JP4409861B2 - 三次元座標測定装置及び方法 - Google Patents
三次元座標測定装置及び方法 Download PDFInfo
- Publication number
- JP4409861B2 JP4409861B2 JP2003157216A JP2003157216A JP4409861B2 JP 4409861 B2 JP4409861 B2 JP 4409861B2 JP 2003157216 A JP2003157216 A JP 2003157216A JP 2003157216 A JP2003157216 A JP 2003157216A JP 4409861 B2 JP4409861 B2 JP 4409861B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- unit
- incident angle
- stereo
- search
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
【産業上の利用分野】
本発明は、例えば撮影機器として電子顕微鏡や光学式顕微鏡に接眼されたカメラを用いる場合に、観察対象となる対象物を傾斜させたり、或いは観察対象物を観察する電子線や光線などのビームを分割または傾斜させて左右画像を撮影し、左右画像に撮影された対象物の三次元計測を行う画像測定装置及び画像測定方法に関する。
【0002】
【従来の技術】
透過型電子顕微鏡(TEM)の場合には試料を傾斜させ、異なる傾斜角度の透過画像を得て、これを左右画像としてステレオ観察が行われている。また、例えば非特許文献1で示すように、走査型電子顕微鏡(SEM)の場合には試料を傾斜させたり、電子線を傾斜させたりして、異なる傾斜角度の反射画像を得て、これを左右画像としてステレオ観察が行われている。そして、例えば特許文献1、2で示すように、半導体製造装置の分野において、電子顕微鏡から得られたステレオの検出データを適切に処理して、試料像を正確に精度よく立体観察可能とし、かつこれに基づき三次元形状計測を行うことができる電子線装置や電子線装置用データ処理装置が提案されている。
【0003】
【特許文献1】
特開2002−270126号公報 [0005]、図3、図15
【特許文献2】
特開2002−270127号公報 [0005]、図3、図15
【非特許文献1】
「医学・生物学電子顕微鏡観察法」 第278頁〜第299頁、1982年刊行
【0004】
【発明が解決しようとする課題】
ところが、特に半導体チップやシリコンウェーハのような試料を計測しようとした場合、三次元形状計測に用いるデータ処理方法によっては、計測方向によって測定精度が変動することがある。一般に、計測対象となる半導体チップやシリコンウェーハに形成された凸凹パターンや配線パターン等のパターンには、面内方向に関する水平方向と、この水平方向と面内垂直のラインが多い。他方、上述の特許文献1、2で説明する左右画像を用いたステレオ観察法では、例えば計測対象となる半導体チップを、ホルダ回転軸を中心として回転させたり、電子線ビームの入射角を振ることで、電子顕微鏡の電子ビームの入射角度を左右画像の撮影方向に変更させて、半導体チップの左右画像を得ている。そして、ある三次元形状計測においては、ホルダ回転軸方向と直交する面内方向(例えば、計測対象となる半導体チップの垂直パターン方向)に感度軸を有し、他方ホルダ回転軸方向と同一方向(例えば、計測対象となる半導体チップの水平パターン方向)には計測感度を有しない無感度軸を有する場合がある。すると、半導体チップの左右画像を用いても感度軸方向には正確な計測が行なえるが、無感度軸方向には計測が行なえなくなるという課題があった。なお、このような感度軸と無感度軸を有する三次元形状計測方法を、以下「異方性形状計測」と呼ぶ。
【0005】
本発明は、上述する課題を解決したもので、対象物の面内の計測方向によって測定精度が変動する異方性形状計測を用いた三次元形状計測であっても、各測定方向の精度に著しい相違の現れない三次元座標測定装置及び三次元座標測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明の三次元座標測定装置は、例えば図1に示すように、ビーム7を対象物9のヨー軸方向へ略平行投影して、対象物9の像を形成する像形成光学系10と、対象物9の姿勢を第1の中立軸方向に調整して、像形成光学系10により対象物9に投影されるビーム7と対象物9との相対的な入射角度を調整して、対象物9について第1のステレオ画像を形成可能にする第1の入射角度調整部21と、第1の入射角度調整部21により前記入射角度が調整されて、像形成光学系10により対象物9に関して形成された第1のステレオ画像を受け取る第1画像検出部26と、第1画像検出部26で検出された第1のステレオ画像を表示する画像表示部27と、画像表示部27で表示されたステレオ画像に基づいて定められた、入射角度調整方向の指示信号を出力する角度調整指示部23と、前記入射角度調整方向の指示信号に従い、対象物9の姿勢を第2の中立軸方向に調整し、ビーム7と対象物9との相対的な入射角度を調整して、対象物9について第2のステレオ画像を形成可能にする第2の入射角度調整部22と、第2の入射角度調整部22により前記入射角度が調整されて、像形成光学系10により対象物9に関して形成された第2のステレオ画像を受け取る第2画像検出部28と、第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索すると共に、前記第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索するマッチング処理部30と、第1及び第2のステレオ画像における測定点と対応点の関係から対象物9の三次元座標データを求める形状測定部34とを備えている。
【0007】
ここで、発明の理解を容易にするために、対象物9に対する第1のステレオ画像及び第2のステレオ画像の関係について予め説明する。図2は、対象物9に対する第1のステレオ画像における左右画像と、左右画像における対象物の傾斜角の説明図で、対象物として例えばウェーハを用いている。図2(A)はウェーハ平面の左画像、(B)はウェーハ平面の右画像、(C)は左画像に対するウェーハのY−Y方向側面図、(D)は右画像に対するウェーハのY−Y方向側面図を示している。ウェーハ9に付帯する直交座標系としてX軸とY軸が設けられている。またウェーハ9を載置するホルダ3の座標系としてホルダ回転軸Rと、このホルダ回転軸Rと直交する傾斜中心軸Sが存在している。ここで、傾斜中心軸Sは、異方性形状計測における感度軸に相当している。また、異方性形状計測の無感度軸には、ホルダ回転軸Rが相当している。
【0008】
図2(A)、(B)に示すように、第1のステレオ画像では、ホルダ回転軸Rとウェーハ9のX軸を一致させている。このようなホルダ回転軸Rとウェーハ9の姿勢関係を、例えば水平方向傾斜と呼ぶ。そして、傾斜角度がゼロ度であれば、傾斜中心軸Sとウェーハ9のY軸が一致している。図2(A)に示す場合には、ウェーハ平面の左画像24Lにおいて、ビーム走査方向7DLはホルダ回転軸Rと一致する方向となっている。テンプレート画像29は、ウェーハのX−X方向に移動して、ウェーハ9画像において捜索対象となる画素の位置を抽出する。また、図2(B)に示す場合には、ウェーハ平面の右画像24Rにおいて、ビーム走査方向7DRはホルダ回転軸Rと一致する方向となっている。テンプレート画像29は、ウェーハのX−X方向に移動して、ウェーハ9画像において捜索対象となる画素の位置を抽出する。なお、ビーム走査はウェーハ9の画像を取得するのが目的である為、ビーム走査方向7DL、7DRはホルダ回転軸Rと一致する方向に限らず、ウェーハ9の面内方向であれば任意に選択できる。
【0009】
図2(C)に示すように、ウェーハ9Lは、ウェーハ平面の左画像24Lの撮影に適合するように、ホルダ回転軸Rに対して時計回り方向CWに角度ω1だけ傾斜している。また、図2(D)に示すように、ウェーハ9Rは、ウェーハ平面の右画像24Rの撮影に適合するように、ホルダ回転軸Rに対して反時計回り方向CCWに角度−ω1だけ傾斜している。
【0010】
次に、ホルダ回転軸Rとウェーハ9のX軸を一致させた姿勢の第1のステレオ画像に対して、異方性形状計測に用いるテンプレート処理を施す。図3は、テンプレート処理後の水平方向傾斜による第1のステレオ画像の説明図である。図3に示すように、傾斜中心軸Sと一致するウェーハ9のY軸方向の線分は正確に抽出されているが、ホルダ回転軸Rと一致するウェーハ9のX軸方向の線分の抽出が旨く行なわれていない。
【0011】
図4は、対象物9に対する第2のステレオ画像における左右画像と、左右画像における対象物の傾斜角の説明図である。図4(A)はウェーハ平面の左画像、(B)はウェーハ平面の右画像、(C)は左画像に対するウェーハのX−X方向側面図、(D)は右画像に対するウェーハのX−X方向側面図を示している。第2のステレオ画像では、一例として第1のステレオ画像における対象物の姿勢に対して面内に90度回転させて垂直方向傾斜としている。即ち、図4(A)、(B)に示すように、第2のステレオ画像では、ホルダ回転軸Rとウェーハ9のY軸を一致させている。そこで、傾斜角度がゼロ度であれば、傾斜中心軸Sとウェーハ9のX軸が一致している。
【0012】
図4(A)に示す場合には、ウェーハ平面の左画像24L2において、ビーム走査方向7DLはホルダ回転軸Rと一致する方向となっている。テンプレート画像29は、ウェーハのY−Y方向に移動して、ウェーハ9画像において捜索対象となる画素の位置を抽出する。また、図4(B)に示す場合には、ウェーハ平面の右画像24R2において、ビーム走査方向7DRはホルダ回転軸Rと一致する方向となっている。テンプレート画像29は、ウェーハのY−Y方向に移動して、ウェーハ9画像において捜索対象となる画素の位置を抽出する。なお、ビーム走査はウェーハ9の画像を取得するのが目的である為、ビーム走査方向7DL、7DRはホルダ回転軸Rと一致する方向に限らず、ウェーハ9の面内方向であれば任意に選択できる。
【0013】
図4(C)に示すように、ウェーハ9L2は、ウェーハ平面の左画像24L2の撮影に適合するように、ホルダ回転軸Rに対して時計回り方向CWに角度φ1だけ傾斜している。また、図4(D)に示すように、ウェーハ9R2は、ウェーハ平面の右画像24R2の撮影に適合するように、ホルダ回転軸Rに対して反時計回り方向CCWに角度−φ1だけ傾斜している。
【0014】
次に、ホルダ回転軸Rとウェーハ9のY軸を一致させた姿勢の第2のステレオ画像に対して、異方性形状計測に用いるテンプレート処理を施す。図5は、テンプレート処理後の垂直方向傾斜による第2のステレオ画像の説明図である。図5に示すように、傾斜中心軸Sと一致するウェーハ9のX軸方向の線分は正確に抽出されているが、ホルダ回転軸Rと一致するウェーハ9のY軸方向の線分の抽出が旨く行なわれていない。
【0015】
次に、このように構成された装置の作用を、上述の図1及び図2〜図5を参照して説明する。像形成光学系10は、ビーム7を対象物9のヨー軸(Z軸)方向へ略平行投影して、対象物9の像を形成する。第1の入射角度調整部21は、対象物9の姿勢を第1の中立軸(X軸)方向に調整し、像形成光学系10により対象物9に投影されるビーム7と対象物9との相対的な入射角度を調整して、対象物9について第1のステレオ画像を形成可能にする。第1画像検出部26では、第1の入射角度調整部21により、例えばホルダ回転軸Rとウェーハ9のX軸を一致させて、像形成光学系10により対象物9に関して形成された第1のステレオ画像を受け取る。
