JP4382165B2 - 磁気共鳴映像システムを含む放射線治療機器 - Google Patents

磁気共鳴映像システムを含む放射線治療機器 Download PDF

Info

Publication number
JP4382165B2
JP4382165B2 JP53420199A JP53420199A JP4382165B2 JP 4382165 B2 JP4382165 B2 JP 4382165B2 JP 53420199 A JP53420199 A JP 53420199A JP 53420199 A JP53420199 A JP 53420199A JP 4382165 B2 JP4382165 B2 JP 4382165B2
Authority
JP
Japan
Prior art keywords
coil
combination
magnetic field
segments
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53420199A
Other languages
English (en)
Other versions
JP2001517132A (ja
Inventor
グリーン、ミカエル・カーゾン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Inc
Original Assignee
Varian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25541143&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4382165(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Varian Inc filed Critical Varian Inc
Publication of JP2001517132A publication Critical patent/JP2001517132A/ja
Application granted granted Critical
Publication of JP4382165B2 publication Critical patent/JP4382165B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【技術分野】
本発明は、一般的に、対象とする領域を、放射線治療ビームで処置するための装置に関し、とくに、ビームにより領域が照射され、磁気共鳴映像システムが、実質的に同時に、磁気共鳴映像システムのコイルアセンブリにビームが入射しないようにして領域の映像を与える装置に関する。
【0002】
【背景技術】
本発明の譲受人により製造されているCLINAC機器のような放射療法機器は、一般的に、ほぼ水平軸線上で回転するガントリー上に配置された線形電子ビーム加速器を含む。電子ビーム加速器は、通常、ガントリーの水平な回転軸線からオフセットにしてガントリー上に配置される。加速器から出てくる高エネルギー電子ビームはさらに、患者の治療に適した電子ビームまたはX線ビームのいずれかを生成するように、当業者に既知の技術により処理される。いずれの場合においても、放射線は、処置ビームの軸線がガントリーの回転軸線と交差するように、ガントリーの回転の軸線と垂直な方向に動かされる処置ビームに平行化される。処置ビームの軸線がガントリーの回転軸線と交差する点は、処置ビームの焦点であり、放射線治療機器の等角点という。
【0003】
放射線治療機器において、患者は、通常、患者のがんの腫瘍または病巣である処置領域を、放射線治療機器の等角点の、ガントリーの回転の軸線上に位置を決めるために正確に配置することができる処置カウチに配置される。このように、ガントリーを回転させることにより、治療の間、処置ビームソースを患者の周囲で回転させることができ、このことにより、ビームが常に処置領域自体を通過するため、処置領域付近の患者の体の他の部分を通過する処置放射線の量が最少になる。病気の組織以外、とくに病気の処置領域と隣接している組織への過度の照射は、健康な組織における望ましくない細胞の損傷および細胞死を引き起こす。
【0004】
現在の放射線治療技術の専門医の間では、患者の病気の処置領域が正確に放射線治療機器の等角点に配置された場合に、一般的に、隣接した細胞の損傷が最少であることが知られている。しかし、現在の技術のいくつかの制限が、望ましい患者の病気の領域の放射線治療機器の等角点への正確な配置を達成することを困難にしている。
【0005】
この困難さの一つの理由は、患者の病気の領域が、通常、病気の組織と実質的に類似の、他のソフトな組織により囲まれ、または隣接していることである。組織の類似性が、放射線治療機器に適した現在の診断および映像技術を使用しても病気の組織の正確な境界を限定することを困難にしている。
この問題を解決するための過去の試みの一つは、対象物が放射線治療機器に配置された場合の、比較的低コントラストの、領域の二次元X線ベース映像(two-dimensional X-ray-based imaging)を使用することである。X線ベース映像システムは、一般的に、放射線治療目的のために使用される同様のX線ビームにおけるX線の検出に依存じている。しかし、低コントラストの領域の二次元X線ベース映像は、腫瘍および病巣を含む領域の正しい位置を明確に決めることができない。異なったソフトな組織構造間および腫瘍ソフトな組織と腫瘍でないソフトな組織のと間のX線吸収は、しばしば、小さいものから検出できないものにわたる。骨のみが、X線をより強く吸収し、この手段により容易に映像化して正確に位置を決めることができる。処理すべきソフトな組織領域の正確な位置を決定することは、かたさが不足しているので、対象物に隣接した骨に対して領域が動いてしまい、この結果、処置用カウチの上で、不可避的に対象物の体が動くため、困難である。基準マーカーが腫瘍に挿入されても、患者の動きが基準マーカーを動かすかもしれないので、領域の正確な位置の決定の不確定性が存在する。
【0006】
処置することが所望される領域は通常、放射線治療システムの等角点に関して計画したようには正確な位置の決定がされないため、不十分な量の放射線治療ビームエネルギーが、処置することが所望される領域に堆積され、過剰な量の放射線治療ビームエネルギーが、処置することが所望される領域に隣接した体積の健康な組織に堆積される。結果として、隣接した体積における組織は、所望せず、また不要な損傷を被り、腫瘍の場所に隣接する健康な器官が損傷する。
【0007】
処置することが所望される領域に、放射施療法ビームの焦点を十分に正確に合わせることが一般的に不可能なため、現在の医療の実地では、付加的な組織量を含めるために、照射領域を増加させ、処置することが所望される領域における細胞死を完全にすることを確実にするために、放射施療法ビームの線量を増加させている。処置されるべき領域の全ての細胞が殺され、ビームと領域との間の可能的な配置の誤差が補償されるということが期待される。しかし、このような技術は、必然的に、処置することが所望される領域に隣接した体積の副次放射損傷の増加を引き起こし、場合によっては、対象物の生命効果を破壊する結果となる。
【0008】
従って、本発明の目的は、放射線治療ビームを、ビームにより処置することが所望される領域上に正確に配置することができるための新規な改良された装置を提供することである。
さらに、本発明の他の目的は、処置することが所望される領域上に、放射線治療ビームを正確に配置することができる新規な改良された装置を提供することである。ビームが正確に配置されたかどうかを決定するために使用される装置は、現存の放射線治療ビーム装置に基づいて容易に改善されるものである。
【0009】
さらに本発明の他の目的は、処置することが所望される領域内の、および領域に隣接したソフトな組織構造および器官の、二次元および三次元の空間的に解析された高コントラストの像を得るための、磁気共鳴映像システムを含む放射線治療機器を提供することである。
本発明の他の目的は、磁気共鳴映像システムの励起コイルアセンブリが、放射線治療機器の放射線治療ビームがコイルアセンブリに入射しないように配置される(ここで放射線治療ビームの通路に、処置カウチ上の処置されるべき対象物が容易に配置され得るようにコイルアセンブリが配置される)磁気共鳴映像システムを含む放射線治療機器を提供することである。
【0010】
本発明の他の目的は、照射領域、とくに、領域における組織細胞の内容の放射線治療ビームの効果を直接的に検出するためのシステムと組み合わせた、新規な改良された放射線治療機器を提供すること、および実際に照射される領域の形状、配置および強度と、腫瘍および病巣が位置する、照射されることが所望される領域の既知の配置との間の実時間三次元相関を可能にするために、照射の効果を空間的に解析することである。
【0011】
本発明のさらなる目的は、放射線治療ビームにより処置されることが所望される領域の組織が実際に処置されるかどうか、またその程度を決定するための比較的低コストの装置と組み合わせた、新規な改良された放射線治療機器を提供することである。
本発明のさらなる目的は、磁気共鳴映像システムのコイルの磁場により、皮膚への衝撃から起こるX線ビームによる二次電子皮膚線量が実質的に減少する、磁気共鳴映像システムと組み合わせた、新規な改良されたX線ビーム療法装置を提供することである。
【0012】
【発明の開示】
本発明の一態様に従って、これらおよび他の目的は、処置カウチ上の対象物の領域のための放射線治療ビームを得るための放射線治療機器、および領域をビームにより照射するのと実質的に同時に、領域および領域に隣接する体積を映像化するための磁気共鳴映像システム、の組み合わせにより達成される。磁気共鳴映像システムにより、領域およびその領域に隣接した体積の像が与えられる一方、放射線治療ビームにより、対象物の領域を処置してもよい。磁気共鳴映像システムのビームおよび磁気励起コイルアセンブリは、ビームがコイルアセンブリに入射せず、また、放射線治療ビームか電子のような荷電粒子から成る場合において、コイルアセンブリより得られる磁場が、ビームの粒子の軌道に摂動を与えないように配置される。
【0013】
磁気共鳴映像システムの励起コイルアセンブリは、好適には、主直流磁場を生成するための、第1および第2の、間隔が空けられたセグメントを含み、セグメントは、領域の反対側に配置される。
一実施例において、励起コイルアセンブリは処置ビームの軸線の動きに関係なく配置され、第1および第2の励起コイルアセンブリは処置されるべき領域を通過する軸線と実質的に一致し、その周囲をビームの軸線が回転する共通の軸線を有する。例えば処置カウチのような対象物の搬送構造は、コイルセグメントの整合された中央開口部内に適合する。ビームの軸線は、セグメントにより生成され、セグメント間を伸長する主磁場まで、二つのセグメントの間を直角に通る。
【0014】
他の実施例において、コイルアセンブリは、ビームの軸線が動くときに動くように配置される。
これらの実施例のうちの一つにおいて、第1および第2のコイルセグメントのそれぞれは、共通の軸線を有する中央開口部を含む。ビームの軸線は、両コイルセグメントの中央開口部を通って伸長し、これらのセグメントにより形成され、セグメントの間を伸長する磁力線とほぼ一直線にそろう。もう一つの実施例において、ビームの軸線は、セグメント間の空間を通って伸長し、これらのセグメントにより形成され、セグメントの間を伸長する磁力線とほぼ直角となる。後者の配列は、コイルセグメントに中央開口部を有しておらず、開口部をもつ配列よりも高い強度の磁場を形成するために、有利である。
【0015】
本発明の特徴は、磁場共鳴像システムの励起コイルより得られる磁場が比較的低く、必要最小限の空間解析および放射線治療ビームが、処置が所望される領域に入射されているかどうかを決定するための感度のみを与えるのに十分であることである。磁場密度は、主磁場を生じるために、在来の銅巻線型水冷コイルを用いることができる程度に十分に低いが、所望するならば、液体ヘリウムまたは液体窒素で冷却する、超伝導鉄芯コイルアセンブリを用いることもできる。
【0016】
