JP4393134B2 - ガスバリア性合成樹脂製容器の製造装置及びその製造方法 - Google Patents

ガスバリア性合成樹脂製容器の製造装置及びその製造方法 Download PDF

Info

Publication number
JP4393134B2
JP4393134B2 JP2003298685A JP2003298685A JP4393134B2 JP 4393134 B2 JP4393134 B2 JP 4393134B2 JP 2003298685 A JP2003298685 A JP 2003298685A JP 2003298685 A JP2003298685 A JP 2003298685A JP 4393134 B2 JP4393134 B2 JP 4393134B2
Authority
JP
Japan
Prior art keywords
container
external electrode
light
synthetic resin
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003298685A
Other languages
English (en)
Other versions
JP2005067655A (ja
Inventor
清典 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei ASB Machine Co Ltd
Original Assignee
Nissei ASB Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei ASB Machine Co Ltd filed Critical Nissei ASB Machine Co Ltd
Priority to JP2003298685A priority Critical patent/JP4393134B2/ja
Publication of JP2005067655A publication Critical patent/JP2005067655A/ja
Application granted granted Critical
Publication of JP4393134B2 publication Critical patent/JP4393134B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ガスバリア性合成樹脂製容器の製造装置及びその製造方法に関する。
合成樹脂製容器は、ポリ・エチレン・テレフタレート製の容器いわゆるPETボトルによって特に飲料用の容器として広く普及している。しかしながら、もっとも普及しているPETボトルにあってもガスバリア性については、ガラス容器やアルミニウム缶などの性能に大きく及ばない。ガスバリア性を要求する内容物、例えばビールなどの容器にPETボトルなどの合成樹脂製容器が用いられることはほとんどなかった。
このような合成樹脂製容器のガスバリア性能を向上させる手段として最近注目されているのが、真空中の放電を利用したCVD(化学気層成長)コーティング技術である。合成樹脂製容器特にPETボトルのガスバリア性を格段に向上させるDLC(ダイヤモンド・ライク・カーボン)膜をPETボトル壁面に蒸着させる技術がある(特許文献1参照)。
特許第2788412号公報(第4−7頁、図1−4)
このようなガスバリア性が求められるPETボトルにDLC膜を蒸着させた場合、必要とされるガスバリア性能を満たしているかどうかが重要である。しかしながら、ガスバリア性を有するPETボトルを量産する際には、生産されたPETボトルの全てのガスバリア性を検査することは、不可能である。そこで、DLC膜を成膜されたPETボトルが、所望のガスバリア性を有しているかを、成膜された薄膜の状態で画一的に判断することが望まれている。
上記課題を解決するため、本発明の一態様のガスバリア性合成樹脂製容器の製造装置は、ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
前記容器を収容する中空状の外部電極と、
前記外部電極に接続された高周波電源と、
前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
前記容器の内部に原料ガスを供給する供給手段と、
前記外部電極に収容された前記容器に対して光を出力する発光部と、
前記容器を挟んで前記発光部に対し対向配置され、前記発光部から出力されて前記容器を透過した透過光量を検出する受光部と、
を有することを特徴とする。
本発明の一態様によれば、容器を透過した透過光量によって容器の薄膜の状態を確認することができるので、所望のガスバリア性を有しているかどうかを画一的に判断することができる。特に、外部電極に収容された容器は、常に所定の位置に配置されるため、例えば容器を搬送するライン上で透過光量を検出する場合に比べ、容器の停止位置精度に影響されずに透過光量を検出することができる。また、外部電極に収容された容器の透過光量を測定するため、外部からの光による影響も受けにくく、精度の高い透過光量を検出することができる。
ここで、前記受光部によって検出された前記透過光量に基づいて前記容器に成膜された薄膜の良否判別を行う判定部を有することができる。
また、受光部によって、被処理体である容器の内壁における薄膜の状態を透過光量によって検出することができるので、ガスバリア性合成樹脂製容器の製造装置で容器の良否判別を行うことができる。したがって、製造装置の取出装置によって容器が外部電極から取り出す際に不良品としてライン外へ取り出すことも可能である。また、容器のそれぞれについてガスバリア性の試験を行うことなく、良否判別することが可能になる。
本発明の一態様のガスバリア性合成樹脂製容器の製造装置は、ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
前記容器を収容する中空状の外部電極と、
前記外部電極に接続された高周波電源と、