【0016】
次に、角度調整指示部23は、入射角度調整方向の指示信号を出力して、対象物9の姿勢を第2の中立軸方向としての垂直方向傾斜とさせている。入射角度調整方向は、画像表示部27で表示されたステレオ画像に基づいて定められるもので、例えばオペレータがマニュアルで設定入力する。第2の入射角度調整部22は、対象物9の姿勢を入射角度調整方向の指示信号に従って調整する。入射角度調整方向は、例えば面内傾斜軸(Y軸)方向を含んで形成された第2の中立軸方向と一致していても良い。更に、第2の入射角度調整部22は、ビーム7と対象物9との相対的な入射角度を調整して、対象物9について第2のステレオ画像を形成可能にする。例えば、図4の説例では、第2の中立軸方向がY軸と一致している。第2画像検出部28は、第2の入射角度調整部22及び像形成光学系10により、例えばホルダ回転軸Rとウェーハ9のY軸を一致させて、対象物9に関して形成された第2のステレオ画像を受け取る。マッチング処理部30は、第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索すると共に、前記第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索する。形状測定部34は、第1及び第2のステレオ画像における測定点と対応点の関係から対象物9の三次元座標データを求める。
【0017】
好ましくは、本発明の三次元座標測定装置において、例えば図1に示すように、像形成光学系10が電子レンズ部で形成され、第1及び第2の入射角度調整部(21、22)は、電子銃からの電子線を偏向する偏向器に制御信号を送る偏向器制御ユニットを用いて形成された走査型電子顕微鏡に用いられる構成とするとよい。なお、像形成光学系10はテレセントリック系で形成されていてもよい。また、第1画像検出部26と第2画像検出部28は、対象物9に関して電子線装置10で取得される画像を形成する画像形成部24を共通に有していてもよい。
【0018】
上記目的を達成する本発明の三次元座標測定方法は、例えば図6に示すように、第1の入射角度調整部21によって対象物9の姿勢を第1の中立軸方向に調整し(S103)、像形成光学系10により対象物9のヨー軸方向に略平行投影されるビーム7と対象物9との相対的な入射角度を調整して、対象物9について第1のステレオ画像を形成し(S104、S106)、形成された第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索し(S108)、第1のステレオ画像を画像表示部27にて表示し(S109A)、表示されたステレオ画像に基づき定められた入射角度調整方向の指示信号を角度調整指示部23から入力し(S109B)、入射角度調整方向の指示信号に従い、第2の入射角度調整部22によって対象物9の姿勢を第2の中立軸方向に調整し(S109C)、第2の入射角度調整部22によりビーム7と対象物9との相対的な入射角度を調整して、対象物9について第2のステレオ画像を形成し(S112、S114)、形成された第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索し(S116)、第1及び第2のステレオ画像における測定点と対応点の関係から対象物の三次元座標データを求める(S122)各工程をコンピュータに実行させるものである。
【0019】
上記目的を達成する本発明の三次元座標測定装置は、例えば図24に示すように、ビーム7を対象物9のヨー軸方向へ略平行投影して、対象物9の像を形成する像形成光学系10と、対象物9の姿勢を第1の中立軸方向に調整して、対象物9について第1のステレオ画像を形成可能にする第1の入射角度調整部21と、第1の入射角度調整部21により前記入射角度が調整されて、像形成光学系10により対象物9に関して形成された第1のステレオ画像を受け取る第1画像検出部26と、前記第1及び第2のステレオ画像における測定点と対応点の関係から対象物9の三次元座標データを求める形状測定部34と、第1画像検出部26で受取った第1のステレオ画像に対して、形状測定部34による三次元座標データを求められない領域が存在するか判定する測定不能領域検出部37と、測定不能領域検出部37で測定不能と判定された領域に関して、形状測定部34による三次元座標データを測定可能となるように、第2の中立軸方向を演算する入射角度指示演算部39と、対象物9の姿勢を入射角度指示演算部39で演算された第2の中立軸方向に調整して、対象物9について第2のステレオ画像を形成可能にする第2の入射角度調整部22と、第2の入射角度調整部22により前記入射角度が調整されて、像形成光学系10により対象物9に関して形成された第2のステレオ画像を受け取る第2画像検出部28と、前記第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索すると共に、前記第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索するマッチング処理部30とを備えている。
【0020】
次に、このように構成された装置においては、測定不能領域検出部37が、第1画像検出部26で受取った第1のステレオ画像に対して、形状測定部34による三次元座標データを求められない領域が存在するか判定する。入射角度指示演算部39は、測定不能領域検出部37で測定不能と判定された領域に関して、形状測定部34による三次元座標データを測定可能となるように、第2の中立軸方向を演算する。第2の入射角度調整部22は、対象物9の姿勢を入射角度指示演算部39で演算された第2の中立軸方向に調整して、対象物9について第2のステレオ画像を形成可能にする。このようにして、オペレータが第2の入射角度調整部22に対して第2の中立軸方向を指示しなくても、測定不能領域検出部37と入射角度指示演算部39により、第2の入射角度調整部22に対する第2の中立軸方向の指示がなされる。
【0021】
上記目的を達成する本発明の三次元座標測定方法は、例えば図25に示すように、第1の入射角度調整部21によって対象物9の姿勢を第1の中立軸方向に調整し(S603)、像形成光学系10により対象物9のヨー軸方向に略平行投影されるビーム7と対象物9との相対的な入射角度を調整して、対象物9について第1のステレオ画像を形成し(S604、S606)、前記第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索し(S608)、前記第1のステレオ画像に対して、形状測定部34による三次元座標データを求められない領域が存在するか判定し(S609)、前記三次元座標データが測定不能と判定された領域に関して、形状測定部34による三次元座標データを測定可能となるように、対象物9の姿勢を第2の中立軸方向に調整し(S610)、ビーム7と対象物9との相対的な入射角度を調整して、対象物9について第2のステレオ画像を形成し(S612、S614)、前記第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索し(S616)、第1及び第2のステレオ画像における測定点と対応点の関係から対象物9の三次元座標データを求める(S622)各工程をコンピュータに実行させるものである。
【0022】
【発明の実施の形態】
[第1の実施の形態]
以下、本発明の実施の形態を図面により説明する。図1は本発明の第1の実施の形態を説明する構成ブロック図で、対象物を保持するホルダの回転角を調整して対象物の傾斜角を調整することで、ステレオ画像を得る場合を示している。図において、像形成光学系としての電子線装置10(走査型顕微鏡)は、電子線7を放射する電子線源1、ビームとしての電子線7を対象物9に照射する電子光学系2、対象物9を傾斜可能に保持する試料ホルダ3、電子光学系2の倍率を変える倍率変更部6、倍率変更部6に電力を供給する走査電源6a、電子線7を検出する検出器4、試料ホルダ3を傾斜制御する傾斜制御部5としてのホルダ傾斜制御部5b、対象物9から出射される二次電子のエネルギを減衰させて検出器4に反射させる2次電子変換ターゲット8を備えている。なお、電子線7を傾斜制御する傾斜制御部5としてのビーム傾斜制御部5aは、第1の実施の形態で用いないが、後で説明する第2の実施の形態で用いる。
【0023】
電子光学系2は、電子線源1から放射された電子線7の電子流密度、開き角、照射面積等を変えるコンデンサレンズ2a、電子線7の試料面上の入射角度を制御する偏向レンズ2b、細かく絞られた電子線7を偏向して試料面上を二次元的に走査させる走査レンズ2c、最終段縮小レンズの働きと共に試料面上での入射プローブの焦点合わせを行う対物レンズ2dを備えている。倍率変更部6の倍率変更命令に従って、走査レンズ2cにより電子線7を走査する試料面上の領域が定まる。ビーム傾斜制御部5bは試料ホルダ3に傾斜制御信号を送り、試料ホルダ3と照射電子線7とが第1の相対的傾斜角度をなす第1の姿勢の試料ホルダ3Lと、第2の相対的傾斜角度をなす第2の姿勢の試料ホルダ3Rとで切替えている。
【0024】
第1の姿勢の試料ホルダ3Lに載置される対象物9の三次元座標系CLは、電子線装置10側を固定座標系として表すと、(XL,YL,ZL)となる。たま、第2の姿勢の試料ホルダ3Rに載置される対象物9の三次元座標系CRは、電子線装置10側を固定座標系として表すと、(XR,YR,ZR)となる。なお、ホルダ傾斜制御部5bによる試料ホルダ3と照射電子線7の相対的傾斜角度は、ここでは右側上がりRと左側上がりLの二通りに切替えて設定する場合を図示しているが、2段に限らず多段に設定してよいが、ステレオの検出データを得る為には最小2段必要である。対象物9の三次元座標系として、例えばヨー軸、ピッチ軸、ロール軸を設定した場合に、ヨー軸がZ軸、ピッチ軸がX軸、ロール軸がY軸に対応する。そして、例えば図2(A)、(B)の場合には、ピッチ軸(X軸)が中立軸に対応し、ロール軸(Y軸)が面内傾斜軸に対応する。
【0025】
対象物9は、例えばシリコン半導体やガリウム・ヒ素半導体のような半導体のチップであるが、電力用トランジスタ、ダイオード、サイリスタのような電子部品でもよく、また液晶パネルや有機ELパネルのようなガラスを用いた表示装置用部品でもよい。典型的な走査型顕微鏡の観察条件では、電子線源1は−3kV、対象物9は−2.4kVに印加されている。対象物9から放出された二次電子は、2次電子変換ターゲット8に衝突して、エネルギが弱められて検出器4で検出される。なお、対象物9をマースポテンシャルにした場合には、二次電子は霧のように振る舞いエネルギが弱く、検出器4で直接検出することができ、2次電子変換ターゲット8は不要である。
【0026】
データ処理装置20は、第1の入射角度調整部21、第2の入射角度調整部22、角度調整指示部23、画像形成部24、第1画像検出部26、画像表示部27、第2画像検出部28、マッチング処理部30、測定点・対応点データベース32、形状測定部34、三次元座標データベース36を有している。データ処理装置20は、例えばワークステーションのような高度の演算機能を有するコンピュータと、電子線装置10との間で信号を授受する入出力インターフェースを備えている。
【0027】