液体ヘリウム冷却超伝導コイルが磁場共鳴像システム主磁場を生成するならば、商業的に入手することができる高温超伝導供給リード線が、好適には、超伝導コイルと直流電源との間に、超伝導コイルを励起するために外部接続を行う。高温超伝導供給リード線は、つまり、77°Kに維持されている液体窒素の温度から、約4.2°Kの低温超伝導コイルへの熱放散を妨げる。このことにより、低温超伝導コイルは、供給リード線の接続なしに持続モードで作動するため、熱放散理由での必要がなくなり、そのために、受容できない液体ヘリウムの消費の増加なしに、外部供給により、コイルの電流をオンおよびオフにパルスすることができる。同期して電子放射線治療ビームをオフおよびオンとパルスにしながら、高温超伝導供給リード線をオンおよびオフとパルス化することにより、磁場共鳴像システムは、放射線治療電子ビームにおける電子の悪い偏向効果がない。
【0017】
共鳴像システム鉄芯コイルより得られる磁場の必要な強度を減少するために、共鳴像システムの無線周波ピックアップコイルは、好適には、超伝導体である。このため、共鳴像システムの主鉄芯コイルは、比較的小さいサイズを有し、現存の放射線治療機器に主コイルを適用し、本発明の構造を含む設備のコストを減少させることができる。超伝導無線周波コイルは、好適には、金属箔または平面的な酸化単結晶基板上で成長した、配向された高温超伝導フィルムから形成される高温超伝導体である。本発明のさらなる特徴は、放射線治療機器に発生する漏れ磁場が、磁気共鳴映像システムに発生する磁場からデカップリングされ、磁気共鳴映像システムに発生する漏れ磁場が、放射線治療線形加速器に発生する磁場からデカップリングされることである。デカップリングは、好適には、磁気共鳴映像システムの外部に配置された補償コイル、および線形加速器およびその関連構成要素を囲むコイルまたは複数のコイルにより与えられる。
【0018】
本発明の特徴は、磁気共鳴映像システムが、ビームにより、処置されることが所望される組織に照射する放射線治療ビームの効果により、映像領域の核磁気共鳴スペクトルパラメータの変化を検出することができることである。
磁場における熱平衡において、核の磁気モーメントは磁場と整合される。この配列で摂動を受けると、磁気モーメントは特定の核種(しばしば、水素核またはプロトン)の特定の共鳴周波数において、印加された磁場の周囲を歳差運動する。周囲電子の効果の遮蔽による、分子の異なった原子サイトにおける印加された磁場の変化は、同様の核の共鳴周波数に小さなシフトを引き起こす。共鳴核の環境の特性は、共鳴の減衰または緩和の割合を決定する。これらの共鳴周波数の違いは、解析され、分子構造を分析するために使用され得る。代替的に、共鳴周波数がサンプル内の特定の核スピンの位置の関数である場合には、サンプルを横切る磁場勾配を加えることにより、共鳴周波数を変更することができる。これが、核磁気共鳴映像システムの基礎を作る。
【0019】
どちらの場合においても、スピンの固有共鳴周波数に近い周波数をもつ高周波(rf)パルスの印加は、核磁気モーメントに摂動を与えるために使用される。摂動は、核磁気モーメントを、印加された磁場との整合から離して回転させる。90°の回転が、磁場に対して最大横磁化を生じ、180°の回転が、初期の磁化の反転を引き起こすが、横磁化は起こさない。印加された磁場の周囲を歳差運動し、NMR分光計で検出することができるのは、横磁化要素である。摂動に続いて、二つの緩和時間が熱平衡への戻りを特徴付ける。歳差運動に加えて、横磁化は、特徴的な時定数T2、スピン-スピン緩和時間でもって振幅を減少させる。印加された磁場に対する磁化並列の要素は、特徴的な定数時間T1、スピン-格子緩和時間でもって初期値に戻す。これらの緩和時間の両方とも、隣接原子および分子の磁気誘導の影響を受ける。特に、強力な電子による磁気モーメントをもつ遊離基(free radicals)の存在は、近接核の緩和時間および共鳴周波数を変更し得る。共鳴周波数および緩和時間の測定は、空間位置と相関をもつNMR空間データを提供するための、NMR映像法と結合される。
【0020】
異なったタイプのソフトな組織の核の磁気環境のちがい、すなわち異なった体器官における組織間、またはがん組織とがんでない組織との間のちがいに対するNMR空間パラメータが高感度なため、ソフトな組織構造のNMR映像が、同様の組織体積のX線映像よりもはるかに強いコントラストで達成される。さらに、MR映像は、二次元の位置情報ではなく、三次元の位置情報を含む。ソフトな組織におけるがん腫瘍または病巣の位置は、このようにして放射線治療機器により、X線映像により得られる隣接した骨の位置を参考にして、推測された腫瘍の位置を推定するよりも、はるかに高い精度をもって、直接的に決定され得る。さらに、遊離基の存在により誘導されるNMR空間パラメータにおける大きな変化のために、放射線治療ビームによる組織の放射の一次生産物の一つとして、映像化された体積内での空間位置および放射線治療ビームの組織への放射の強度は、治療の間のリアルタイムで決定される。
【0021】
本発明の態様に従って、組織に照射する放射線治療ビームの効果による核磁気共鳴空間パラメータにおける変化を検出するために、磁気共鳴映像システムの分析能が使用される。選択された組織上への放射線治療ビームの入射は、組織において生成されるべき遊離基およびイオン化生成物を生じる。これらの存在は、検出し、映像化することができる。磁気共鳴映像システムの放射線治療ビーム、高強度磁場およびrfパルスは、このように、治療プロセスの間、治療される組織および隣接した組織に堆積される放射線治療ビームの放射線量のための三次元空間分布情報を得ることができるように、相互作用する。三次元情報は、既知の磁気共鳴像技術を使用すること、およびビームの軸線位置の検出されたデータを、既知のビームの断面幾何学形状および強度と相関させることにより得られる。治療される組織の放射線治療ビームの空間分布に関する三次元情報は、先に収集され、このため既知の処置することが所望されるがん組織の位置に関する三次元データと相関される。このことにより、放射線治療ビームは、隣接した組織に入射されないように、処置することが所望される組織に制限され、調節される。このことにより、ビームからの対象物への全放射線量を減少させることができ、健康な組織への副次損傷を最少にすることができる。放射線のないMR像は、がん組織を示す。ビームが照射されると、MR像は照射された組織の内容を示す。
【0022】
本発明の上記、およびまたさらなる目的、特徴、利点は、特に、添付の図面と共に、次の特定の実施例の詳細な説明を参照することにより明らかになるだろう。
【0023】
【発明を実施するための最良の形態】
図1のブロック図には、比較的に従前の放射線治療機器20、磁気共鳴映像システム22ならびに機器20およびシステム22を含む装置のためのコントローラ24を含んだ、本発明の装置が図示されている。放射線治療機器20は、X線ビームまたはパルス化される電子ビームソース26の形態となる放射線治療ビームソース、ソース26を支承するためのガントリー、ガントリーのための駆動モータ28、および対象物(患者)が配置される処置カウチを含む。処置カウチは、選択的に、XおよびZ軸線方向に沿って水平面に配置され、Y軸線方向に垂直に配置される対象物受けベッドを含み、ベッドの水平および垂直の動きは、水平および垂直方向駆動モータ31、33および35により与えられる。放射線治療機器20はまた、線形加速器を囲み、実質的に線形加速器に関連した外部漏れ磁場を解消するコイル30も含み、このためこれらの漏れ磁場が磁気共鳴映像システム22の動作に影響しない。
【0024】
磁気共鳴映像システム22は、放射線治療ビームにより処置されるべき領域間に位置する、二つの間隔が空けられた巻セグメントを有する主DC磁気コイルアセンブリ32を含む。アセンブリ32の巻セグメントは、システム22の主磁気DC界を生じるためのソース36により、DC電流が供給される。磁気コイルアセンブリ32は、機器20の放射線治療ビームにより、破壊されることが所望される組織の位置のところで、対象物の領域の主磁気DC界を生じるように配置される。アセンブリ32により生じるDC磁場の大きさは、領域における対象物の体組織細胞のプロトンを歳差運動させるのに十分な大きさである。アセンブリ32は、銅ワイヤ巻線型水冷コイル巻セグメント(システム22のコストを最小化するため)、または液体ヘリウムソース34により液体ヘリウムの温度に冷却された、液体窒素ソースまたは低温ワイヤ巻セグメントにより冷却された、高温超伝導巻セグメントを含む。
【0025】
アセンブリ32のコイルが低温超伝導コイルならば、これらは好適にはニオビウムチタン(NbTi)またはニオビウムスズ(Nb3Sn)ワイヤである。このような超伝導コイルは、電力消費、冷却水の供給および在来の銅巻線に合わせて得られる空間により決められる制約が与えられる在来の銅水冷巻線よりも高い磁場を提供する。
【0026】
磁気共鳴映像システム22の主磁場を生成するために低温超伝導コイルがアセンブリ32に使用されると、アセンブリ32のコイルは好適には、商業的に入手可能な材料から成る高温超伝導リード38により、ソース36に接続される。液体窒素源40により超伝導体の温度を77°Kに保ったリード38は、アセンブリ32の4.2°K超伝導コイルへのソース36からの熱放射を防止し、このためアセンブリ32のコイルは、持続モードで作動する必要がない。アセンブリ32のコイルが持続モードで作動する必要がないため、放射線治療機器20のビームが電子ビームならば、コイルは必要なときにオンおよびオフにパルス化することができる。機器20の放射線治療ビームが電子ビームならば、電子ビームが生成されるときに、電子ビームはパルス化されなければならず、磁気共鳴映像システム22の磁場はパルス化をオフにされなければならず、このため磁気共鳴映像システムの磁場は、電子ビーム電荷キャリアをゆがめることはない。
【0027】
磁気共鳴映像システム22はまた、放射線治療ビームにより処置される映像化された領域においてプロトンを励起させるrfコイルを含み、このためプロトンは(1)プロトンを含む原子および(2)プロトンが配置される磁場の大きさにより決定される周波数において、歳差運動をする。rfコイル42は、在来のワイヤ巻線コイルまたは液体窒素の温度に冷却される高温超伝導体もしくは液体ヘリウムの温度に近い温度に冷却される低温超伝導体のいずれかである。rfコイル42は、映像化され、処置される領域のプロトンの歳差運動周波数に関連したキャリア周波数を有する短い持続時間のパルスを誘導するパルス化されたrfソース44より、rfエネルギーが供給される。rfレシーバー46は、ソース44からのパルスがおさまった後に、歳差運動されたプロトンからのrfエネルキーに応答し、コイル42に戻って結合する。コイル42のレシーバー46への結合によるエネルギーの周波数は、システム22のDC磁場にさらされる対象物の領域のプロトンの歳差運動周波数および磁気共鳴映像システム22からの磁場と結合される対象物の領域にある原子のタイプより決定される。スピンを整合するためにrfソース44からのrf励起パルスを用いることにより、そして次に、様々な歳差運動周波数における時間依存信号振幅を監視するために遅延プローブパルスを使用することにより、緩和時間T1およびT2を得ることができる。このことを達成するための適当なパルスシーケンスは、磁気共鳴像の当業者により開発されている。例えば、90°プローブパルスに続く、スピンを整合するための180°励起パルスは、T1を測定するために用いられ、180°プローブパルスに続く、スピンを整合するための90°励起パルスは、T2を監視するために用いられる。当業者によく知られた、さらに複雑なパルスシーケンスは、感度および精度を向上させるために用いられ、これらは、緩和時間の領域値に従ってピクセルが重み付けされているところで、空間的に解像された像を与えるために、確立された信号処理技術と組み合わせられる。映像化され、処置される領域のプロトンの歳差運動周波数および、とくに、緩和時間パラメータT1およびT2の値は、放射線治療ビームの照射生成物に影響されるため、コイル42に戻って連結されるrfエネルギーの周波数および時間依存振幅は、放射線治療ビームが映像化された組織上に入射されるかどうかの関数である。
【0028】