前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
前記容器の内部に原料ガスを供給する供給手段と、
前記容器に対して光を出力する発光部と、
前記容器を挟んで前記発光部に対し対向配置されるとともに、前記発光部から出力された光を受光する受光部と、
を有し、
前記受光部は、成膜開始前の前記容器を透過した第1の透過光量と、成膜完了後の前記容器を透過した第2の透過光量と、を検出して判定部へ出力し、
前記判定部は、前記第1の透過光量と前記第2の透過光量との差を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較することを特徴とする。
本発明の一態様によれば、容器を透過した透過光量によって容器の薄膜の状態を確認することができるので、所望のガスバリア性を有しているかどうかを画一的に判断することができる。また、成膜処理の開始前と成膜処理の完了後とにおける透過光量の差を演算することで、容器ごとの肉厚のばらつきで透過光量が変化しても、薄膜による透過光量の減衰のみのデータを得ることができる。その演算結果と基準範囲とを比較することで、薄膜が所望のガスバリア性を有しているかを画一的に判断することができる。
ここで、前記発光部と前記受光部は、前記外部電極に設けられるとともに、前記外部電極内に収容された前記容器の前記第1の透過光量と前記第2の透過光量とを検出することができる。
このような構成とすることで、外部電極に収容された容器は、常に所定の位置に配置されるため、例えば容器を搬送するライン上で透過光量を検出する場合に比べ、容器の停止位置精度に影響されずに透過光量を検出することができる。また、外部電極に収容された容器の透過光量を測定するため、外部からの光による影響も受けにくく、精度の高い透過光量を検出することができる。
ここで、前記発光部と前記受光部は、前記容器の胴部に対向して配置させることができる。
このような構成とすることで、容器毎にほとんどばらつきの無い厚さであって、薄肉に形成される前記容器の胴部に対向して受光部を配置させることで、容器の薄膜の状態を確実に検出することができる。また、胴部は、容器において比較的大きな面積を有しており、ガスバリア性に大きな影響があるため、このように胴部の薄膜の状態を検出することで、検出された透過光量によって各容器のガスバリア性を確実に判断することができる。
ここで、前記受光部は、前記外部電極の内壁面に設けられた検出窓を通して前記発光部の出力した光を検出するものであり、前記検出窓の開口径は、2mm以下とすることができる。
このような構成とすることで、検出窓の開口径が2mm以下であると、検出窓による容器の壁部へのDLC膜の蒸着状態を変化させることが無いため、外観上の不具合もガスバリア性の低下もない。
ここで、前記発光部及び前記受光部は、前記外部電極の内壁面と外部とを連通して形成された2つの貫通孔にそれぞれ設けられ、
前記貫通孔は、前記外部電極の内壁面に設けられた検出窓と、該検出窓よりも大きい内径を有する取付部と、を有し、
前記取付部には、前記外部電極と気密に保持された透明板が設けられ、前記発光部及び前記受光部は、該透明板を通して光の送受信を行うことを特徴とする。
このような構成とすることで、前記検出手段取付部において、外部電極内の真空度を低下させること無く、容器の透過光量を検出することができる。
本発明の一態様のガスバリア性合成樹脂製容器の製造装置は、ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
前記容器を収容する中空状の外部電極と、
前記外部電極に接続された高周波電源と、
前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
前記容器の内部に原料ガスを供給する供給手段と、
前記容器の光学特性を検出する検出手段と、
を有し、
前記検出手段は、成膜開始前の前記容器の第1の光学特性と、成膜完了後の前記容器の第2の光学特性と、を検出して前記判定部へ出力し、
前記判定部は、前記第1の光学特性と前記第2の光学特性との変化量を演算した前記演算結果と、あらかじめ設定されていた基準範囲と、を比較することを特徴とする。
本発明の一態様によれば、容器の光学特性の変化量によって容器の薄膜の状態を確認することができるので、所望のガスバリア性を有しているかどうかを画一的に判断することができる。また、成膜処理の開始前と成膜処理の完了後とにおける光学特性の変化量を演算することで、容器ごとの肉厚のばらつきで検出される光学特性が変化しても、薄膜による光学特性の変化のみを得ることができる。その演算結果と基準範囲とを比較することで、薄膜が所望のガスバリア性を有しているかを画一的に判断することができる。
ここで、前記検出手段は、前記外部電極に設けられ、前記外部電極に収容された前記容器の光学特性を検出することができる。
このような構成とすることで、容器を収容する外部電極に備えられた検出手段によって、被処理体である容器の内壁における薄膜の状態を容器の光学特性によって検出することができるので、ガスバリア性合成樹脂製容器の製造装置内で容器の良否判別を行うことができる。また、外部電極に収容された容器の光学特性を測定するため、外部からの光による影響も受けにくく、精度の高い光学特性を検出することができる。
ここで、前記判定部は、前記演算結果とあらかじめ設定されていた基準範囲とを比較して、前記演算結果が前記基準範囲から外れたときに制御信号を出力することができる。
このような構成とすることで、あらかじめ良品と判定する基準範囲を設定し、演算結果と比較することで、容器の薄膜の厚さが不十分であると判別した場合に、制御信号を出力することができ、この制御信号によって、装置から取り出された不良品の容器を良品ラインから取り除くことや、不良品の容器に不良品識別用のマークを刻印することもできる。
本発明の一態様のガスバリア性合成樹脂製容器の製造方法によれば、ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する方法において、
前記容器を収容する中空状の外部電極によって形成される処理室内と前記容器内を排気する排気工程と、