第1の入射角度調整部21は、対象物9の姿勢を第1の中立軸方向に調整して、電子線装置10により対象物9に投影されるビーム7と対象物9との相対的な入射角度を、対象物9について第1のステレオ画像を形成可能に調整する。即ち、第1の入射角度調整部21は、ホルダ傾斜制御部5bに制御信号を送って、対象物9の姿勢を第1の中立軸方向に調整している。そして、第1の入射角度調整部21は、ホルダ傾斜制御部5bに制御信号を送って、電子線源1から放射されるビーム7の走査する基準面を調整して、第1のステレオ画像を形成するのに必要とされる左右画像を形成可能としている。第1の入射角度調整部21によるビーム入射角度の調整は、少なくとも一対のステレオ画像(一次元の画像も可)を形成するように行なわれるもので、例えば図2(A)、(B)や図4(A)、(B)に示すような左右画像に対して、左画像用の第1の入射角度と右画像用の第2の入射角度のように、少なくとも2つの入射角度となるように、ビームの入射角度又は対象物の傾斜角度を調整する。
【0028】
第2の入射角度調整部22は、ホルダ傾斜制御部5bに制御信号を送って、対象物9の姿勢を面内傾斜軸方向を含んで形成された第2の中立軸方向に調整している。そして、第2の入射角度調整部22は、ホルダ傾斜制御部5bに制御信号を送って、ビーム7と対象物9との相対的な入射角度を、第2のステレオ画像を形成可能に調整する。第2の中立軸は、対象物9の面内傾斜軸方向と第1の中立軸方向から定まる面内に形成するのが良く、好ましくは図4に示したように、対象物9の面内傾斜軸方向、即ち第1のステレオ画像における対象物9のホルダ回転軸Rと直交する方向に形成する。画像形成部24は、走査レンズ2cにより電子線7が試料面上の領域を走査する際に、検出器4で検出される二次電子線を用いて、試料面上の画像を作成する。
【0029】
第1画像検出部26は、第1の入射角度調整部21によりビーム7と対象物9との相対的な入射角度が調整された場合に、画像形成部24を用いて電子線装置10により対象物9に関して形成された第1のステレオ画像を受け取る。第2画像検出部28は、角度調整指示部23から入力された入射角度調整方向の指示信号に従い、対象物9の姿勢を第2の中立軸方向に調整し、第2の入射角度調整部22によりビーム7と対象物9との相対的な入射角度が調整された場合に、画像形成部24を用いて電子線装置10により対象物9に関して形成された第2のステレオ画像を受け取る。
【0030】
画像表示部27は、第1画像検出部26で検出された第1のステレオ画像を表示すると共に、第2画像検出部28で検出された第2のステレオ画像を表示するもので、例えばCRTや液晶パネルが用いられる。画像表示部27は、通常の一画面モニタでもよく、ステレオ表示可能なモニタでもよく、或いは両方備えていてもよく、要するに第1のステレオ画像及び第2のステレオ画像をオペレータが観察できるように表示するものであればよい。角度調整指示部23は、画像表示部27で表示されたステレオ画像に基づいて定められた、入射角度調整方向の指示信号を出力するもので、この指示信号は例えばオペレータによって入力される。入射角度調整方向の指示信号は、典型的には第1のステレオ画像をオペレータが観察して、オペレータにより指示された第2のステレオ画像を取得すべき第2の中立軸方向に基づいて定められるが、今回の第2のステレオ画像をオペレータが観察して、改めてオペレータにより指示される次回の第2のステレオ画像を取得すべき第2の中立軸方向に基づいて定められてもよい。
【0031】
マッチング処理部30は、第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索すると共に、第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索する。マッチング処理部30の処理内容は、後で詳細に説明するように、異方性形状計測としての性質を有している。ここで、測定点は対象物9に定義された点であり、対応点は一対のステレオ画像に現れた前記測定点と対応する画像上の点でもよい。或いは、測定点は一対のステレオ画像の一方に定義された基準画像の基準点であり、対応点は一対のステレオ画像の他方に定義された測定点と対応する画像上の点でもよい。また、マッチング処理部30では、第1のステレオ画像と第2のステレオ画像を合成して合成画像31を生成する機能を有する。そこで、異方性形状計測により検出できない方向の線分に関しても、マッチング処理部30により合成画像31を生成することで、マッチング処理部30は全ての方向の線分を検出する感度を備えるに至る。
【0032】
測定点・対応点データベース32は、マッチング処理部30の処理で用いられるもので、例えば左画像に測定点を設定すると、右画像の対応点がマッチング処理部30の処理により求められる。また、第1のステレオ画像と第2のステレオ画像における測定点と対応点の位置対応関係も含ませるとよい。形状測定部34は、測定点・対応点データベース32に記録される第1及び第2のステレオ画像における測定点と対応点の関係から、対象物9の三次元座標データを求めるもので、各測定点と対応点の三次元座標データは三次元座標データベース36に記録される。測定点・対応点データベース32と三次元座標データベース36は、例えばオラクル社やIBMから提供されるリレーショナル・データベースシステムを用いて構成されている。
【0033】
このように構成された装置の動作を説明する。図6は図1の装置の動作を説明するフローチャートである。まず、像形成光学系としての電子線装置10による対象物9の三次元画像計測を開始する(S100)。そこで、電子線装置10のビーム7による対象物9のヨー軸方向への略平行投影を開始する(S102)。そして、第1の入射角度調整部21がホルダ傾斜制御部5bに姿勢制御信号を送って、対象物9の姿勢を第1の中立軸方向に調整をする(S103)。次に、第1の入射角度調整部21が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第1のステレオ画像の左画像に対応するように調整し、画像形成部24により対象物画像を取得する(S104)。続いて、第1の入射角度調整部21が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第1のステレオ画像の右画像に対応するように調整し、画像形成部24により対象物画像を取得する(S106)。そして、マッチング処理部30によって、第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索し(S108)、探索結果を例えば測定点・対応点データベース32に記録する。
【0034】
また、S106にて取得された対象物画像を用いて、第1画像検出部26により第1のステレオ画像として検出する。そして、この第1のステレオ画像を、画像表示部27にて表示する(S109A)。すると、オペレータは第1のステレオ画像を観察して、異方性形状計測に基づく無感度軸の方向を感知し、この無感度軸の方向が感度軸方向となるように、対象物9の姿勢として必要な第2の中立軸を決定する。角度調整指示部23には、オペレータによって対象物9の姿勢として必要な第2の中立軸方向が入力される。すると、角度調整指示部23では、入力された第2の中立軸方向に対応する入射角度調整方向の指示信号が、第2の入射角度調整部22に出力される。
【0035】
すると、第2の入射角度調整部22では、表示されたステレオ画像に基づき定められた入射角度調整方向の指示信号を角度調整指示部23から入力する(S109B)。そして、第2の入射角度調整部22がホルダ傾斜制御部5bに姿勢制御信号を送って、入射角度調整方向の指示信号に従い、対象物9の姿勢を第2の中立軸方向に調整する(S109C)。例えば、対象物9を載置するホルダ3の回転軸を、対象物9の第1の中立軸方向から第2の中立軸方向に調整する。
【0036】
そして、第2の入射角度調整部22が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第2のステレオ画像の左画像に対応するように調整し、画像形成部24により対象物画像を取得する(S112)。次に、第2の入射角度調整部22が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第2のステレオ画像の右画像に対応するように調整し、画像形成部24により対象物画像を取得する(S114)。そして、マッチング処理部30によって、第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索し(S116)、探索結果を例えば測定点・対応点データベース32に記録する。
【0037】
そして、形状測定部34によって、第1及び第2のステレオ画像の両方を用いても、測定点と対応点の対応が確保できない領域があるか判断する(S118)。S118で、測定点と対応点の対応が確保できない領域が残存していると判断される場合には、オペレータが第2の入射角度調整部22を用いて、ビーム7と対象物9との相対的な入射角度を、残存領域での測定点と対応点の対応が確保できる方向に第2の中立軸方向を再度設定して(S120)、S112に戻る。オペレータが第2の入射角度調整部22を用いる手順は、例えば次のようになる。まず、S116にて取得された対象物画像を用いて、第2画像検出部28により第2のステレオ画像として検出する。そして、この第2のステレオ画像を、画像表示部27にて表示する。すると、オペレータは第2のステレオ画像を観察して、異方性形状計測に基づく無感度軸の方向を感知し、この無感度軸の方向が感度軸方向となるように、対象物9の姿勢として必要な新たな第2の中立軸を決定する。角度調整指示部23には、オペレータによって対象物9の姿勢として必要な新たな第2の中立軸方向が入力される。すると、角度調整指示部23では、入力された第2の中立軸方向に対応する新たな入射角度調整方向の指示信号が、第2の入射角度調整部22に出力される。第2の入射角度調整部22では、表示されたステレオ画像に基づき定められた新たな入射角度調整方向の指示信号を角度調整指示部23から入力する。そして、第2の入射角度調整部22がホルダ傾斜制御部5bに姿勢制御信号を送って、入射角度調整方向の指示信号に従い、対象物9の姿勢を新たな第2の中立軸方向に調整する。
【0038】
S118で、測定点と対応点の対応が全ての領域で確保されていると判断される場合には、第1及び第2のステレオ画像における測定点と対応点の関係を用いて、合成画像31について形状測定部34により対象物の三次元座標データを求める(S122)。この求めた三次元座標データは、三次元座標データベース36に格納する。そして、対象物9の三次元画像計測が終了して、リターンとなる。
【0039】
図7は画像表示部にて表示される画像と、対象物の姿勢が調整される中立軸方向との関係を説明する図で、(A)は第1の中立軸にかかる第1のステレオ画像より抽出された処理画像、(B)は第2の中立軸にかかる第2のステレオ画像より抽出された処理画像、(C)は別の第2の中立軸方向にかかる第2のステレオ画像より抽出された処理画像を示している。図7(A)の場合には、対象物9がXY座標系により定義されており、第1の中立軸がX−X軸と一致するR1−R1軸に設定されている。そこで、第1のステレオ画像の処理画像には、第1の中立軸と一致する方向の線分が旨く写っていない。
【0040】