rfレシーバー46は、ユニット48の分光計およびディスプレイのユニット48へのrf信号を与える。ディスプレイは、通常、磁気共鳴映像システムにおいて使用される三次元型であるが、分光計は好適に、T1およびT2緩和時間測定能および磁気共鳴映像システムの電子を駆動する勾配コイルをもつ、化学的核磁気共鳴映像システムを用いる、化学シフトスペクトルの高速フーリエ変換解析能と組み合わせられる。このことにより、分光計およびディスプレイのユニット48は、コイル42をレシーバー46に連結することによるrfエネルギーの周波数の内容を決定するための高速フーリエ変換コンピュータプログラムを含む。
【0029】
分光計およびディスプレイのユニット48が高速フーリエ変換プログラムおよび緩和時間測定能力を含むため、磁気共鳴映像システム22は、機器20の放射線治療ビームにより照射された領域より得られる、核磁気共鳴(NMR)スペクトルパラメータ(緩和時間を含む)の変化を検出するために、システム22の解析能を使用する。領域的なNMRスペクトルパラメータにおける特徴的な変化は、領域の組織への放射線治療ビームによる照射の効果から生じる。結果として、分光計およびディスプレイのユニット48は、組織を放射線治療ビームにより処置しながら、対象物の組織への機器20からの放射線治療ビームにより照射の空間分布に関する三次元情報を提供することができる。三次元情報は、ユニット48のディスプレイより得られ、使用者により、または自動的にコンピュータ(図示せず)により、処置することが所望される領域の位置に関する情報、例えば患者のがん細胞の位置の情報と相関される。この相関に応答して、患者の位置およびそれにより放射線治療ビームにより照射される組織の位置は、機器20の処置カウチの位置のオペレータコントロールモニター31、33および35により、またはカウチの位置を調節するための自動フィードバックシステム(図示せず)により、動かされる。
【0030】
基本的に、分光計およびディスプレイのユニット48は、磁気共鳴映像システム22の核磁気共鳴スペクトルパラメータの変化を監視する。核磁気共鳴スペクトルパラメータのこれらの変化は、放射線治療ビームにより処置されるがん細胞の照射の効果に直接的に応答する。この情報は、照射された体積および処置することが所望される領域、すなわちがん細胞を含む領域の位置の形状、位置および強度の間のリアルタイムの三次元相関を可能にする。
【0031】
rfコイル42が、液体窒素の温度77°Kに冷却された超伝導体、好適には高温超伝導体を含むならば、アセンブリ32のコイルより得られる主磁場の大きさは、実質的に減少され得る。このことにより、放射線治療機器20へのコイルアセンブリの巻セグメントの改良を容易にするために、アセンブリ32の磁気コイルは、体積を実質的に減少させることができる。好適には、コイル42に含まれる高温超伝導体は、適当な緩衝層をもつ金属コイルまたは平面的な酸化単結晶材料上で成長した、配向された高温超伝導フィルムから作られる。
【0032】
磁気共鳴映像システム22はまた、機器20のカウチのX、YおよびZ座標軸線とはいくらか異なるX’、Y’およびZ’座標軸線のためのDC勾配コイルを含むアセンブリ50も含む。垂直YおよびY’の軸線が一致するとき、X’およびZ’軸線は、XおよびZ軸線から水平面にあるが、XおよびZ軸線から45°に置き換えられる。異なった時間に、アセンブリ50のコイルにより生じる勾配磁場の振幅が変化するように、アセンブリ50の勾配コイルに、ソース52からの可変的振幅DC電流が供給される。
【0033】
アセンブリ50の勾配コイルは、放射線治療ビームがこれらに入射せず、勾配コイルが、放射線治療機器20により対象物へ供給されるビームに干渉されないようにして配置される。この結果、X’およびZ’コイルは、対象物の放射線治療ビーム入射の軸線に対して直角であり、下記に詳細に説明するように、アセンブリ32のコイル上に取り付けられる。対象物の放射線治療ビームの軸線が入射するとき、垂直またはほぼ同じ方向に伸長するY’磁場を形成するアセンブリ50のコイルは、垂直平面またはビームの軸線に対して直角の異なった平面に位置し、ビームがそこを通って伝搬することができる開口部を含む。
【0034】
機器20が電子放射療法ビームを対象物に照射する場合、アセンブリ32のコイルをオンおよびオフにパルス化するソース36と同時に、ソース52はパルスをオンおよびオフにされ、このため、電子ビームがオンの間、勾配コイルから得られる磁場が生成されない。このことにより、アセンブリ50の勾配コイルにより生成される勾配磁場は、パルス化された放射療法ビームを偏向させる傾向をもたない。
【0035】
機器20が対象物にX線放射療法ビームを照射するならば、磁気共鳴映像システム22はまた、アセンブリ54のDCコイルを含み、アセンブリ54のコイルに、ソース56によりDC電流が供給される。アセンブリ54のコイルは、下記のように、磁気共鳴映像システム22のアセンブリ32および50のコイルから得られる漏れ磁場を抑制するための磁場を生成するように配列され、このためこれらの漏れ磁場は、放射線治療機器20の線形加速器構造に結合しない。放射線治療機器20が電子ビームを誘導するために専ら使用される場合、放射線治療機器の線形加速器がパルス化された電子放射線治療ビームを生成する間、アセンブリ32および50からの磁場がオンでないため、アセンブリ54のコイルおよびDCソース56は必要ない。
【0036】
コントローラ24は(使用者により、または自動的に完全に自動システムにより作動することができる)、セレクタ60、シンクロナイザ62およびカウチ位置コントローラ64を含む。セレクタ60は、放射線治療機器20のカウチに可動的に取り付けられた患者受けベッドのためのX、YおよびZ軸線方向駆動モータ31、33および35を駆動するために、カウチ位置コントローラ64に信号を供給し、このためこれらの駆動モータは、(1)カウチの上の対象物に、放射線治療機器20からのビームが人射していないとき、および(2)アセンブリ32および50のコイルおよび磁気共鳴映像システム22のrfコイル42が動作していないときに、駆動される。他の時に、セレクタ60はシンクロナイザ62を調節し、電子ビームソースであるならば、DCソース36および52がオフに、および逆にパルス化される間、放射線治療ビームソース26はパルス化される。同様に、パルス化されたrfソース44は、電子ビームがソース26から得られる間、動作しないようにシンクロナイザ62により調節される。
【0037】
図2および図3に、放射線治療機器20が、ハウジング(放射線治療ビームソース26を支承する)およびその上に患者Pを配置する処置カウチを含んで図示されている。
患者Pは、機器20の放射線治療ビームソースから得られる放射線治療ビーム104により照射されるがん組織領域Rを含む。ハウジング100は、据え付けられたフロアー、直立の区画103にフロアーに取り付けられたペデスタル108および水平に伸長するアーム114が固定的に取り付けられる、垂直に伸長するショルダーを含むガントリー110を含む。ガントリー110は、ガントリー駆動モータ28により、水平の軸線116の周囲を回転し、直立の区画106に固定的に取り付けられる。ガントリーアーム114は、線形加速器118および線形加速器により生成される高エネルギー電子ビームを曲げる曲げ磁石120を含む関連した電子光学を支承する。電子ビームは、加速器118内へと、軸線116と平行で、水平方向に伝搬し、軸線116に対して直角であるビームの軸線122に沿って、加速器118の電子光学により偏向される。いくつかの放射線治療機器において、放射線治療ビーム104は電子ビームであり、他の放射線治療機器において、放射線治療ビーム104はX線光子から成る。後者の場合、X線ターゲット124は、線形加速器および曲げ磁石120を含む電子光学より得られる電子ビームの通路に配置される。
【0038】
線形加速器118より得られるビームのための電子光学およびX線ターゲット124より得られるビームのためのX線光学は、放射線治療ビーム104が、処置すべきがん組織が位置する放射線治療機器の等角点で、患者Pの領域Rに焦点を合わせるようになっている。放射線治療ビーム104により処置されることが所望される領域である領域Rは、軸線116および122の交点である。
【0039】
領域Rを軸線116および122の交点に配置するのを補助するために、処置カウチ102は、ベッド128がXおよびZ軸線方向の水平面およびY座標軸線に沿った垂直方向に動かされるように、互いに直交する3方向に患者を支承するベッド128を動かすために、X軸線、Y軸線およびZ軸線方向モータ31、33および35を支承する、固定されたフロアー据え付けプラットフォーム126を含む。
【0040】
先述の放射線治療機器20は、在来のものである。本発明において、磁気共鳴映像システム22は機器20と組み合わされ、線形加速器118および曲げ磁石120により生成された漏れ磁場好適には、磁気共鳴映像システムからデカップリングされる。この結果、漏れ磁場解消DCコイル30は、線形加速器118を囲む。好適には、DCコイル30は、ほぼソレノイドの形状をもち、加速器118および曲げ磁石120を囲む解消コイル133を囲む、解消コイル130を含む。ソレノイドコイル130は、間に鉄製チューブが伸長する、向かい合いに配置されたエンドキャップ132を含む鉄スリーブ131を順に囲む。このことが、集束管状の加速器118からの多数の漏れ磁場の磁気帰り道を与え、解消コイル130に必要な電流を減少する。エンドキャップ132のうちの一つは、線形加速器118に電力を供給するための電子リードが通って伸長する中央開口部を有する。チューブ134は、軸線122と一直線に並んだ開口部を有し、このチューブ134の開口部は加速器118から誘導される電子ビームが、加速器の漏れ磁場解消システムから、拘束されないように通ることができるのに十分な直径を有する。導波管、電気供給リードおよびクーラントのために、エンドキャップ132にさらなる開口部が設けられる。
【0041】
図2および図3の実施例において、主DC励起コイルアセンブリ32、rfコイル42、勾配コイル50および漏れ磁場抑制コイル54は、支柱(図示せず)により、これらのコイルの動きが、軸線116の周囲の線形加速器118の回転と独立するようにして、ペデスタル108またはフロアーに支承されたペデスタルに固定的に取り付けられる。主DC励起コイル32は、好適には、rfコイル42、勾配コイル50および漏れ磁場抑制コイル54をもつ。
【0042】
主励起コイル32は、軸線116とほぼ整合して並べられた中央開口部137をそれぞれ有する、垂直に伸長し、水平に間隔のあいた二つの巻セグメント136および138を含む。コイルセグメント136および138は、患者Pおよびベッド128を囲む。コイルセグメント136および138は、全体的に、放射線治療ビームの軸線122に対して直角の方向で、患者Pの処置領域Rを通って伸長する、水平に伸長する主DC磁力線140を生成する。コイルセグメント136および138は、領域Rがその間にあるように、互いに間隔を空けられている。ビーム104は、放射線治療ビームがコイル32、rfコイル42、勾配コイル50または漏れ磁場抑圧コイル54のどの部分とも交差しないように、コイルセグント136および138の間に伸長する。
【0043】
これらの結果、図8に図示したように、X軸線勾配DCコイル142、143が、セグメント136の斜めに向かい合った一組の角に配置されて備えられ、138Z’軸線勾配’DCコイル144、145が、セグメント136および138の残りの一組の斜めに向かい合った一組の角に配置されて備えられている。コイル142〜145は、互いに直角のDC勾配界線に水平に向かった領域Rを生成するために、コイルセグメント136および138の中央部分で、ベッド128の高さに取り付けられる。Y’軸線勾配DCコイル146、147は、領域Rを通る、垂直方向に向かった磁力線を生成するために、コイルセグメント136および138の上方および下方エッジに配置される。rfコイル42は、領域Rに対してrf場を供給し、供給されたrf場がおちついた後に領域Rから戻る場に応答するように、コイル142〜145の内部およびコイル142〜145に固定的に取り付けられる。
【0044】
コイルセグメント136および138により生成された漏れ磁場を抑制し、そのことにより磁力線140をコイルセグメント間の領域に制限して、漏れ磁場が磁力線加速器118に影響を及ぼさないようにするために、DC漏れ磁場抑制コイル54は、図10に図示したように、一組の分割されたコイル巻線154および156として形成される。セグメント154および156は、コイルセグメント136および138の外側にそれぞれ保たれて配置されており、コイルセグメント136および138の内径よりもやや小さい内径をもつ中央開口部を有する。コイルセグメント152および154は、コイルセグメント136および138の外径よりもやや大きい外径を有する。コイルセグメント152および154は、所望の解消を提供するために、反対方向に向かい、巻セグメント136および138の漏れ磁場と実質的に等しい大きさの磁場を生成する。この結果は、コイルセグメント152および154の適当なDC励起および巻配列により達成される。
【0045】
図4および図5に、主DC励起コイルアセンブリ32、rfコイル42、勾配コイル50および漏れ抑制コイル54が、図2および図3に図示したものと実質的に同じに形成されているのが示されている。しかし、図4および図5の実施例において、コイルアセンブリ32、rfコイル42、勾配コイル50および漏れ抑制コイル54は、これらのコイルのすべてが軸線116の周囲を回転するように、ガントリー110に保たれ、固定的に取り付けられている。図を単純化するために、図4および図5においては、コイルアセンブリ32の分割した巻セグメント160および162のみが図示されており、rfコイル42、勾配コイル50および漏れ抑制コイル54は、図4および図5の実施例において、基本的に、図2および図3の実施例のように形成されていることが理解されよう。巻セグメント160および162は、支柱164により、ガントリー110に固定的に接続され、患者Pとベッド128がその間になるように、互いに間隔を空けられている。
【0046】
コイルセグメント160および162のそれぞれは、放射線治療ビーム104の軸線と実質的に一致し、領域Rを通過する、共通の軸線164を有する中央開口部166を含む。巻セグメント160および162は、コイルセグメント間を伸長する主DC磁力線168が軸線122および164とほほ平行平面にあるように、巻かれて通電される。
コイルアセンブリ32の巻セグメント160および162、ならびにrfコイル42、勾配コイル50および漏れ抑制コイル54は、ビーム104がこれらのコイルまたは巻セグメントのいずれにも入射しないように配列される。巻セグメント160および162の開口部166の軸線と放射線治療ビームの軸線122との間の実質的な一致のために、図4および図5の実施例の励起巻セグメントは、図2および図3の実施例の巻セグメントの中央開口部よりも小さい中央開口部を有する。図4および図5の実施例の中央開口部がより小さい結果、巻セグメント160および162は、同じ大きさで他の特性を有する巻セグメントである巻セグメント136および138よりも、領域Rに対して、より強い映像DC磁場強度を与える。図4および図5の実施例はまた、図2および図3の形状により提供されるよりも、使用者が患者Pに対して、よりよい物理的アクセスを有することができる。さらに、図4および図5の実施例は、患者の精神的なストレスを少なくするために、患者に対する閉じ込めが少ない。
【0047】
図6および図7に図示されたさらなる実施例に従い、主DC励起コイルは間隔を空けたパンケーキのような巻セグメント170および172を含む。セグメント170および172は、互いに平行に、ベッド128と患者Pがその間に適合することができるのに十分な量の間隔を空けて伸長する。巻セグメント170および172と補償コイル154とは、それらの回転対称の共通の軸線178が、線形加速器118がその周囲を回転する放射線治療ビームの軸線122およびガントリーの軸線116の両方に対して、直交するように配置される。結果として、巻セグメントにおける中央開口部の必要をなくすために、ビーム104は巻セグメント170と172との間を障害なしに通過する。(図6および図7において、コイルアセンブリ32の巻セグメント170および172のみが図示されているが、上記の図2および図3と関連するように、rfコイル42、勾配コイル50および漏れ補償コイル54は、コイルアセンブリ32と固定的に配置される。)それらに保持される巻セグメント170および172とコイルとは、支柱174によりガントリー110に固定的に保持される。
【0048】
コイル巻セグメント170および172は、放射線治療ビームの軸線122と直角に伸長する主DC磁力線176を生成する。巻セグメント170および172は中央開口部がないため、巻セグメント170および172により生成される主DC磁場の強度は、3組すべての巻セグメントの性質が同じである場合、図2および図3または図4および図5の実施例の巻セグメント136、138または160、162により生成される主DC磁場の強度よりも大きい。
【0049】
すべての巻セグメント170、172およびrfコイル42、勾配コイル50および漏れ磁場抑制コイル54は、放射線治療ビーム104が、それらのその部分にも入射しないように、図2および図3図4および図5ならびに図6および図7の実施例のそれぞれに配置される。放射線治療ビームがコイルのいずれかの部分に入射した場合、患者Pに有害な効果をもつ二次X線が生成される。さらに、入射コイル部分の放射線治療ビームのエネルギーは、効果がなく、無駄である。
【0050】
図4、図5、図6および図7の実施例において、コイルが、軸線116の周囲でガントリーを回転させるようにガントリー110に配置され、コイル32の角度位置は常に決定され得る。この結果、軸線116の周囲でガントリー上に在来の角度位置検出器(図示せず)を配置することにより、ガントリー110の角度位置の監視が達成される。ガントリー100のための角度位置検出器は、分光計およびディスプレイのユニット48のガントリー角度位置を示す信号を提供する。ユニット48は、コイルが軸線116の周囲で異なった角度位置に回転したときに、コイル32により形成される磁場の変化を補償するように、ガントリー角度位置を示す信号に応答する。
【0051】
図6および図7の実施例の一つの問題は、患者Pが、間隔を空けた巻セグメント170および172の間のベッド128に上ったり下りたりすることが困難なことである。この問題を解決するために、図9の平面図に示されているように、巻セグメント170および172が物理的に取り付けられ、ここで、支柱および巻セグメントが選択的に垂直軸線180の周囲を枢動することができるように、巻セグメント170を保持する支柱174が取り付けられる。このために、ガントリー110は、その上にヒンジ184の一方の板が固定的に取り付けられているショルダー182を含む。ヒンジ184の他方の板は、巻セグメント170を保持する支柱174に固定的に取り付けられる。正常運転において、電流が巻セグメント170、172に印加されると、メカニズム186のロックにより、ヒンジ184は適所に保持される。ビーム104による患者Pの処置が始まる前に、または処置が完了したときに、患者Pがベッドに上がったり降りたり動けるように、ロック30メカニズム186は解放され、巻セグメント170は揺動してあけられる。
【0052】
常にガントリー110上の固定位置に保持されている巻セグメント172は、図8に関連して上記されたように、巻セグメント170により、アセンブリ50のY’軸線勾配コイル186、187およびアセンブリ50のX’およびZ’軸線勾配コイルに保持され、他の二つのX’およびZ’軸線勾配コイル183、185は、巻セグメント170により保持されている。
【0053】
囲いとコイルアセンブリ32の巻セグメントとの間の閉じた位置のため、制限され、磁気的に遮蔽された処置囲いにある放射線治療機器20の患者ベッドにアクセスしたり、ベッドら下りることについての患者Pの問題は、図11および図12に図示された装置により解決することができる。図11および図12に図示された装置において、患者Pは、放射線治療機器20から離れた位置で、ベッド188に上る。磁気共鳴映像システム22のコイル32、42、50および52は、ベッド188により保持される。患者が離れた位置でベッドに配置された後、ベッドは、処置が所望される領域Rが、放射線治療機器20の軸線122に沿って配置されるような場所に動かされる。ベッドは、ベッドの準備、取付位置から、機器20およびシステム22の等角点の処置位置へと動かされる。ベッドの位置、およびそれにより放射線治療ビームの軸線122およびガントリーの回転軸線116に対する患者Pの位置を正確に調節するために、ベッド188は非磁気トラック190に沿って移動される。ベッド188が正しい位置へと移動されると、ベッドは機器22のペデスタル108へとロックされる。
【0054】
ベッド188のヘッドにおいて、ペデスタル108とヨーク192との間に、電気的および機械的連結が形成される。機械的連結により、ベッド188がペデスタル108にロックされ、電気的結合により、ハウジング100の電源からの電力がコイル32、42、50、52へ、およびハウジング100の信号ソースからの信号がモータ31、33および35ならびにコイル42へと供給される。
【0055】
図12に示したように、単一の患者のベッド188は、単一の位置外部放射線処置機器20の間を前後に動くことができ、または複数のこのようなベッド188はいくつかの外部位置の間を動くことができる。複数の外部位置の使用および複数の患者のベッドの使用は、治療機器がより大きい有益なサイクル時間、すなわちより高い負荷サイクルを有するようにする利点を有する。
【0056】
本発明のいくつかの特定の実施例を説明して図示してきたが、特に図示され説明された実施例の細部の変化は、添付の特許請求の範囲により画成される本発明の思想および範囲を逸脱することなく行われる。
【図面の簡単な説明】
図1は、いくつかの好適な実施例のアウトラインを示した、本発明のブロック線図である。
図2は、磁気共鳴映像システムの空間定常DC励起コイルセグメントと組み合わせた、放射線治療機器の側面図であって、ここで
(1)放射線治療ビームの軸線は、間隔が空けられたセグメント間に伸長する主磁束線の方向に対して、ほぼ直角であり、
(2)対象物の治療される領域は、セグメント間の空間内にあり、
(3)セグメントは、ビームを調節するための中央開口部を含む。
図3は、図2に図示された装置の正面図である。
図4は、磁気共鳴映像システムの空間DC励起コイルセグメントと組み合わせた、放射線治療機器の側面図であって、ここで
(1)セグメントとは、放射線治療ビームの軸線がセグメントの中央開口部を通り、ほぼ間隔が空けられたセグメント間に伸長する主磁力線と整合するように配置され、
(2)対象物の処置される領域は、セグメント間の空間内にあり、
(3)セグメントは、ビームを調節するためするための中央開口部を含む。
図5は、図4に図示された装置の正面図である。
図6は、本発明のさらなる実施例の側面図であって、
(1)磁気共鳴映像システムの空間DC励起コイルセグメントが放射線治療ビームの軸線と共に動き、コイルセグメントから得られる主磁力が、放射線治療ビームの軸線に対してほほ直角であるように配置され、
(2)処置領域は、二つのコイルセグメント間にあり、
(3)セグメントは、中央開口部を有さない。
図7は、図6に図示された装置の正面図である。
図8は、図6に図示された装置の一部分、特に、磁気共鳴映像システムのX、YおよびZ軸線勾配コイルの位置の平面図である。
図9は、図6に図示された装置の平面図であり、放射線治療装置の処置カウチへの患者によるアクセスを容易にすることができるように、磁気共鳴映像システムのコイルセグメントが90°に回転されている。
図10は、コイルからの漏れ磁場を実質的に解消するためのコイル配列をもつ、図6の磁気共鳴映像システムの側面図である。
図11は、放射線治療機器および図5および図6の磁気共鳴映像システムに使用することができる、選択的な形状の側面図であって、ここで放射線治療機器により処置すべき対象物を支承するカウチが、非磁気トラック上を、いくつかの待機位置のうちの一つのところから、放射線治療機器の作動位置へと動かされる。
図12は、図11に図示された装置と共に使用されるトラックアセンブリの平面図である。

Claims (29)

  1. 処置カウチ上の対象物の領域のための放射線治療ビームを得るための放射線治療機器、および
    領域をビームにより照射するのと実質的に同時に、領域および領域に隣接する体積を映像化するための磁気共鳴映像システム、
    の組み合わせであって、
    磁気共鳴映像システムは、磁気励起コイルアセンブリを含み、
    ビームおよび磁気励起コイルアセンブリは、ビームがコイルアセンブリに入射せず、コイルアセンブリから得られる磁場がビームと相互作用しないように配置され、
    ビームは、コイルアセンブリからの磁場がそれぞれ領域から除去され、印加されながら、交互に領域に印加し、除去される電子ビームである、
    ところの組み合わせ。
  2. 請求項1に記載の組み合わせであって、
    さらに、対象物のための処置カウチを含み、
    該カウチは、対象物を保持するためのベッドを含み、該ベッドは、処置ビームの軸線に対して領域を配置することができるように動かすことができる、
    ところの組み合わせ。
  3. 請求項1に記載の組み合わせであって、
    磁気励起コイルアセンブリは、ビームの軸線が第一および第二のセグメントの間にあるように、領域の向かい合った側に、第一および第二の間隔が空けられたセグメントを含む、
    ところの組み合わせ。
  4. 請求項に記載の組み合わせであって、
    ビームは、ビームの軸線に沿って伝搬され、
    ビームの軸線は、ほぼ領域を通過して伸長し、ビームの軸線とほぼ交差するように配置されたもう一つの軸線の周囲を回転するように配置され、
    磁気励起コイルアセンブリは、ビームの軸線の動きとは独立に取り付けられる、
    ところの組み合わせ。
  5. 請求項に記載の組み合わせであって、
    第一および第二のセグメントは、もう一つの軸線と実質的に一致する共通の軸線を有し、
    第一および第二のセグメントは、第一および第二のセグメントの間を、共通の軸線と同じ方向に伸長する主磁力線を得て、
    対象物を保持する構造物が、第一および第二のセグメントにおいて、共通の軸線に沿ってほぼ整合された中央開口部間に適合する、
    ところの組み合わせ。
  6. 請求項に記載の組み合わせであって、
    第一および第二のセグメントは、もう一つの軸線に対して実質的に直角の共通の軸線を有し、
    第一およひ第二のセグメントは、対象物保持構造物がそれらの間にあるように配置され、
    セグメントは、ほぼ共通の軸線の方向に伸長する磁力線を有する主磁場を生成する、
    ところの組み合わせ。
  7. 請求項に記載の組み合わせであって、
    コイルアセンブリは、ビームの軸線と共に動くように取り付けられる、
    ところの組み合わせ。
  8. 請求項に記載の組み合わせであって、
    第一および第二のセグメントのそれぞれは、共通の軸線を含む中央開口部を有し、
    ビームの軸線は、第一および第二のセグメントの中央開口部を通過して伸長し、第一および第二のセグメントの間を伸長する磁力線とほぼ整合される、
    ところの組み合わせ。
  9. 請求項に記載の組み合わせであって、
    ビームの軸線と第一および第二のセグメントとは、ビームが第一および第二のセグメントの間の空間を通過して伸長し、第一および第二のセグメントの間を伸長する磁力線とほぼ直角になるように配置される、
    ところの組み合わせ。
  10. 請求項1に記載の組み合わせであって、
    さらに、磁気共鳴映像システムに生じる磁場から、放射線治療機器に生じる磁場をデカップルするように配置される磁気遮蔽構造物を含む、
    ところの組み合わせ。
  11. 請求項1に記載の組み合わせであって、
    磁気遮蔽構造物は、放射線治療機器に生じる漏れ磁場のソースを囲うコイル、および該放射線治療機器に生じる漏れ磁場のソースを囲うコイルを電気的に励起するように配置される電力源を含む、
    ところの組み合わせ。
  12. 請求項1に記載の組み合わせであって、
    磁気遮蔽構造物は、磁気共鳴映像システムに生じる漏れ磁場のソースを囲うコイル、および該磁気共鳴映像システムに生じる磁場のソースを囲うコイルを電気的に励起するように配置される電力源を含む、
    ところの組み合わせ。
  13. 請求項1に記載の組み合わせであって、
    磁気遮蔽構造物は、さらに、放射線治療機器に生じる磁場のソースを囲うコイル、および該放射線治療機器に生じる磁場のソースを囲うコイルを電気的に励起するように配置される電力源を含む、
    ところの組み合わせ。
  14. 請求項1に記載の組み合わせであって、
    ビームは、X線ビームである、
    ところの組み合わせ。
  15. 請求項1に記載の組み合わせであって、
    磁気共鳴映像システムは、主DC磁場を得るためのコイルを含み、
    コイルは非超伝導ワイヤ巻線型水冷コイルである、
    ところの組み合わせ。
  16. 請求項1に記載の組み合わせであって、
    磁気共鳴映像システムは、主DC磁場を得るためのコイルを含み、
    コイルは超伝導体である、
    ところの組み合わせ。
  17. 請求項1に記載の組み合わせであって、
    さらに、超伝導コイルを液体ヘリウムの温度に冷却するための、液体ヘリウムソースを含む、
    ところの組み合わせ。
  18. 請求項1に記載の組み合わせであって、
    ビームは、コイルに印加される電流をそれぞれオフおよびオンにパルス化しながら、交互に領域に印加し、除去される電子ビームであり、
    さらに、電流パルスをコイルに印加するための超伝導リードを含み、
    超伝導リードは、液体ヘリウムの温度と比較して、高い超伝導温度を有するリードである、
    ところの組み合わせ。
  19. 請求項1に記載の組み合わせであって、
    コイルは、液体ヘリウムの温度よりも実質的に高い温度で超伝導体である、高温超伝導コイルである、
    ところの組み合わせ。
  20. 請求項1に記載の組み合わせであって、
    コイルは、液体ヘリウムの温度よりも実質的に高い温度で超伝導体である、高温超伝導コイルであり、
    さらに、超伝導コイルを液体ヘリウムの温度に冷却するための液体ヘリウムソースを含む、
    ところの組み合わせ。
  21. 請求項1に記載の組み合わせであって、
    磁気共鳴映像システムは、超伝導rfコイルを含む、
    ところの組み合わせ。
  22. 請求項1に記載の組み合わせであって、
    さらに、非磁気対象物保持構造物を含み、
    構造物は、機器が配置される第一の領域へ、第一の領域の外の第二の領域から動かすことができ、
    構造物は、前記第一の領域にロックされるように配置される、
    ところの組み合わせ。
  23. 請求項2に記載の組み合わせであって、
    さらに、機器において、構造物の動きをガイドするための非磁気トラックを含む、
    ところの組み合わせ。
  24. 請求項2に記載の組み合わせであって、
    構造物は、システムのコイルアセンブリを保持する、
    ところの組み合わせ。
  25. 請求項2に記載の組み合わせであって、
    さらに、複数の構造物を含む、
    ところの組み合わせ。
  26. 請求項1に記載の組み合わせであって、
    さらに、対象物保持構造物を含み、
    システムの部分として作動する場合、システムのコイルアセンブリが、対象物による構造物へ、および構造物からの容易なアクセスを防ぐように配置され、
    コイルアセンブリが作動していない場合、コイルアセンブリの一部は、構造物に対して動くことができ、
    コイルアセンブリは、対象物が構造物に容易にアクセスできる位置へ動くことができる、
    ところの組み合わせ。
  27. 請求項2に記載の組み合わせであって、
    コイル部分は、対象物保持構造物の表面を受けて、対象物に対して実質的に直角に伸長する平面に取り付けられ、
    コイル部分は平面の方向に伸長する軸線の周囲を枢動することができる、
    ところの組み合わせ。
  28. 請求項1に記載の組み合わせであって、
    さらに、ある周波数において歳差運動する、領域の原子のプロトンに起因する、磁気共鳴映像システムのアウトプットにおける変化に応答する検出器を含み、
    その周波数は、前記ビームの照射生成物の影響下における不実行に従属し、その磁気共鳴励起により決定される、
    ところの組み合わせ。
  29. 請求項2に記載の組み合わせであって、
    さらに、ビームの軸線に対して、対象物保持構造物の位置を調節することにより、領域とビームとの相対的な位置を調節するように配置されるモータを含む、
    ところの組み合わせ。
JP53420199A 1997-12-19 1998-12-21 磁気共鳴映像システムを含む放射線治療機器 Expired - Fee Related JP4382165B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/994,851 US6198957B1 (en) 1997-12-19 1997-12-19 Radiotherapy machine including magnetic resonance imaging system
US08/994,851 1997-12-19
PCT/US1998/027327 WO1999032189A1 (en) 1997-12-19 1998-12-21 Radiotherapy machine including magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2001517132A JP2001517132A (ja) 2001-10-02
JP4382165B2 true JP4382165B2 (ja) 2009-12-09

Family

ID=25541143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53420199A Expired - Fee Related JP4382165B2 (ja) 1997-12-19 1998-12-21 磁気共鳴映像システムを含む放射線治療機器

Country Status (6)

Country Link
US (2) US6198957B1 (ja)
EP (1) EP0963218B1 (ja)
JP (1) JP4382165B2 (ja)
DE (1) DE69830480T2 (ja)
IL (1) IL131186A (ja)
WO (1) WO1999032189A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519382A (ja) * 2011-05-31 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Mri放射線治療装置の静磁場補正
JP2015520631A (ja) * 2012-05-02 2015-07-23 ビューレイ・インコーポレイテッドViewRay Incorporated リアルタイム医療治療のビデオグラフィック表示
WO2021059633A1 (ja) * 2019-09-24 2021-04-01 株式会社日立製作所 粒子線治療システム、および、磁気共鳴イメージング装置

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
JP2000107151A (ja) * 1998-09-30 2000-04-18 Toshiba Corp 磁気共鳴イメージング装置
US6591127B1 (en) * 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
WO2001001854A2 (en) * 1999-07-02 2001-01-11 Hypermed Imaging, Inc. Integrated imaging apparatus
US6466813B1 (en) * 2000-07-22 2002-10-15 Koninklijke Philips Electronics N.V. Method and apparatus for MR-based volumetric frameless 3-D interactive localization, virtual simulation, and dosimetric radiation therapy planning
US7697971B1 (en) * 2000-07-28 2010-04-13 Fonar Corporation Positioning system for an MRI
US7196519B2 (en) * 2000-07-28 2007-03-27 Fonar Corporation Stand-up vertical field MRI apparatus
DE10100958C2 (de) * 2000-09-15 2003-05-15 Deutsches Krebsforsch Vorrichtung zur Verifikation einer therapeutischen Bestrahlung
US20020073717A1 (en) * 2000-12-19 2002-06-20 Dean David E. MR scanner including liquid cooled RF coil and method
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US6611702B2 (en) * 2001-05-21 2003-08-26 General Electric Company Apparatus for use in neonatal magnetic resonance imaging
US6934574B1 (en) * 2001-06-21 2005-08-23 Fonar Corporation MRI scanner and method for modular patient handling
JP4093736B2 (ja) * 2001-06-28 2008-06-04 株式会社日立メディコ 核磁気共鳴診断装置および診断システム
GB2382512A (en) * 2001-07-20 2003-05-28 Elekta Oncology Syst Ltd MRI in guided radiotherapy and position verification
JPWO2003018131A1 (ja) * 2001-08-24 2004-12-09 三菱重工業株式会社 放射線治療装置
WO2003020196A2 (en) * 2001-08-30 2003-03-13 Tolemac, Llc Antiprotons for imaging and termination of undesirable cells
US6803584B2 (en) * 2002-02-15 2004-10-12 Dai Nippon Printing Co., Ltd. Electron beam control device
JP3691020B2 (ja) * 2002-02-28 2005-08-31 株式会社日立製作所 医療用荷電粒子照射装置
EP1480716A4 (en) * 2002-03-06 2006-02-08 Tomotherapy Inc METHOD FOR MODIFYING RADIOTHERAPIC TREATMENT ADMINISTRATION
DE50211712D1 (de) * 2002-03-12 2008-03-27 Deutsches Krebsforsch Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm
US8036730B1 (en) 2002-04-19 2011-10-11 Fonar Corporation Temporal magnetic resonance imaging
US7123008B1 (en) 2002-04-19 2006-10-17 Fonar Corporation Positional magnetic resonance imaging
US6992486B2 (en) 2002-05-16 2006-01-31 Advanced Imaging Research, Inc. Radio frequency coil for resonance imaging analysis of pediatric patients
US20040015074A1 (en) * 2002-05-16 2004-01-22 Ravi Srinivasan Radio frequency coil for resonance imaging analysis of pediatric patients
DE10229490B3 (de) * 2002-07-01 2004-02-05 Siemens Ag Magnetresonanzgerät mit einer verfahrbaren Gradientenspuleneinheit
US20060224974A1 (en) * 2005-04-01 2006-10-05 Paul Albrecht Method of creating graphical application interface with a browser
US6812700B2 (en) * 2002-08-05 2004-11-02 The Board Of Trustees Of The Leland Stanford Junior University Correction of local field inhomogeneity in magnetic resonance imaging apparatus
GB2393373A (en) * 2002-09-13 2004-03-24 Elekta Ab MRI in guided radiotherapy and position verification
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
GB0223068D0 (en) * 2002-10-04 2002-11-13 Mirada Solutions Ltd Improvements in or relating to radiation treatment planning
US7657304B2 (en) * 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
US7945021B2 (en) * 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7640052B2 (en) * 2004-05-28 2009-12-29 Ippp, Llc Method of integrated proton beam and therapeutic magnetic resonance therapy
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7412029B2 (en) 2003-06-25 2008-08-12 Varian Medical Systems Technologies, Inc. Treatment planning, simulation, and verification system
US6973162B2 (en) * 2003-10-30 2005-12-06 General Electric Company MR/X-ray scanner having rotatable anode
US7907987B2 (en) * 2004-02-20 2011-03-15 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
AU2016201333B2 (en) * 2004-02-20 2017-09-07 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
AU2013201172B2 (en) * 2004-02-20 2016-02-25 University Of Florida Research Foundation, Inc. System for Delivering Conformal Radiation Therapy While Simultaneously Imaging Soft Tissue
AU2012202057B2 (en) * 2004-02-20 2012-11-29 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
GB2424281A (en) * 2005-03-17 2006-09-20 Elekta Ab Radiotherapeutic Apparatus with MRI
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7640607B2 (en) 2005-04-29 2010-01-05 Varian Medical Systems, Inc. Patient support systems
US10004650B2 (en) 2005-04-29 2018-06-26 Varian Medical Systems, Inc. Dynamic patient positioning system
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
GB2427478B (en) * 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
GB2427479B (en) * 2005-06-22 2007-11-14 Siemens Magnet Technology Ltd Particle Radiation Therapy Equipment and method for performing particle radiation therapy
US7397044B2 (en) * 2005-07-21 2008-07-08 Siemens Medical Solutions Usa, Inc. Imaging mode for linear accelerators
CN101267857A (zh) * 2005-07-22 2008-09-17 断层放疗公司 对移动的关注区实施放射疗法的系统和方法
US7574251B2 (en) * 2005-07-22 2009-08-11 Tomotherapy Incorporated Method and system for adapting a radiation therapy treatment plan based on a biological model
EP1906826A4 (en) * 2005-07-22 2009-10-21 Tomotherapy Inc SYSTEM AND METHOD FOR DETECTING A RESPIRATORY CYCLE IN A PATIENT RECEIVING RADIOTHERAPY TREATMENT
US8442287B2 (en) 2005-07-22 2013-05-14 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
WO2007014092A2 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
JP2009502254A (ja) * 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド 医療デバイスの動作を監視するためのシステム及び方法。
CA2616306A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for processing data relating to a radiation therapy treatment plan
CA2616136A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of evaluating dose delivered by a radiation therapy system
CA2616292A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treament plan
US7643661B2 (en) * 2005-07-22 2010-01-05 Tomo Therapy Incorporated Method and system for evaluating delivered dose
CN101267767A (zh) 2005-07-23 2008-09-17 断层放疗公司 使用机架和治疗床的协同运动的放射疗法成像和实施
US7880154B2 (en) 2005-07-25 2011-02-01 Karl Otto Methods and apparatus for the planning and delivery of radiation treatments
CA2621741A1 (en) * 2005-09-06 2007-03-15 Resonant Medical Inc. System and method for patient setup for radiotherapy treatment
US20070053491A1 (en) * 2005-09-07 2007-03-08 Eastman Kodak Company Adaptive radiation therapy method with target detection
CA2626536C (en) * 2005-10-17 2016-04-26 Alberta Cancer Board Real-time dose reconstruction using dynamic simulation and image guided adaptive radiotherapy
CN101378805B (zh) * 2005-10-17 2013-03-27 艾伯塔健康服务中心 集成的体外射束放射治疗和mri系统
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8303505B2 (en) * 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US20080071157A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US20080043910A1 (en) * 2006-08-15 2008-02-21 Tomotherapy Incorporated Method and apparatus for stabilizing an energy source in a radiation delivery device
US9451928B2 (en) * 2006-09-13 2016-09-27 Elekta Ltd. Incorporating internal anatomy in clinical radiotherapy setups
DE102006059707B3 (de) * 2006-12-18 2008-07-31 Siemens Ag Einrichtung zur Strahlentherapie unter Bildüberwachung
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
DE102008007245B4 (de) 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US8487269B2 (en) 2007-02-28 2013-07-16 Siemens Aktiengesellschaft Combined radiation therapy and magnetic resonance unit
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
USRE46953E1 (en) 2007-04-20 2018-07-17 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10531858B2 (en) * 2007-07-20 2020-01-14 Elekta, LTD Methods and systems for guiding the acquisition of ultrasound images
US8249317B2 (en) * 2007-07-20 2012-08-21 Eleckta Ltd. Methods and systems for compensating for changes in anatomy of radiotherapy patients
US8135198B2 (en) * 2007-08-08 2012-03-13 Resonant Medical, Inc. Systems and methods for constructing images
US20090082661A1 (en) * 2007-09-20 2009-03-26 General Electric Company System and method to automatically assist mobile image acquisition
US20090088625A1 (en) * 2007-10-01 2009-04-02 Kenneth Oosting Photonic Based Non-Invasive Surgery System That Includes Automated Cell Control and Eradication Via Pre-Calculated Feed-Forward Control Plus Image Feedback Control For Targeted Energy Delivery
DE102007054324B4 (de) * 2007-11-14 2009-10-22 Siemens Ag Einrichtung zur Strahlentherapie unter Bildüberwachung
US8193508B2 (en) 2007-12-05 2012-06-05 Navotek Medical Ltd. Detecting photons in the presence of a pulsed radiation beam
DE102007060189A1 (de) 2007-12-14 2009-02-19 Siemens Ag Strahlentherapievorrichtung und Verfahren zur Steuerung einer Strahlentherapievorrichtung
EP2247962B1 (en) * 2008-02-25 2014-04-09 Koninklijke Philips N.V. Iso-plane backbone for radiation detectors
WO2009113069A1 (en) * 2008-03-12 2009-09-17 Navotek Medical Ltd. Combination mri and radiotherapy systems and methods of use
US8189738B2 (en) * 2008-06-02 2012-05-29 Elekta Ltd. Methods and systems for guiding clinical radiotherapy setups
AU2009261910C1 (en) * 2008-06-24 2014-06-19 Alberta Health Services Radiation therapy system
EP2303117B1 (en) * 2008-06-25 2013-09-25 Koninklijke Philips N.V. Radiation therapy system with real time magnetic resonance monitoring
US8295906B2 (en) * 2008-08-20 2012-10-23 Imris Inc MRI guided radiation therapy
EP2184615A1 (en) * 2008-11-05 2010-05-12 Koninklijke Philips Electronics N.V. A magnetic resonance imaging system comprising a power supply unit adapted for providing direct current electrical power
EP2196240A1 (en) 2008-12-12 2010-06-16 Koninklijke Philips Electronics N.V. Therapeutic apparatus
EP2196241A1 (en) 2008-12-12 2010-06-16 Koninklijke Philips Electronics N.V. Therapeutic apparatus
US20100174172A1 (en) * 2009-01-07 2010-07-08 Moshe Ein-Gal Mri system for upright radiotherapy
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8139714B1 (en) * 2009-06-25 2012-03-20 Velayudhan Sahadevan Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia
US10542962B2 (en) * 2009-07-10 2020-01-28 Elekta, LTD Adaptive radiotherapy treatment using ultrasound
US8836332B2 (en) 2009-07-15 2014-09-16 Viewray Incorporated Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc ANALYTICAL SIGNAL PROCESSING APPARATUS AND METHOD
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc METHOD AND APPARATUS FOR PROVIDING NOTIFICATION FUNCTION IN SUBSTANCE MONITORING SYSTEMS
US20110172526A1 (en) 2010-01-12 2011-07-14 Martin Lachaine Feature Tracking Using Ultrasound
US9248316B2 (en) 2010-01-12 2016-02-02 Elekta Ltd. Feature tracking using ultrasound
DE102010001743B4 (de) 2010-02-10 2012-07-12 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
DE102010001746B4 (de) 2010-02-10 2012-03-22 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
US20110201918A1 (en) * 2010-02-12 2011-08-18 Elekta Ab (Publ) Radiotherapy and imaging apparatus
US20110201920A1 (en) 2010-02-12 2011-08-18 Elekta Ab (Publ) Radiotherapy and imaging apparatus
US9694205B2 (en) * 2010-02-12 2017-07-04 Elekta Ab (Publ) Radiotherapy and imaging apparatus
CN102781311B (zh) * 2010-02-24 2016-09-21 优瑞技术公司 分体式磁共振成像系统
US8710843B2 (en) 2010-04-27 2014-04-29 University Health Network Magnetic resonance imaging apparatus for use with radiotherapy
EP2400314A1 (en) 2010-06-14 2011-12-28 Agilent Technologies U.K. Limited Superconducting magnet arrangement and method of mounting thereof
EP3722836A1 (en) 2010-06-22 2020-10-14 Varian Medical Systems International AG System and method for estimating and manipulating estimated radiation dose
GB2484529B (en) 2010-10-15 2012-09-19 Siemens Ag Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit
CN103200992A (zh) * 2010-11-09 2013-07-10 皇家飞利浦电子股份有限公司 具有能调节的旋转轴的磁共振成像系统和放射治疗设备
US11116418B2 (en) 2010-11-09 2021-09-14 Koninklijke Philips N.V. Magnetic resonance imaging and radiotherapy apparatus with at least two-transmit-and receive channels
US9711253B2 (en) * 2010-11-28 2017-07-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Method and system for electron radiotherapy
EP2648806B1 (en) * 2010-12-08 2015-02-18 Elekta AB (publ) Radiotherapeutic apparatus
CN103260700B (zh) 2010-12-13 2016-06-15 皇家飞利浦电子股份有限公司 包括辐射治疗设备、机械定位系统和磁共振成像系统的治疗设备
EP3266381B1 (en) 2010-12-22 2022-01-05 ViewRay Technologies, Inc. System and method for image guidance during medical procedures
EP2535086B1 (en) 2011-06-15 2014-08-20 Imris Inc. Integration of MRI into radiation therapy treatment
JP5902906B2 (ja) * 2011-09-30 2016-04-13 株式会社東芝 医療システム
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9308395B2 (en) * 2011-12-02 2016-04-12 Varian Medical Systems, Inc. Radiation systems with minimal or no shielding requirement on building
US8981779B2 (en) 2011-12-13 2015-03-17 Viewray Incorporated Active resistive shimming fro MRI devices
JP5971684B2 (ja) * 2012-02-15 2016-08-17 東芝メディカルシステムズ株式会社 磁気共鳴撮像装置
AU2016208372A1 (en) * 2012-05-02 2016-08-18 Viewray Technologies, Inc. Videographic display of real-time medical treatment
WO2014015421A1 (en) 2012-07-27 2014-01-30 University Health Network Radiotherapy system integrating a radiation source with a magnetic resonance imaging apparatus with movable magnet components
US9757593B2 (en) 2012-09-05 2017-09-12 Varian Medical Systems, Inc. Radiation systems with minimal or no shielding requirement on building
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2911745B1 (en) 2012-10-26 2019-08-07 ViewRay Technologies, Inc. Assessment and improvement of treatment using imaging of physiological responses to radiation therapy
GB2507585B (en) 2012-11-06 2015-04-22 Siemens Plc MRI magnet for radiation and particle therapy
GB2507792B (en) * 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
JP6072300B2 (ja) * 2013-02-06 2017-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ガントリを有する磁気共鳴イメージングシステム内の磁場歪曲コンポーネントの能動的補償
EP2962309B1 (en) 2013-02-26 2022-02-16 Accuray, Inc. Electromagnetically actuated multi-leaf collimator
EP2774537A1 (en) 2013-03-08 2014-09-10 Imris Inc. Patient alignment in MRI guided radiation therapy
US9404983B2 (en) * 2013-03-12 2016-08-02 Viewray, Incorporated Radio frequency transmit coil for magnetic resonance imaging system
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
DE102013205211B4 (de) 2013-03-25 2015-02-12 Siemens Aktiengesellschaft Strahlentherapiebehandlungseinrichtung mit Bildaufnahmeeinrichtung und Bestrahlungseinrichtung sowie Verfahren zur Strahlentherapie
US20160256714A1 (en) * 2013-10-01 2016-09-08 Empire Technology Development Llc Visualization of beam trajectories in radiation therapy
WO2015063746A1 (en) * 2013-11-04 2015-05-07 The South African Nuclear Energy Corporation Limited Pharmaceutical composition
US10850127B2 (en) 2014-06-27 2020-12-01 Koninklijke Philips N.V. Charged particle beam therapy and magnetic resonance imaging
US10675483B2 (en) 2014-09-22 2020-06-09 Koninklijke Philips N.V. Radiation therapy planning optimization and visualization
US11045108B2 (en) * 2014-11-26 2021-06-29 Viewray Technologies, Inc. Magnetic resonance imaging receive coil assembly
US10252083B2 (en) * 2015-09-23 2019-04-09 Varian Medical Systems Inc. Systems, methods, and devices for high-energy irradiation
KR20180087310A (ko) 2015-11-24 2018-08-01 뷰레이 테크놀로지스 인크. 방사선 빔 시준 시스템 및 방법
WO2017093434A1 (en) * 2015-12-02 2017-06-08 Koninklijke Philips N.V. Rotatable magnet for proton therapy
AU2017227590A1 (en) 2016-03-02 2018-08-30 Viewray Technologies, Inc. Particle therapy with magnetic resonance imaging
CA3028716C (en) 2016-06-22 2024-02-13 Viewray Technologies, Inc. Magnetic resonance imaging at low field strength
US10806409B2 (en) 2016-09-23 2020-10-20 Varian Medical Systems International Ag Medical systems with patient supports
KR20190092530A (ko) 2016-12-13 2019-08-07 뷰레이 테크놀로지스 인크. 방사선 치료 시스템 및 방법
CN106621075B (zh) * 2016-12-22 2021-01-08 上海联影医疗科技股份有限公司 放射治疗装置
US11058892B2 (en) 2017-05-05 2021-07-13 Zap Surgical Systems, Inc. Revolving radiation collimator
DE102017212553B4 (de) 2017-07-21 2020-02-20 Siemens Healthcare Gmbh Synchrone MR-Bildgebung und Strahlentherapie
US11709218B2 (en) * 2017-08-22 2023-07-25 Weinberg Medical Physics Inc MRI detection of free-radicals from radiation
CN109420259A (zh) 2017-08-24 2019-03-05 上海联影医疗科技有限公司 治疗系统和使用治疗系统的方法
US11883685B2 (en) 2017-08-24 2024-01-30 Shanghai United Imaging Healthcare Co., Ltd. Therapeutic system and method
CN108401421B (zh) 2017-09-06 2022-12-20 睿谱外科系统股份有限公司 自屏蔽的集成控制放射外科系统
EP3710111B1 (en) * 2017-11-16 2021-12-29 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11033758B2 (en) 2017-12-06 2021-06-15 Viewray Technologies, Inc. Radiotherapy systems, methods and software
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
US20210299462A1 (en) 2018-06-18 2021-09-30 National Institutes For Quantum And Radiological Science And Technology Particle beam irradiation system, particle beam irradiation method, irradiatiion planning program, irradiation planning device, electromagnetic field generator, and irradiation device
JP6985314B2 (ja) * 2019-02-25 2021-12-22 株式会社日立製作所 放射線治療装置および放射線治療装置の制御方法
US11684446B2 (en) 2019-02-27 2023-06-27 Zap Surgical Systems, Inc. Device for radiosurgical treatment of uterine fibroids
WO2021215859A1 (ko) * 2020-04-24 2021-10-28 주식회사 라덱셀 자기장 생성 장치 및 그의 제어 방법
WO2021253289A1 (en) * 2020-06-17 2021-12-23 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969629A (en) 1975-03-14 1976-07-13 Varian Associates X-ray treatment machine having means for reducing secondary electron skin dose
US4554925A (en) * 1982-07-07 1985-11-26 Picker International, Ltd. Nuclear magnetic resonance imaging method
US4875487A (en) 1986-05-02 1989-10-24 Varian Associates, Inc. Compressional wave hyperthermia treating method and apparatus
US4791371A (en) * 1986-11-17 1988-12-13 Memorial Hospital For Cancer And Allied Diseases Apparatus useful in magnetic resonance imaging
US4805626A (en) * 1986-11-26 1989-02-21 Fonar Corporation Air flotation patient bed
US5178146A (en) * 1988-11-03 1993-01-12 Giese William L Grid and patient alignment system for use with MRI and other imaging modalities
US4998268A (en) * 1989-02-09 1991-03-05 James Winter Apparatus and method for therapeutically irradiating a chosen area using a diagnostic computer tomography scanner
US5008907A (en) * 1989-05-31 1991-04-16 The Regents Of The University Of California Therapy x-ray scanner
DE3931854A1 (de) * 1989-09-23 1991-04-04 Berlin Laser Medizin Zentrum Nmr-tomographisch gesteuerte stereotaktische laser-koagulation
WO1991007132A1 (en) * 1989-11-22 1991-05-30 The United States Of America, Represented By The Secretary, United States Department Of Commerce Apparatus for hyperthermia treatment of cancer
US5107839A (en) * 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5647361A (en) * 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5490513A (en) * 1992-09-28 1996-02-13 Fonar Corporation Multiple patient breast scanning on a magnetic resonance imaging apparatus
US5357958A (en) 1993-03-18 1994-10-25 The Regents Of The University Of California Interventional MRI system and RF coils therefore
US5307812A (en) * 1993-03-26 1994-05-03 General Electric Company Heat surgery system monitored by real-time magnetic resonance profiling
US5357959A (en) 1993-04-16 1994-10-25 Praxair Technology, Inc. Altered dipole moment magnetic resonance imaging method
DE4318134C2 (de) * 1993-06-01 1999-02-11 Siemens Ag Zirkular polarisierende Lokalantenne
US5492122A (en) * 1994-04-15 1996-02-20 Northrop Grumman Corporation Magnetic resonance guided hyperthermia
US5704355A (en) 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
WO1996015717A1 (en) * 1994-11-24 1996-05-30 Philips Electronics N.V. Magnetic resonance device comprising an x-ray device
GB9520564D0 (en) * 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519382A (ja) * 2011-05-31 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Mri放射線治療装置の静磁場補正
JP2015520631A (ja) * 2012-05-02 2015-07-23 ビューレイ・インコーポレイテッドViewRay Incorporated リアルタイム医療治療のビデオグラフィック表示
WO2021059633A1 (ja) * 2019-09-24 2021-04-01 株式会社日立製作所 粒子線治療システム、および、磁気共鳴イメージング装置

Also Published As

Publication number Publication date
IL131186A (en) 2003-07-06
WO1999032189A1 (en) 1999-07-01
US20010001807A1 (en) 2001-05-24
DE69830480T2 (de) 2006-03-23
IL131186A0 (en) 2001-01-28
DE69830480D1 (de) 2005-07-14
US6198957B1 (en) 2001-03-06
EP0963218A1 (en) 1999-12-15
US6366798B2 (en) 2002-04-02
EP0963218B1 (en) 2005-06-08
JP2001517132A (ja) 2001-10-02

Similar Documents

Publication Publication Date Title
JP4382165B2 (ja) 磁気共鳴映像システムを含む放射線治療機器
CA2728111C (en) Radiation therapy system
EP2877089B1 (en) Radiotherapy system integrating a radiation source with a magnetic resonance imaging apparatus with movable magnet components
US6150820A (en) Nuclear magnetic resonance apparatus and methods of use and facilities for incorporating the same
KR100842682B1 (ko) Pet - mri 하이브리드 시스템
CN102472830B (zh) 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置
US20110118588A1 (en) Combination MRI and Radiotherapy Systems and Methods of Use
CN103393422B (zh) 磁共振成像装置
EP3839541A2 (en) Toroidal magnet configuration for dedicated mri scanners
US20130274590A1 (en) Method and apparatus for generating a signal indicative of motion of a subject in a magnetic resonance apparatus
KR101995904B1 (ko) 자석의 공간 자기장 분포 측정방법 및 이를 이용한 자석의 공간 자기장 분포 측정장치
CA1244082A (en) Method for enhancing nmr imaging; and diagnostic use
JP2003116812A (ja) 磁場発生装置及びこれを用いるmri装置
CA3147110A1 (en) Inhomogeneous mri system
Yaghoobpour Tari Optimization of a Non-axial Magnet Design for a Hybrid Radiation Treatment and MR Imaging System
WO1999012578A1 (en) Radiation dosimetry with magnetic resonance detectable compounds

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040310

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20040310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees