JP4393053B2 - バイポーラ型半導体装置とその製造方法 - Google Patents

バイポーラ型半導体装置とその製造方法 Download PDF

Info

Publication number
JP4393053B2
JP4393053B2 JP2002311332A JP2002311332A JP4393053B2 JP 4393053 B2 JP4393053 B2 JP 4393053B2 JP 2002311332 A JP2002311332 A JP 2002311332A JP 2002311332 A JP2002311332 A JP 2002311332A JP 4393053 B2 JP4393053 B2 JP 4393053B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
drift
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002311332A
Other languages
English (en)
Other versions
JP2004146679A (ja
Inventor
佐智子 河路
隆英 杉山
雅康 石子
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002311332A priority Critical patent/JP4393053B2/ja
Publication of JP2004146679A publication Critical patent/JP2004146679A/ja
Application granted granted Critical
Publication of JP4393053B2 publication Critical patent/JP4393053B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイポーラ型半導体装置とその製造方法に関する。バイポーラ型半導体装置は、バイポーラトランジスタ、サイリスタ、ダイオード等が例示される。バイポーラトランジスタには、絶縁ゲート型バイポーラトランジスタ(以下では適宜「IGBT」という)、バイポーラモード静電誘導トランジスタ(以下では適宜「BSIT」という)が含まれる。
【0002】
【従来の技術と発明が解決しようとする課題】
バイポーラ型半導体装置の一例として、上記したIGBTがある。図22に、従来の3つの構造のIGBTの耐圧とオン電圧の特性を概略的に示す。図22のAは、ドリフト領域とコレクタ領域の間に高不純物濃度のバッファ領域が形成された、いわゆる「パンチスルー構造」のIGBTの特性を示す。図22のBは、低不純物濃度のバッファ領域が形成された、いわゆる「フィールドストップ構造」のIGBTの特性を示す。図22のCは、バッファ領域が形成されていない、いわゆる「ノンパンチスルー構造」のIGBTの特性を示す。なお、図22は、各構造のIGBTのドリフト領域の厚さと比抵抗を一定とした場合の特性を示す。
【0003】
IGBTに例示されるバイポーラ型半導体装置では、耐圧が高く、オン電圧が低いことが本来的には望ましい。パンチスルー構造のIGBTは、図22のAに示すように、耐圧を高くすることができるが、その反面、オン電圧が高くなってしまう。ノンパンチスルー構造のIGBTは、図22のCに示すように、オン電圧を低くすることができるが、その反面、耐圧が低くなってしまう。フィールドストップ構造のIGBTは、図22のBに示すように、パンチスルー構造とノンパンチスルー構造の中間的な特性を示す。
いずれの構造にしても、耐圧を高くしようとすると、オン電圧が高くなってしまい、逆に、オン電圧を低くしようとすると、耐圧が低くなってしまう。このように、耐圧とオン電圧はトレードオフの関係がある。そして、従来のIGBTにでは、図22の特性A〜Cに示すように、実現できる耐圧とオン電圧に構造上の物理的な限界がある。
【0004】
えば特許文献1に記載されているように、コレクタ領域を薄くした(特許文献1の例では1μm以下)IGBTが現れている。コレクタ領域を薄くすると、コレクタ領域の厚さを数百μmと厚くした場合に比べてターンオフ時間を短くできるという有用な効果が得られる。その反面、コレクタ領域を薄くすると、コレクタ領域から注入できるキャリアの量が少なくなってしまうため、オン電圧が高くなってしまう。
レクタ領域の不純物濃度を高くすると、オン電圧を低くすることできるその反面、耐圧が低くなってしまう。上記したように高不純物濃度のバッファ領域が形成されたパンチスルー構造を採用することによって耐圧を高くすることができる。しかし、パンチスルー構造にすると、ン電圧が高くなってしまう。
現状の技術では、コレクタ領域を薄くした場合に、オン電圧が高くなってしまか、あるいは耐圧低下してしまう。コレクタ領域を薄くすることによってターンオフ時間を短くし、しかもオン電圧が低くて耐圧が高いバイポーラ型半導体装置を実現する技術が望まれている。
【0005】
【特許文献1】
特公平6−48729号公報(第2頁、第1図)
【0006】
以上ではIGBTを例にして説明したが、上記した問題は、他のバイポーラ型半導体装置についても生じ得る。
【0007】
本発明は、従来の耐圧とオン電圧の特性の限界を超えた特性を有するバイポーラ型半導体装置を実現することを目的とする。
本発明はまた、ターンオフ時間が短く、しかも、耐圧を高く保持しながらオン電圧が低いバイポーラ型半導体装置を実現することを他の目的とする。
【0008】
【課題を解決するための手段及び作用と効果】
本発明を具現化したバイポーラ型半導体装置は、厚さが0.1μm以上で10μm以下の第1導電型のコレクタ領域と、第2導電型のバッファ領域と、第2導電型のドリフト領域を備えている。バッファ領域の不純物濃度はドリフト領域の不純物濃度よりも濃い。バッファ領域とドリフト領域の間の位置に第1導電型の第2領域が付加されている。第1導電型の第2領域はバッファ領域とドリフト領域で取り囲まれている。
第1導電型の第2領域には、半導体装置がオン状態の際に、ドリフト領域を通って第2導電型キャリアが流入する。
【0009】
これらの半導体装置のように、第2導電型のバッファ領域と第2導電型のドリフト領域の間の位置に第1導電型の第2領域を備えていると、第2導電型のドリフト領域を通って第1導電型の第2領域に流入した第2導電型キャリアが、第1導電型の第2領域に溜められる。第2領域に溜まった第2導電型キャリアの存在が、第1導電型のコレクタ領域から第1導電型の第2領域、ひいては第2導電型のドリフト領域へ第1導電型キャリアが流入する現象を促進する働きをする。このため、オン電圧を低下させることができる。しかも、第1導電型の第2領域は、第2導電型のドリフト領域とあいまって耐圧保持領域として機能するため、耐圧を低下させることにはならない。また、第1領域の厚さが10μm以下と薄いので、ターンオフ時間も短い。第1導電型の第2領域は第1導電型の領域で取り囲まれており、フローティングしている。
【0010】
上記の作用は、第1領域の厚さが数百μmと厚い場合にも生じ得るが、第1領域の厚さが厚い場合には第1領域からの第1導電型キャリアの供給量が多いため、上記の作用が相対的に小さな効力しか持たない。このため、第2領域を設けることによるオン電圧の低減効果はそれほど現れない。これに対し、これらの半導体装置のように、第1領域の厚さが10μm以下と薄い場合には第1領域からの第1導電型キャリアの供給量が少ないため、上記の作用が相対的に大きな効力を持つ。このため、第2領域を設けることによるオン電圧の低減効果が大きく現れる。
【0011】
このように、これらの半導体装置によると、ターンオフ時間が短く、しかも、耐圧を高く保持しながらオン電圧を低くすることができる。
別の表現をすると、これらの半導体装置によると、従来の耐圧とオン電圧の特性の限界を超えた特性を得ることができる。
【0012】
本発明を具現化した他のバイポーラ型半導体装置は、第2導電型のバッファ領域と、第2導電型のドリフト領域と、ドリフト領域に接する第1導電型の第1領域を備えている。バッファ領域と第1領域は、ドリフト領域によって隔てられている。バッファ領域の不純物濃度はドリフト領域の不純物濃度よりも濃い。バッファ領域とドリフト領域の間の位置に第1導電型の第2領域が付加されている。第1導電型の第2領域はバッファ領域とドリフト領域で取り囲まれている。第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広い。
第1導電型の第2領域には、半導体装置がオン状態の際に、ドリフト領域を通って第2導電型キャリアが流入する。
【0013】
これらの半導体装置では、第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広い。この場合にも、第1領域の厚さが薄い場合と同様に、第1領域から供給される第1導電型キャリアの量が少なくなる。よって、これらの半導体装置においても、第2導電型のバッファ領域と第2導電型のドリフト領域の間の位置に第1導電型の第2領域を付加することで、上記した第1領域の厚さが薄い構造の半導体装置と同様の作用効果を得ることができる。
【0014】
2領域の厚さは、第1導電型キャリアの拡散長以下であることが好ましい。
第2領域を連続的に広がるように形成してもよいが、断続的に形成することもできる。第2領域は、ストライプ状やアイランド状に分散して形成してもよい。
前記第2領域の厚さは均一であってもよいが、不均一にすることもできる。
前記第2領域の不純物濃度は均一であってもよいが、濃度勾配を形成することもできる。濃度勾配は、第2領域の厚さ方向の勾配であってもよいし、厚さ方向に垂直な方向の勾配であってもよいし、その両方であってもよいし、その他の方向の勾配であってもよい。
【0015】
第1導電型の第2領域は、少なくともバッファ領域とドリフト領域の間に形成されていればよく、その他の位置にまで第1導電型の第2領域が形成されることを排除しない。例えば、第2導電型のドリフト領域の内部(中間高さ等)にも第1導電型の第2領域を形成してもよい。あるいは、第1導電型のコレクタ領域と第2導電型のバッファ領域の間にも第1導電型の第2領域を形成してもよい。あるいは、両方の位置に形成してもよい。ドリフト領域の内部に形成する場合、第1導電型の第2領域を複数層形成していてもよい。
【0016】
本発明は、絶縁ゲート型バイポーラトランジスタ(IGBT)に具現化することもできる。このIGBTは、半導体領域の一方の主面側に形成されたコレクタ電極と、コレクタ電極に接するとともに厚さが0.1μm以上で10μm以下の第1導電型のコレクタ領域と、第2導電型のバッファ領域と、第2導電型のドリフト領域と、バッファ領域とドリフト領域の間の位置に形成されている第1導電型の第2領域と、半導体領域の他方の主面側に形成されたエミッタ電極と、エミッタ電極に接する第2導電型のエミッタ領域と、ドリフト領域とエミッタ領域の間の領域に形成されている第1導電型のボディ領域と、ボディ領域にゲート絶縁膜を介して隣合うゲート電極を備えている。第2領域はバッファ領域とドリフト領域で取り囲まれている。
【0017】
上記IGBTは、第1導電型のコレクタ領域に隣接して第2導電型のコレクタショート領域を形成したコレクタショート構造にしてもよい。
【0018】
本発明は、表面注入型のIGBTに具現化することもできる。この表面注入型のIGBTは、半導体領域の一方の主面側に形成されたエミッタ電極と、エミッタ電極に接する第2導電型のエミッタ領域と、第2導電型のドリフト領域と、エミッタ領域とドリフト領域の間の領域に形成された第1導電型のボディ領域と、ボディ領域にゲート絶縁膜を介して隣合うゲート電極と、半導体領域の前記一方の主面側に形成された注入ゲート電極と、注入ゲート電極に接する第1導電型のキャリア注入領域(第1導電型の第1領域)と、ドリフト領域に接するとともにキャリア注入領域にドリフト領域を介して隣合う第1導電型の第2領域と、第1導電型の第2領域を介してドリフト領域に隣合う第2導電型のバッファ領域を備えている。第1導電型の第2領域は、バッファ領域とドリフト領域で取り囲まれている。第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広い。
【0019】
本発明は、バイポーラモード静電誘導トランジスタ(BSIT)に具現化することもできる。このBSITは、半導体領域の一方の主面側に形成されたエミッタ電極と、エミッタ電極に接する第2導電型のエミッタ領域と、第2導電型のドリフト領域と、エミッタ領域とドリフト領域の間の領域に形成された第1導電型のボディ領域と、エミッタ領域の両側方の位置に形成された第1導電型の第1領域と、半導体領域の前記一方の主面側に形成されているとともに、第1領域に接するゲート電極と、ドリフト領域に接するとともに、第1領域にドリフト領域を介して隣合う第1導電型の第2領域を備えている。第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広い。
【0020】
本発明は、サイリスタに具現化することもできる。このサイリスタは、厚さが0.1μm以上で10μm以下の第1導電型第1領域と、第2導電型第1領域と、第1導電型第1領域と第2導電型第1領域の間に位置するとともに、第1導電型第1領域に第1導電型でない領域を介して隣合う第1導電型第2領域と、第2導電型第1領域に接する第1導電型第3領域と、第1導電型第3領域に接する第2導電型第2領域を備えている。第1導電型の第1領域と第1導電型の第2領域の間に存在する領域は第2導電型であり、第2導電型の第1領域の不純物濃度よりも濃い。
【0021】
本発明は、上記したバイポーラ型半導体装置の製造方法にも具現化できる。この製造方法では、第2導電型の半導体基板第1導電型不純物のイオン注入し、その後に活性化処理を行うことによって第1導電型の第2領域を形成する。
【0022】
上記したバイポーラ型半導体装置の製造方法において、第1導電型の第2領域を断続的に形成する場合は、第2導電型の半導体基板の表面の一部にマスクを設けた状態で第1導電型不純物のイオン注入を行った後に活性化処理を行うことが好ましい。あるいは、第2導電型の半導体基板第1導電型不純物のイオン注入を行った後レーザを部分的に照射して第1導電型不純物を部分的に活性化させることで、第1導電型の第2領域を断続的に形成することが好ましい。
【0023】
【発明の実施の形態】
(第1実施例) 図1に示す第1実施例のIGBTは、半導体領域の裏面側に形成されたコレクタ電極2と、コレクタ電極2に接するp+型コレクタ領域4と、n-型ドリフト領域10と、p+型コレクタ領域4とn-型ドリフト領域10の間に位置するとともに、p+型コレクタ領域4にn+型バッファ領域6を介して隣合うp型領域8と、半導体領域の表面側に形成されたエミッタ電極16と、エミッタ電極16に接するn+型エミッタ領域18と、n-型ドリフト領域10とn+型エミッタ領域18の間領域(オン時にチャネルとなる領域)に形成されているp型ボディ領域12,14と、p-型ボディ領域12にゲート絶縁膜20を介して隣合うゲート電極22を備えている。
図1の断面構造は基本的には紙面垂直方向に連続しているが、図示しない断面でゲート電極22は外部配線に接続されている。図1に示す断面構造は紙面左右方向に周期的に繰返されている。なお、指示線の指示箇所を明瞭にするために、図面の右半分ではハッチングを省略している。
【0024】
別の表現をすると、第1実施例のIGBTは、オン状態では、n型エミッタ領域18から、p型ボディ領域12のチャネルとn型ドリフト領域10を通ってp型領域8にエレクトロンが流入するとともに、p型コレクタ領域4からn型バッファ領域6を通ってp型領域8にホールが流入するように構成されている。
【0025】
さらに別の表現をすると、第1実施例のIGBTは、コレクタ電極2と、これに接するp型コレクタ領域4と、これに接するn型バッファ領域6と、これに接するp型領域8と、これに接するn型ドリフト領域10と、これに接するp型ボディ領域12,14と、これに接するn型エミッタ領域18と、n型エミッタ領域18及びp型ボディ領域(コンタクト領域)14に接するエミッタ電極16と、ボディ領域12のうちn型ドリフト領域10とn型エミッタ領域18の間に形成された領域(オン時にチャネルとなる領域)にゲート絶縁膜20を介して隣合うゲート電極22を備えている。
【0026】
ゲート電極22は、n型エミッタ領域18とp型ボディ領域12を貫いてn型ドリフト領域10まで達するトレンチ内にゲート絶縁膜20で覆われた状態で埋込まれたトレンチゲート電極である。
【0027】
p型領域8は、ほぼ均一な厚さで厚さ方向に垂直な方向(図1の紙面垂直方向及び紙面左右方向)に伸びている。
p型領域8の厚さは、ホールの拡散長以下であることが好ましい。この態様によると、IGBTをほぼ確実にオンさせることができる。また、p型領域8の存在がターンオフ時間に与える影響も少ない。
p型領域8の厚さを厚くするほど、n型ドリフト領域10から流入するエレクトロンを溜められるので、p型コレクタ領域4からのホールの注入を促進でき、オン電圧を低くできる。この意味では、p型領域8の厚さは、ホールの拡散長を上限として、厚ければ厚いほどよい。しかし、p型領域8を厚くし過ぎると、エレクトロンが抜けにくくなるので、ターンオフ時間が長くなる。また、p型領域8を厚くし過ぎると、p型領域8にかかる電界が大きくなり、ウエハ状態のIGBTを個々のIGBTに分けたときに、端面から電流がリークする恐れがある。
よって、以上の点を考慮すると、p型領域8の厚さはホールの拡散長の10分の1以下であることが好ましく、30分の1以下であることがより好ましい。本実施例では、ホールの拡散長を約100μmとみなし、p型領域8の厚さを、ホールの拡散長の100分の1の約1μmとしている。
【0028】
第1実施例では、p型領域8の不純物濃度の分布はほぼ均一である。p型領域8の不純物濃度は、1×1012/cm以上で1×1015/cm以下であることが好ましく、1×1013/cm以上で2×1014/cm以下であることがより好ましい。本実施例では、p型領域8の不純物濃度を約8×1013/cmとしている。
【0029】
型コレクタ領域4の厚さは、10μm以下であれば、ターンオフ時間を十分に短くすることができる。しかし、薄過ぎると供給できるホールの量が少なくなり過ぎるので、p型コレクタ領域4の厚さは、0.1μm以上であることが好ましい。これらを考慮したp型コレクタ領域4のより好ましい厚さの範囲は0.1μm以上で5μm以下であり、よりさらに好ましい厚さの範囲は0.5μm以上で1μm以下である。本実施例では、p型コレクタ領域4の厚さを約1μmとしている。
【0030】
耐圧とオン電圧のトレードオフの関係を考慮すると、n型バッファ領域6の厚さは0.5μm以上で1μm以下であることが好ましい。n型バッファ領域6の不純物濃度は、1×1015/cm以上で1×1018/cm以下であることが好ましい。本実施例では、n型バッファ領域6の厚さを約1μm、不純物濃度を約5×1017/cmとしている。
【0031】
第1実施例のIGBTの動作を説明する。エミッタ電極16を接地した状態でゲート電極22とコレクタ電極2に正電圧を印加して、IGBTをオンさせる。すると、ゲート電極22とゲート絶縁膜20を介して隣合うp-型ボディ領域12にn型チャネルが形成される。この結果、エレクトロンがn+型エミッタ領域18からn型チャネルとn-型ドリフト領域10を通ってp型領域8に流入する。p型領域8に流入したエレクトロンは、p型領域8と + 型バッファ領域6の間のポテンシャルの障壁によってp型領域8に溜められる。p型領域8に溜まったエレクトロンの存在が、p+型コレクタ領域4からp型領域8、ひいてはドリフト領域10へのホールの流入を促進する働きをする。よって、n-型ドリフト領域10でのホールとエレクトロンによる伝導度変調現象を活発化させることができる。このため、このようなp型領域8を形成しない場合に比べて、オン電圧を低下させることができる。
第1実施例のように、 + 型コレクタ領域4の厚さが薄い場合には、 + 型コレクタ領域4からのホールの供給量が少ないため、上記の作用が相対的に大きな効力を持つ。このため、p型領域8を設けることによるオン電圧の低減効果が大きく現れる。
【0032】
しかも、p型領域8を設けても、p型領域8は、n型ドリフト領域10と同様に耐圧保持領域として機能するため、耐圧を低下させることには基本的にならない。また、p型コレクタ領域4の厚さが薄いので、エレクトロンがp型コレクタ領域4を通って半導体領域の裏面側に抜け易く、ターンオフ時間が短い。従来一般的に用いられていたp型コレクタ領域4の厚さが数百μmと厚い構造では、ターンオフ時間を短くするために、n型バッファ領域6等にキャリアのライフタイムを短くするための欠陥層を形成する場合もあったが、そのような欠陥層を形成しなくても、ターンオフ時間が短い。
【0033】
第1実施例のIGBTによると、ターンオフ時間が短く、しかも、耐圧を高く保持しながらオン電圧を低くすることができる。
【0034】
図2に、第1実施例のIGBTと、従来の3つの構造のIGBTの耐圧とオン電圧の特性を概略的に示す。図2のA〜Cは、〔従来の技術と発明が解決しようとする課題〕の欄で説明した図22のA〜Cと同様に、それぞれ「パンチスルー構造」、「フィールドストップ構造」、「ノンパンチスルー構造」のIGBTの特性を示す。
先に説明したように、従来の3つの構造では、図2の特性A〜Cに示すように、実現できる耐圧とオン電圧に構造上の物理的な限界がある。
これに対し、第1実施例によると、上記したように、従来に比べて、耐圧を低下させずにオン電圧を低下させることができる。よって、別の表現をすると、第1実施例によると、図2のDに示すように、従来の耐圧とオン電圧の特性の限界を超えた特性を得ることができる。
【0035】
次に、第1実施例のIGBTの製造方法の一例を図3を参照して説明する。
まず、n型シリコン単結晶基板(FZ基板、MCZ基板、CZ基板等)24を用意する(図3(a)参照)。なお、n型基板24は、シリコン基板に限らず、SiC等のシリコン系材料や、他の材料によって形成されていてもよい。このn型基板24に、トレンチ、p型ボディ領域12,14、n型エミッタ領域18、エミッタ電極16を形成する。トレンチには、ゲート絶縁膜20を介してゲート電極22を埋め込む(図3(a)参照)。
【0036】
次に、n型基板24の裏面側からボロン等のp型不純物を所定深さの領域にイオン注入する(図3(b)参照)。なお、裏面側からみたときに、このp型不純物がイオン注入された領域よりも深い領域であって、かつ、p型ボディ領域12,14よりも浅い領域はn型ドリフト領域10となる(図3(b)参照)。次に、n型基板24の裏面側から、上記したp型不純物をイオン注入した領域よりも浅い領域にリン等のn型不純物をイオン注入する(図3(c)参照)。次に、n型基板24の裏面側から、上記したn型不純物をイオン注入した領域よりも浅い領域にボロン等のp型不純物をイオン注入する(図3(d)参照)。
【0037】
次に、イオン注入した不純物を活性化させる処理を行う。例えば、熱処理(炉アニール等)を行う。この結果、最初にp型不純物をイオン注入した領域にp型領域8が形成され、n型不純物をイオン注入した領域にn型バッファ領域6が形成され、最後にp型不純物をイオン注入した領域にp型コレクタ領域4が形成される(図3(e)参照)。次に、p型コレクタ領域4の裏面側に、その裏面に接するようにコレクタ電極2を形成する(図3(e)参照)。
なお、上記の製造方法において、不純物をイオン注入する順序は適宜変更してもよい。
【0038】
上記の製造方法によると、基板にエピタキシャル層を積層することなく第1実施例のIGBTを製造できる。一般にエピタキシャル層を形成するのはコスト高となる。これに対し、上記の製造方法によると、安価な基板を用意し、その基板に不純物をイオン注入し、その不純物を活性化させることで各領域を形成できる。このため、低コストで第1実施例のIGBTを製造できる。
【0039】
但し、基板に1つ以上のエピタキシャル層を積層することで1つ以上の領域を形成してもよい。例えば、p型ボディ領域12,14、n型エミッタ領域18等を形成した基板に、n型ドリフト領域10となるエピタキシャル層、p型領域8となるエピタキシャル層、n型バッファ領域6となるエピタキシャル層、p型コレクタ領域4となるエピタキシャル層を順次積層するようにしてもよい。
【0040】
(参考例) 図4に示すIGBTのように、バッファ領域7をp型でもn型でもない、真性の半導体領域(i(intrinsic)型領域)によって形成してもよい。
参考例のIGBTによっても、p型領域8にエレクトロンを溜めることができ、そのエレクトロンの存在によってp+型コレクタ領域4からのホールの注入を促進でき、オン電圧を低減できる。本発明は、バッファ領域7の不純物濃度がドリフト領域10の不純物濃度よりも濃い場合に限定されており、図4のIGBTは実施例でなく、参考例である。
【0041】
なお、バッファ領域、p型領域8、n-型ドリフト領域10に、キャリアのライフタイムを短縮させる欠陥層が形成されていてもよい。欠陥層を意図的に形成する場合は、プロトンやヘリウム等をイオン注入することで形成するとよい。
【0042】
参考例) 図5に示すIGBTのように、p型領域8を下側のn-型ドリフト領域10xと上側のn-型ドリフト領域10yの間に形成してもよい。この構成は、1つのn-型ドリフト領域10の内部にp型領域8が形成されているとも言えるし、2つのn-型ドリフト領域10の間にp型領域8が形成されているとも言える。本発明は、ドリフト領域とコレクタ領域の間にp型領域が形成されることを要件とする。図5のIGBTは実施例でなく参考例である。
【0043】
(第4実施例) 図6に示す第4実施例のIGBTのように、n型バッファ領域6上に、p型領域8とn型ドリフト領域10の互層構造を複数(図6では、p型領域8aとn型ドリフト領域10a、及びp型領域8bとn型ドリフト領域10bの2つ)繰返すようにしてもよい。
第4実施例によると、エレクトロンが溜まる箇所を複数(図6では、p型領域8a,8bの2つ)にできるので、p型コレクタ領域4からのホールの注入をより促進でき、オン電圧をより低減できる。
【0044】
(第5実施例) 図7に示す第5実施例のIGBTでは、p型領域8cが、所定高さの領域(この例ではn-型ドリフト領域10とn+型バッファ領域6の間の領域)に断続的に形成されている。より具体的には、p型領域8cは、所定高さの領域の紙面垂直方向にストライプ状に形成されているとともに、紙面左右方向に断続的に形成されている。
【0045】
第5実施例では、p型領域8cが形成されている部分にはエレクトロンが溜まるので、p型コレクタ領域4からのホールの注入を促進できる。よって、オン電圧を低くできる。一方、p型領域8cに挟まれたn型ドリフト領域10の部分では、ターンオフ時に、n型ドリフト領域10側から流入するエレクトロンをp型コレクタ領域4側に抜け易くすることができる。よって、ターンオフ時間を短くすることができる。
このため、第5実施例によると、p型領域8cの大きさや形状等を調整することで、オン電圧とターンオフ時間をよりきめ細かく設定できる。
【0046】
次に、第5実施例のIGBTの製造方法の一例を図8を参照して説明する。
まず、第1実施例の場合と同様に、n型基板24を用意し、このn型基板24に、p型ボディ領域12,14等を形成する(図8(a)参照)。次に、n型基板24の裏面側に所定間隔を置いて間欠的に保護膜23を形成する。次に、n型基板24の裏面側からボロン等のp型不純物を、保護膜23の間から、所定深さの領域にイオン注入する。この結果、その所定深さの領域に、p型不純物が部分的にイオン注入される(図8(a)参照)。
【0047】
次に、n型基板24の裏面側から、上記したp型不純物をイオン注入した領域よりも浅い領域にリン等のn型不純物をイオン注入する(図8(b)参照)。次に、n型基板24の裏面側から、上記したn型不純物をイオン注入した領域よりも浅い領域にボロン等のp型不純物をイオン注入する(図8(c)参照)。次に、イオン注入した不純物を活性化させる処理を行う。例えば、熱処理(炉アニール等)を行う。この結果、所定深さの領域にp型領域8cが部分的に間欠的に形成されるとともに、n型バッファ領域6、p型コレクタ領域4が形成される(図8(d)参照)。次に、第1実施例の場合と同様に、コレクタ電極2を形成する(図8(d)参照)。
【0048】
第5実施例のIGBTの製造方法の他の一例を図9を参照して説明する。
まず、n型基板24を用意し、このn型基板24に、p型ボディ領域12,14等を形成する(図9(a)参照)。次に、n型基板24の裏面側からリン等のn型不純物を所定深さの領域にイオン注入する。次に、n型基板24の裏面側から、上記したn型不純物をイオン注入した領域よりも浅い領域にボロン等のp型不純物をイオン注入する。次に、イオン注入した不純物を活性化させる処理を行う。この結果、n型バッファ領域6、p型コレクタ領域4が形成される(図9(a)参照)。
【0049】
次に、n型基板24の裏面側から、n型バッファ領域6よりも深い領域にボロン等のp型不純物をイオン注入する(図9(b)参照)。次に、そのp型不純物を部分的に活性化させる処理を行う。この例では、n型基板24の裏面側から、照射面がドット状のYAGレーザやエキシマレーザ等でレーザ光を照射し、n型バッファ領域6よりも深い領域に注入されたp型不物を部分的に活性化させる。この結果、所定深さの領域にp型領域8cが部分的に間欠的に形成される(図9(c)参照)。次に、第1実施例の場合と同様に、コレクタ電極2を形成する(図9(c)参照)。
【0050】
これらの製造方法によると、比較的容易に、しかも所望の領域に精度良くp型領域を部分的に形成することができる。
【0051】
(第6実施例) 図10に示す第6実施例のIGBTでは、p型領域8βの厚さが不均一である。より詳細には、厚さ方向に垂直な方向(図示左右方向)に周期的に厚さを異ならせて形成されている。
第6実施例によっても、第5実施例と類似の作用効果が得られる。即ち、p型領域8βのうち厚い部分にはエレクトロンが溜まり易いので、p型コレクタ領域4からのホールの注入を促進できる。よって、オン電圧を低下させることができる。一方、p型領域8βのうち薄い部分では、ターンオフ時に、n型ドリフト領域10側から流れてくるエレクトロンをp型コレクタ領域4側に抜け易くすることができる。よって、ターンオフ時間を短くすることができる。
このため、p型領域8の厚さ分布を調整することで、オン電圧とターンオフ時間をよりきめ細かく設定できる。
【0052】
参考例)図11に示すIGBTでは、n-型ドリフト領域10x、10yの間に、厚さが不均一な(より詳細には、厚さ方向に垂直な方向(図示左右方向)に周期的に厚さを異ならせた)p型領域8γが形成されている。本発明は、ドリフト領域とコレクタ領域の間にp型領域が形成されることを要件とする。図11のIGBTは実施例でなく参考例である。
【0053】
図10及び図11のp型領域8β、8γは、例えば以下のようにして形成できる。まず、所定厚さのp型領域を厚さ方向に垂直な方向に一様に形成する。次に、厚さを薄くしたい部分にプロトン、重水素、3重水素等をイオン注入する。あるいは、リン等のn型不純物をイオン注入してもよい。次に、イオン注入した不純物を活性化させる処理を行い、p型領域の一部をn型化することによってp型領域の厚さを薄くする。p型領域をn型化する部分を周期的に選択することで、厚さ方向に垂直な方向に周期的に厚さが異なるp型領域8β、8γを形成できる。
【0054】
(第8実施例) 図12に示す第8実施例のIGBTは、p型領域8αの不純物濃度が厚さ方向に垂直な方向に濃度勾配を有する。
第8実施例によっても、第5及び第6実施例と類似の作用効果が得られる。即ち、p型領域8αのうち、不純物濃度が濃い部分にはエレクトロンが溜まり易いので、p型コレクタ領域4からのホールの注入を促進できる。この結果、オン電圧を低下させることができる。一方、p型領域8αのうち、不純物濃度が薄い部分では、ターンオフ時に、n型ドリフト領域10側から流れてくるエレクトロンをp型コレクタ領域4側に抜け易くすることができる。この結果、ターンオフ時間を短くすることができる。
このため、p型領域8αの濃度勾配の分布を調整することで、オン電圧とターンオフ時間をよりきめ細かく設定できる。
なお、濃度勾配は、厚さ方向に形成されていてもよいし、厚さ方向に垂直な方向と厚さ方向の両方に形成されていてもよいし、その他の方向に形成されていてもよい。
【0055】
(第9実施例) 図13に示す第9実施例のIGBTは、p型領域8αのみならず、p型コレクタ領域4α、n型バッファ領域6α、n型ドリフト領域10αも濃度勾配を有する。
第9実施例によると、各領域8α、4α、6α、10αの濃度勾配を調整することで、オン電圧、耐圧、ターンオフ時間等の特性をよりきめ細かく設定できる。
【0056】
(第10実施例) 図14に示す第10実施例のIGBTでは、p型領域が中濃度領域8xと低濃度領域8yによって構成され、これらの領域8x,8yが厚さ方向に垂直な方向(図示左右方向)に交互に繰返して形成されている。
第10実施例によっても、第8実施例と類似の作用効果が得られる。
【0057】
(第11実施例) 図15に示す第11実施例のIGBTでは、p型コレクタ領域4に挟まれるように、n型領域3が形成されている。このn型領域3は、n型バッファ領域6とコレクタ電極2に接している。このように、第11実施例は、いわゆるコレクタショート構造となっている。
第11実施例のようなn型領域3を形成すると、IGBTのオン時にp型コレクタ領域4からのホールの注入を抑制できる。よって、IGBTのターンオフ時間をより短くできる。
【0058】
(第12実施例) 図16に示す第12実施例のIGBTのように、n型領域3はコレクタ電極2に接していなくてもよい。また、n型バッファ領域6に接していなくてもよい。p型コレクタ領域4中に部分的に形成されていてもよい。これらの場合もコレクタショート構造といえる。
【0059】
(第13実施例) 図17に示す第13実施例は、本発明を表面注入型IGBTに具現化したものである。この表面注入型IGBTは、半導体領域の表面側に形成されたエミッタ電極16と、エミッタ電極16に接するn+型エミッタ領域18と、n-型ドリフト領域10と、n+型エミッタ領域18とn-型ドリフト領域10の間領域に形成されているp型ボディ領域12,14と、p-型ボディ領域12にゲート絶縁膜20を介して隣合うゲート電極22と、半導体領域の表面側に形成された注入ゲート電極50と、注入ゲート電極50に接するp+型ホール注入領域52と、n-型ドリフト領域10に接するとともに、p+型ホール注入領域52にn-型ドリフト領域10を介して隣合p型領域8を備えている。p+型ホール注入領域52の頂面積(ドリフト領域10に接する面積)M1よりも、p型領域8頂面積(ドリフト領域10に接する面積)M2(実際には図示されているM2よりもさらに広い)の方が広い。+型ホール注入領域52の深さ(拡散深さ)は、1〜5μmである。
【0060】
このIGBTでは、表面側に注入ゲート電極50とp+型ホール注入領域52、及びエミッタ電極16とn+型エミッタ領域18が形成されており、表面側からホールとエレクトロンの両方が注入される構造となっている。
このIGBTでは、第1実施例等のIGBTのようなn+型バッファ領域6に接するp+型コレクタ領域は形成されていない。n+型バッファ領域6の裏面に直接にコレクタ電極2が接している。
【0061】
第13実施例のように、基板の片面側(この例では表面側)からホールとエレクトロンの両方を注入する構造では、図1に示した第1実施例のように基板の表面側と裏面側からそれぞれエレクトロンとホールを注入する構造であり、裏面側の全体に広がったコレクタ領域4からホールを注入する構造に比べると、図17に示すように、ホールを注入する領域52の頂面積M1を小さくせざるを得ない。また、このホール注入領域52の拡散深さもそれほど深くできない。よって、ホール注入領域52から供給されるホールの量も少ない。このため、第13実施例によると、第1実施例と同様に、p型領域8を設けることによるオン電圧の低減効果が大きく得られ、第1実施例と類似の作用効果が得られる。
【0062】
(第14実施例) 図18に示す第14実施例は、本発明をBSITに具現化したものである。このBSITは、半導体領域の表面側に形成されたエミッタ電極54と、エミッタ電極54に接するn+型エミッタ領域56と、n-型ドリフト領域10と、n+型エミッタ領域56とn-型ドリフト領域10の間領域に形成されている-型ボディ領域12と、n+型エミッタ領域56の両側方の位置に形成されたp+型ホール注入領域59と、半導体領域の表面側に形成されているとともに、p+型ホール注入領域59に接するゲート電極58と、n-型ドリフト領域10に接するとともに、p+型ホール注入領域59にn-型ドリフト領域10を介して隣合い、かつ、p+型ホール注入領域59の頂面積M3よりも広い頂面積M4(実際には図示されているM4よりもさらに広い)を持つp型領域8を備えている。
このBSITでも、第13実施例の表面注入型IGBTと同様に、p+型コレクタ領域は形成されていない。また、第1実施例のようなトレンチゲート電極は設けられていない。
【0063】
第14実施例の場合も、第13実施例と同様に、ホール注入領域59から供給されるホールの量は少ない。このため、第14実施例によると、第1実施例と同様に、p型領域8を設けることによるオン電圧の低減効果が大きく得られ、第1実施例と類似の作用効果が得られる。
【0064】
(第15実施例) 図19に示す第15実施例は、本発明をサイリスタに具現化したものである。このサイリスタは、電極32と、電極32に接するp型第1領域34と、n型第1領域40と、p型第1領域34とn型第1領域40の間に位置するとともに、p型第1領域34にn型バッファ領域36を介して隣合うp型第2領域38と、n型第1領域40に接するp型第3領域42,44と、p型第3領域42に接するn型第2領域46と、n型第2領域46に接する電極48を備えている。p型第1領域34、n型バッファ領域36、p型第2領域38の厚さや不純物濃度はそれぞれ、第1実施例(図1参照)のp型コレクタ領域4、n型バッファ領域6、p型領域8の厚さや不純物濃度と同様に設定すればよい。
【0065】
第15実施例のp型第1領域34も、第1実施例(図1参照)のp型コレクタ領域4と同様に薄いので、p型第1領域34から供給されるホールの量は少ない。このため、第15実施例によると、第1実施例と同様に、p型第2領域38を設けることによるオン電圧の低減効果が大きく得られ、第1実施例と類似の作用効果が得られる。
【0066】
(第16実施例) 図20に示す第16実施例は、本発明をダイオードに具現化したものである。このダイオードは、p型第1領域12と、n型第2領域6と、p型第1領域12とn型第2領域6の間に位置するとともに、p型第1領域12にn型第1領域10を介して隣合うp型第2領域8を備えている。p型第1領域12とp型第2領域8の厚さや不純物濃度はそれぞれ、第1実施例(図1参照)のp型コレクタ領域4とp型領域8の厚さや不純物濃度と同様に設定すればよい。
【0067】
第16実施例のp型第1領域12も、第1実施例のp型コレクタ領域4(図1参照)と同様に薄いので、p型第1領域12から供給されるホールの量は少ない。このため、第16実施例によると、第1実施例と同様に、p型第2領域8を設けることによるオン電圧の低減効果が大きく得られ、第1実施例と類似の作用効果が得られる。
【0068】
(第17実施例) 図21に示す第17実施例も、本発明をダイオードに具現化したものである。このダイオードは、p型第1領域4と、n型領域10と、p型第1領域4とn型領域10の間に位置するとともに、p型第1領域4にn型領域6を介して隣合うp型第2領域8を備えている。p型第1領域4、n型バッファ領域6、p型第2領域8の厚さや不純物濃度はそれぞれ、第1実施例(図1参照)のp型コレクタ領域4、n型バッファ領域6、p型領域8の厚さや不純物濃度と同様に設定すればよい。
【0069】
第17実施例のp型第1領域4も、第1実施例(図1参照)のp型コレクタ領域4と同様に薄いので、p型第1領域4から供給されるホールの量は少ない。このため、第17実施例によると、第1実施例と同様に、p型第2領域8を設けることによるオン電圧の低減効果が大きく得られ、第1実施例と類似の作用効果が得られる。
【0070】
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本発明は、上記したIGBT等に限らず、基本的な構造のバイポーラトランジスタに具現化することもできる。
本発明は上記したように、IGBT等の電圧駆動型素子や、サイリスタ等の電流駆動型素子の両方に適用できる。
本発明は上記したように、半導体領域の表裏両面から別個に第1導電型キャリアと第2導電型キャリアが注入されて伝導度変調が生じる素子(第1実施例等のIGBT、第15実施例のサイリスタ、第16実施例等のダイオード等)と、半導体領域の片面から第1導電型キャリアと第2導電型キャリアの両方が注入されて伝導度変調が生じる素子(第13実施例の表面注入型IGBT、第14実施例のBSIT等)の両方に適用できる。
上記の多くの実施例ではトレンチゲート構造を採用しているが、プレーナゲート構造の場合にも適用することができる。
上記実施例の構造では、導電型のpとnを入換えてもよいのは勿論である。
【0071】
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】 本発明の第1実施例のIGBTの断面図を示す。
【図2】 第1実施例と従来の3つの構造のIGBTの耐圧とオン電圧の特性を概略的に示す。
【図3】 本発明の第1実施例のIGBTの製造方法の一例の説明図を示す。
【図4】 本発明の第2実施例のIGBTの断面図を示す。
【図5】 本発明の第3実施例のIGBTの断面図を示す。
【図6】 本発明の第4実施例のIGBTの断面図を示す。
【図7】 本発明の第5実施例のIGBTの断面図を示す。
【図8】 本発明の第5実施例のIGBTの製造方法の一例の説明図を示す。
【図9】 本発明の第5実施例のIGBTの製造方法の他の一例の説明図を示す。
【図10】 本発明の第6実施例のIGBTの断面図を示す。
【図11】 本発明の第7実施例のIGBTの断面図を示す。
【図12】 本発明の第8実施例のIGBTの断面図を示す。
【図13】 本発明の第9実施例のIGBTの断面図を示す。
【図14】 本発明の第10実施例のIGBTの断面図を示す。
【図15】 本発明の第11実施例のIGBTの断面図を示す。
【図16】 本発明の第12実施例のIGBTの断面図を示す。
【図17】 本発明の第13実施例の表面注入型IGBTの断面図を示す。
【図18】 本発明の第14実施例のBSITの断面図を示す。
【図19】 本発明の第15実施例のサイリスタの断面図を示す。
【図20】 本発明の第16実施例のダイオードの断面図を示す。
【図21】 本発明の第17実施例のダイオードの断面図を示す。
【図22】 従来の3つの構造のIGBTの耐圧とオン電圧の特性を概略的に示す。
【符号の説明】
2:コレクタ電極
4:p型コレクタ領域
6:n型バッファ領域
8:p型領域
10:n型ドリフト領域
12,14:p型ボディ領域
16:エミッタ電極
18:n型エミッタ領域
20:ゲート絶縁膜
22:ゲート電極

Claims (10)

  1. 厚さが0.1μm以上で10μm以下の第1導電型のコレクタ領域と、第2導電型のバッファ領域と、第2導電型のドリフト領域を備えており、
    バッファ領域の不純物濃度がドリフト領域の不純物濃度よりも濃く、
    バッファ領域とドリフト領域の間の位置に第1導電型の第2領域が付加されており、
    その第1導電型の第2領域がバッファ領域とドリフト領域で取り囲まれていることを特徴とするバイポーラ型半導体装置。
  2. 厚さが0.1μm以上で10μm以下の第1導電型のコレクタ領域と、第2導電型のバッファ領域と、第2導電型のドリフト領域を備えており、
    バッファ領域の不純物濃度がドリフト領域の不純物濃度よりも濃く、
    バッファ領域とドリフト領域の間の位置にオン状態の際にドリフト領域を通って第2導電型キャリアが流入する第1導電型の第2領域が付加されており、
    その第1導電型の第2領域がバッファ領域とドリフト領域で取り囲まれていることを特徴とするバイポーラ型半導体装置。
  3. 第2導電型のバッファ領域と、第2導電型のドリフト領域と、ドリフト領域に接する第1導電型の第1領域を備えており、
    バッファ領域と第1領域は、ドリフト領域によって隔てられており、
    バッファ領域の不純物濃度がドリフト領域の不純物濃度よりも濃く、
    バッファ領域とドリフト領域の間の位置に第1導電型の第2領域が付加されており、
    その第1導電型の第2領域がバッファ領域とドリフト領域で取り囲まれており、
    第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広いことを特徴とするバイポーラ型半導体装置。
  4. 第2導電型のバッファ領域と、第2導電型のドリフト領域と、ドリフト領域に接する第1導電型の第1領域を備えており、
    バッファ領域と第1領域は、ドリフト領域によって隔てられており、
    バッファ領域の不純物濃度がドリフト領域の不純物濃度よりも濃く、
    バッファ領域とドリフト領域の間の位置にオン状態の際にドリフト領域を通って第2導電型キャリアが流入する第1導電型の第2領域が付加されており、
    その第1導電型の第2領域がバッファ領域とドリフト領域で取り囲まれており、
    第1領域がドリフト領域に接する面積よりも、第2領域がドリフト領域に接する面積の方が広いことを特徴とするバイポーラ型半導体装置。
  5. 第2領域の厚さが、第1導電型キャリアの拡散長以下であることを特徴とする請求項1〜4のいずれか1項に記載のバイポーラ型半導体装置。
  6. 第2領域が、断続的に形成されていることを特徴とする請求項1〜5のいずれか1項に記載のバイポーラ型半導体装置。
  7. 第2領域の厚さが不均一であることを特徴とする請求項1〜5のいずれか1項に記載のバイポーラ型半導体装置。
  8. 第2領域の不純物濃度が濃度勾配を有することを特徴とする請求項1〜7のいずれか1項に記載のバイポーラ型半導体装置。
  9. 半導体領域の一方の主面側に形成されたコレクタ電極と、
    コレクタ電極に接するとともに厚さが0.1μm以上で10μm以下の第1導電型のコレクタ領域と、
    第2導電型のバッファ領域と、
    第2導電型のドリフト領域と、
    バッファ領域とドリフト領域の間の位置に形成されている第1導電型の第2領域と、
    半導体領域の他方の主面側に形成されたエミッタ電極と、
    エミッタ電極に接する第2導電型のエミッタ領域と、
    ドリフト領域とエミッタ領域の間の領域に形成されている第1導電型のボディ領域と、
    ボディ領域にゲート絶縁膜を介して隣合うゲート電極を備えており、
    前記の第1導電型の第2領域がバッファ領域とドリフト領域で取り囲まれていることを特徴とする絶縁ゲート型バイポーラトランジスタ。
  10. 請求項1〜9のいずれか1項に記載のバイポーラ型半導体装置の製造方法であって、
    第2導電型の半導体基板に第1導電型不純物のイオンを注入し、その後に活性化処理を行うことによって、第1導電型の第2領域を形成することを特徴とするバイポーラ型半導体装置の製造方法。
JP2002311332A 2002-10-25 2002-10-25 バイポーラ型半導体装置とその製造方法 Expired - Lifetime JP4393053B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311332A JP4393053B2 (ja) 2002-10-25 2002-10-25 バイポーラ型半導体装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311332A JP4393053B2 (ja) 2002-10-25 2002-10-25 バイポーラ型半導体装置とその製造方法

Publications (2)

Publication Number Publication Date
JP2004146679A JP2004146679A (ja) 2004-05-20
JP4393053B2 true JP4393053B2 (ja) 2010-01-06

Family

ID=32456597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311332A Expired - Lifetime JP4393053B2 (ja) 2002-10-25 2002-10-25 バイポーラ型半導体装置とその製造方法

Country Status (1)

Country Link
JP (1) JP4393053B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574408B (zh) * 2013-12-10 2017-03-11 愛發科股份有限公司 絕緣閘極雙極性電晶體及其製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276953A (ja) * 2004-03-23 2005-10-06 National Institute Of Advanced Industrial & Technology バイポーラ型SiC半導体装置及びその製造方法
JP4843253B2 (ja) 2005-05-23 2011-12-21 株式会社東芝 電力用半導体装置
JP2006332199A (ja) * 2005-05-24 2006-12-07 Shindengen Electric Mfg Co Ltd SiC半導体装置
JP4434080B2 (ja) 2005-06-03 2010-03-17 トヨタ自動車株式会社 絶縁ゲート型半導体装置およびその製造方法
JP5087834B2 (ja) * 2005-11-15 2012-12-05 日産自動車株式会社 半導体装置の製造方法
JP2008311572A (ja) * 2007-06-18 2008-12-25 Rohm Co Ltd 半導体装置
US8766317B2 (en) 2007-06-18 2014-07-01 Rohm Co., Ltd. Semiconductor device
US7638816B2 (en) 2007-08-28 2009-12-29 Littelfuse, Inc. Epitaxial surge protection device
WO2010109596A1 (ja) * 2009-03-24 2010-09-30 トヨタ自動車株式会社 半導体装置
JP5565134B2 (ja) * 2010-06-24 2014-08-06 富士電機株式会社 半導体装置の製造方法
CN102290436B (zh) * 2011-09-15 2016-08-03 江苏宏微科技有限公司 新型绝缘栅双极晶体管背面结构及其制备方法
DE102016112721B4 (de) * 2016-07-12 2022-02-03 Infineon Technologies Ag n-Kanal-Leistungshalbleitervorrichtung mit p-Schicht im Driftvolumen
JP2022169322A (ja) * 2021-04-27 2022-11-09 株式会社デンソー 半導体装置
CN113410135B (zh) * 2021-06-15 2023-06-30 西安微电子技术研究所 一种抗辐照结型场效应晶体管的制作方法
WO2023224059A1 (ja) * 2022-05-18 2023-11-23 富士電機株式会社 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574408B (zh) * 2013-12-10 2017-03-11 愛發科股份有限公司 絕緣閘極雙極性電晶體及其製造方法

Also Published As

Publication number Publication date
JP2004146679A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4393053B2 (ja) バイポーラ型半導体装置とその製造方法
CN107039419B (zh) 半导体装置
US10784349B2 (en) Semiconductor device
US7476942B2 (en) SOI lateral semiconductor device and method of manufacturing the same
KR100449182B1 (ko) 전력용 반도체장치
US9559171B2 (en) Semiconductor device
JP5867606B2 (ja) 半導体装置および半導体装置の製造方法
JP5036327B2 (ja) 半導体装置及びその製造方法
JP2021048423A (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
JP2001250947A (ja) 電力用半導体素子およびその製造方法
JP2009218543A (ja) 半導体装置
JP6037495B2 (ja) 半導体装置およびその製造方法
JP2001320049A (ja) 半導体装置およびその製造方法
JP4904625B2 (ja) 半導体装置
US7262478B2 (en) Semiconductor device and manufacturing method thereof
JP2003303965A (ja) 半導体素子及びその製造方法
JPWO2016113865A1 (ja) 半導体装置及びその製造方法
JP3919591B2 (ja) 半導体装置の製造方法
JP2007227982A (ja) 半導体装置の製造方法および半導体装置
JP2004247593A (ja) 半導体装置及びその製造方法
JP2020043301A (ja) 半導体装置
JP3781452B2 (ja) 誘電体分離半導体装置およびその製造方法
JP5070668B2 (ja) 半導体装置
JP3845584B2 (ja) バイポーラ型半導体装置
KR100910798B1 (ko) 불순물 주입층이 형성된 트랜치를 가지는 고전압용 트랜치절연 게이트 양극성 트랜지스터 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4393053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term