次に、図7(B)に示すように、オペレータが第2の中立軸方向として、Y−Y軸と一致するR2−R2軸を指定すると、角度調整指示部23と第2の入射角度調整部22によって、対象物9の姿勢が第2の中立軸方向に調整される。すると、第2のステレオ画像の処理画像には、第1の中立軸と一致する方向の線分は旨く写っているが、第2の中立軸と一致する方向の線分が旨く写っていない。
【0041】
続いて、図7(C)に示すように、オペレータが別の第2の中立軸方向として、XY軸と斜めの角度をなすR3−R3軸を指定すると、角度調整指示部23と第2の入射角度調整部22によって、対象物9の姿勢が今回指定された第2の中立軸方向に調整される。すると、第2のステレオ画像の処理画像には、第1の中立軸及び前回の第2の中立軸と一致する方向の線分が旨く写っているが、今回の第2の中立軸と一致する方向の線分が旨く写っていない。しかし、これら3種類のステレオ画像の処理画像を合成することで、全ての方向の線分が旨く写っている画像を取得できる。
【0042】
次に、2種類の中立軸方向から適切なステレオ画像の処理画像を取得できる場合を説明する。図8は図1の装置により処理される第1及び第2のステレオ画像の関係を説明する図で、(A)は原画像、(B)は第1の中立軸にかかる第1のステレオ画像より抽出された処理画像、(C)は(B)の対象物Y−Y側面図、(D)は第2の中立軸にかかる第2のステレオ画像より抽出された処理画像、(E)は(D)の対象物Y−Y側面図を示している。図9は図8(B)と図8(D)の処理画像を合成した画像である。なお、図8において前出の図2〜図5の記載と重複する部分は説明を省略する。
【0043】
ここでは、説明を簡単にするために、原画像に矩形のパターンが描かれているとする。矩形図形は、対象物9のX軸とY軸に沿う方向の直線より構成されているものとする。すると、第1のステレオ画像より抽出された処理画像では、図8(B)に示すようにY軸方向の線分は検出できている。しかし、X軸方向の線分はホルダ回転軸Rと一致しているため、異方性形状計測の無感度軸と一致するから、マッチング処理部30の処理では検出できていない。
【0044】
また、対象物9の姿勢をオペレータにより指定された第2の中立軸方向として取得した第2のステレオ画像より抽出された処理画像では、図8(D)に示すようにX軸方向の線分は検出できている。しかし、Y軸方向の線分はホルダ回転軸Rと一致しているため、異方性形状計測の無感度軸と一致するから、マッチング処理部30の処理では検出できていない。
【0045】
そこで、マッチング処理部30により、第1のステレオ画像より抽出された処理画像と第2のステレオ画像より抽出された処理画像を、論理和形式で合成することによって、異方性形状計測の無感度軸と一致する方向の線分が検出できない不利益を補償して、対象物9に描かれた矩形のパターンを完全に再現できるようにしている。また、マッチング処理部30では、第1及び第2のステレオ画像より重複して抽出された領域の処理画像に関しては、両者の平均により合成画像31とすることによって、ノイズ成分の少ない信頼性の高い三次元画像計測用の処理画像が作成できる。
【0046】
図10は、図9で説明した第1及び第2のステレオ画像より抽出された処理画像により合成された画像の一例を示す図である。図10で示す合成画像は、図3で示した第1の中立軸にかかる第1のステレオ画像より抽出された処理画像と、図5で示した第2の中立軸にかかる第2のステレオ画像より抽出された処理画像を合成したものである。図3及び図5において、ホルダ回転軸Rと一致する方向の線分は、異方性形状計測の無感度軸と一致するから、マッチング処理部30の処理では検出できていない。しかし、マッチング処理部30の画像合成機能により作成された合成画像31によれば、異方性形状計測の感度方向依存性によって検出できない方向はなくなって、全ての方向の線分が検出されている。
【0047】
[平行投影に関する補足説明]
ステレオ画像を用いた三次元画像計測において、電子顕微鏡の電子ビームで撮影する場合は平行投影となるため、航空写真測量やディジタルカメラを用いたステレオ撮影に相当する中心投影とは、事情が異なる。即ち、中心投影であれば、例えば左画像を基準画像として探索画像としての右画像の対応点を探索する場合に、左右画像で縦視差をあわせて立体視できる状態にした時、仮に左右画像のパターンがホルダ回転軸方向と一致していても、左右画像における平行直線には中心投影に起因する角度が形成される。そこで、異方性形状計測による三次元形状計測装置であっても、電子ビームの入射角度を左右画像の撮影方向に応じて変更させることで、画像処理装置により左右画像の対応点の探索ができて、左右画像の被写体に関する三次元座標が計測できる。
【0048】
しかし、平行投影であれば、例えば左画像を基準画像として探索画像としての右画像の対応点を探索する場合に、左右画像で縦視差をあわせて立体視できる状態にした時、仮に左右画像のパターンがホルダ回転軸方向と一致していると、平行投影であるため左右画像における平行直線は左右平行となる。そこで、異方性形状計測による三次元形状計測装置の場合には、電子ビームの入射角度を左右画像の撮影方向に応じて変更させても、画像処理装置による左右画像の対応点の探索が不可能となり、左右画像の被写体に関する三次元座標が計測できなくなる。即ち、左右画像のパターンがホルダ回転軸方向と一致していると、異方性形状計測では三次元座標の計測できない。これが異方性形状計測における異方性を生じる原因である。
【0049】
[異方性形状計測の説明]
図11は異方性形状計測の一例としての、粗密探索法とバックマッチング法を組合せた画像測定装置を説明する全体構成ブロック図である。図において、半導体や生体組織・細胞のような対象物41がテーブル(図示せず)等に載置されており、同一の光学的特性を有するカメラ42a、42bによって撮影される。像形成光学系としてのカメラ42a、42bは焦点距離が既知で、レンズ収差が補償されるものであり、対象物41が左右のステレオカメラ42a、42bで同一解像度で撮影されるように配置されている。左右のステレオカメラ42a、42bは、対象物41に対して、例えば80%程度以上の高い重複率で撮影した、一対のステレオ撮影画像データ43を生成する。カメラは、汎用の印画紙を用いた光学式カメラでもよく、またCCD(Charged Coupled Device)のような電子式でもよい。画像処理を円滑に行なう為には、ステレオ撮影画像データ43は電磁気記録情報としてフレキシブル・ディスク、CDROM、DVD等に記憶させておくと良い。
【0050】
標定処理部44は、左右のステレオカメラ42a、42bで撮影されたステレオ撮影画像データ43に対して、内部標定と外部標定を行ない、ステレオマッチング処理を可能とする。内部標定とは、撮影したカメラや結像面(フィルム)に関連した内部幾何構造の補正・キャリブレーションを行なうもので、例えばレンズの歪み、レンズとフィルムの偏心のような位置関係、フィルムの平面性の補正を行なう。外部標定とは、撮影した時のカメラの位置・姿勢を決定するもので、例えば共線条件式を用いて定式化されている。共線条件式は投影中心・フィルム上の位置、対象物は一直線上にあるという関係式である。標定処理部44で標定された左右一対のステレオ画像46は、ステレオ画像記録部45に記憶される。ステレオ画像記録部45は、例えばフレキシブル・ディスク、CDROM、DVD等のように画像情報を電磁気情報として記憶する媒体である。標定処理は、予め装置のパラメータとして事前に求めておいても良いし、画像を計測して求めても良い。なお、ここでいうレンズには、電子顕微鏡の電子レンズも含まれる。
【0051】
画像測定装置50は、概略位置測定部51、画像形成部52、画像処理部55、探索データブロック設定部56、捜索対応検出部59、逆対応判別部61、測定部64、画像再構築部65、左右画像対応関係データベース68を備えている。また、画像測定装置50で取扱われるデータとしては、基準画像53、捜索画像54、基準データブロック57、捜索データブロック58、対応捜索画像領域60、逆対応データブロック62がある。画像測定装置50には、演算処理機能の高いパソコンやワークステーションのようなコンピュータが使用される。画像測定装置50の各構成要素は、アプリケーション・ソフトウェアやASICのような高度に集積した電子回路にて構成されている。
【0052】
概略位置測定部51は、一対のステレオ画像46中のマーク又は特徴点を抽出し、抽出されたマーク又は特徴点を用いて射影変換処理によりステレオ画像中のマーク又は特徴点の概略位置を求める機能を有する。
【0053】
画像形成部52は、一対のステレオ画像46に対する基準画像53と捜索画像54を生成するもので、高い解像度のものから低い解像度のものに順次基準画像53a、53bと捜索画像54a、54bを生成する。典型的には、一対のステレオ画像46のうち、左画像に基準画像53が生成されると、捜索画像54は基準画像が生成された他方の画像、即ち右画像に生成される。画像の解像度は、画像の木目細やかな表現力を定めるパラメータとなっており、低い解像度では粗い解像度、高い解像度では密な解像度が得られる。画像に含まれるデータ量は莫大であり、ステレオマッチングでの演算量を削減するために、低い解像度の画像で大まかな対応点の位置を抽出し、順次高い解像度の画像で詳細な対応点の位置を抽出してゆく。典型的には、第1解像度としての低解像度と、第2解像度としての高解像度の2階層で画像を生成すればよい。画像解像度に関する階層構造は、粗密探索法(Coarse To Fine法)に関連するもので、詳細は後で説明する。なお、画像形成部52で生成する基準画像53と捜索画像54は、3階層以上であってもよい。
【0054】
画像処理部55は、画像形成部52で取扱う、一対のステレオ画像46、基準画像53、捜索画像54を鮮鋭化させたり、コントラスト強調、エッジ強調を行ったり、解像度の異なる画像を作成する際に必要な画像データの補間や圧縮を行なったり、画像データから特徴抽出を行ったりする。
【0055】
探索データブロック設定部56は、基準画像53に対する基準データブロック57と、捜索画像54に対する捜索データブロック58を設定する。画像形成部52で生成される基準画像53と捜索画像54が、低解像度と高解像度の2階層で生成される場合には、探索データブロック設定部56は、基準データブロック57と捜索データブロック58も低解像度と高解像度の2階層として生成する。画像形成部52で生成される基準画像53と捜索画像54が3階層の解像度で生成される場合には、探索データブロック設定部56は、基準データブロック57と捜索データブロック58も3階層の解像度で生成する。捜索データブロック58は基準データブロック57の捜索する範囲を限定するもので、捜索画像54全体より小さく、基準データブロック57より大きくするのが良い。
【0056】
捜索対応検出部59は、基準画像53に設けられた基準データブロック57に対応する捜索データブロック58を捜索画像54上で捜索する。画像データを取扱うので、同じ解像度での基準画像53と捜索画像54との間で、基準データブロック57と同一又は同一性のある捜索データブロック58を探す。従って、捜索対応検出部59は、異なる解像度の基準画像53と捜索画像54との間での捜索対応検出は行なわない。具体的には、捜索対応検出部59は、第1捜索画像54a中の第1捜索データブロック58aにおいて、第1基準データブロック57aと対応関係となる第1対応捜索画像領域60aを求め、第2捜索画像54b中の第2捜索データブロック58bにおいて、第2基準データブロック57bと対応関係となる第2対応捜索画像領域60bを求める。第1対応捜索画像領域60aは、第1捜索データブロック58aにおいて、第1基準データブロック57aと相関関係が最も高く、従って対応画像領域の存在する位置を画像座標情報によって表せば数値演算による画像処理が簡便に行なえる。画像座標情報とすると、画素単位で位置関係を表すことができ、対応点の位置表現が詳細に行なえる。第2対応捜索画像領域60bに関しても、第1対応捜索画像領域60aと同様である。
【0057】
逆対応判別部61は、基準画像53と捜索画像54との間で、ステレオマッチング処理をした結果の対応点が真であるか、偽であるか判別する。具体的には、逆対応判別部61は、第2対応捜索画像領域60bを用いて第2捜索画像54b中に第2基準データブロック57bに相当する逆対応データブロック62を設定し、第2基準画像53bにおいて逆対応データブロック62と対応関係となる逆対応基準画像領域63を求め、第2基準画像53bにおいて逆対応基準画像領域63と第2基準データブロック57bとが一致するか判定する。詳細は後で説明する。
【0058】
測定部64では、逆対応判別部61で逆対応基準画像領域63と第2基準データブロック57bとが一致すると判定された第2対応捜索画像領域60bを用いて、第2基準画像53bと第2捜索画像54bとの位置関係を求められる。さらに、測定部64では、求められた位置関係を利用して一対のステレオ画像に撮影された対象物の測定を行なう。
【0059】
画像再構築部65は、画像測定装置50で得られた、一対のステレオ画像46に撮影された対象物の測定結果から、対象物の二次元又は三次元の画像を再構築する。再構築画像66には、三次元鳥瞰図や正射写真図等の各種の画像がある。左右画像対応関係データベース68は、一対のステレオ画像46に撮影されている左右画像の対応点に関する情報が格納されるもので、概略位置測定部51、画像形成部52、画像処理部55、探索データブロック設定部56、捜索対応検出部59、逆対応判別部61、測定部64、画像再構築部65に対して共通のデータベースとして用いられる。
【0060】
次に、各構成要素の作用について図面を参照して、さらに詳細に説明する。図12は粗密探索法の階層構造を説明する構成図である。捜索対応検出部59での画像相関演算時間を最適化するために、画像を異なる解像度の多層階層とする。この場合、画像相関演算による対応点を確実に検出するために、ピラミッド構造型の多層階層による捜索を利用する。ピラミッド構造では、粗い解像度の最上層で概略重ね合わせを行ってから、密の解像度で詳細重ね合わせを行う為、画像相関演算における画像の重ねあわせでバックトラックを必要としない。そこで、画像相関演算を短縮すると同時に、各解像度の画像におけるマッチング結果の統合判断が可能となる為、誤対応が低減できる。ピラミッド構造型の多層階層では、図12に示すように、予め画像解像度の異なる画像を低解像度層(第一基準画像)、第2層(第二基準画像)、…、高解像度層(第L基準画像)、低解像度層(第一捜索画像)、第2層(第二捜索画像)、…、高解像度層(第L捜索画像)というふうに作成する。高解像度層は、例えば基準画像53や捜索画像54の画素密度と等倍とし、以下一層毎に画素解像度を1/2(縮小解像度を2倍)にするとよい。
【0061】
即ち、上述の基準画像や捜索画像のピラミッド構造は、画像処理部55や画像形成部52により(式1)を適用することで、第1層から第L層(最下層を第L’層とする)まで構築される。ここでは、第L層が
【数1】
ここでx,y = 0,1,・・・・・2K-(L'-L)-1である。L=3とすると、総階層数は3階層となる。もし、2階層に対して第3階層を付加するという立場で説明する場合、第3解像度としての第2解像度よりも高い高解像度を設けてもよく、また第4解像度としての第1解像度と第2解像度の中間解像度でもよい。
【0062】
図13は基準画像53に設定される基準データブロック57と、捜索画像54に設定される捜索データブロック58の説明図である。探索データブロック設定部56は、基準画像53に設定される基準データブロック57に比較して、捜索画像54に設定される捜索データブロック58の領域を広く取っている。これにより、捜索データブロック58内の領域に、基準データブロック57との相関係数の高い領域が存在する可能性が高くなる。なお、基準データブロック57と捜索データブロック58は、画像を構成する全ての画素に対して定義することができる。全ての画素に対して定義すると、パターン配線前の半導体ウェハのように画像情報に顕著なパターンが表れない場合でも、全体的な色調や明度のパターンから、位置の判別が可能な場所が出現してくる。しかし、一定間隔や対応点・特徴点のように位置対応が判別できる程度の濃淡や形状・輪郭を含む画像情報に限って、基準データブロック57と捜索データブロック58を設定してもよい。
【0063】
次に、正規化相関係数によるマッチング法を、図13を参照して説明する。図13において、右画像を基準画像53、左画像を捜索画像54とする。基準データブロック57は、N個のデータから構成されるとし、捜索データブロック58は画像座標(U、V)を起点とする。正規化相関係数によるマッチング法では、基準データブロック57を捜索データブロック58の中を左から右に動かし、捜索データブロック58の右端まで行くと下がって左端に戻り、また基準データブロック57を左から右に動かすラスタ走査を行いながら、各位置で式2による演算処理を行なう。
M=M(Xi,Yi) (1≦i≦N) ・・・(2)
I=I(U+Xi,V+Yi)
とする。ここで、Mは基準データブロック57の正規化数値、Iは捜索データブロック58の正規化数値とする。
【0064】
すると、基準データブロック57と捜索データブロック58の類似度は、次の正規化相関係数R(U、V)で与えられる。
【数2】
ここで、正規化相関係数Rの値は常に−1から1までの範囲の値をとる。正規化相関係数値Rが1の場合には、テンプレートとしての基準データブロック57と捜索データブロック58中の対応画像が完全に一致した事になる。そこで捜索対応検出部59により、相関係数値の最大の位置を探せば、捜索データブロック58中において、基準データブロック57に最も類似した画像の場所を示す対応捜索画像領域60を探す事ができる。
【0065】
捜索データブロック58中に、基準データブロック57と類似している点が無かった場合は、正規化相関係数値Rの最大値が小さく(例えば0.1)なるので、対応捜索画像領域60の探索は失敗とする。しかし探索を行う際に、捜索対応検出部59は、正規化相関係数値Rが最大となった座標値を対応捜索画像領域60の座標値としている。そこで、R=0.1とノイズに近い場合でも、低い正規化相関係数値の座標値が対応捜索画像領域60の座標値となってしまうことがある。従って正規化相関係数値Rの最大値があまりに小さく、設定したしきい値(例えば0.2〜0.3)以下の場合は、対応捜索画像領域60の探索は失敗とする。
【0066】
図14は、逆対応判別部61によるバックマッチング法の説明図で、(A)は探索された対応点が真(OK)の場合、(B)は偽(NG)の場合を示している。逆対応判別部61では、基準画像53の基準データブロック57から捜索画像54の捜索データブロック58の対応する対応捜索画像領域60を捜索する。次に、逆対応判別部61は、捜索された捜索データブロック58上の対応捜索画像領域60を逆対応データブロック62として設定する。そして、逆対応判別部61は、基準画像53において逆対応データブロック62と対応関係となる逆対応基準画像領域63を求め、基準画像53において逆対応基準画像領域63と基準データブロック57とが一致するか判定する。そして、逆対応基準画像領域63と基準データブロック57が一致していれば、探索した対応捜索画像領域60は真とし、不一致であれば偽(マッチング失敗)とする。逆対応判別部61で偽に相当する対応捜索画像領域60を除去することで、誤対応点を除去することが可能となる、
【0067】
図15は、逆対応判別部61によるバックマッチングを説明するフローチャートである。以下、図14と図15に従って逆対応判別部61によるバックマッチングの手順を説明する。なお、図14では説明を単純にするために、基準画像53と捜索画像54の同一ライン上の領域に、基準データブロック57と捜索データブロック58が存在しているとする。まず、バックマッチングが開始される(S200)と、逆対応判別部61は基準画像53のOK領域を基準データブロック57として設定する(S202)。次に、逆対応判別部61は、基準データブロック57を用いて、捜索画像54内の捜索データブロック58上を探す(S204)。捜索画像54内の捜索データブロック58で相関係数の高い対応捜索画像領域60を見付けたら、対応捜索画像領域60を逆対応データブロック62に設定する(S206)。
【0068】
逆対応データブロック62は基準データブロック57と同様に処理されるもので、逆対応基準画像領域63が対応捜索画像領域60に対応している。そこで、逆対応判別部61は、逆対応データブロック62を用いて、基準画像53中の基準データブロック57と同一ライン上を捜索する(S208)。相関係数が最大となる逆対応基準画像領域63が見つかると、逆対応判別部61は、逆対応基準画像領域63が当初の基準データブロック57であるOK領域と一致しているか判断する(S210)。逆対応基準画像領域63がOK領域を探し出せれば、逆対応判別部61はマッチング成功と判断する(S212)。逆対応基準画像領域63がOK領域ではなく、他の場所(NG領域)を探し出した場合は、逆対応判別部61はマッチングが失敗と判断する(S214)。
【0069】
続いて、このように構成された装置の動作について説明する。図16は一対のステレオ画像に対する三次元画像計測処理全体を説明するフローチャートである。まず、左右のステレオカメラ42a、42bを用いて、対象物41の左右のカメラ画像を取得する(S230)。左右のカメラ画像は、ステレオ撮影画像データ43として、標定処理部44により画像を補正する(同時に縦視差を除去する)。作成されたステレオ画像は、一対のステレオ画像46としてステレオ画像記録部45に記憶される。一対のステレオ画像46に対して、ステレオ・マッチング処理が行なわれる(S234)。ステレオ・マッチング処理が行なわれた一対のステレオ画像46を用いて、ステレオ画像46に撮影された対象物41の三次元座標計測が行なわれる(S236)。また、必要に応じて態様で、対象物41の三次元画像を再構築する(S238)。
【0070】
続いて、図17を用いて図11の画像測定装置の動作を説明する。図17のフローチャートでは、粗密探索法とバックマッチングを組合せた動作について説明する。まず、画像形成部52が、一対のステレオ画像46に関して第1解像度の第1基準画像53aと第1捜索画像54aを形成する(S300)。次に、探索データブロック設定部56が第1基準画像53aに、第1解像度に対応する画素データを有する第1基準データブロック57aを設定する(S302)。また、探索データブロック設定部56は、第1捜索画像54aに、第1解像度に対応する画素データを有する第1捜索データブロック58aを設定する(S304)。そして、捜索対応検出部59が第1捜索画像54a中の第1捜索データブロック58aにおいて、第1基準データブロック57aと対応関係となる第1対応捜索画像領域60aを求める(S306)。
【0071】
次に、画像形成部52が一対のステレオ画像46に関して、第1解像度より高い第2解像度の第2基準画像53bと第2捜索画像54bを形成する(S308)。また、探索データブロック設定部56が第2基準画像53bに、第2解像度に対応する画素データを有する第2基準データブロック57bを設定する(S310)。探索データブロック設定部56が、第2捜索画像54bに、第2解像度に対応する画素データを有する第2捜索データブロック58bを設定する(S312)。この第2捜索データブロック58bの設定には、第1対応捜索画像領域60aの情報が用いられる。第1捜索画像54aと第2捜索画像54bには、粗密探索法の階層構造が用いられている為、第1対応捜索画像領域60aの位置情報は有用な為である。そして、捜索対応検出部59が第2捜索画像54b中の第2捜索データブロック58bにおいて、第2基準データブロック57bと対応関係となる第2対応捜索画像領域60bを求める(S354)。
【0072】
次に、バックマッチングによる検証が行なわれる。まず、逆対応判別部61が第2対応捜索画像領域60bを用いて第2捜索画像54b中に、第2基準データブロック57bに相当する逆対応データブロック62を設定する(S316)。次に、逆対応判別部61が第2基準画像53bにおいて逆対応データブロック62と対応関係となる逆対応基準画像領域63を求める(S318)。そして、逆対応判別部61は、第2基準画像53bにおいて逆対応基準画像領域63と第2基準データブロック57bとが一致するか判定する(S320)。一致していれば、捜索対応検出部59が捜索した第2対応捜索画像領域60bは真である(S322)。S320で不一致であれば、捜索対応検出部59が捜索した第2対応捜索画像領域60bは偽である(S324)。
【0073】
そこで、S322にて逆対応基準画像領域63と第2基準データブロック57bとが一致すると判定された第2対応捜索画像領域60bを用いて、第2基準画像53bと第2捜索画像54bとの位置関係が求められる(S326)。そして、測定部64によって、一対のステレオ画像46に撮影された対象物の測定を行なう(S328)。
【0074】
次に、画像処理部で行なわれる鮮鋭化処理について説明する。画像処理部55によって、一対のステレオ画像46に対する画像前処理として画像鮮鋭化、コントラスト強調、エッジ強調等を行っておくと、基準画像53と捜索画像54に対して適用される相関係数値が高くなり、確実に対応点座標の検出が可能になる。画像前処理には公知の多種多様な処理が存在するが、代表的な処理としてラプラシアンフィルタを用いた画像鮮鋭化処理を説明する。
【0075】
図18はラプラシアンオペーレタの一例を示す構成図である。ラプラシアンオペーレタは3x3の画素に対する数値演算を施すもので、中央画素(2、2)に対する係数が『5』、中央画素に対して縦横画素(2、1)、(2、3)、(1、2)、(3、2)に対する係数が『−1』、中央画素に対して斜め画素(1、1)、(1、3)、(3、1)、(3、3)に対する係数が『0』になっている。ラプラシアンオペーレタを利用することにより、鮮鋭化処理された画像を得ることができる。
【0076】
ラプラシアンオペーレタの基本式を、式4に示す。
g(i,j)=f(i、j)−∇2f(i,j) ・・・(4)
ここで、g(i,j)は鮮鋭化画像であり、f(i,j)は入力画像である。∇2f(i,j)は入力画像のラプラシアンとなっており、例えば上述した図18に示す係数のものや、各種重み付けや画素数の微分オペレータが存在する。また、ラプラシアンに加えてガウシアンを施したものでもよい。
【0077】
また、式5に示すような、計算処理によって求めてもよい。式5は、鮮鋭化処理として計算処理的なガウシアンを施したものである。
【数3】
ここでσはガウス関数のパラメータである。すると、差分は式6で表される。
g(x,y)=f(x、y)−∇2G(x,y) ・・・(6)
ここで、g(x,y)は鮮鋭化画像、f(x,y)は入力画像、∇2G(x,y)は入力画像のラプラシアンガウシアンとなっている。また、左右画像の撮影時において、ピントのあった状態(式6のf(x、y)に相当)とピントの合っていない状態(式6の∇2G(x,y)に相当)の同一画像を撮影し、その差分画像を得ることによって、鮮鋭化処理を行なっても良い。
【0078】
また、鮮鋭化処理の一態様として、エッジ抽出処理がある。図19は、線検出オペーレタの一例を示す構成図である。線検出オペーレタは、縦方向の画素に対して係数『1』を作用させ、横方向に隣接する画素に対しては縦方向に係数『−1/2』を作用させて、縦方向の線分を検出している。そこで、検出したい方向の線検出オペレータを、画像に畳み込み処理して、エッジ抽出処理ができる。
【0079】
なお、画像処理部で鮮鋭化処理された画像からエッジ抽出を行うこともできる。即ち、エッジ抽出処理は、鮮鋭化画像の濃度値のゼロ交差点をエッジと設定することで、エッジ抽出ができる。そこで、ゼロとなった点のみを画像化する、あるいはゼロを境にしてプラス領域を白、マイナス領域を黒とすることにより画像化される。
【0080】
図20は鮮鋭化処理とエッジ抽出処理の一例を示す図で、(A)は原画像、(B)は鮮鋭化処理画像を示している。原画像は、例えば半導体のSEM画像で、パターンの線分がぼやけている。しかし、鮮鋭化処理画像では、鮮鋭化処理とエッジ抽出処理によってパターンの線分が明瞭に抽出されている。パターンの線分を明瞭化することで、基準画像と探索画像との位置対応を求めることが容易になる。
【0081】
粗密探索法の総階層数が3層の場合を例に、画像測定方法を説明する。図21は、粗密探索法の総階層数が3層の場合における基準画像、捜索画像並びにバックマッチングの説明図で、(A)は低解像度層、(B)は中間解像度層、(C)は高解像度層を示している。図22は、粗密探索法の総階層数が3層の場合における画像測定方法を説明するフローチャートである。
【0082】
まず、画像形成部52により、例えば式1を用いて、基準画像53と捜索画像54に関して3階層のピラミッド構造を構築する(S260)。構築される画像は、画像の縮小解像度を基準として低解像度層(ピラミッド構造の最上層)、中間解像度層、高解像度層(ピラミッド構造の最下層)の3階層に対応して設けられる。低解像度層に対して、基準画像53aと捜索画像54aとする。高解像度層に対して、基準画像53bと捜索画像54bとする。ここで、最下層の基準画像53bにおける基準データブロック57はN1×N1画素(N1=2N)とする。また、最下層において、捜索画像54bと捜索データブロック58bは同じもので、M1×M1画素(M1=2M)とするが、捜索画像54bよりも小さな捜索データブロック58bを設けても良い。中間解像度層に対して、基準画像53dと捜索画像54dとする。
【0083】
次に、基準画像53と捜索画像54に関して、画像処理部55により画像前処理を行なう(S262)。画像前処理には、画像鮮鋭化、コントラスト強調、エッジ強調等の処理が含まれる。画像前処理の対象は、基準画像53a、53b、53cと捜索画像54a、54b、54cである。画像前処理によって、基準画像53と捜索画像54の対応点を捜索するマッチング処理が確実なものになる。
【0084】
次に、低解像度層についてマッチング処理を行い、正規化相関の係数を保存する(S264)。マッチング処理の詳細は、上述の図18で説明したように、探索データブロック設定部56による基準画像53aでの基準データブロック57a設定、捜索画像54aでの捜索データブロック58a設定、並びに捜索対応検出部59による捜索データブロック58aに関して、基準データブロック57bと対応関係となる対応捜索画像領域60aを求めることである。対応捜索画像領域60aは、マッチング処理では対応点に相当している。ここで、第L層の探索範囲{[M1/2(L’−L )−[N1/2(L’−L )+1]2内で、残差が最小になる第L層の基準データブロック57の左上位置を(i,j)とすると、対応点位置は(i,j)によって表される。捜索対応検出部59での対応捜索画像領域60aに対する相関係数は、左右画像対応関係データベース68に一旦保存される。
【0085】
続いて、低解像度層に対して直近の階層に移り、最下層に該当しているか判断する。ここでは、中間解像度層なので、低解像度層での対応点位置座標を基準として、1階層上の対応点位置座標(2i,2j)を中心とし、5x5画素を捜索範囲として画像の重ねあわせ(マッチング処理)を行なう(S266)。ここで、捜索範囲内で残差が最小になるテンプレート画像の左上位置、即ち正規化相関の係数が最大値をとる対応点位置(i,j)を保存する。
【0086】
次に、中間解像度層に対して直近の階層に移り、最下層に該当しているか判断する。ここでは、最下層なので、中間解像度層での対応点位置座標を基準として、1階層上の対応点位置座標(2i,2j)を中心とし、3x3画素を捜索範囲として画像の重ねあわせ(マッチング処理)を行なう(S268)。ここで、捜索範囲内で残差が最小になるテンプレート画像の左上位置、即ち正規化相関の係数が最大値をとる対応点位置(2i,2j)を保存する。
【0087】
そして、最下層に関して、最も正規化相関の係数が高い位置を求めることで、類似度の高い対応点を得ることができ、捜索画像54bにおける基準画像53bの位置対応点が高精度に求める(S270)。
【0088】
次に、逆対応判別部61は、マッチング処理で求めた位置対応点を用いて、捜索画像54bの逆対応データブロック62を作成する。この位置対応点は、逆対応データブロック62のX座標として利用される。そして、逆対応判別部61により、逆対応データブロック62のバックマッチングを行ない、基準画像53bに写像された逆対応基準画像領域が当初の基準画像53bと一致したか判断する(S272)。バックマッチングで、逆対応基準画像領域が当初の基準画像53bと一致すれば、位置対応点は真であり(S274)、マッチング処理は成功とする。S272で不一致であれば、位置対応点は偽であり(S276)、マッチング処理は失敗とする。
【0089】
なお、上記異方性形状計測の一例においては、第1層、第2層と順次高解像度の画像についてマッチング処理を行ない、バックマッチングは最終段階の画像に関して実施する場合を説明したが、バックマッチングは各階層のマッチング処理ごとに行ってもよい。また、基準データブロック57の画素数として5x5画素や3x3画素を例に説明しているが、基準データブロック57の画素数は適宜に選定することができ、例えば基準画像53の1走査線分であってもよい。さらに、マッチング処理の判定として正規化相関係数による場合を例に説明しているが、逐次残差法(SSDA)や他の面積相関法を用いてもよい。さらに、バックマッチングと特徴抽出法を組合せたものでもよい。
【0090】
また、上記第1の実施の形態では、オペレータが第2の中立軸方向を設定するのに際して、従前に観察した画像から感知して選択する場合を示した。しかし、本発明はこれに限定されるものではなく、オペレータが設定する対象物の姿勢を定める中立軸の方向として、図7に示すような少なくとも3種類以上の多様な対象物の中立軸方向によるステレオ画像の処理画像を表示して、合成の対象となる中立軸方向を選定するようにしても良い。このように多数の中立軸方向の画像を用いると、オペレータが視覚的に確認しながら検査したい方向について検討できるので、適切な中立軸方向の設定ができる。また、対象物の全面にわたって精度よく画像計測する場合にも、3種類以上の多様な対象物の中立軸方向によるステレオ画像の処理画像を合成することで、正確な対象物の画像を取得して画像三次元計測することができる。さらに、対象物画像において検出能力の弱い方向は、例えば補間したデータで表示して、その領域を明確に表示すれば、オペレータは検出能力の弱い領域のデータを判断・考慮にいれながら対象物を計測して、三次元計測の結果を検討することができる。
【0091】
[第2の実施の形態]
図23は本発明の第2の実施の形態を説明する構成ブロック図で、ステレオ画像を得る場合に、ホルダを傾斜させるのではなく、走査型顕微鏡の電子線を偏向させてステレオ画像を得る場合を示している。ここでは、図23において、図1と共通する構成要素について同一符号を付して説明を省略する。ここでは、電子線7を傾斜制御する傾斜制御部5としてのビーム傾斜制御部5aが設けられている。ビーム傾斜制御部5aは偏向レンズ2bに傾斜制御信号を送り、試料ホルダ3と照射電子線7とが第1の相対的傾斜角度をなす電子線7Rと、第2の相対的傾斜角度をなす電子線7Lとで切替えている。なお、ビーム傾斜制御部5aによる試料ホルダ3と照射電子線7の相対的傾斜角度は、2個に限らず多段に設定してよいが、ステレオの検出データを得る為には最小2個必要である。
【0092】
そして、ビーム傾斜の場合にも、第1の実施の形態で説明したホルダ回転軸Rに相当する中立軸として、電子線7Rと電子線7Lが交差するビーム交差軸が存在している。そこで、第1のステレオ画像に必要な第1の中立軸と、第2のステレオ画像に必要な第2の中立軸は、第1の実施の形態におけるホルダ回転軸Rの記載を、ビーム交差軸に読替えて設定すればよい。
【0093】
[第3の実施の形態]
次に、本発明の第3の実施の形態に関して説明する。第1の実施の形態及び第2の実施の形態では、対象物の姿勢として第1の中立軸から第2の中立軸を設定する場合に、オペレータが画像表示部27に表示された第1のステレオ画像を観察して、第2の中立軸となるべき方向を感知して、角度調整指示部23を用いて第2の入射角度調整部に入射角度調整方向の指示信号を出力する場合を示している。しかし、オペレータの行っている機能を、第3の実施の形態では、三次元座標測定装置で行っている。
【0094】
図24は本発明の第3の実施の形態を説明する構成ブロック図で、対象物を保持するホルダの回転角を調整して対象物の傾斜角を調整することで、ステレオ画像を得る場合を示している。図において、像形成光学系としての電子線装置10(走査型顕微鏡)とデータ処理装置20を示してある。データ処理装置20は、第1の入射角度調整部21、第2の入射角度調整部22、画像形成部24、画像表示部25、第1画像検出部26、第2画像検出部28、マッチング処理部30、測定点・対応点データベース32、形状測定部34、三次元座標データベース36、測定不能領域検出部37、並びに入射角度指示演算部39を有している。ここでは、第1の実施の形態で説明された構成要素に関しては、同一符号を付して説明を省略する。画像表示部25は、前述の画像表示部27と同様である。
【0095】
測定不能領域検出部37は、第1画像検出部26で受取った第1のステレオ画像に対して、形状測定部34による三次元座標データを求められない領域が存在するか判定する。入射角度指示演算部39は、測定不能領域検出部37で測定不能と判定された領域に関して、形状測定部34による三次元座標データを測定可能となるように、第2の中立軸方向を演算する。第2の入射角度調整部22は、対象物9の姿勢を入射角度指示演算部39で演算された第2の中立軸方向に調整して、対象物9について第2のステレオ画像を形成可能にする。
【0096】
このように構成された装置の動作を説明する。図25は図24の装置の動作を説明するフローチャートである。まず、像形成光学系としての電子線装置10による対象物9の三次元画像計測を開始する(S600)。そこで、電子線装置10のビーム7による対象物9のヨー軸方向への略平行投影を開始する(S602)。そして、第1の入射角度調整部21がホルダ傾斜制御部5bに姿勢制御信号を送って、対象物9の姿勢を第1の中立軸方向に調整をする(S603)。次に、第1の入射角度調整部21が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第1のステレオ画像の左画像に対応するように調整し、画像形成部24により対象物画像を取得する(S604)。続いて、第1の入射角度調整部21が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第1のステレオ画像の右画像に対応するように調整し、画像形成部24により対象物画像を取得する(S606)。そして、マッチング処理部30によって、第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索し(S608)、探索結果を例えば測定点・対応点データベース32に記録する。
【0097】
測定不能領域検出部37が、第1画像検出部26で受取った第1のステレオ画像に対して、形状測定部34による三次元座標データを求められない領域が存在するか判定する(S609)。S609にて、測定不能領域検出部37で測定不能と判定された領域に関して、入射角度指示演算部39が、形状測定部34による三次元座標データを測定可能となるように第2の中立軸方向を演算し、第2の入射角度調整部22が、対象物9の姿勢を入射角度指示演算部39で演算された第2の中立軸方向に調整して、対象物9について第2のステレオ画像を形成可能にする(S610)。S609にて、測定不能領域検出部37で測定不能と判定された領域がない場合は、S622に飛ぶ。
【0098】
そして、第2の入射角度調整部22が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第2のステレオ画像の左画像に対応するように調整し、画像形成部24により対象物画像を取得する(S612)。次に、第2の入射角度調整部22が、ビーム7と対象物9との相対的な入射角度を、ホルダ傾斜制御部5bによって第2のステレオ画像の右画像に対応するように調整し、画像形成部24により対象物画像を取得する(S614)。そして、マッチング処理部30によって、第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索し(S616)、探索結果を例えば測定点・対応点データベース32に記録する。
【0099】
そして、形状測定部34によって、第1及び第2のステレオ画像の両方を用いても、測定点と対応点の対応が確保できない領域があるか判断する(S618)。S618で、測定点と対応点の対応が確保できない領域が残存していると判断される場合には、測定不能領域検出部37、入射角度指示演算部39、並びに第2の入射角度調整部22を用いて、ビーム7と対象物9との相対的な入射角度を、残存領域での測定点と対応点の対応が確保できる方向に第2の中立軸方向を再度設定して(S620)、S612に戻る。
【0100】
S618で、測定点と対応点の対応が全ての領域で確保されていると判断される場合には、第1及び第2のステレオ画像における測定点と対応点の関係を用いて、合成画像31について形状測定部34により対象物の三次元座標データを求める(S622)。この求めた三次元座標データは、三次元座標データベース36に格納する。そして、対象物9の三次元画像計測が終了して、リターンとなる。
【0101】
なお、上記実施の形態では、ビームとして電子線の場合を示したが、本発明はこれに限定されるものではなく、ビームは光束であってもよい。この場合には、像形成光学系としての電子線装置に代えて、投影光学系や反射光学系を用いるとよく、例えばテレセントリック系(telecentric system)を用いたチップ検査装置に適用してもよい。図26は、テレセントリック系を説明する構成図で、像側テレセントリック関係の場合を示してある。テレセントリック系は、入射瞳と射出瞳のいずれかが無限遠に存在する光学系のことで、開口絞り(テレセン絞り)を像空間、物空間焦平面またはそれらに共役な位置に置けば実現される。テレセントリック系は、テレセン絞り又は入射瞳が投影レンズの物体側焦点位置付近に設置されていれば、像側で結像に寄与する光束の主光線が光軸と略平行となり(いわゆる、像側テレセントリック関係)、受光面の位置に対して結像位置がずれても像の正しい大きさを読取ることができる。また、テレセントリック系において、テレセン絞りが投影レンズの像側焦点位置付近に設置されていれば(図示せず)、物体側で結像に寄与する光束の主光線が光軸と略平行となり(いわゆる、物体側テレセントリック関係)、物体を正しい位置に置かなくても正しい位置に置いたときと等しくなる。
【0102】
【発明の効果】
以上説明したように、本発明の三次元座標測定装置によれば、対象物の面内の計測方向によって測定精度が変動する異方性形状計測を用いた三次元形状計測であっても、オペレータが従前に設定された第1の中立軸から取得された第1のステレオ画像を観察して、適切に第2の中立軸として設定すべき入射角度調整方向が指示されるので、対象物を三次元画像計測する場合にも各測定方向の精度に著しい相違の現れない。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を説明する全体構成ブロック図である。
【図2】 対象物に対する第1のステレオ画像における左右画像と、左右画像における対象物の傾斜角の説明図である。
【図3】 テンプレート処理後の水平方向傾斜による第1のステレオ画像の説明図である。
【図4】 対象物に対する第2のステレオ画像における左右画像と、左右画像における対象物の傾斜角の説明図である。
【図5】 テンプレート処理後の垂直方向傾斜による第2のステレオ画像の説明図である。
【図6】 図1の装置の動作を説明するフローチャートである。
【図7】 画像表示部にて表示される画像と、対象物の姿勢が調整される中立軸方向との関係を説明する図である。
【図8】 図1の装置により処理される第1及び第2のステレオ画像の関係を説明する図である。
【図9】 図8(B)と図8(D)の処理画像を合成した画像である。
【図10】 図8で説明した第1及び第2のステレオ画像より抽出された処理画像により合成された画像の一例を示す図である。
【図11】 異方性形状計測の一例としての、粗密探索法とバックマッチング法を組合せた画像測定装置を説明する全体構成ブロック図である。
【図12】 粗密探索法の階層構造を説明する構成図である。
【図13】 基準画像53に設定される基準データブロック57と、捜索画像54に設定される捜索データブロック58の説明図である。
【図14】 逆対応判別部61によるバックマッチング法の説明図である。
【図15】 逆対応判別部61によるバックマッチングを説明するフローチャートである。
【図16】 一対のステレオ画像に対する三次元画像計測処理全体を説明するフローチャートである。
【図17】 本発明の第1の実施の形態を説明するフローチャートである。
【図18】 ラプラシアンオペーレタの一例を示す構成図である。
【図19】 線検出オペーレタの一例を示す構成図である。
【図20】 鮮鋭化処理の一例を示す図で、(A)は原画像、(B)は鮮鋭化処理画像を示している。
【図21】 粗密探索法の総階層数が3層の場合における基準画像、捜索画像並びにバックマッチングの説明図である。
【図22】 粗密探索法の総階層数が3層の場合における画像測定方法を説明するフローチャートである。
【図23】 本発明の第2の実施の形態を説明する全体構成ブロック図である。
【図24】 本発明の第3の実施の形態を説明する全体構成ブロック図である。
【図25】 第3の実施の形態における装置の動作を説明するフローチャートである
【図26】 テレセントリック系を説明する構成図である。
【符号の説明】
10 像形成光学系(電子線装置)
20 データ処理装置
21 入射角度調整部
22 第2の入射角度調整部
23 角度調整指示部
26 第1画像検出部
27 画像表示部
28 第2画像検出部
30 マッチング処理部
32 測定点・対応点データベース
34 形状測定部
37 測定不能領域検出部
39 入射角度指示演算部
Claims (5)
- ビームを対象物のヨー軸方向へ略平行投影して、当該対象物の像を形成する像形成光学系と;
前記ビームに対する前記対象物の姿勢を第1の中立軸方向に調整し、前記ビームと前記対象物との相対的な入射角度を調整して、前記対象物について第1のステレオ画像を形成可能にする第1の入射角度調整部と;
前記第1の入射角度調整部により前記入射角度が調整されて、前記像形成光学系により前記対象物に関して形成された第1のステレオ画像を受け取る第1画像検出部と;
前記第1画像検出部で検出された第1のステレオ画像を表示する画像表示部と;
第2の中立軸を入力可能な角度調整指示部であって、前記画像表示部で表示されたステレオ画像に基づいて、無感度軸が感度軸となるように入力された前記第2の中立軸方向に対応する、入射角度調整方向の指示信号を出力する角度調整指示部と;
前記角度調整指示部から出力された前記入射角度調整方向の指示信号に従い、前記ビームに対する前記対象物の姿勢を前記第2の中立軸方向に調整し、前記ビームと前記対象物との相対的な入射角度を調整して、前記対象物について第2のステレオ画像を形成可能にする第2の入射角度調整部と;
前記第2の入射角度調整部により前記入射角度が調整されて、前記像形成光学系により前記対象物に関して形成された第2のステレオ画像を受け取る第2画像検出部と;
前記第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索すると共に、前記第2のステレオ画像における第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索するマッチング処理部と;
前記第1及び第2のステレオ画像の両方を用いても、測定点と対応点の対応が確保できない残存領域が存在するかの判断を行い、前記残存領域が存在していないと判断された場合に、前記第1及び第2のステレオ画像における対応が確保された測定点と対応点の関係から対象物の三次元座標データを求める形状測定部と;
を備える三次元座標測定装置。 - 前記形状測定部にて前記残存領域が存在していると判断された際に、前記第2の入射角度調整部は、該残存領域での測定点と対応点の対応が確保できる方向であって、オペレータにより前記角度調整指示部に入力された新たな第2の中立軸方向に第2の中立軸方向を再度設定する;
請求項1に記載の三次元座標測定装置。 - 前記像形成光学系が電子レンズ部で形成され;
前記第1及び第2の入射角度調整部は、電子銃からの電子線を偏向する偏向器に制御信号を送る偏向器制御ユニットを用いて形成された;
走査型電子顕微鏡に用いられる請求項1または請求項2に記載の三次元座標測定装置。 - 前記像形成光学系がテレセントリック系で形成され;
前記第1及び第2の入射角度調整部は、電子銃からの電子線を偏向する偏向器に制御信号を送る偏向器制御ユニットを用いて形成された;
走査型電子顕微鏡に用いられる請求項1または請求項2に記載の三次元座標測定装置。 - 第1の入射角度調整部によってビームに対する対象物の姿勢を第1の中立軸方向に調整し;
像形成光学系により対象物のヨー軸方向に略平行投影される前記ビームと前記対象物との相対的な入射角度を調整して、前記対象物について第1のステレオ画像を形成し;
前記第1のステレオ画像における第1の中立軸と略直交する方向を第1の捜索方向として、測定点に対応する対応点を捜索し;
前記第1のステレオ画像を画像表示部にて表示し;
前記表示されたステレオ画像に基づき、無感度軸が感度軸となるように入力された第2の中立軸方向に対応する、入射角度調整方向の指示信号を出力し;
前記入射角度調整方向の指示信号に従い、第2の入射角度調整部によって前記ビームに対する前記対象物の姿勢を前記第2の中立軸方向に調整し;
前記ビームと前記対象物との相対的な入射角度を調整して、前記対象物について第2のステレオ画像を形成し;
前記第2のステレオ画像における前記第2の中立軸と略直交する方向を第2の捜索方向として、測定点に対応する対応点を捜索し;
前記第1及び第2のステレオ画像の両方を用いても、測定点と対応点の対応が確保できない残存領域が存在するかの判断を行い;
前記残存領域が存在していないと判断された場合に、前記第1及び第2のステレオ画像における対応が確保された測定点と対応点の関係から対象物の三次元座標データを求める;
各工程をコンピュータに実行させる三次元座標測定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003157216A JP4409861B2 (ja) | 2003-06-02 | 2003-06-02 | 三次元座標測定装置及び方法 |
US10/830,456 US7539340B2 (en) | 2003-04-25 | 2004-04-23 | Apparatus and method for three-dimensional coordinate measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003157216A JP4409861B2 (ja) | 2003-06-02 | 2003-06-02 | 三次元座標測定装置及び方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004361143A JP2004361143A (ja) | 2004-12-24 |
JP4409861B2 true JP4409861B2 (ja) | 2010-02-03 |
Family
ID=34051056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003157216A Expired - Fee Related JP4409861B2 (ja) | 2003-04-25 | 2003-06-02 | 三次元座標測定装置及び方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4409861B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006003235A (ja) * | 2004-06-17 | 2006-01-05 | Topcon Corp | 電子線システムと電子線システム用基準試料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7170490B2 (ja) * | 2018-10-11 | 2022-11-14 | 東邦チタニウム株式会社 | 金属粉体の評価方法、および評価装置 |
-
2003
- 2003-06-02 JP JP2003157216A patent/JP4409861B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006003235A (ja) * | 2004-06-17 | 2006-01-05 | Topcon Corp | 電子線システムと電子線システム用基準試料 |
JP4532177B2 (ja) * | 2004-06-17 | 2010-08-25 | 株式会社トプコン | 電子線システム |
Also Published As
Publication number | Publication date |
---|---|
JP2004361143A (ja) | 2004-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7539340B2 (en) | Apparatus and method for three-dimensional coordinate measurement | |
JP5558088B2 (ja) | 粒子光学装置の歪曲を特定するための方法 | |
JP4261743B2 (ja) | 荷電粒子線装置 | |
JP4951496B2 (ja) | 画像生成方法及びその画像生成装置 | |
WO2012053521A1 (ja) | 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム | |
JP6713185B2 (ja) | テンプレートマッチングを用いた検査装置および検査方法 | |
JP2005308553A (ja) | 三次元画像計測装置及び方法 | |
KR100481399B1 (ko) | 촬상 시스템, 상기 시스템에서 화상 데이터를 제어하도록사용되는 프로그램, 상기 시스템에서 촬상 화상의 왜곡을보정하기 위한 방법 및 상기 방법의 순서를 기억시키는기록 매체 | |
JP2016212349A (ja) | 3次元情報取得装置、及び、3次元情報取得方法 | |
WO2011039908A1 (ja) | 荷電粒子顕微鏡装置及びこれを用いた試料の検査方法 | |
JP2004184240A (ja) | 画像測定装置、画像測定方法、画像処理装置 | |
EP1501114A2 (en) | Electron beam system and electron beam measuring and observing methods | |
JP7273748B2 (ja) | 検査装置、検査方法、及びプログラム | |
JP7138137B2 (ja) | テンプレートマッチングを用いた検査装置および検査方法 | |
JP3970656B2 (ja) | 透過電子顕微鏡による試料観察方法 | |
JP2002270126A (ja) | 電子線装置、電子線装置用データ処理装置、電子線装置のステレオデータ作成方法 | |
JP4409850B2 (ja) | 三次元座標測定装置及び方法 | |
JP4750959B2 (ja) | 電子線装置用データ処理装置、電子線装置、電子線装置のステレオ測定方法 | |
JP4409861B2 (ja) | 三次元座標測定装置及び方法 | |
JP4229799B2 (ja) | 電子線測定または観察装置、電子線測定または観察方法 | |
JP5191265B2 (ja) | 光学顕微鏡装置及び光学顕微鏡用データ処理装置 | |
JP7042361B2 (ja) | 撮像装置 | |
JP4409877B2 (ja) | 電子線測定装置並びに電子線測定方法及び電子線観察方法 | |
JP4262649B2 (ja) | 走査型電子顕微鏡装置およびこれを用いた三次元画像表示方法 | |
JP4871350B2 (ja) | パターン寸法測定方法、及びパターン寸法測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20090721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091112 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |