライン状オーミック電極1aとそのライン状オーミック電極1aの一端に設けられたnパッド電極1bとによって構成される。実施の形態1において、各ライン状オーミック電極の一端に設けられたnパッド電極1bは、第1の辺に直角の1つの辺(第3の辺)に沿って形成される。
また、実施の形態1において、ライン状オーミック電極1aは、その一端部がnパッド電極1bを形成するために広く形成され、その上にnパッド電極1bが形成される。
本実施の形態において、p側電極は、p型層のほぼ全面に形成された透光性を有するpオーミック電極2と、そのpオーミック電極2の上に形成された複数の電流拡散導体3とによって構成される。この電流拡散導体3はライン状オーミック電極1aと平行に形成された複数の拡散ライン電極3aとその拡散ライン電極3aの一端に設けられたpパッド電極3bとによって構成される。実施の形態1において、拡散ライン電極3aと隣接するnライン電極1との間隔は、互いに等しくなるように形成され、複数の拡散ライン電極3aのうちの1つは第2の辺に沿って形成され、他の拡散ライン電極3aはnライン電極1の間に形成される。すなわち、実施の形態1では、対向する2つの辺のうちの一方の辺(第1の辺)に沿ってnライン電極を形成した場合、その一方の辺に対向する他方の辺に沿って電流拡散導体3を形成するように構成している。また、各拡散ライン電極3aの一端に設けられたpパッド電極3bはいずれも、nパッド電極が形成されている第3の辺に対向する第4の辺に沿って形成される。
上述した電極構成を有する実施の形態の窒化物半導体発光素子は、以下のような理由により、発光領域全体に電流が注入されるようにして発光効率を向上させるとともに、比較的大面積(例えば、1000μm×1000μm)の窒化物半導体発光素子においても、発光面全体に亙って均一な発光が可能になるようにしている。
第1に、本実施の形態では、各nライン電極1の一端にそれぞれnパッド電極1bを形成し、各拡散ライン電極3aの一端にそれぞれpパッド電極3bを形成するようにしている。これにより、発光領域全体に電流がほぼ均一に注入されるようにできる。
すなわち、異なるnライン電極間において、一端に形成されたnパッド電極からライン状オーミック電極の他端までの距離に明らかな差があると、発光領域に注入される電流に不均一が生じる。また、p側の電極についても同様に、異なる拡散電極間において、一端に形成されたpパッド電極と拡散ライン電極の他端までの距離に明らかな差があると、発光領域に注入される電流に不均一が生じる。
しかしながら、本実施の形態では、異なるnライン電極1間において、nパッド電極1bからライン状オーミック電極1aの他端までの距離を実質的に等しくでき、異なる拡散電極3間において、pパッド電極3bと拡散ライン電極3aの他端までの距離を実質的に等しくでき、発光領域全体に電流が均一に注入されるようにできる。
ここで、上述の距離が実質的に等しいとは、完全に一致していることを意味しているのではなく、距離の違いにより電流の不均一が生じない程度のものは実質的に等しい範囲に含まれるものとする。
第2に、本実施の形態では、隣接するnライン電極1とp側の拡散電極3の間隔が等しくなるようにして、発光領域全体に電流が均一に注入されるようにしている。
以上の主要な2つの特徴により、本実施の形態では、発光面全体に亙って均一な発光が可能になるようにしているが、図14及び図15に示す電極構成では、さらに以下のような工夫がなされ、より均一に発光するように構成している。
すなわち、本実施の形態において、ライン状オーミック電極1a及び拡散ライン電極3aは、途中に、角部及び曲線部が形成されないように直線的に形成して、角部及び曲線部における電界の集中や電界の不均一を防止し、それに伴う電流の不均一を防止している。
本実施の形態では、また、拡散ライン電極3aの他端(pパッド電極が形成された一端の反対側に位置する端)と、nパッド電極1b(nパッド電極1bが形成されたnライン電極1の一端部)との距離を、拡散ライン電極3aとnライン電極1の間隔にほぼ等しく設定している。
さらに、nライン電極1の他端(nパッド電極が形成された一端の反対側に位置する端)と、pパッド電極3b(pパッド電極3bが形成された拡散ライン電極3aの一端部)との距離を、拡散ライン電極3aとnライン電極1の間隔にほぼ等しく設定している。
これにより、どの部分においても電流拡散導体3とnライン電極との間の距離を実質的に等しくできるので、発光領域全体にほぼ均一に電流を注入でき、均一な発光が可能となる。
また本発明の光源装置の好ましい発光素子の他の形態として集積型窒化物半導体発光素子を発光素子として用いるものであって、図16と図17と図18を用いて説明する。図16は平面図であり、図17と図18とは、図16の断面図を部分的に示したものである。
本実施の形態の集積型窒化物半導体発光素子は、図16に示すように、例えば、1000μm×1000μmのサファイア基板11上に長方形の3つの発光素
子1,2,3を互いに平行に配置しかつ、各発光素子の幅をある一定の値以下に設定することにより各素子の活性層にそれぞれ均一に電流が流れるようにして、
全体としての発光効率を向上させたことを特徴としている。
本実施の形態の集積型窒化物半導体素子は、窒化ガリウム系化合物半導体の特有の構成であって、次のような知見に基づいてなされた構造である。
すなわち、窒化ガリウム系化合物半導体を用いて構成された発光素子は、従来技術の欄において説明したように、n層上の一部にn側オーミック電極を形成し、そのn側オーミック電極に近接してn層上に活性層を介してp層を形成し、さらにそのp層の上のほぼ全面にp側オーミック電極を形成するという独特の構造を有する。
このような独特の構成においては、n側オーミック電極から250μm以内の距離にある活性層に注入される電流はほぼ一定であるが、250μm以上離れると急激に減少する。実際には220μmより離れると活性層に注入される電流は徐徐に減少しはじめるが、250μmまでは電流値は実質的に一定とみなすことができる。
また、この現象(活性層が250μm以上離れると注入される電流が急激に減少するという現象)は、n層の抵抗値に起因して生じると考えられるが、通常、用いられるn層の抵抗値の範囲においては、変わらないことが確認されている。これらの知見から次のことが言える。
n型窒化ガリウム系化合物半導体層の上に、一方向に長い長方形の活性層及びp型窒化ガリウム系化合物半導体層を形成した場合であっても、n側オーミック電極からの距離を250μm以内とすれば、活性層全体にほぼ均一に電流を注入することができる。
具体的には、長方形の活性層及びp型窒化ガリウム系化合物半導体層の1つの長辺に沿って活性層及びp型窒化ガリウム系化合物半導体層と同じ長さのn側オーミック電極を形成し、そのn側オーミック電極と活性層及びp型窒化ガリウム系化合物半導体層の他の長辺との間の距離を250μm以下、より好ましくは220μm以下にすれば、活性層にほぼ均一に電流を注入することができる。 本実施の形態の集積型窒化物半導体発光素子200は、上述の考えに基いて構成されたものである。
詳細に説明すると、実施の形態の集積型窒化物半導体発光素子200の発光素子1,2,3において、各半導体層及び電極はそれぞれ以下のように形成される。
(1)n型窒化ガリウム系化合物半導体層12(n層12)は、例えば、サファイアからなる基板11上のほぼ全面に成長されたn型窒化ガリウム系化合物半導体層が分離溝41により分離されて、平面形状が長方形になるように形成される。 ここで、本実施の形態において、n型窒化ガリウム系化合物半導体層12(n層12)は、好ましくは、サファイア基板11上に形成された膜厚1.5μmのアンドープGaN層、膜厚2.2μmのSiドープGaN層、膜厚3000ÅのアンドープGaN層、膜厚300ÅのSiドープGaN層、膜厚50ÅのアンドープGaN層、多層膜層の積層構造とする。このようにn層12を上記積層構造とすることにより、順方向電圧Vfを低くできかつ発光効率を良くできる。尚、多層膜層は、好ましくは、アンドープGaNよりなり膜厚40Åの第1の層と、アンドープIn0.13Ga0.87Nよりなり膜厚20Åの第2の層を交互にそれぞれ10層になるように積層することにより構成する。
また、本実施の形態の積層構造のn層12全体としての抵抗率は、実質的には膜厚2.2μmのSiドープGaN層により決まり、本実施の形態においてはこの層の抵抗率を5.5〜7.2×10-3Ωcmの範囲でかつ膜厚が2.0μm以上に設定することが好ましく、このようにすると発光層10全体により均一に電流を注入することができ、より均一な発光が得られる。
尚、GaN層において、3×1018〜6×1018cm-3の範囲でSiをドープすることにより、抵抗率が5.5〜7.2×10-3Ωcmの範囲のSiドープGaN膜を構成できる。
(2)活性層10は、n層12とほぼ同一の長さとn層12より狭い幅を有す
る長方形であって、その1つの長辺がn層12の1つの長辺に実質的に一致するようにn層12上に形成される。このように形成することにより、n層12上に活性層10に沿ってn側オーミック電極を形成するための領域が確保される。ここで、本実施の形態では、活性層10の幅は、n側オーミック電極から離れた側に位置する長辺とn側オーミック電極との距離L1,L2,L3が220μmになるように設定した。
また、本実施の形態において、活性層10はGaNの一部をInで置き換えたInxGa1-xN層により構成することができる。また、活性層10は、InxGa1-xN層を少なくとも1層含むように構成することもできる。このようにすると、InxGa1-xN層におけるInの含有量を変化させることにより発光波長を変えることができる。
(3)n側オーミック電極14(14a)は、活性層10とほぼ同一の長さを有し、n層12上に、活性層10に沿ってかつ活性層10と近接して形成される。このn側オーミック電極14と活性層10との間の間隔は、製造上の制約により10〜20μmに設定されるが、本発明においては間隔を10μm以下にすることが好ましく、このようにすると、均一に電流を注入することができる幅を大きくすることができる。 すなわち、n側オーミック電極14と活性層10との間隔を20μmにすると、均一に電流を注入することができる活性層の幅は最大で200μmであるが、n側オーミック電極14と活性層10との間隔を5μmにすると、均一に電流を注入することができる活性層の幅は最大で215μmにできる。 また、n側オーミック電極14(14a)は、n層12とのオーミック接触を良好にするために、WとAlを含む層とすることが好ましく、さらに好ましくは、W層(200Å)、Al層(1000Å)、W層(500Å)、Pt層(3000Å)、Ni層(60Å)を順次積層することにより形成する。
(4)p型窒化ガリウム系半導体層13は、活性層10と同一平面形状を有し活性層10上に重ねて形成される。実際には、活性層10及びp型窒化ガリウム系半導体層13は、n層12上に活性層10及びp層13を重ねて形成した後、n側オーミック電極14を形成するn層12表面を露出させるために一括してエッチングすることにより形成する。
尚、本実施の形態1では、p型窒化ガリウム系半導体層13は1500Åの厚さに形成した。
(5)p側オーミック電極15は、p型窒化ガリウム系半導体層13上のほぼ全面に形成され、p層13と良好なオーミック接触を得るために、Ni層とPt層とを積層することにより構成することが好ましく、より好ましくは、Ni層100ÅとPt層500Åを積層することにより構成する。
(6)そして、pパッド電極16(16a)は、例えば、膜厚3000ÅのPtからなり、p側オーミック電極15上において、n側オーミック電極14とは離れた側に位置するp側オーミック電極15の長辺に沿って形成される。
さらに、本実施の形態の集積型窒化物半導体発光素子において、上述のように構成された発光素子1,2,3は、絶縁保護膜17により素子間が分離され、接続電極21により以下のように接続される。
絶縁保護膜17は、各発光素子のpパッド電極16(16a)上及びn側オーミック電極14(14a)上を除いて素子全体を覆うように形成される。
接続電極21は、発光素子1のn側オーミック電極14a上、分離溝41に形成された絶縁膜17上及び発光素子2のp側オーミック電極16a上に連続して形成され、これにより、発光素子1のn側オーミック電極14aと発光素子2のp側オーミック電極16aが接続される。
また、接続電極21は、発光素子2と発光素子3との間においても同様に形成され、これにより、発光素子2のn側オーミック電極14aと発光素子3のp側オーミック電極16aが接続される。接続電極21は、Pt又はAu等、種々の金属で構成することができるが、p及びnパッド電極との密着性を良好にするために、Ti(例えば、400Å)、Pt(例えば、6000Å)、Au(例えば、1000Å)、Ni(例えば、60Å)を順に積層した構造とすることが好ましい。
尚、本実施の形態ではさらに、発光素子1のpパッド電極16上に接続電極21と同様の材料からなる外部接続用電極26が形成され、発光素子3のnパッド電極14上に接続電極21と同様の材料からなる外部接続用電極24が形成される。
以上のように構成された実施の形態1の集積型窒化物半導体発光素子の各発光素子1,2,3において、活性層10を長方形に形成し、活性層10の一方の長辺に沿って近接するようにn側オーミック電極を形成し、活性層10の他方の長辺とn側オーミック電極との距離L1,L2,L3を220μmに設定しているので、活性層10全体に略均一に電流を注入することができる。
このように構成したことにより、本実施の形態の集積型窒化物半導体素子は、各発光素子1,2,3の活性層10全体に渡って均一に発光させることができるので、各発光素子における発光効率を高くすることができ、全体としての発光効率をよくできる。
また、本実施の形態の集積型窒化物半導体素子においては、一方向のみに互いに平行な分離溝41を形成することにより各素子を分離しているので、格子状に溝を形成して各素子を分離した従来例に比較して、基板11全体の面積に対する分離溝41の占める面積の割合を少なくすることができる。
これにより、集積型窒化物半導体素子の全体の面積に対する活性層10が占める面積(発光素子1,2,3の活性層10を合計した面積)の割合を増加させることができ、発光効率を向上させることができる。
この実施の形態の変形例として、集積型窒化物半導体発光素子は、素子の静電耐圧特性を良くするために、SiドープGaN層を4.2μmになるように形成し、かつp層13を3500Åの厚さになるように形成した以外は、同様に構成される。
以上のように構成された変形例の集積型窒化物半導体発光素子は、実施の形態と同様、活性層10全体に均一に電流を注入することができ、均一でかつ発光効率の良好な素子とできる。また、本変形例の集積型窒化物半導体発光素子は、SiドープGaN層及びp層13をそれぞれ実施の形態に比較して厚くしているので、実施の形態1の素子に比較して静電耐圧を向上させることができる。
以上のような発光素子を本発明の光源装置として用いることで、大面積でかつ均一で高輝度な発光が得られ、配光性に優れさらに高輝度な光源装置を実現できる。
また、本発明の光源装置としては、さらに好ましくは、前記発光素子200は、白色を呈することを特徴とする。白色を呈する発光素子200を得るには、代表的な形態として、n型半導体層とp型半導体層との間に形成される活性層を、少なくとも2つの異なる波長が発光される活性層とするか、もしくはn型半導体層とp型半導体層との間に形成される活性層から発光される光を励起する蛍光体302を光源装置内に形成することで、発光波長と蛍光体302によって励起した波長との少なくとも異なる2つの波長が発光されてなる発光素子200とすることで、実現できる。特に蛍光体302を用いて白色を呈する発光素子200を形成する場合、蛍光体302としては次に示すような材料を用いることが好ましい。
[蛍光体302]
本願発明に用いられる蛍光体302は、発光素子200から放出された可視光や紫外光の一部を吸収し、その吸収した光の波長と異なる波長を有する光を発光するものである。
本実施の形態に用いられる蛍光体としては、少なくともLEDチップの半導体発光層から発光された光によって励起され、波長変換した光を発光する蛍光体をいい、該蛍光体を固着させる結着剤とともに波長変換部材中に含有される。本実施の形態において、蛍光体として紫外光により励起されて所定の色の光を発生する蛍光体も用いることができ、具体例として、例えば、
(1)Ca10(POFCl:Sb,Mn
(2)M(POCl:Eu(但し、MはSr、Ca、Ba、Mgから選択される少なくとも一種)
(3)BaMgAl1627:Eu
(4)BaMgAl1627:Eu、Mn
(5)3.5MgO・0.5MgF・GeO:Mn
(6)YS:Eu
(7)MgAs11:Mn
(8)SrAl1425:Eu
(9)(Zn、Cd)S:Cu
(10)SrAl:Eu
(11)Ca10(POClBr:Mn、Eu
(12)ZnGeO:Mn
(13)GdS:Eu、及び
(14)LaS:Eu等が挙げられる。
また、これらの蛍光体は、一層からなる波長変換部材中に単独で用いても良いし、混合して用いてもよい。さらに、二層以上が積層されてなる波長変換部材中にそれぞれ単独で用いても良いし、混合して用いてもよい。
LEDチップが発光した光と、蛍光体が発光した光が補色関係などにある場合、それぞれの光を混色させることで白色系の混色光を発光することができる。具体的には、LEDチップからの光と、それによって励起され発光する蛍光体の光がそれぞれ光の3原色(赤色系、緑色系、青色系)に相当する場合やLEDチップが発光した青色系の光と、それによって励起され発光する蛍光体の黄色系の光が挙げられる。
発光装置の発光色は、蛍光体と蛍光体の結着剤として働く各種樹脂やガラスなどの無機部材などとの比率、蛍光体の沈降時間、蛍光体の形状などを種々調整すること及びLEDチップの発光波長を選択することにより電球色など任意の白色系の色調を提供させることができる。発光装置の外部には、LEDチップからの光と蛍光体からの光がモールド部材を効率よく透過することが好ましい。
具体的な蛍光体としては、銅で付活された硫化カドミ亜鉛やセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下、「YAG系蛍光体」と呼ぶ。)が挙げられる。特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y,Gd,Laからなる群より選択される少なくとも一種の元素である。)などが好ましい。
(Re1-xSmx3(Al1-yGay512:Ce蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが470nm付近などにさせることができる。また、発光ピークも530nm付近にあり720nmまで裾を引くブロードな発光スペクトルを持たせることができる。
本発明の発光装置において、蛍光体は、2種類以上の蛍光体を混合させてもよい。即ち、Al、Ga、Y、La及びGdやSmの含有量が異なる2種類以上の(Re1-xSmx3(Al1-yGay512:Ce蛍光体を混合させてRGBの波長成分を増やすことができる。また、現在のところ半導体発光素子の発光波長には、バラツキが生ずるものがあるため2種類以上の蛍光体を混合調整させて所望の白色系の混色光などを得ることができる。具体的には、発光素子の発光波長に合わせて色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。
このような蛍光体は、気相や液相中に分散させ均一に放出させることができる。気相や液相中での蛍光体は、自重によって沈降する。特に液相中においては懸濁液を静置させることで、より均一性の高い蛍光体を持つ層を形成させることができる。所望に応じて複数回繰り返すことにより所望の蛍光体量を形成することができる。
以上のようにして形成される蛍光体は、発光装置の表面上において一層からなる波長変換部材中に二種類以上存在してもよいし、二層からなる波長変換部材中にそれぞれ一種類あるいは二種類以上存在してもよい。このようにすると、異なる種類の蛍光体からの光の混色による白色光が得られる。この場合、各蛍光物質から発光される光をより良く混色しかつ色ムラを減少させるために、各蛍光体の平均粒径及び形状は類似していることが好ましい。ここで本発明において、蛍光体の粒径とは、体積基準粒度分布曲線により得られる値であり、前記体積基準粒度分布曲線は、レーザ回折・散乱法により蛍光体の粒度分布を測定し得られるものである。具体的には、気温25℃、湿度70%の環境下において、濃度が0.05%であるヘキサメタリン酸ナトリウム水溶液に蛍光体を分散させ、レーザ回折式粒度分布測定装置(SALD−2000A)により、粒径範囲0.03μm〜700μmにて測定し得られたものである。
本実施の形態において使用される蛍光体は、YAG系蛍光体に代表されるアルミニウム・ガーネット系蛍光体と、赤色系の光を発光可能な蛍光体、特に窒化物系蛍光体とを組み合わせたものを使用することもできる。これらのYAG系蛍光体および窒化物系蛍光体は、混合して波長変換部材中に含有させてもよいし、複数の層から構成される波長変換部材中に別々に含有させてもよい。以下、それぞれの蛍光体について詳細に説明していく。
(アルミニウム・ガーネット系蛍光体)
本実施の形態に用いられるアルミニウム・ガーネット系蛍光体とは、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光体であり、LEDチップから発光された可視光や紫外線で励起されて発光する蛍光体である。例えば、上述したYAG系蛍光体の他、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12等が挙げられる。これらのうち、本実施の形態において、特にYを含み、かつCeあるいはPrで付活され組成の異なる2種類以上のイットリウム・アルミニウム酸化物系蛍光体が利用される。
発光層に窒化物系化合物半導体を用いた発光素子から発光した青色系の光と、青色光を吸収させるためボディーカラーが黄色である蛍光体から発光する緑色系及び赤色系の光と、或いは、黄色系の光であってより緑色系及びより赤色系の光を混色表示させると所望の白色系発光色表示を行うことができる。発光装置はこの混色を起こさせるために蛍光体の粉体やバルクをエポキシ樹脂、アクリル樹脂或いはシリコーン樹脂などの各種樹脂や酸化珪素、酸化アルミニウムなどの透光性無機物中に含有させることもできる。このように蛍光体が含有されたものは、LEDチップからの光が透過する程度に薄く形成させたドット状のものや層状ものなど用途に応じて種々用いることができる。蛍光体と透光性無機物との比率や塗布、充填量を種々調整すること及び発光素子の発光波長を選択することにより白色を含め電球色など任意の色調を提供させることができる。
また、2種類以上の蛍光体をそれぞれ発光素子からの入射光に対して順に配置させることによって効率よく発光可能な発光装置とすることができる。即ち、反射部材を有する発光素子上には、長波長側に吸収波長があり長波長に発光可能な蛍光体が含有された色変換部材と、それよりも長波長側に吸収波長がありより長波長に発光可能な色変換部材とを積層などさせることで反射光を有効利用することができる。
YAG系蛍光体を使用すると、放射照度として(Ee)=0.1W・cm−2以上1000W・cm−2以下のLEDチップと接する或いは近接して配置された場合においても高効率に十分な耐光性を有する発光装置とすることができる。
本実施の形態に用いられるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体である緑色系が発光可能なYAG系蛍光体では、ガーネット構造のため、熱、光及び水分に強く、励起吸収スペクトルのピーク波長が420nmから470nm付近にさせることができる。また、発光ピーク波長λpも510nm付近にあり700nm付近まで裾を引くブロードな発光スペクトルを持つ。一方、セリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体である赤色系が発光可能なYAG系蛍光体でも、ガーネット構造であり熱、光及び水分に強く、励起吸収スペクトルのピーク波長が420nmから470nm付近にさせることができる。また、発光ピーク波長λpが600nm付近にあり750nm付近まで裾を引くブロードな発光スペクトルを持つ。
ガーネット構造を持ったYAG系蛍光体の組成の内、Alの一部をGaで置換することで発光スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、発光スペクトルが長波長側へシフトする。このように組成を変化することで発光色を連続的に調節することが可能である。したがって、長波長側の強度がGdの組成比で連続的に変えられるなど窒化物半導体の青色系発光を利用して白色系発光に変換するための理想条件を備えている。Yの置換が2割未満では、緑色成分が大きく赤色成分が少なくなり、8割以上では、赤み成分が増えるものの輝度が急激に低下する。また、励起吸収スペクトルについても同様に、ガーネット構造を持ったYAG系蛍光体の組成の内、Alの一部をGaで置換することで励起吸収スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、励起吸収スペクトルが長波長側へシフトする。YAG系蛍光体の励起吸収スペクトルのピーク波長は、発光素子の発光スペクトルのピーク波長より短波長側にあることが好ましい。このように構成すると、発光素子に投入する電流を増加させた場合、励起吸収スペクトルのピーク波長は、発光素子の発光スペクトルのピーク波長にほぼ一致するため、蛍光体の励起効率を低下させることなく、色度ズレの発生を抑えた発光装置を形成することができる。
このような蛍光体は、Y、Gd、Ce、La、Al、Sm、Pr、Tb及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、La、Sm、Pr、Tbの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、次に焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。また、別の実施の形態の蛍光体の製造方法では、蛍光体の原料を混合した混合原料とフラックスからなる混合物を、大気中又は弱還元雰囲気中にて行う第一焼成工程と、還元雰囲気中にて行う第二焼成工程とからなる、二段階で焼成することが好ましい。ここで、弱還元雰囲気とは、混合原料から所望の蛍光体を形成する反応過程において必要な酸素量は少なくとも含むように設定された弱い還元雰囲気のことをいい、この弱還元雰囲気中において所望とする蛍光体の構造形成が完了するまで第一焼成工程を行うことにより、蛍光体の黒変を防止し、かつ光の吸収効率の低下を防止できる。また、第二焼成工程における還元雰囲気とは、弱還元雰囲気より強い還元雰囲気をいう。このように二段階で焼成すると、励起波長の吸収効率の高い蛍光体が得られる。従って、このように形成された蛍光体にて発光装置を形成した場合に、所望とする色調を得るために必要な蛍光体量を減らすことができ、光取り出し効率の高い発光装置を形成することができる。
組成の異なる2種類以上のセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体は、混合させて用いても良いし、それぞれ独立して配置させても良い。蛍光体をそれぞれ独立して配置させる場合、発光素子から光をより短波長側で吸収発光しやすい蛍光体、それよりも長波長側で吸収発光しやすい蛍光体の順に配置させることが好ましい。これによって効率よく吸収及び発光させることができる。
(窒化物系蛍光体)
本発明で使用される蛍光体は、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体もしようすることができる。また、本実施の形態に用いられる窒化物系蛍光体としては、LEDチップから発光された可視光、紫外線、及びYAG系蛍光体からの発光を吸収することによって励起され発光する蛍光体をいう。例えば、Ca−Ge−N:Eu,Z系、Sr−Ge−N:Eu,Z系、Sr−Ca−Ge−N:Eu,Z系、Ca−Ge−O−N:Eu,Z系、Sr−Ge−O−N:Eu,Z系、Sr−Ca−Ge−O−N:Eu,Z系、Ba−Si−N:Eu,Z系、Sr−Ba−Si−N:Eu,Z系、Ba−Si−O−N:Eu,Z系、Sr−Ba−Si−O−N:Eu,Z系、Ca−Si−C−N:Eu,Z系、Sr−Si−C−N:Eu,Z系、Sr−Ca−Si−C−N:Eu,Z系、Ca−Si−C−O−N:Eu,Z系、Sr−Si−C−O−N:Eu,Z系、Sr−Ca−Si−C−O−N:Eu,Z系、Mg−Si−N:Eu,Z系、Mg−Ca−Sr−Si−N:Eu,Z系、Sr−Mg−Si−N:Eu,Z系、Mg−Si−O−N:Eu,Z系、Mg−Ca−Sr−Si−O−N:Eu,Z系、Sr−Mg−Si−O−N:Eu,Z系、Ca−Zn−Si−C−N:Eu,Z系、Sr−Zn−Si−C−N:Eu,Z系、Sr−Ca−Zn−Si−C−N:Eu,Z系、Ca−Zn−Si−C−O−N:Eu,Z系、Sr−Zn−Si−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−C−O−N:Eu,Z系、Mg−Zn−Si−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−N:Eu,Z系、Sr−Zn−Mg−Si−N:Eu,Z系、Mg−Zn−Si−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−O−N:Eu,Z系、Sr−Mg−Zn−Si−O−N:Eu,Z系、Ca−Zn−Si−Sn−C−N:Eu,Z系、Sr−Zn−Si−Sn−C−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−N:Eu,Z系、Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Mg−Zn−Si−Sn−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−N:Eu,Z系、Sr−Zn−Mg−Si−Sn−N:Eu,Z系、Mg−Zn−Si−Sn−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−O−N:Eu,Z系、Sr−Mg−Zn−Si−Sn−O−N:Eu,Z系など種々の組み合わせの蛍光体を製造することができる。希土類元素であるZは、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうち少なくとも1種以上が含有されていることが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。これらの希土類元素は、単体の他、酸化物、イミド、アミド等の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置を有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり酸素を含有することにより発光輝度の低下を生じる場合もある。その反面、残光を短くするなどの利点もある。但し、Mnを用いた場合は、MnとOとのフラックス効果により粒径を大きくし、発光輝度の向上を図ることができる。
例えば、共付活剤としてLaを使用する。酸化ランタン(La)は、白色の結晶で、空気中に放置すると速やかに炭酸塩に代わるため、不活性ガス雰囲気中で保存する。
例えば、共付活剤としてPrを使用する。酸化プラセオジム(Pr11)は、通常の希土類酸化物Zと異なり、非化学量論的酸化物で、プラセオジムのシュウ酸塩、水酸化物、炭酸塩などを空気中で焼く800℃に加熱するとPr11の組成をもつ黒色の粉体として得られる。Pr11はプラセオジム化合物合成の出発物質となり、高純度のものも市販されている。
特に本発明に係る蛍光体は、Mnが添加されたSr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Eu系シリコンナイトライドである。この蛍光体の基本構成元素は、一般式LSi(2/3X+4/3Y):Eu若しくはLSi(2/3X+4/3Y−2/3Z):Eu(Lは、Sr、Ca、SrとCaのいずれか。)で表される。一般式中、X及びYは、X=2、Y=5又は、X=1、Y=7であることが好ましいが、任意のものも使用できる。具体的には、基本構成元素は、Mnが添加された(SrCa1−XSi:Eu、SrSi:Eu、CaSi:Eu、SrCa1−XSi10:Eu、SrSi10:Eu、CaSi10:Euで表される蛍光体を使用することが好ましいが、この蛍光体の組成中には、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。但し、本発明は、この実施の形態及び実施例に限定されない。
Lは、Sr、Ca、SrとCaのいずれかである。SrとCaは、所望により配合比を変えることができる。
蛍光体の組成にSiを用いることにより安価で結晶性の良好な蛍光体を提供することができる。
発光中心に希土類元素であるユウロピウムEuを用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。本発明の蛍光体は、母体のアルカリ土類金属系窒化ケイ素に対して、Eu2+を付活剤として用いる。Eu2+は、酸化されやすく、3価のEuの組成で市販されている。しかし、市販のEuでは、Oの関与が大きく、良好な蛍光体が得られにくい。そのため、EuからOを、系外へ除去したものを使用することが好ましい。たとえば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。但し、Mnを添加した場合は、その限りではない。
SrSi:Eu,Pr、BaSi:Eu,Pr、MgSi:Eu,Pr、ZnSi:Eu,Pr、SrSi10:Eu,Pr、BaSi10:Eu,Ce、MgSi10:Eu,Ce、ZnSi10:Eu,Ce、SrGe:Eu,Ce、BaGe:Eu,Pr、MgGe:Eu,Pr、ZnGe:Eu,Pr、SrGe10:Eu,Ce、BaGe10:Eu,Pr、MgGe10:Eu,Pr、ZnGe10:Eu,Ce、Sr1.8Ca0.2Si:Eu,Pr、Ba1.8Ca0.2Si:Eu,Ce、Mg1.8Ca0.2Si:Eu,Pr、Zn1.8Ca0.2Si:Eu,Ce、Sr0.8Ca0.2Si10:Eu,La、Ba0.8Ca0.2Si10:Eu,La、Mg0.8Ca0.2Si10:Eu,Nd、Zn0.8Ca0.2Si10:Eu,Nd、Sr0.8Ca0.2Ge10:Eu,Tb、Ba0.8Ca0.2Ge10:Eu,Tb、Mg0.8Ca0.2Ge10:Eu,Pr、Zn0.8Ca0.2Ge10:Eu,Pr、Sr0.8Ca0.2SiGeN10:Eu,Pr、Ba0.8Ca0.2SiGeN10:Eu,Pr、Mg0.8Ca0.2SiGeN10:Eu,Y、Zn0.8Ca0.2SiGeN10:Eu,Y、SrSi:Pr、BaSi:Pr、SrSi:Tb、BaGe10:Ceなどが製造できるがこれに限定されない。
添加物であるMnは、Eu2+の拡散を促進し、発光輝度、エネルギー効率、量子効率等の発光効率の向上を図る。Mnは、原料中に含有させるか、又は、製造工程中にMn単体若しくはMn化合物を含有させ、原料と共に焼成する。但し、Mnは、焼成後の基本構成元素中に含有されていないか、含有されていても当初含有量と比べて少量しか残存していない。これは、焼成工程において、Mnが飛散したためであると思われる。
蛍光体には、基本構成元素中に、若しくは、基本構成元素とともに、Mg、Ga,In,Li、Na,K、Re、Mo、Fe,Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上を含有する。これらの元素は、粒径を大きくしたり、発光輝度を高めたりする等の作用を有している。また、B、Al、Mg、Cr及びNiは、残光を抑えることができるという作用を有している。
このような窒化物系蛍光体は、LEDチップによって発光された青色光の一部を吸収して黄から赤色領域の光を発光する。窒化物系蛍光体をYAG系蛍光体と共に上記の構成を有する発光装置に使用して、LEDチップにより発光された青色光と、窒化物系蛍光体による黄色から赤色光とが混色により暖色系の白色系の混色光を発光する発光装置を提供する。窒化物系蛍光体の他に加える蛍光体には、セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質が含有されていることが好ましい。前記イットリウム・アルミニウム酸化物蛍光物質を含有することにより、所望の色度に調節することができるからである。セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質は、LEDチップにより発光された青色光の一部を吸収して黄色領域の光を発光する。ここで、LEDチップにより発光された青色光と、イットリウム・アルミニウム酸化物蛍光物質の黄色光とが混色により青白い白色に発光する。従って、このイットリウム・アルミニウム酸化物蛍光物質と赤色発光する蛍光体とを、透光性を有するコーティング部材101中に一緒に混合し、LEDチップにより発光された青色光とを組み合わせることにより白色系の混色光を発光する発光装置を提供することができる。特に好ましいのは、色度が色度図における黒体放射の軌跡上に位置する白色の発光装置である。但し、所望の色温度の発光装置を提供するため、イットリウム・アルミニウム酸化物蛍光物質の蛍光体量と、赤色発光の蛍光体量を適宜変更することもできる。この白色系の混色光を発光する発光装置は、特殊演色評価数R9の改善を図っている。従来の青色発光素子とセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質との組合せのみの白色系発光装置は、色温度Tcp=4600K付近において特殊演色評価数R9がほぼ0に近く、赤み成分が不足していた。そのため特殊演色評価数R9を高めることが解決課題となっていたが、本発明において赤色発光の蛍光体をイットリウム・アルミニウム酸化物蛍光物質と共に用いることにより、色温度Tcp=4600K付近において特殊演色評価数R9を40付近まで高めることができる。
次に、本発明に係る蛍光体((SrCa1−XSi:Eu)の製造方法を説明するが、本製造方法に限定されない。上記蛍光体には、Mn、Oが含有されている。
原料のSr、Caを粉砕する。原料のSr、Caは、単体を使用することが好ましいが、イミド化合物、アミド化合物などの化合物を使用することもできる。また原料Sr、Caには、B、Al、Cu、Mg、Mn、MnO、Mn、Alなどを含有するものでもよい。原料のSr、Caは、アルゴン雰囲気中、グローブボックス内で粉砕を行う。粉砕により得られたSr、Caは、平均粒径が約0.1μmから15μmであることが好ましいが、この範囲に限定されない。Sr、Caの純度は、2N以上であることが好ましいが、これに限定されない。より混合状態を良くするため、金属Ca、金属Sr、金属Euのうち少なくとも1以上を合金状態としたのち、窒化し、粉砕後、原料として用いることもできる。
原料のSiを粉砕する。原料のSiは、単体を使用することが好ましいが、窒化物化合物、イミド化合物、アミド化合物などを使用することもできる。例えば、Si、Si(NH、MgSiなどである。原料のSiの純度は、3N以上のものが好ましいが、Al、Mg、金属ホウ化物(CoB、NiB、CrB)、酸化マンガン、HBO、B、CuO、CuOなどの化合物が含有されていてもよい。Siも、原料のSr、Caと同様に、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。Si化合物の平均粒径は、約0.1μmから15μmであることが好ましい。
次に、原料のSr、Caを、窒素雰囲気中で窒化する。この反応式を、以下の式1および式2にそれぞれ示す。
3Sr + N → Sr ・・・(式1)
3Ca + N → Ca ・・・(式2)
Sr、Caを、窒素雰囲気中、600〜900℃、約5時間、窒化する。Sr、Caは、混合して窒化しても良いし、それぞれ個々に窒化しても良い。これにより、Sr、Caの窒化物を得ることができる。Sr、Caの窒化物は、高純度のものが好ましいが、市販のものも使用することができる。
原料のSiを、窒素雰囲気中で窒化する。この反応式を、以下の式3に示す。
3Si + 2N → Si ・・・(式3)
ケイ素Siも、窒素雰囲気中、800〜1200℃、約5時間、窒化する。これにより、窒化ケイ素を得る。本発明で使用する窒化ケイ素は、高純度のものが好ましいが、市販のものも使用することができる。
Sr、Ca若しくはSr−Caの窒化物を粉砕する。Sr、Ca、Sr−Caの窒化物を、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。
同様に、Siの窒化物を粉砕する。また、同様に、Euの化合物Euを粉砕する。Euの化合物として、酸化ユウロピウムを使用するが、金属ユウロピウム、窒化ユウロピウムなども使用可能である。このほか、原料のZは、イミド化合物、アミド化合物を用いることもできる。酸化ユウロピウムは、高純度のものが好ましいが、市販のものも使用することができる。粉砕後のアルカリ土類金属の窒化物、窒化ケイ素及び酸化ユウロピウムの平均粒径は、約0.1μmから15μmであることが好ましい。
上記原料中には、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。また、Mg、Zn、B等の上記元素を以下の混合工程において、配合量を調節して混合することもできる。これらの化合物は、単独で原料中に添加することもできるが、通常、化合物の形態で添加される。この種の化合物には、HBO、Cu、MgCl、MgO・CaO、Al、金属ホウ化物(CrB、Mg、AlB、MnB)、B、CuO、CuOなどがある。
上記粉砕を行った後、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Euを混合し、Mnを添加する。これらの混合物は、酸化されやすいため、Ar雰囲気中、又は、窒素雰囲気中、グローブボックス内で、混合を行う。
最後に、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Euの混合物をアンモニア雰囲気中で、焼成する。焼成により、Mnが添加された(SrCa1−XSi:Euで表される蛍光体を得ることができる。この焼成による基本構成元素の反応式を、以下に示す。

Figure 0004411892

ただし、各原料の配合比率を変更することにより、目的とする蛍光体の組成を変更することができる。
焼成は、管状炉、小型炉、高周波炉、メタル炉などを使用することができる。焼成温度は、1200から1700℃の範囲で焼成を行うことができるが、1400から1700℃の焼成温度が好ましい。焼成は、徐々に昇温を行い1200から1500℃で数時間焼成を行う一段階焼成を使用することが好ましいが、800から1000℃で一段階目の焼成を行い、徐々に加熱して1200から1500℃で二段階目の焼成を行う二段階焼成(多段階焼成)を使用することもできる。蛍光体の原料は、窒化ホウ素(BN)材質のるつぼ、ボートを用いて焼成を行うことが好ましい。窒化ホウ素材質のるつぼの他に、アルミナ(Al)材質のるつぼを使用することもできる。
以上の製造方法を使用することにより、目的とする蛍光体を得ることが可能である。
本発明の実施例において、赤味を帯びた光を発光する蛍光体として、特に窒化物系蛍光体を使用するが、本発明においては、上述したYAG系蛍光体と赤色系の光を発光可能な蛍光体とを備える発光装置とすることも可能である。このような赤色系の光を発光可能な蛍光体は、波長が400〜600nmの光によって励起されて発光する蛍光体であり、例えば、YS:Eu、LaS:Eu、CaS:Eu、SrS:Eu、ZnS:Mn、ZnCdS:Ag,Al、ZnCdS:Cu,Al等が挙げられる。このようにYAG系蛍光体とともに赤色系の光を発光可能な蛍光体を使用することにより発光装置の演色性を向上させることが可能である。
以上のようにして形成されるアルミニウムガーネット系蛍光体、および窒化物系蛍光体に代表される赤色系の光を発光可能な蛍光体は、発光素子の周辺において一層からなる波長変換部材中に二種類以上存在してもよいし、二層からなる波長変換部材中にそれぞれ一種類あるいは二種類以上存在してもよい。このような構成にすると、異なる種類の蛍光体からの光の混色による混色光が得られる。この場合、各蛍光物質から発光される光をより良く混色しかつ色ムラを減少させるために、各蛍光体の平均粒径及び形状は類似していることが好ましい。また、窒化物系蛍光体は、YAG系蛍光体により波長変換された光の一部を吸収してしまうことを考慮して、窒化系蛍光体がYAG系蛍光体より発光素子に近い位置に配置されるように波長変換部材を形成することが好ましい。このように構成することによって、YAG蛍光体により波長変換された光の一部が窒化物系蛍光体に吸収されてしまうことがなくなり、YAG系蛍光体と窒化物系蛍光体とを混合して含有させた場合と比較して、混色光の演色性を向上させることができる。
(アルカリ土類金属塩)
本実施の形態における発光装置は、発光素子が発光した光の一部を吸収し、その吸収した光の波長と異なる波長を有する光を発光する蛍光体として、ユウロピウムで付活されたアルカリ土類金属珪酸塩を有することもできる。該アルカリ土類金属珪酸塩は、以下のような一般式で表されるアルカリ土類金属オルト珪酸塩が好ましい。
(2−x−y)SrO・x(Ba,Ca)O・(1−a−b−c−d)SiO・aPbAlcBdGeO:yEu2+(式中、0<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5である。)
(2−x−y)BaO・x(Sr,Ca)O・(1−a−b−c−d)SiO・aPbAlcBdGeO:yEu2+(式中、0.01<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5である。)
ここで、好ましくは、a、b、cおよびdの値のうち、少なくとも一つが0.01より大きい。
本実施の形態における発光装置は、アルカリ土類金属塩からなる蛍光体として、上述したアルカリ土類金属珪酸塩の他、ユウロピウムおよび/またはマンガンで付活されたアルカリ土類金属アルミン酸塩やY(V,P,Si)O:Eu、または次式で示されるアルカリ土類金属−マグネシウム−二珪酸塩を有することもできる。
Me(3−x−y)MgSi:xEu,yMn(式中、0.005<x<0.5、0.005<y<0.5、Meは、Baおよび/またはSrおよび/またはCaを示す。)
次に、本実施の形態におけるアルカリ土類金属珪酸塩からなる蛍光体の製造工程を説明する。
アルカリ土類金属珪酸塩の製造のために、選択した組成に応じて出発物質アルカリ土類金属炭酸塩、二酸化珪素ならびに酸化ユウロピウムの化学量論的量を密に混合し、かつ、蛍光体の製造に常用の固体反応で、還元性雰囲気のもと、温度1100℃および1400℃で所望の蛍光体に変換する。この際、0.2モル未満の塩化アンモニウムまたは他のハロゲン化物を添加することが好ましい。また、必要に応じて珪素の一部をゲルマニウム、ホウ素、アルミニウム、リンで置換することもできるし、ユウロピウムの一部をマンガンで置換することもできる。
上述したような蛍光体、即ち、ユウロピウムおよび/またはマンガンで付活されたアルカリ土類金属アルミン酸塩やY(V,P,Si)O:Eu、YS:Eu3+の一つまたはこれらの蛍光体を組み合わせることによって、以下に実施例として示されるように、所望の色温度を有する発光色および高い色再現性を得ることができる。このような種々の好ましい蛍光体を用いた場合の得られる特性を蛍光体の実施形態1〜14に示す。

Figure 0004411892

次に本発明の光源装置で、蛍光体302の塗布方法を示す。蛍光体302を発光素子に塗布した形態を模式的に示すと、図19のようになる。
図20(i)に示されるような蛍光体302層付き発光素子を作成する。以下、蛍光体層付き発光素子の作成方法を説明する。
サブマウント用基板の表面に導電性部材303を配置し(a)、正電極305と負電極306とを分離する絶縁部を有する導電性パターンとする(b)。
サブマウント301用基板の材料は、半導体発光素子と熱膨張係数がほぼ等しいもの、例えば窒化アルミニウムが好ましい。このような材料を使用することにより、サブマウント基板と発光素子との間に発生する熱応力を緩和することができる。あるいは、サブマウント用基板の材料は、保護素子が形成可能であり安価でもあるシリコンが好ましい。また、導電性部材は、反射率の高い銀や金を使用することが好ましい。
発光装置の信頼性を向上させるため、発光素子の正負両電極間と絶縁部との間に生じた隙間にはアンダーフィル304が充填される。まず、上記サブマウントの絶縁部の周辺にアンダフィルが配置される(c)。アンダフィルの材料は、例えばエポキシ樹脂等の熱硬化性樹脂である。アンダフィルの熱応力を緩和させるため、さらに窒化アルミニウム、酸化アルミニウム及びそれらの複合混合物等がエポキシ樹脂に混入されてもよい。アンダフィルの量は、発光素子の正負両電極とサブマウントとの間に生じた隙間を埋めることができる量である。
発光素子の正負両電極を上記導電性パターンの正負両電極にそれぞれ対向させ固定する(d)。まず、発光素子の正負両電極に導電性部材を付着させる。アンダフィルが軟化しているとき、発光素子の正負両電極が、導電性部材を介して上記導電性パターンの正負両電極と対向され、発光素子の正負両電極、導電性部材および上記導電性パターンは熱圧着される。このとき、導電性部材と上記導電性パターンの正負両電極との間のアンダフィルは排除される。導電性部材の材料は、例えばAu、共晶ハンダ(Au−Sn)、Pb−Sn、鉛フリーハンダ等である。
発光素子の基板側からスクリーン版を配置する(e)。なお、スクリーン版の代わりとして、導電性ワイヤのボールボンディング位置やパーティングライン形成位置等、蛍光体層を形成させたくない位置にメタルマスクを配置しても構わない。
チキソ性を有するアルミナゾルに蛍光物質を含有させた蛍光体層形成材料を調整し、スキージ(へら)を使ってスクリーン印刷を行う(f)。
スクリーン板を取り外し(g)、蛍光体層形成材料を硬化させ(h)、パーティングラインに沿って発光素子毎にカットする(i)と、蛍光体層付き発光素子が完成する(j)。
さらに図20に示すような発光素子200と蛍光体との形成方法について、一実施例を示す。パッケージに載置される半導体素子として、発光素子と保護素子とを組み合わせた複合素子とすることもできる。発光素子は、透光性基板の主面を半導体装置の発光観測面側に向け、発光素子の同一面側に設けられた正負一対の両電極がサブマウント301に設けた正負一対の両電極と対向されバンプにて接合されている。
サブマウント301の表面は、導電性部材により正電極305と負電極306が互いに絶縁されて設けられている。導電性部材は、銀白色の金属、特に反射率の高いアルミニウム、銀や金あるいはそれらの合金を使用することが好ましい。サブマウント301自体の材料は、発光素子を過電圧による破壊から防止する保護素子を形成することができるシリコンが好ましい。あるいは、サブマウントの材料は、窒化物半導体発光素子と熱膨張係数がほぼ等しいもの、例えば窒化アルミニウムが好ましい。このような材料を使用することにより、サブマウントと発光素子との間に発生する熱応力が緩和され、サブマウントと発光素子との間のバンプを介した電気的接続が維持されるため、発光装置の信頼性を向上させることができる。
保護素子には、規定電圧以上の電圧が印加されると通電状態になるツェナーダイオード(zener diode)、パルス性の電圧を吸収するコンデンサ等を用いることができる。
図21は、保護素子としてツェナーダイオードを用いた場合の回路図を示す。ツェナーダイオードとして機能するサブマウントは、正電極を有するp型半導体領域と、負電極を有するn型半導体領域とを有し、発光素子のp側電極とn側電極に対して逆並列となるように接続される。即ち、発光素子のn側電極およびp側電極が、サブマウントのp型半導体領域およびn型半導体領域とそれぞれバンプにより電気的に接続される。さらに、サブマウントに設けられた正負両電極は、導電性ワイヤによってリード電極のような外部電極と接続されている。このように、サブマウントにツェナーダイオードの機能を持たせることにより、正負リード電極間に過大な電圧が印加された場合、その電圧がツェナーダイオードのツェナー電圧を超えると、発光素子の正負両電極間はツェナー電圧に保持され、このツェナー電圧以上になることはない。従って、発光素子間に過大な電圧が印加されるのを防止でき、過大な電圧から発光素子を保護し、素子破壊や性能劣化の発生を防止することができる。
図22は、保護素子としてコンデンサを用いた場合の接続回路図を示す。保護素子としてのコンデンサは、表面実装用のチップ部品を用いることができる。このような構造のコンデンサは、両側に帯状の電極が設けられており、この電極が発光素子の正電極および負電極に並列接続される。正負一対のリード電極間に過電圧が印加された場合、この過電圧によって充電電流がコンデンサに流れ、コンデンサの端子電圧を瞬時に下げ、発光素子に対する印加電圧が上がらないようにするため、発光素子を過電圧から保護することができる。また、高周波成分を含むノイズが印加された場合も、コンデンサがバイパスコンデンサとして機能するので、外来ノイズを排除することができる。
ここで仮に、発光素子と保護素子313のそれぞれをパッケージ等にダイボンドした後、導電性ワイヤにて外部電極と接続する構成とすると、導電性ワイヤのボンディング数が増えるために生産性が低下する。また、導電性ワイヤ同士の接触、断線等の発生する危険性が増えるため、発光装置の信頼性の低下を招く恐れがある。一方、本実施例における発光装置においては、導電性ワイヤをサブマウントに設けた正負両電極に接続するだけでよく、発光素子に導電性ワイヤをボンディングする必要がないため、上述したような問題が生じず信頼性の高い発光装置とすることができる。
発光装置の信頼性を向上させるため、対向する発光素子とサブマウントとの間に生じた隙間にはアンダフィルが充填されてもよい。アンダフィルの材料は、例えばエポキシ樹脂等の熱硬化性樹脂である。また、アンダフィルの熱応力を緩和させるため、さらに窒化アルミニウム、酸化アルミニウム及びそれらの複合混合物等がエポキシ樹脂に混入されてもよい。アンダフィルの量は、発光素子の正負両電極とサブマウントとの間に生じた隙間を埋めることができる量である。
発光素子のp側電極およびn側電極は、サブマウントの同一面側に形成された正負両電極にそれぞれ対向させて固定される。まず、サブマウントの正負両電極に対し、Auからなるバンプを形成する。次に、発光素子の電極とサブマウントの電極とをバンプを介して対向させ、荷重、熱および超音波をかけることによりバンプを溶着し、発光素子の電極とサブマウントとの電極とを接合する。なお、バンプの材料として、Auの他、共晶ハンダ(Au−Sn)、Pb−Sn、鉛フリーハンダ等を用いることもできる。
さらに、サブマウントをパッケージ凹部底面から露出しているリード電極上にAgペーストを接着剤として固定し、導電性ワイヤにて凹部内に露出させたリード電極とサブマウントの正負両電極とを接続して発光装置とする。
本実施例のように、発光素子と保護素子との複合素子とすることにより、発光素子の透光性基板側から光がとりだせるため発光装置の光取り出し効率が向上し、サブマウントを保護素子として信頼性の高い発光装置とすることができる。
以上説明したような構成とすることで、本発明の光源装置は、配光性に優れた光源装置とすることができる。また、高輝度の発光素子を用いた光源装置として、長寿命の光源装置とすることができる。
次に本発明の光源装置の最良の形態として、一実施の形態を示す。ここにしめす、発光素子200や反射面202、その他光学部品などは、特に記載がなければそれぞれ特徴を有する前述の構成を用いることができる。
図23は本発明の光源装置をY方向からみたときを模式的に示す断面図である。発光素子200は、サブマウント301上に設置され、またサブマウント301は回路基板201上に設置されている。発光素子200は、(X、Y)=(1、2)もしくは(2、4)で形成されている。またこの発光素子200は、蛍光体302が塗布され、正負両電極がサブマウント301の正負両電極と共晶はんだ307により接合されてなる。またサブマウント301の正負両電極からはそれぞれ回路基板201に接続されてなる金属ワイヤー203を、発光素子200からみて、照射方向を通るように設けられている。つまり発光素子200の照射側側面を通るように設けられている。発光素子200と金属ワイヤー203は中空で半球状のガラス309の内部に設けられる。また回路基板201には、反射面202が形成されてなり、反射面202は照射方向を軸とする回転放物面となっており、この反射面202は、さらには各点が発光素子200の最も近い発光面に焦点があうように形成された回転楕円となっている。回路基板201はさらに実装基板311に実装されてなり、さらに発光素子200からの熱が、発光素子200の半導体層積層方向に好適に放熱される構成となっている。また回路基板201は発光素子200から見て照射方向と反対の方向の反射面202からさらに離れた位置に電源装置との接続コネクタ312が設けられてなる。そしてこの光源装置から出された光の配光は、図24にしめすような良好な配光Bが得られる。さらには光源装置のうち最も照射側に投影レンズ310(例えば凸レンズ)を設けることで、照射方向において、光源装置から所望の配光をねらう照射対象物との距離を容易に変えることが可能となる。
以上に最良の形態を示したが、本発明の光源装置は、さらに次のような構造をもった光源装置とすることもできる。図25は、図8に示す状態の発光素子200とサブマウント301と金属ワイヤー203を示すものであり、この構造では、金属ワイヤー203が回路基板201上に設置された段差面を有する金属ブロック314と接続されてなる。たとえばサブマウント301の高さを2mm程度もしくはそれ以上で設け、直接回路基板201に金属ワイヤー203を接続する場合、金属ワイヤー203は高低差の大きい2つの間を接続することとなり、非常に剥れたり折れたりしやすい。そこで、回路基板201上に金属ブロック314を設けることで金属ワイヤー203が剥れたり折れたりしにくくすることができる。またこの金属ブロック314に段差を設け、金属ワイヤー203を接続しない段差部下面にツエナーなどの保護素子313を設けることができ、発光素子200の静電耐圧を挙げることができる。またこのように金属ブロック314および、保護素子313、さらに保護素子313に接続する金属ワイヤー203を設けても、これらが発光素子200からみて照射方向に設けているので、光源装置の配光性に影響を与えることはない。
また図23において、回路基板201の発光素子200が実装されてなる側表面の照射方向端部は、反射面202で反射した光を遮光するか照射するかの境界となる。いわゆるシェード315がここで形成されてなり、所望の配光を容易に得ることが可能となる。例えば照射方向から見て図26に示すようなシェード315を設けることで、配光Bは図27に示すような配光の最も強い中心から見て上方向であって、シェード315と点対象の方向の光のみを強くすることができる。図24と図27において、配光Bは中心ほど強い光であることを示している。
また反射面202は照射方向を軸とする回転放物面もしくは回転楕円面とすることが好ましいが、軸を照射方向から傾斜させて反射面202を設けることで、反射面202に対するシェード315が変わるなどによっておこる配光の変化を容易に得ることが可能となる。
また本発明の光源装置は、種々の光源用途として用いることができるが、とくに車両用のヘッドランプを含んだ、車両用前照灯に用いることができる。車両用前照灯の特性として要望される配光性を十分満たすことができ、また前述のその他のさらに好ましい構成によって得られる効果は車両用前照灯として求められる効果と重複する。例えば光源装置にシェード315を形成することで、照射側右前方と照射側左前方の配光を異なる形状とすることができるなどが挙げられる。
また本発明の光源装置は、車両用のヘッドランプを含んだ、車両用前照灯として、さらに複数個の光源装置を並べて用いることもできる。これにより、異なる配光特性の光源装置を組み合わせたり、配光特性が同じとなるように光源装置の照射方向を自由に変えたりすることが可能となる。またハロゲン電球など従来の発光ダイオード以外を光源とする車両用前照灯、特に車両用のヘッドランプでは実現が困難であった、デザイン性において、前照灯およびヘッドランプの形状を種々に変えることができる点で好ましい。
本発明の光源装置は、車両用前照灯の光源としてだけでなく、優れた配光特性が要求される光源装置として利用可能であり、また長寿命の光源装置でもあることで、産業上の利用可能性は非常に高い。
本発明の一実施の形態を示す光源装置を模式的に示した断面図である。 本発明の一実施の形態を示す光源装置の模式的に示した斜視図である。 X方向から本実施の形態を見たときの模式的な断面図である。 Z方向から本実施の形態を見たときの模式的な断面図である。 本発明の光源装置をZ方向から見たときの反射面202と発光素子との関係を模式的に示す図である。 回路基板201上に発光素子をサブマウントを介して実装したときを模式的に示す断面図である。 本発明の光源装置に用いるサブマウントに実装されてなる発光素子を説明する図である。 図7のときの光源装置を模式的に示す図である。 複数の発光素子を並べたときの一例の光源装置を模式的に示す斜視図である。 複数の発光素子を並べたときの一例の光源装置を模式的に示す斜視図である。 発光素子が樹脂で覆われた光源装置を模式的に示す断面図である。 回路基板201上に発光素子をサブマウントを介して実装したときの他の形態を模式的に示す断面図である。 回路基板201上に発光素子をサブマウントを介して実装したときの他の形態を模式的に示す断面図である。 本発明に用いる好ましい発光素子の一実施の形態を説明する図である。 本発明に用いる好ましい発光素子の一実施の形態を説明する図である。 本発明に用いる好ましい発光素子の他の実施の形態を説明する図である。 本発明に用いる好ましい発光素子の他の実施の形態を説明する図である。 本発明に用いる好ましい発光素子の他の実施の形態を説明する図である。 本発明の光源装置に用いるサブマウントに実装されてなる蛍光体を塗布した発光素子を説明する図である。 本発明の蛍光体を発光素子に塗布する方法を説明する図である。 保護素子としてツェナーダイオードを用いた場合の回路図である。 保護素子としてコンデンサを用いた場合の接続回路図である。 本発明の光源装置をY方向からみたときを模式的に示す断面図である。 本発明の一実施の形態の光源装置によって得られる配光特性を簡易に示す図である。 本発明の他の実施の形態を示す光源装置の模式的に示した斜視図である。 X方向から他の実施の形態の光源装置を見たときの模式的な断面図である。 本発明の他の実施の形態の光源装置によって得られる配光特性を簡易に示す図である。
符号の説明
200・・・発光素子、
201・・・回路基板、
202・・・反射面、
203・・・金属ワイヤー(電気的接続手段)、
301・・・サブマウント、
302・・・蛍光体、
303・・・導電性部材、
305・・・正電極、
306・・・負電極、
307・・・共晶はんだ、
308・・・樹脂、
309・・・ガラス、
310・・・レンズ、
313・・・保護素子、
315・・・シェード。



Claims (21)

  1. 回路基板(201)と、前記回路基板(201)にサブマウント(301)を介して実装され、かつ前記回路基板(301)と電気的に接続されてなる発光素子(200)と、前記発光素子(200)から発光された光を照射方向に導く反射面(202)と、を少なくとも有する光源装置であって、
    前記発光素子(200)は、n型半導体(11)とp型半導体(13)とが少なくとも積層され、積層方向に垂直となる2つの主面と、積層方向に平行となる側面とを有し、
    前記照射方向(A)前記発光素子(200)の側面方向であって、
    前記発光素子(200)前記回路基板(201)との電気的接続手段(203)の少なくとも1つが、発光素子(200)から見て照射方向(A)を通過し、かつ、前記発光素子(200)が固定された前記サブマウント(301)から前記回路基板(201)に接続されていることを特徴とする光源装置。
  2. 前記発光素子(200)は、前記2つの主面のうち一方の面に、正電極(305)と負電極(306)とを有し、導電性パターンが形成されたサブマウント(301)の正負両電極(303)にそれぞれ対向させて固定されてなることを特徴とする請求項1に記載の光源装置。
  3. 前記回路基板(201)において前記発光素子(200)を有する側表面の照射方向端部には、前記反射面(202)で反射された光の一部を遮光するシェード(315)が形成されていることを特徴とする請求項1又は2に記載の光源装置。
  4. 前記電気的接続手段(203)の少なくとも1つは、金属ワイヤーであることを特徴とする請求項1乃至3のいずれかに記載の光源装置。
  5. 前記反射面(202)は、前記発光素子(200)に焦点を有し、照射方向(A)を軸とする回転放物面であることを特徴とする請求項1乃至4のいずれかに記載の光源装置。
  6. 前記反射面(202)は、前記発光素子(200)に焦点を有し、照射方向(A)を軸とする楕円放物面であることを特徴とする請求項1乃至4のいずれかに記載の光源装置。
  7. 前記反射面(202)は、前記発光素子(200)に焦点を有し、照射方向(A)を軸とする回転楕円面であることを特徴とする請求項1乃至4のいずれかに記載の光源装置。
  8. 前記反射面(202)は、前記発光素子(200)に焦点を有し、照射方向(A)を軸とする三軸楕円面であることを特徴とする請求項1乃至4のいずれかに記載の光源装置。
  9. 前記反射面(202)は、回路基板(201)に実装されてなることを特徴とする請求項1乃至のいずれかに記載の光源装置。
  10. 前記発光素子(200)の側面は、前記反射面(202)に対向する第1の領域(I)とそれ以外の第2(II)の領域に分けたとき、前記照射方向は、第2の領域(II)の側面方向となることを特徴とする請求項1乃至のいずれかに記載の光源装置。
  11. 前記発光素子(200)の2つの主面のうち一方の主面は、前記反射面(202)に対向してなることを特徴とする請求項1乃至10のいずれかに記載の光源装置。
  12. 前記電気的接続手段(203)の1つは、樹脂で覆われていることを特徴とする請求項1乃至11のいずれかに記載の光源装置。
  13. 前記発光素子(200)は、樹脂で覆われていることを特徴とする請求項1乃至12のいずれかに記載の光源装置。
  14. 前記発光素子(200)は、発光素子(200)が中心となる半球状の樹脂で覆われていることを特徴とする請求項1乃至13のいずれかに記載の光源装置。
  15. 前記発光素子(200)は、発光素子(200)が中心となる半球状でかつ内部が樹脂で充填されたガラスまたは樹脂で覆われてなることを特徴とする請求項1乃至14のいずれかに記載の光源装置。
  16. 前記発光素子(200)は、発光素子(200)が中心となる半球状でかつ中空のガラスまたは樹脂で覆われてなることを特徴とする請求項1乃至12のいずれかに記載の光源装置。
  17. 前記発光素子(200)は、前記照射方向(A)に対して垂直な方向に複数個並べられてなることを特徴とする請求項1乃至16のいずれかに記載の光源装置。
  18. 前記発光素子(200)は、窒化ガリウム系の半導体素子であることを特徴とする請求項1乃至17のいずれかに記載の光源装置。
  19. 前記発光素子(200)は、白色を呈することを特徴とする請求項1乃至18のいずれかに記載の光源装置。
  20. 請求項1乃至19のいずれかの光源装置を用いた車両用前照灯。
  21. 請求項1乃至19のいずれかの光源装置を複数個並べて用いた車両用前照灯。
JP2003272618A 2003-07-09 2003-07-09 光源装置およびこれを用いた車両用前照灯 Expired - Lifetime JP4411892B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272618A JP4411892B2 (ja) 2003-07-09 2003-07-09 光源装置およびこれを用いた車両用前照灯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272618A JP4411892B2 (ja) 2003-07-09 2003-07-09 光源装置およびこれを用いた車両用前照灯

Publications (2)

Publication Number Publication Date
JP2005032661A JP2005032661A (ja) 2005-02-03
JP4411892B2 true JP4411892B2 (ja) 2010-02-10

Family

ID=34210117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272618A Expired - Lifetime JP4411892B2 (ja) 2003-07-09 2003-07-09 光源装置およびこれを用いた車両用前照灯

Country Status (1)

Country Link
JP (1) JP4411892B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276594A (zh) * 2015-09-18 2020-06-12 新世纪光电股份有限公司 发光元件封装结构
US10957674B2 (en) 2015-09-18 2021-03-23 Genesis Photonics Inc Manufacturing method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679917B2 (ja) * 2005-02-10 2011-05-11 ローム株式会社 半導体発光装置
JP4826296B2 (ja) * 2005-03-15 2011-11-30 カシオ計算機株式会社 光源装置、光源ユニット及びプロジェクタ
US7744225B2 (en) * 2005-03-15 2010-06-29 Casio Computer Co., Ltd. Light source apparatus that collects and provides different-colored light rays emitted by a plurality of different-colored light sources and a projector comprising such light source apparatus
JP4836230B2 (ja) 2005-06-17 2011-12-14 株式会社小糸製作所 発光デバイス及びこれを用いた光源装置
JP2007049019A (ja) * 2005-08-11 2007-02-22 Koha Co Ltd 発光装置
KR101235460B1 (ko) * 2006-02-14 2013-02-20 엘지이노텍 주식회사 측면 발광형 엘이디 및 그 제조방법
US20100259184A1 (en) * 2006-02-24 2010-10-14 Ryou Kato Light-emitting device
KR101259991B1 (ko) * 2006-03-24 2013-05-06 서울옵토디바이스주식회사 화합물 반도체 소자 제조 방법
JP4605789B2 (ja) 2006-05-29 2011-01-05 株式会社小糸製作所 発光モジュール及び車輌用灯具
JP5106862B2 (ja) 2007-01-15 2012-12-26 昭和電工株式会社 発光ダイオードパッケージ
US8143777B2 (en) 2007-08-23 2012-03-27 Stanley Electric Co., Ltd. LED lighting unit with LEDs and phosphor materials
JP5035995B2 (ja) 2008-03-21 2012-09-26 株式会社小糸製作所 光源モジュール及び車輌用灯具
CN102483208B (zh) 2009-09-03 2014-07-09 株式会社小糸制作所 车辆用前照灯
JP5340879B2 (ja) 2009-10-13 2013-11-13 スタンレー電気株式会社 発光装置
US8482015B2 (en) 2009-12-03 2013-07-09 Toyoda Gosei Co., Ltd. LED light emitting apparatus and vehicle headlamp using the same
JP5636790B2 (ja) * 2010-07-28 2014-12-10 日亜化学工業株式会社 照明装置
JP2011165671A (ja) * 2011-03-30 2011-08-25 Casio Computer Co Ltd 光源装置及びプロジェクタ
US9134003B2 (en) 2011-06-13 2015-09-15 Koito Manufacturing Co., Ltd. Automotive headlamp, heat radiating mechanism, light-emitting apparatus and light source fixing member
JP2013171710A (ja) * 2012-02-21 2013-09-02 Stanley Electric Co Ltd 車両用前照灯
JP2014089868A (ja) 2012-10-30 2014-05-15 Koito Mfg Co Ltd 灯具
JP2016086053A (ja) * 2014-10-24 2016-05-19 スタンレー電気株式会社 Ledランプ及びその製造方法
EP3540510B1 (en) * 2016-11-14 2020-06-24 Mitsubishi Electric Corporation Light shaping device
DE102017128125B4 (de) * 2017-11-28 2024-02-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Scheinwerfer und Betriebsverfahren
JP7066963B2 (ja) * 2018-09-21 2022-05-16 日亜化学工業株式会社 発光装置
JP7243330B2 (ja) * 2019-03-15 2023-03-22 市光工業株式会社 発光素子及び車両用灯具、並びに発光素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276594A (zh) * 2015-09-18 2020-06-12 新世纪光电股份有限公司 发光元件封装结构
US10957674B2 (en) 2015-09-18 2021-03-23 Genesis Photonics Inc Manufacturing method

Also Published As

Publication number Publication date
JP2005032661A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4411892B2 (ja) 光源装置およびこれを用いた車両用前照灯
JP4991026B2 (ja) 発光装置
TWI384638B (zh) 半導體元件
JP4667803B2 (ja) 発光装置
JP3809760B2 (ja) 発光ダイオード
JP4645071B2 (ja) パッケージ成型体およびそれを用いた半導体装置
US7854859B2 (en) Nitride phosphor, method for producing this nitride phosphor, and light emitting device that uses this nitride phosphor
JP4053926B2 (ja) 窒化物半導体発光素子とそれを用いた発光装置
JP4280038B2 (ja) 発光装置
US8330179B2 (en) Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
JP4438492B2 (ja) 半導体装置およびその製造方法
JP4244653B2 (ja) シリコンナイトライド系蛍光体及びそれを用いた発光装置
JP5066786B2 (ja) 窒化物蛍光体及びそれを用いた発光装置
JP4892861B2 (ja) 窒化物蛍光体及びそれを用いた発光装置
JP2002252372A (ja) 発光ダイオード
JP2008135789A (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP4069936B2 (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP4017015B2 (ja) 発光装置
JP4432414B2 (ja) 光源装置及び車両用前照灯
JP2007300134A (ja) 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP2005159178A (ja) 発光素子およびそれを用いた光源装置
JP4432413B2 (ja) 光源装置及び車両用前照灯
JP4539235B2 (ja) 半導体装置およびその製造方法
JP4991027B2 (ja) オキシ窒化物蛍光体及びそれを用いた発光装置
JP4215046B2 (ja) 窒化物蛍光体及びそれを用いた発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4411892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term