前記容器の内部に原料ガスを供給するガス供給工程と、
前記外部電極に接続された高周波電源から高周波を出力して、前記外部電極と前記容器内に配置された内部電極との間でプラズマを発生させるプラズマ発生工程と、を有し、
前記容器を前記処理室内に配置後であって前記プラズマ発生工程開始までの間における前記容器の第1の光学特性を検出する工程と、
前記プラズマ発生工程完了後であって前記容器を前記処理室内から取り出すまでの間における前記容器の第2の光学特性を検出する工程と、
検出された前記第1の光学特性と前記第2の光学特性との変化量を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較する工程と、
を有することを特徴とする。
このような構成とすることで、容器の光学特性によって容器の薄膜の状態を確認することができるので、所望のガスバリア性を有しているかどうかを画一的に判断することができる。また、処理室内における容器の薄膜の状態を容器の光学特性によって検出することができるので、ガスバリア性合成樹脂製容器の製造装置内で容器の良否判別を行うことができる。さらに、成膜処理の開始前と成膜処理の完了後とにおける光学特性の変化量を演算することで、たとえ容器ごとの肉厚のばらつきによって検出される光学特性が変化しても、薄膜による光学特性の変化のみを得ることができる。その演算結果と基準範囲とを比較することで、薄膜が所望のガスバリア性を有しているかを画一的に判断することができる。
ここで、前記検出手段は、前記外部電極に設けられた光を出力する発光部と、前記発光部から出力された光を受光する受光部と、を含み、
前記第1の光学特性及び前記第2の光学特性は、前記発光部の出力した光が前記容器を透過して前記受光部によって検出された、それぞれ第1の透過光量及び第2の透過光量とすることができる。
このような構成とすることで、容器の薄膜の状態を画一的に判断することができる。
ここで、前記演算結果とあらかじめ設定されていた基準範囲とを比較して、前記演算結果が前記基準範囲から外れたときに制御信号を出力することができる。
このような構成とすることで、あらかじめ良品と判定する基準範囲を設定し、演算結果と比較することで、容器の薄膜の厚さが不十分であると判別した場合に、制御信号を出力することができ、この制御信号によって、装置から取り出された不良品の容器を良品ラインから取り除くことや、不良品の容器に不良品識別用のマークを刻印することなどの後処理を容易に行うことができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係るガスバリア性合成樹脂製容器を示す正面図である。図2は、本発明の一実施の形態に係る合成樹脂製容器の成膜装置の断面図である。図3は、センサの取付け状態を示す図2の部分拡大図である。図4は、本発明の一実施の形態に係る検出された透過光量を示すグラフである。
(ガスバリア性合成樹脂製容器の説明)
本発明の一実施の形態にかかるガスバリア性合成樹脂製容器1(以下、容器1とする)は、例えば、ポリ・エチレン・テレフタレート(PET)製のいわゆるPETボトルであり、図1に示すように、キャップを装着するためのねじを有するネック部2と、内容物を収容する円筒状の胴部3と、胴部3の下端を閉塞しかつ容器1を自立させるための接地部を有する底部4と、を有している。
容器1を構成する合成樹脂材料としては、ポリ・エチレン・テレフタレート樹脂のように容器1内の光を透過する程度に透明性を有する材料であれば、例えばポリ・エチレン・ナフタレート樹脂、ポリ・ブチレン・テレフタレート樹脂、アクリロニトリル樹脂、アクリロニトリル・スチレン樹脂、ポリ・アミド樹脂、ポリ・カーボネート樹脂、ポリ・プロピレン樹脂、ポリ・エチレン樹脂などを用いて本発明を実施することができる。
容器1の少なくとも胴部3と底部4の内壁面は、図1の部分断面図に示すように、薄膜例えばCVDによって成膜されたDLC(ダイヤモンド・ライク・カーボン)膜5によってコーティングされている。ネック部2は、胴部3に比べて厚肉であり、キャップ部も装着されることから、内壁面をDLC膜5によってコーティングされなくてもよいが、本実施の形態ではネック部2の内壁面もDLC膜5によってコーティングされている。このように、容器1の内壁面をDLC膜5によってコーティングされることにより二酸化炭素や酸素などの透過性、いわゆるガスバリア性が向上し、ビールなどの炭酸飲料や内容物の酸化を防止したい医薬品などに有用である。容器1に成膜されるDLC膜5は、一般に薄茶色であり、DLC膜5の膜厚が厚くなるほど濃い茶色になる。また、DLC膜5の膜厚は、ガスバリア性と比例関係にあり、所定のガスバリア性を得るためには、DLC膜5の膜厚を所定の膜厚以上に成膜する必要がある。
このようなガスバリア性を有する合成樹脂製の容器1は、容器1をあらかじめ成形し、図2に示す成膜装置10によって容器1の内壁面にDLC膜5をコーティングすることによって得られる。容器1の成形方法は、射出成形した試験管状のプリフォームを二軸延伸ブロー成形する方法が最も好ましいが、押出ブロー成形やインジェクションブロー成形によって成形してもよい。
(成膜装置及び成膜方法の説明)
図1に示す容器1は、例えば、図2に示されるように、倒立状態で成膜装置10の中空の処理室30内に配置され、DLC膜5を成膜される。ガスバリア性合成樹脂製容器の製造装置である成膜装置10は、絶縁部材26上に倒立した容器1を収容する中空状で有底円筒状の外部電極20と、外部電極20に接続されたマッチングボックス24及び高周波電源25と、容器1の内部であって、容器の縦軸方向に延在する接地された内部電極40と、を有する。外部電極20によって形成される処理室30内と容器1内を排気する排気手段12、例えば図示せぬ真空ポンプと、容器1の内部に原料ガスを供給する供給手段14と、成膜装置10を制御する制御部70と、制御部70と電気的に接続された発光手段41及び受光手段50と、を有する。制御部70は、DLC膜5の膜厚の良否を判定する判定部も含む。発光手段41及び受光手段50は、制御部70と電気的に接続されたアンプユニット54を有する。発光手段41は、アンプユニット54に内蔵された図示せぬ光源と、外部電極20に埋設された光を出力する発光部42と、アンプユニット54から発光部42へと光を伝える光ファイバ製のケーブル43と、を有している。受光手段50は、発光部42から出力された光を受光する受光部52と、受光部52で受信した光をアンプユニット54へ伝送する光ファイバ製のケーブル53と、アンプユニット54に内蔵された図示せぬアンプと、を有している。制御部70は、アンプユニット54と電気的に接続され、アンプユニット54を介して、発光部42へ発光命令を出力するとともに、受光部52で検出された信号を受信する。受光部52は、容器1を挟んで発光部42に対し対向配置され、容器1を透過した透過光量を検出し、制御部70は、検出された透過光量に基づいて容器1に成膜された薄膜(DLC膜)5の良否判別を行う。また、成膜装置10は、容器1のネック部2を載置させ、容器1と外部電極20とを絶縁する絶縁部材26を有する。絶縁部材26は、容器1及び外部電極20内を真空にするための排気用開口部28と、コーティングの原料ガスを容器1内に導入するための導入用開口部29と、を有している。
外部電極20は、絶縁部材26に固定されかつ上方へ延びる円筒状の第1の外部電極21と、第1の外部電極21に対し昇降可能な第2の外部電極22と、を有している。このような構成とすることで、外部電極20を昇降させて容器1を取り出す場合、第2の外部電極22が容器1と上下方向に干渉しない位置まで上昇し、さらに容器1を上方へ抜き出す際に干渉しない横方向へ移動させることで、外部電極20の昇降距離を約半分に減らすことができるので、成膜装置10の全高を低く抑えることができる。
第2の外部電極22を上方及び側方へ移動させ、内部電極40をネック部2から挿入させながら容器1を第1の外部電極21内へ搬入し、絶縁部材26上に配置させる。その後、退避させておいた第2の外部電極22を第1の外部電極21の上方へ移動させ、さらに下降させることで第1の外部電極21と一体化して処理室30を形成する。内部電極40は、絶縁部材26から容器1の内側へ容器1の縦軸方向に延在して設けられている。処理室30が形成されると、排気用開口部28に接続された図示せぬ真空ポンプによって処理室30及び容器1内部の空気を排気させて真空状態にする。
処理室30及び容器1の内部が所定の真空度に達すると、原料ガス例えばアセチレンを供給手段14(アセチレンガスボンベ)に接続された導入開口部29から容器1の内部へ導入するとともに、高周波電源25からの高周波電力をマッチングボックス24でインピーダンス整合させて外部電極20に供給する。この電力供給によって、外部電極20と内部電極40の間における電界エネルギーにより放電させ、容器1の内部にプラズマを発生させる。プラズマが発生すると、内部電極40はアースに接地されているので、外部電極20は負の電位に自己バイアスされる。一方プラズマによって原料ガス例えばアセチレンから正の電荷を持つ炭素イオンが生成され、負の電位の外部電極20に向かって飛び、容器1の内壁面に衝突する。この衝突の繰返しにより炭素同士が結合して容器1の少なくとも胴部3及び底部4の内壁面にほぼ均一なアモルファス炭素膜いわゆるDLC膜5が形成される。
このようなDLC膜5の成膜処理の際、原料ガスを導入すると共に、排気を効率よく行うことで、常に新しい原料ガスを容器内に導入することができる。原料ガスは、アセチレンの他に、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、エイコサンのような不飽和炭化水素、もしくはベンゼン、キシレン、ナフタレンなどの芳香族炭化水素の単体ガス、またはそれらの組み合わせを用いてもDLC膜5を形成することができる。さらには、上述の炭化水素ガスの導入と同時に、水素、窒素、酸素、もしくはアルゴンガスの単体またはそれらの混合ガスを導入しても、DLC膜5を形成することができる。
そして、成膜装置10は、プラズマ発生によって成膜されたDLC膜の状態を容器1の胴部3の光学特性によって検出する検出手段を有している。すなわち、容器1の胴部3の内壁には、DLC膜5が成膜されることで光学特性が変化する、例えばDLC膜5の外観は薄茶色であり、透明度が低下する。DLC膜5の厚さは、ガスバリア性に影響し、薄茶色が濃くなることでDLC膜5が厚くなり、かつガスバリア性も高くなる。したがって、胴部3の光学特性を検出手段で検出することにより、容器1のガスバリア性を推定することができる。容器1の光学特性を検出する手段としては、容器1における光の透過量すなわち透過光量を検出する光学センサ(光電センサ/光電型近接スイッチなど)を採用することができる。透過光量を検出することによって、胴部3の透明度を検出することができる。検出手段は、図2及び図3に示すような外部電極20に設置された光を出力する発光部42と、発光部42から出力された光を受光する受光部52と、を含む。
本実施の形態の光学センサは、株式会社山武のアナログ出力型ファイバセンサ(型式HPX-MA)を用いた。発光手段41は、アンプユニット54に内蔵された光源である赤色LEDの光がケーブル43によって伝達され、ケーブル43の先端の発光部42から680nmの波長の赤色を発光する。受光手段50は、発光部42から出力された光をケーブル53先端の受光部52で受光し、光ファイバ製のケーブル53によってアンプユニット54へと伝達される。アンプユニット54では図示せぬアンプによって電気信号に変換増幅されて制御部70に出力される。発光部42及び受光部52は、第1の外部電極21の側壁の一部に設けられた2つの貫通孔60、60に埋設固定されている。貫通孔60,60は、第1の外部電極21の側壁の内壁面と外部とを連通して形成されるとともに、容器1を挟んで対向する位置に2つ形成されている。貫通孔60,60は、容器1におけるDLC膜5の厚さを測定する上で容器1の肉厚のばらつきや容器1の屈曲形成されて光を屈折させるような箇所を避けることが望ましく、一般的な容器1においては、凹凸がなく十分に延伸された胴部3に対向する位置が望ましい。
発光部42と受光部52の取付け構造は基本的に同じなので、以下より受光部52の詳細について説明する。図3に示すように、貫通孔60は、第1の外部電極21の内壁面に設けられた開口径Aφ2.0mmの検出窓61と、受光部52を固定する取付部62とを有している。取付部62は、検出窓61よりも大きい径の内壁を有している。取付部62の検出窓61側の底面にはポリ・カーボネート(PC)製の透明板56が第1の外部電極21と気密に保持され、ブラケット58が図示せぬボルトで第1の外部電極21に固定されている。ブラケット58は、透明板56を例えばO−リングのようなシール材57によって、第1の外部電極21と気密に固定している。受光部52は、ブラケット58にねじ込み固定されており、受光部52の先端面を検出窓61に対向させて配置させている。
検出窓61の開口径Aが大きくなりすぎると、DLC膜5の成膜状態にも影響を及ぼす。検出窓61の開口径Aの大きさを変えて容器1の検出窓61に対向する部分におけるDLC膜5の状態を目視によって検査した結果、開口径Aがφ2mm以下であるとDLC膜5の厚さにほとんど変化は見られない。開口径Aがφ5mmであると目視によって多少DLC膜5が薄くなっていることが判別できたが、気にならない程度であった。しかし、開口径がφ6mmになると、目視でも検出窓61の対向位置においてDLC膜5の厚さに差が明らかにあることが判別できた。したがって、検出窓61の開口径Aは、容器1の外観を損なわない範囲で小さく形成するべきであり、φ5mm以下とすることが好ましい。特に検出窓61の開口径Aがφ2mm以下であるときには、容器1のガスバリア性の低下もほとんど見られなかったことから、開口径Aはφ2mm以下とすることが特に好ましい。なお、透明板56は、本実施の形態ではPC製としたが、発光部42の光を透過することのできる板であれば、アクリル製でもガラス製などでもよい。
(透過光量の検出及び良否判別の説明)
透過光量の測定は、容器1を処理室30内に配置後であってプラズマ発生工程開始までの間における容器1の第1の透過光量(第1の光学特性)を検出する工程と、検出手段が、プラズマ発生工程完了後であって容器1を処理室30内から取り出すまでの間における容器1の第2の透過光量(第2の光学特性)を検出する工程と、を有する。さらに、制御部(判定部)70は、その検出された第1の透過光量(第1の光学特性)と第2の透過光量(第2の光学特性)との差(変化量)を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較する(DLC膜5の良否判別)工程と、演算結果が基準範囲から外れたときに制御信号を出力する工程と、を含む。より詳細な工程について、以下説明する。
成膜装置10の処理室30への容器1の搬入は、まず、第2の外部電極22が容器1と上下方向に干渉しない位置まで上昇し、さらに側方へ移動(容器の搬入路から退避)させる。次に、倒立状態で図示せぬ受渡手段に保持された容器1を、内部電極40をネック部2から挿入させながら第1の外部電極21内へ搬入し、絶縁部材26上に配置させる。その後、退避させておいた第2の外部電極22を第1の外部電極21の上方へ移動させ、さらに下降させることで第1の外部電極21と一体化して処理室30を形成する。処理室30が形成されると、排気用開口部28に接続された排気手段12(例えば真空ポンプ)によって処理室30及び容器1内部の空気を排気させて真空状態にする。
容器1を処理室30内に配置した後であってプラズマ発生工程開始までの間、すなわち成膜開始前における容器1の第1の透過光量を検出する工程と、プラズマ発生工程完了後であって容器を処理室内から取り出すまでの間、すなわち成膜完了後における容器1の第2の透過光量を検出する工程と、を有するのが好ましい理由は、容器1の胴部3における第1の透過光量に図4に示すようなばらつきがあるためである。図4は、横軸を成膜サイクル、縦軸を透過光量とした、各成膜サイクル(成膜された容器)毎の透過光量の変動を示すグラフである。最も透過光量の多い曲線Lは、成膜開始前に検出された第1の透過光量Lであり、その下の曲線Mは、第2の透過光量Mである。また、検出された第1の透過光量Lと第2の透過光量Mとの差を演算した演算結果が一番下の曲線Nで示されている。
成膜開始前の第1の透過光量Lは、容器1にDLC膜5がまったく成膜されていない透明な状態において、発光部42の出力した光が容器1の胴部3を透過し、その透過光を受光手段50が検出したもので、受光部52が受光し光ファイバ製のケーブル53によって伝達され、アンプを内蔵したアンプユニット54で増幅されて、電圧値として制御部70へ出力される。第1の透過光量Lは、同じ形状に成形された容器1であっても、容器1の測定箇所である胴部3の肉厚変化などによって、まったく成膜されていない状態でも図4に示すようなばらつきがある。この第1の透過光量Lのばらつきは、第2の透過光量Mにおいても同様の変化をもたらしている。本来、透明な容器1における透明度を透過光量で測定した場合、成膜後の容器1の透過光量だけを検出することで足りる。しかしながら、容器1がブロー成形などによって、微妙な肉厚変化を有する場合や、測定部位の形状によって多少の光の屈折を有する場合などにおいては、成膜前と成膜後の透過光量の差によってDLC膜5の状態を判断することによって精度が高くなる。したがって、第1の透過光量Lから第2の透過光量Mを引いた演算結果である透過光量の差Nが、実際に成膜処理によって変化した値、つまりDLC膜5による透過光量の減少量となる。
本発明においては、DLC膜5が薄茶色であって、その色の濃さ、すなわち透明度という光学特性が成膜前と成膜後で変化することと、その光学特性と膜厚の間に一定の関係があることを利用している。光学特性における透明度は、透過光量によって測定することができる。膜厚の変化は、ガスバリア性の変化と比例関係にあるので、容器1に要求されているガスバリア性を満たすために必要なDLC膜5の厚さをあらかじめ複数のサンプルの測定によって求めることで、良品の場合における透過光量の基準範囲をあらかじめ設定する。基準範囲の設定は、例えば容器1の成膜処理において、プラズマの処理時間を複数変化させて、そのときの透過光量を測定し、演算結果を求める。そして、プラズマの処理時間を変化させてDLC膜5の膜厚を変化させた容器1のサンプルのガスバリア性を測定する。ガスバリア性の簡易的な測定法として水分透過率(g/day)を採用してもよい。容器1の必要なガスバリア性は、その容器ごとの用途に応じて適宜要求されるものであり、要求されたガスバリア性を満たすことのできた容器1のサンプルにおける透過光量の差(演算結果)Nを基準値とし、その基準値よりも高い範囲(膜厚が厚い)にある透過光量の範囲を基準範囲とする。
制御部70は、このようにしてあらかじめ設定された基準範囲と、検出された第1の透過量と第2の透過光量の差Nを演算した演算結果と、を比較する。そして、基準範囲から外れた、例えば図4のPのような値が演算結果にあった場合、制御部70は制御信号を出力して、例えば図示せぬ受渡手段によって処理室30から取り出された容器1を、不良品を排出する経路へと受け渡す。このようにして、演算された透過光量の差(演算結果)Nが基準範囲から外れるか否かによって、DLC膜の良否判別を行うことができる。なお、制御部70の出力した制御信号は、本実施例のように受渡手段によって、不良品を別の経路へ受け渡すこともできるが、これに限らず、成膜装置10から取り出された容器1を次装置へ搬送するコンベアラインの制御部(判定部を含む)へ出力することで、コンベアラインの途中で不良品をライン外へ排出することもできる。また、本実施の形態においては、容器1の光学特性を示す尺度として容器1の透明度を測定する透過光量によって検出したが、これに限定されることなく、容器1の成膜状態を光学特性の変化量によって定量的に検出することのできる検出手段であれば採用することができる。
特に、複数の処理室30を同時もしくは連続して成膜する成膜装置においては、各処理室30毎の成膜処理の状態を確認することができるので、有用である。
また、本実施の形態に用いられた受光手段50は、成膜処理によって発生したプラズマによる光を上記実施の形態と同様に受光部52が受光し、光ファイバ製のケーブル53によってアンプを内蔵したアンプユニット54に伝達され電気信号に変換増幅し、制御部70へ出力することもできる。この場合、制御部70には、あらかじめ良好な成膜を得られるときのプラズマの発光量を実験データから得て、そのデータを基に、良品とする発光量の範囲が設定され、記憶させておきくことが好ましい。プラズマ発生によって検出された受光量が、あらかじめ設定された範囲内で正常にDLC膜5が成膜されているか否かを制御部70の判定部で判別し、設定範囲外であれば、その被処理体である容器1を不良品として判断し、生産ラインから排出させることができる。制御部70の判定部に設定された受光量の正常範囲は、試験的にプラズマによる発光量を変化させ、成膜された容器1のガスバリア性を測定して設定させることができる。すなわち、容器1に求められるガスバリア性の許容範囲内の容器1を成膜したときに検出された受光量の範囲が、制御部70に正常範囲として設定される。受光手段50をこのように利用することで、容器1の成膜処理毎にプラズマが正常に発生しているかどうかを判別することができ、容器1毎のDLC膜5の状態を二重に確認して判別することができる。
本発明は、前記実施例に限らず、本発明の要旨の範囲内で種々の形態に変更可能である。
例えば、容器1の縦軸方向に沿って外部電極20の複数位置に光学センサを配置することで、容器1の縦軸方向におけるDLC膜5の成膜処理状態を検出することができる。また、発光手段41及び受光手段50の発光部42及び受光部52は、光ファイバの先端部分で構成されたが、受光部52をアンプ内蔵タイプにして光ファイバ製のケーブル43、53を省略してもよい。
さらに、本実施の形態においては、発光部42及び受光部52と第1の外部電極21とを気密にシールして固定する手段として、透明板56を介して取り付けたが、発光部42及び受光部52と第1の外部電極21とをシール材を介して直接固定すれば、透明板56を不要とすることができる。また、その際、発光部42及び受光部52を第1の外部電極21の内壁面とほぼ面一にすることができれば、異常放電を回避できる点で望ましい。
また、本実施の形態においては、プラズマによって成膜される薄膜をダイヤモンド・ライク・カーボン膜としたが、他のプラズマによる成膜、例えば酸化珪素(SiOx)膜の成膜にも利用可能である。
さらに、本実施の形態においては、製造装置10内で不良品を排出できるように製造装置10の制御部70が判定部を兼用させたが、これに限らず、製造装置10以外の例えば容器を搬送するコンベアラインの制御部へアンプユニット54から出力させることで、コンベアライン上を搬送される容器に対して良品容器と不良品容器とを分別できる。また、アンプユニット54に判定部を兼用させることも可能である。
ガスバリア性合成樹脂製容器の正面図である。 合成樹脂製容器の成膜装置の断面図である。 センサの取付け状態を示す部分拡大図である。 成膜サイクルと透過光量の変化を説明する概略グラフ。
符号の説明
1 容器
2 ネック部
3 胴部
4 底部
5 DLC膜
10 成膜装置
12 排気手段
14 供給手段
20 外部電極
21 第1の外部電極
22 第2の外部電極
24 マッチングボックス
25 高周波電源
26 絶縁部材
28 排気用開口部
29 導入用開口部
30 処理室
40 内部電極
41 発光手段
42 発光部
43 ケーブル
50 受光手段
52 受光部
53 ケーブル
54 アンプユニット
60 貫通孔
61 検出窓
62 取付部
70 制御部(判定部を含む)
L 第1の透過光量
M 第2の透過光量
N 透過光量の差(演算結果)

Claims (13)

  1. ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
    前記容器を収容する中空状の外部電極と、
    前記外部電極に接続された高周波電源と、
    前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
    前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
    前記容器の内部に原料ガスを供給する供給手段と、
    前記外部電極に収容された前記容器に対して光を出力する発光部と、
    前記容器を挟んで前記発光部に対し対向配置され、前記発光部から出力されて前記容器を透過した透過光量を検出する受光部と、
    を有し、前記発光部と前記受光部は前記外部電極に設けられる、ガスバリア性合成樹脂製容器の製造装置。
  2. 請求項1において、
    前記受光部によって検出された前記透過光量に基づいて前記容器に成膜された薄膜の良否判別を行う判定部を有する、ガスバリア性合成樹脂製容器の製造装置。
  3. ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
    前記容器を収容する中空状の外部電極と、
    前記外部電極に接続された高周波電源と、
    前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
    前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
    前記容器の内部に原料ガスを供給する供給手段と、
    前記容器に対して光を出力する発光部と、
    前記容器を挟んで前記発光部に対し対向配置されるとともに、前記発光部から出力された光を受光する受光部と、
    を有し、
    前記受光部は、成膜開始前の前記容器を透過した第1の透過光量と、成膜完了後の前記容器を透過した第2の透過光量と、を検出して判定部へ出力し、
    前記判定部は、前記第1の透過光量と前記第2の透過光量との差を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較する、ガスバリア性合成樹脂製容器の製造装置。
  4. 請求項3において、
    前記発光部と前記受光部は、前記外部電極に設けられるとともに、前記外部電極内に収容された前記容器の前記第1の透過光量と前記第2の透過光量とを検出する、ガスバリア
    性合成樹脂製容器の製造装置。
  5. 請求項1〜4のいずれかにおいて、
    前記発光部と前記受光部は、前記容器の胴部に対向して配置された、ガスバリア性合成樹脂製容器の製造装置。
  6. 請求項1〜5のいずれかにおいて、
    前記受光部は、前記外部電極の内壁面に設けられた検出窓を通して前記発光部の出力した光を検出するものであり、前記検出窓の開口径は、2mm以下である、ガスバリア性合成樹脂製容器の製造装置。
  7. 請求項1〜6のいずれかにおいて、
    前記発光部及び前記受光部は、前記外部電極の内壁面と外部とを連通して形成された2つの貫通孔にそれぞれ設けられ、
    前記貫通孔は、前記外部電極の内壁面に設けられた検出窓と、該検出窓よりも大きい内径を有する取付部と、を有し、
    前記取付部には、前記外部電極と気密に保持された透明板が設けられ、前記発光部及び前記受光部は、該透明板を通して光の送受信を行う、ガスバリア性合成樹脂製容器の製造装置。
  8. ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する装置において、
    前記容器を収容する中空状の外部電極と、
    前記外部電極に接続された高周波電源と、
    前記容器の内部であって、前記容器の縦軸方向に延在する内部電極と、
    前記外部電極によって形成される処理室内と前記容器内を排気する排気手段と、
    前記容器の内部に原料ガスを供給する供給手段と、
    前記容器の光学特性を検出する検出手段と、
    を有し、
    前記検出手段は、成膜開始前の前記容器の第1の光学特性と、成膜完了後の前記容器の第2の光学特性と、を検出して前記判定部へ出力し、
    前記判定部は、前記第1の光学特性と前記第2の光学特性との変化量を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較する、ガスバリア性合成樹脂製容器の製造装置。
  9. 請求項8において、
    前記検出手段は、前記外部電極に設けられ、前記外部電極に収容された前記容器の光学特性を検出する、ガスバリア性合成樹脂製容器の製造装置。
  10. 請求項3〜9のいずれかにおいて、
    前記判定部は、前記演算結果とあらかじめ設定されていた基準範囲とを比較して、前記演算結果が前記基準範囲から外れたときに制御信号を出力する、ガスバリア性合成樹脂製容器の製造装置。
  11. ネック部と、該ネック部に続く円筒状の胴部と、該胴部を閉塞する底部と、を有する合成樹脂製の容器の内壁に、プラズマによる薄膜を成膜する方法において、
    前記容器を収容する中空状の外部電極によって形成される処理室内と前記容器内を排気する排気工程と、
    前記容器の内部に原料ガスを供給するガス供給工程と、
    前記外部電極に接続された高周波電源から高周波を出力して、前記外部電極と前記容器内に配置された内部電極との間でプラズマを発生させるプラズマ発生工程と、を有し、
    前記容器を前記処理室内に配置後であって前記プラズマ発生工程開始までの間における前記容器の第1の光学特性を検出する工程と、
    前記プラズマ発生工程完了後であって前記容器を前記処理室内から取り出すまでの間における前記容器の第2の光学特性を検出する工程と、
    検出された前記第1の光学特性と前記第2の光学特性との変化量を演算した演算結果と、あらかじめ設定されていた基準範囲と、を比較する工程と、
    を有する、ガスバリア性合成樹脂製容器の製造方法。
  12. 請求項11において、
    前記検出手段は、前記外部電極に設けられた光を出力する発光部と、前記発光部から出力された光を受光する受光部と、を含み、
    前記第1の光学特性及び前記第2の光学特性は、前記発光部の出力した光が前記容器を透過して前記受光部によって検出された、それぞれ第1の透過光量及び第2の透過光量である、ガスバリア性合成樹脂製容器の製造方法。
  13. 請求項11または12において、
    前記演算結果とあらかじめ設定されていた基準範囲とを比較して、前記演算結果が前記基準範囲から外れたときに制御信号を出力する、ガスバリア性合成樹脂製容器の製造方法。
JP2003298685A 2003-08-22 2003-08-22 ガスバリア性合成樹脂製容器の製造装置及びその製造方法 Expired - Fee Related JP4393134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298685A JP4393134B2 (ja) 2003-08-22 2003-08-22 ガスバリア性合成樹脂製容器の製造装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298685A JP4393134B2 (ja) 2003-08-22 2003-08-22 ガスバリア性合成樹脂製容器の製造装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2005067655A JP2005067655A (ja) 2005-03-17
JP4393134B2 true JP4393134B2 (ja) 2010-01-06

Family

ID=34404117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298685A Expired - Fee Related JP4393134B2 (ja) 2003-08-22 2003-08-22 ガスバリア性合成樹脂製容器の製造装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4393134B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034037B1 (fr) 2015-03-25 2017-03-17 Sidel Participations Procede de fabrication d'un emballage comprenant un recipient imprime directement et traite par plasma

Also Published As

Publication number Publication date
JP2005067655A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
CA2494080C (en) Process and apparatus for testing bottles
JP4188315B2 (ja) Dlc膜コーティングプラスチック容器及びその製造装置
CN101268538B (zh) 空心体内面的等离子体处理的方法和设备
US8932676B2 (en) Method for producing gas barrier plastic molded body
US8450113B2 (en) Container production method and device providing container wall surface coating and determining wall gas permeability of randomly selected containers
WO2003085165A1 (fr) Appareil de formation d'un film cvd plasma et procede de fabrication d'un conteneur plastique de revetement de film cvc
JP4393134B2 (ja) ガスバリア性合成樹脂製容器の製造装置及びその製造方法
CN101300373A (zh) 用于监控等离子体的方法、用于实施该方法的装置、该方法用于将薄膜淀积到pet中空体上的用途
KR101357325B1 (ko) 가스 배리어성 박막 코팅 플라스틱 용기의 제조 방법
JP2004269931A (ja) ガスバリア性合成樹脂製容器の製造装置及びその製造方法
JP2003341673A (ja) Dlc膜コーティングプラスチック容器の製造装置
WO2005035825A1 (ja) Cvd成膜装置及びcvd膜コーティングプラスチック容器の製造方法
JP4722667B2 (ja) 反応室外でのプラズマ発生の抑制方法並びにガスバリア性プラスチック容器の製造方法及びその製造装置
CN100445423C (zh) 薄膜成膜方法、薄膜成膜装置和薄膜成膜过程的监视方法
JP2009540117A (ja) 真空回路搭載プラズマ容器処理機
JP5032080B2 (ja) ガスバリア性プラスチック容器の製造装置及びその製造方法
CN101230452B (zh) 薄膜成膜方法、薄膜成膜装置和薄膜成膜过程的监视方法
JP2005330542A (ja) プラズマcvd成膜装置、プラズマ着火確認方法、cvd膜性状確認方法及び装置汚れ確認方法
JP2005083835A (ja) 蒸着膜検査方法及び蒸着膜検査システム
US20040146666A1 (en) Moisture and gas barrier plastic container with partition plates, and device for method manufacturing the plastic container
WO2017057399A1 (ja) ボトル、コーティング膜、および製造方法
JP4411896B2 (ja) 薄膜成膜プロセスの監視方法および薄膜成膜装置
JP2005002469A (ja) 樹脂容器の成膜監視装置及び成膜監視方法並びに樹脂容器の製造システム
JP3123979U (ja) 成膜装置
US20090142525A1 (en) Barrier layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4393134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees