JP4354953B2 - 薄膜トランジスタおよびその製造方法 - Google Patents

薄膜トランジスタおよびその製造方法 Download PDF

Info

Publication number
JP4354953B2
JP4354953B2 JP2005511904A JP2005511904A JP4354953B2 JP 4354953 B2 JP4354953 B2 JP 4354953B2 JP 2005511904 A JP2005511904 A JP 2005511904A JP 2005511904 A JP2005511904 A JP 2005511904A JP 4354953 B2 JP4354953 B2 JP 4354953B2
Authority
JP
Japan
Prior art keywords
particles
film transistor
semiconductor layer
thin film
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005511904A
Other languages
English (en)
Other versions
JPWO2005008785A1 (ja
Inventor
孝之 竹内
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2005008785A1 publication Critical patent/JPWO2005008785A1/ja
Application granted granted Critical
Publication of JP4354953B2 publication Critical patent/JP4354953B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、薄膜トランジスタ及びその製造方法に関し、特に、有機半導体中に無機材料の粒子を分散して半導体層を形成した薄膜トランジスタ及びその製造方法に関する。
現在、薄膜トランジスタ(以下、TFTという)は、アクティブマトリクス型の液晶ディスプレイ等における駆動素子として好適に使用されている。このTFTの構成としては種々の構成が提案されているが、基本的には、半導体層に接触して設けられたソース電極とドレーン電極との間に流れる電流を、半導体層に対して絶縁層を介して設けられたゲート電極に印加される電圧(つまり、印加される電圧で発生する電界)により制御するように構成されている。そして、TFTを構成する半導体層に関し、現在実用化されている半導体材料としては、結晶シリコンと比して特性面では劣るものの、比較的安価であるアモルファスシリコンや低温ポリシリコン等といった無機系半導体がある。又、ゲート電極が設けられる絶縁層に関し、現在実用化されている絶縁材料としては、酸化シリコンや窒化シリコン等がある。しかし、これらの半導体材料及び絶縁材料を用いるTFTの製造プロセスでは、プラズマCVD法等の大規模な装置や、精密加工のための高価な薄膜制御装置を必要とする。そのため、TFTの製造コストは高コスト化する。又、前述したプラズマCVD法等の製造プロセスは、一般に350℃を越えるような処理温度のプロセスを含むため、使用可能な基板材料等には制限がある。
ところで、近年では、TFT用として利用可能な半導体材料として、有機化合物で構成される有機物半導体が注目されている。この有機物半導体によれば、スピンコーティング、インクジェット印刷、及び浸漬コーティング等の低コストプロセスによってTFTの半導体層を形成することが可能であるため、前述したアモルファスシリコンや低温ポリシリコン等の無機系半導体を用いる場合と比べて、TFTの製造コストを低コスト化することが可能である。又、それらの低コストプロセスは低温プロセスでもあるため、使用可能な基板材料等に関する制限を解消することも可能になる。更に、前述したように、有機物半導体による半導体層の形成にはスピンコーティング等の低コストプロセス(低温プロセス)が適用可能であるため、フレキシブルな基板や大面積な基板へのTFTの形成が実現でき、これによって大画面ディスプレイやシートライク、或いはペーパーライクなディスプレイ、又は無線IDタグ等への用途拡大が期待される。
しかしながら、現在報告されている有機物半導体は、そのキャリア移動度が前述したアモルファスシリコンや低温ポリシリコン等の無機系半導体と比して低い。又、有機物半導体を用いてアモルファスシリコン並のキャリア移動度を実現するための手段としては、唯一、半導体層内で有機物半導体の小分子又は短鎖オリゴマーを高度に配向制御する手段があるが、これは前述した低コストプロセスでは達成できない。
そこで、アモルファスシリコン並のキャリア移動度と低コストプロセスの実現とを同時に具現化するために、無機系半導体と有機材料とを組み合わせた有機/無機混成半導体材料が提案されている(例えば、特許文献1参照)。
この有機/無機混成半導体材料では、有機材料(有機成分要素)と無機系半導体(無機成分要素)とが互いに分子レベルで混合されている。そして、この有機/無機混成半導体材料では、有機成分要素と無機成分要素とが互いに自己アセンブリ(自己結晶化)するという性質を利用して、その内部に半導体である無機成分要素が高度に配向した固体結晶薄膜を形成する。これによって、有機/無機混成半導体材料は高いキャリア移動度を実現する。この有機/無機混成半導体材料で半導体層を形成する構成とすれば、スピンコーティング等の低コストプロセス(低温プロセス)によってTFTを形成することができるので、TFTの製造コストを低コスト化することが可能になると共に、使用可能な基板材料等に関する制限等を解消することが可能になる。又、半導体層が高度に配向した無機系半導体の結晶固体を有しているので、キャリア移動度の高いTFTを構築することが可能になる。つまり、高いキャリア移動度と低コストプロセスの実現とを同時に具現化することが可能になる。
特開2000−260999号公報
ところで、現在のフラットパネルディスプレイに関する技術トレンドは、ディスプレイの大画面化と共に、シートライク化、或いは、ペーパーライク化である。そして、それら技術トレンドを実現するため、ディスプレイを構成する基板には、軽量、機械的柔軟性、及び耐衝撃性が要求されている。従って、ディスプレイを構成する基板上に形成されるTFTに対しても、基板の場合と同様、軽量、機械的柔軟性、及び耐衝撃性が要求されている。又、非常に安価に作製できるTFTはRFIDタグ等への応用も期待されるが、その際には、様々な形状、素材への対応が必要とされるため、やはり、軽量、機械的柔軟性、及び耐衝撃性という特徴が必要となる。
しかしながら、前述した有機/無機混成半導体材料を用いる従来の提案では、高いキャリア移動度と低コストプロセスの実現とを同時に具現化するという問題は解決するが、ソース電極−ドレーン電極間のチャネルを形成する半導体のネットワークが結晶性の無機系半導体の固体薄膜のみで形成されているため、軽量ではあるものの、機械的柔軟性及び耐衝撃性に関して信頼性に課題があった。即ち、フレキシブルな基板としてのプラスティック基板上に有機/無機混成半導体材料を用いてTFTを形成した場合、有機物半導体を用いてTFTを形成した場合と比べると、TFTの曲げに対する耐久性は極めて低かった。
本発明は、上記課題を解決するためになされたものであり、低コストプロセスによって構成可能な、機械的柔軟性、及び耐衝撃性が優れた高キャリア移動度のTFTと、そのTFTの製造方法を提供することを第1の目的としている。
又、本発明は、前記TFTを複数個配置したアクティブマトリクス型のディスプレイや、前記TFTを集積回路部に用いた無線IDタグや、前記TFTを集積回路部に用いた携帯テレビ、通信端末、PDA、携帯用医療機器等の携行用機器を提供することを第2の目的としている。
そして、これらの目的を達成するために、本発明に係るTFTは、半導体層と、該半導体層に相互に分離して設けられたソース領域とドレーン領域とゲート領域とを有する薄膜トランジスタであって、前記半導体層が複合材料で構成されており、前記複合材料が、有機物半導体材料の内部に少なくとも1種類の無機物材料の粒子が複数分散された複合材料であり、前記半導体層における前記粒子の含有率が、0体積%を超え60体積%以下である構成を採る。ここで、本明細書において、ソース領域及びドレーン領域とは、ソース電極及びドレーン電極、並びに、ソース電極及びドレーン電極を半導体層に接続するコンタクト層又は高濃度不純物領域(層)等を含む概念をいう。かかる構成により、有機物半導体材料と無機物材料の粒子とを有してなる半導体層に関し、無機物材料として導電性の材料を用いた場合、半導体層の内部に電気抵抗が低い領域、即ちキャリア移動度が高い領域を多数設けることができるので、有機物半導体材料単体で半導体層を構成する場合よりも半導体層全体として高いキャリア移動度を実現することが可能になる。
又、本態様によると、前記半導体層における前記粒子の含有率は、0体積%を超え60体積%以下とされる。これにより、有機物半導体材料の内部に分散された各々の無機物材料の粒子同士の接触確率を有効に制限することが可能になる。その結果、半導体層の弾性が失われることを防止することができ、TFTの歩留まりを改善することが可能になる。
この場合、薄膜トランジスタのON動作時における前記無機物材料の電気抵抗が、前記ON動作時における前記有機物半導体材料の電気抵抗より低い構成を採ることが好ましい。かかる構成により、有機物半導体材料と無機物材料の粒子とを有してなる半導体層に関し、無機物材料として薄膜トランジスタのON動作時における電気抵抗が有機物半導体材料の電気抵抗より低い材料を用いた場合、半導体層の内部に更に電気抵抗が低い領域、即ちキャリア移動度が更に高い領域を多数設けることができるので、有機物半導体材料単体で半導体層を構成する場合よりも半導体層全体として更に高いキャリア移動度を実現することが可能になる。
又、本発明では、前記粒子の最大粒子径が、前記ソース領域と前記ドレーン領域との間の距離より小さい構成を採ることが好ましい。かかる構成により、無機物材料が導体の場合でも、ソース領域とドレーン領域とが1つの無機物材料の粒子によって電気的に短絡されることが防止される。又、無機物材料が半導体の場合は、ソース領域とドレーン領域とが1つの無機物材料によって電気的に接続されてもTFTを動作させることは可能であるが、無機物材料として半導体単体を用いて構成した従来のTFTの場合ように、機械的柔軟性や耐衝撃性等が有機物半導体材料を用いた場合のTFTと比べて劣る。従って、上記の好ましい構成によれば、無機物材料が半導体の場合であってもフレキシブル性を有する有機物半導体材料の内部に無機物半導体材料が存在する構成となるので、十分な機械的柔軟性、耐衝撃性等を備えるTFTを実現することが可能になる。
又、本発明では、前記半導体層における前記粒子の含有率が、前記粒子のネットワークによって前記ソース領域と前記ドレーン領域とが電気的に接続されないように制限されている構成を採ることが好ましい。かかる構成により、無機物材料が導体の場合でも、ソース領域とドレーン領域との間が、無機物材料の粒子同士が互いに接触して構成されるネットワークによって電気的に短絡されることが防止される。又、無機物材料が半導体の場合は、ソース領域とドレーン領域とが無機物材料の粒子同士の接触によって構成されるネットワークにより電気的に接続されてもTFTを動作させることは可能であるが、前記ネットワークは機械的柔軟性、耐衝撃性等が劣るため、TFTの安定した特性を得ることができない。従って、上記の好ましい構成によれば、無機物材料が半導体の場合であってもフレキシブル性を有する有機物半導体材料の内部に無機物半導体材料が存在する構成となるので、十分な機械的柔軟性、及び耐衝撃性等を備えるTFTを実現することが可能になる。
又、本発明では、前記複数分散された前記粒子の群が、互いに平均粒子径が異なる少なくとも第1の粒子群及び第2の粒子群の2つの粒子群を含んで構成されていることが好ましい。かかる構成により、有機物半導体材料の内部における無機物材料の粒子の充填率を容易に高めることができるので、半導体層全体としてより一層高いキャリア移動度を実現することが可能になる。
この場合、前記第1の粒子群の平均粒子径が、前記第2の粒子群の平均粒子径の0%を超え15%未満である構成を採ることが好ましい。かかる構成により、有機物半導体材料の内部における無機物材料の粒子の充填率をより簡単に高めることが可能になる。
又、本発明では、前記無機物材料が、導体材料である構成を採ることが好ましい。かかる構成により、無機物材料が導体材料で構成される場合は、TFTの半導体特性は有機物半導体材料のみによって発現することになるが、半導体層の内部に導体材料が分散していることによりソース領域とドレーン領域との間の実効的なチャネル長が短くなるため、半導体層全体としてのキャリア移動度を改善することが可能になる。又、実効的なチャネル長が短くなることにより、遮断周波数を向上させることが可能になる。
又、本発明では、前記無機物材料が、半導体材料である構成を採ることが好ましい。かかる構成により、無機物材料が半導体材料で構成される場合は、無機物材料の粒子の充填率を十分に高めた場合であってもソース領域とドレーン領域とが導通状態になる危険性が無く、これによりキャリア移動度が高いTFTを安定して実現することが可能になる。
又、本発明では、前記無機物材料が、導体材料及び半導体材料を含有する2種類以上の材料の複合材料である構成を採ることが好ましい。かかる構成により、無機物材料が導体材料及び半導体材料を含む2種類以上の材料の複合材料で構成される場合は、無機物材料が半導体材料のみで構成される場合と導体材料のみで構成される場合との双方の効果を得ることが可能になる。
又、本発明に係るTFTの製造方法は、半導体層と、該半導体層に相互に分離して設けられたソース領域とドレーン領域とゲート領域とを有する薄膜トランジスタの製造方法であって、有機物半導体材料の内部に少なくとも1種類の無機物材料の粒子を複数分散させて、前記半導体層における前記粒子の含有率が0体積%を超え60体積%以下である複合材料を製造する第1の製造工程と、前記第1の製造工程で得られた前記複合材料を用いて前記半導体層を形成する第2の製造工程と、を備えている構成を採る。かかる構成により、有機物半導体材料と無機物材料の粒子とを有してなる半導体層に関し、無機物材料として導電性の材料を用いた場合、半導体層の内部に電気抵抗が低い領域、即ちキャリア移動度が高い領域を多数設けることができるので、有機物半導体材料単体で半導体層を構成する場合よりも半導体層全体として高いキャリア移動度を備えるTFTを製造することが可能になる。
この場合、前記無機物材料として、薄膜トランジスタのON動作時における電気抵抗が前記ON動作時における前記有機物半導体材料の電気抵抗より低い無機物材料を用いる構成を採ることが好ましい。かかる構成により、有機物半導体材料と無機物材料の粒子とを有してなる半導体層に関し、無機物材料として薄膜トランジスタのON動作時における電気抵抗が有機物半導体材料の電気抵抗より低い材料を用いた場合、半導体層の内部に更に電気抵抗が低い領域、即ちキャリア移動度が更に高い領域を多数設けることができるので、有機物半導体材料単体で半導体層を構成する場合よりも半導体層全体として更に高いキャリア移動度を備えるTFTを製造することが可能になる。
又、本発明では、前記粒子の粒度分布を所定の粒度分布とするための粒子選別工程を更に備えている構成を採ることが好ましい。かかる構成により、有機物半導体材料の内部に分散させる無機物材料の粒子の粒度分布を所定の粒度分布となるように制御することができるので、特性ばらつきの小さいTFTを製造することが可能になる。
又、本発明では、前記粒子の前記半導体層内における分散状態を所定の分散状態とするための分散制御工程を更に備えている構成を採ることが好ましい。かかる構成により、有機物半導体材料の内部に分散させる無機物材料の粒子の分散状態を所定の分散状態となるように制御することができるので、特性ばらつきの小さいTFTを製造することが可能になる。
又、本発明では、前記第2の製造工程が、前記複合材料を所定の溶液中に溶解若しくは非溶解の状態で分散させて半導体層形成用材料を得る第1の準備工程と、前記第1の準備工程で得られた前記半導体層形成用材料を所定の位置に噴霧、塗布若しくは印刷した後に乾燥させて前記半導体層を形成する第2の準備工程と、を備えていることが好ましい。かかる構成により、低コストプロセスを用いてTFTを製造することが可能になる。
又、本発明に係る薄膜トランジスタを用いたアクティブマトリクス型ディスプレイは、請求項1乃至の何れか1つに記載の薄膜トランジスタが、画素を駆動するためのスイッチング素子として複数個配設されてなる構成を採る。かかる構成により、低コストで特性の良いシートライク、或いはペーパーライクなアクティブマトリクス型のディスプレイを具現化することが可能になる。
又、本発明に係る薄膜トランジスタを用いた無線IDタグは、請求項1乃至の何れか1つに記載の薄膜トランジスタが、集積回路を構成するための半導体素子として利用されてなる構成を採る。かかる構成により、無線IDタグを様々な形状の物体、或いは素材へ貼り付けることが可能になる。又、任意の形状に形成可能な無線IDタグを具現化することが可能になる。
又、本発明に係る薄膜トランジスタを用いた携行用機器は、請求項1乃至の何れか1つに記載の薄膜トランジスタが、集積回路を構成するための半導体素子として利用されてなる構成を採る。ここで、携行用機器としては、例えば、携帯テレビ、通信端末、PDA、携帯用医療機器等が挙げられる。しかし、これらの携行用機器に限定されることはなく、例えば、携帯用AV機器、携帯用コンピュータ等の如何なる携行用機器も含まれる。かかる構成により、携帯テレビ、通信端末、PDA、携帯用医療機器等の携行用機器に、低コスト、フレキシブル、耐衝撃性、任意形状に形成可能等の利点を付加することが可能になる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明によれば、低コストプロセスによって構成可能な、機械的柔軟性、及び耐衝撃性が優れた高キャリア移動度のTFTと、そのTFTの製造方法を提供することが可能になる。
又、本発明によれば、前記TFTを複数個配置したアクティブマトリクス型のディスプレイや、前記TFTを集積回路部に用いた無線IDタグや、前記TFTを集積回路部に用いた携帯テレビ、通信端末、PDA、携帯用医療機器等の携行用機器を提供することが可能になる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
本発明の実施の形態1では、半導体層が無機物半導体材料の粒子をその内部に複数含有する有機物半導体材料によって構成されたTFTに関して、その代表的な構成、製造方法、及び評価結果等について説明する。
図1は、TFTの第1の代表的な構成の各々を模式的に示す断面図である。
図1(a)〜図1(d)に示すように、本実施の形態に係るTFT100の構成としては、様々な構成が考えられる。何れの構成においても、その構成要素として、基板1と、ゲート電極2と、ゲート絶縁層3と、半導体層4と、ソース電極5と、ドレーン電極6とを備えていることでは共通している。ここで、一般に、図1(a)及び図1(b)は、ボトムゲート方式と呼ばれている。又、図1(c)及び図1(d)は、トップゲート方式と呼ばれている。更に、半導体層4とソース電極5、ドレーン電極6との位置関係により、図1(a)及び図1(c)は、トップコンタクト方式とも呼ばれている。又、図1(b)及び図1(d)は、ボトムコンタクト方式とも呼ばれている。これらの図1(a)〜図1(d)で示したTFT100は、ソース電極5とドレーン電極6とが断面視において横方向に対向するよう配置されているので、横型TFTと呼ばれている。
一方、図1(a)〜図1(d)に示した従来の横型TFTに対し、近年では、ソース電極5とドレーン電極6とが断面視において縦方向に対向するよう配置された縦型TFTも提案されている。
図2(a)及び図2(b)は、TFTの第2の代表的な構成の各々を模式的に示す断面図である。
図2(a)及び図2(b)に示すように、本実施の形態に係るTFT200の構成でも、その構成要素として、基板1と、ゲート電極2と、ゲート絶縁層3と、半導体層4と、ソース電極5と、ドレーン電極6とを備えていることでは、図1(a)〜図1(d)で示したTFT100と基本的に同様である。しかし、本実施の形態に係るTFT200では、図2(a)及び図2(b)の何れにおいても、ソース電極5とドレーン電極6とが半導体層4をその膜厚方向に(縦方向に)挟んで対向するように配置されている。このため、TFT200は、縦型TFTと呼ばれている。
尚、本発明によって得られる効果は、半導体層の材料構成に係る作用によって得られるものであるので、TFT自体の構成は図1及び図2に示した何れの構成でも良く、即ち、何れかの構成に限定されるものではない。従って、以降の説明では、TFTの構成の代表例として、図1(c)に示したトップゲート方式のTFT100の構成を適用した場合について説明する。
図1(c)に示すように、トップゲート方式が採用されたTFT100は、基板1と、π共役系有機半導体分子からなる半導体層4と、ソース電極5と、ドレーン電極6と、ゲート絶縁層3と、ゲート電極2とを有している。具体的には、基板1の主面上に半導体層4が設けられており、この半導体層4の上に、ソース電極5及びドレーン電極6が、互いに分離するように設けられている。又、このソース電極5及びドレーン電極6と、半導体層4の露出面との双方を覆うように、ゲート絶縁層3が設けられている。そして、このゲート絶縁層3の上に、平面視において少なくともソース電極5とドレーン電極6との間に位置するように、ゲート電極2が設けられている。即ち、図1(c)に示すトップゲート方式が採用されたTFT100は、基板1上に半導体層4、ソース電極5及びドレーン電極6、ゲート絶縁層3が積層され、このゲート絶縁層3の上にゲート電極2が配設された構成を有している。
図1(c)に示すTFT100では、基板1として、ポリエチレン系のプラスティック基板を用いている。又、半導体層4を構成する有機物半導体材料としては、π共役系有機半導体分子の内の1つであるオリゴチオフェン誘導体分子(以下、単にオリゴチオフェンという)を用いている。そして、この半導体層4において有機物半導体材料の内部に分散させる無機物半導体材料としては、TFTのON動作時における電気抵抗が有機物半導体材料よりも低いP型シリコン結晶の粒子を用いている。又、このP型シリコン結晶の粒子の粒子径を、ソース電極5とドレーン電極6との間の距離よりも小さい粒子径としている。尚、ソース電極5、ドレーン電極6、及びゲート電極2を構成する材料としては、PEDOT(ポリ3,4−エチレンダイオキシチオフェン)を主成分とする電極材料を用いている。又、ゲート絶縁層3を構成する材料としては、ポリビニルフェノールを用いている。
上記構成を有するTFT100を製造する場合、先ず、有機物半導体材料の内部に分散させるP型シリコン結晶の粒子を所望の粒子径毎に一定の粒度分布に収まるように選別する。そして、その後、半導体層4の形成時に所望の充填量となるように、オリゴチオフェンが溶解された溶液中に前述したP型シリコン結晶の粒子を添加する。この時、有機物半導体材料の内部においてP型シリコン結晶の粒子の凝集が発生しないように、又、その密度分布に不均一が発生しないようにするため、オリゴチオフェンが溶解された溶液中にP型シリコン結晶の粒子を添加した後、その混合液を十分に撹拌する。オリゴチオフェンが溶解された溶液中におけるP型シリコン結晶の粒子の分散状態は、例えば、目視、又は光学顕微鏡等による観察によって確認される。これにより、半導体層4を形成した際のP型シリコン結晶の粒子の分散状態を良好にすることが可能になる。尚、オリゴチオフェンが溶解された溶液中においてP型シリコン結晶の粒子が凝集又は不均一となった場合には、それらの混合液の撹拌を更に十分に実施する。
次に、このようにして準備した半導体層4を形成するための半導体層形成用材料を、プラスティック製の基板1上にスピンコーティング法によって塗布する。そして、その半導体層形成用材料が塗布された基板1を十分に乾燥させることにより、基板1上に半導体層形成用材料からなる半導体層4を形成する。
次に、半導体層形成用材料からなる半導体層4上にソース電極5とドレーン電極6とを形成するために、所定の電極材料を、所望の形状が得られるように予めパターニングされたスクリーン版を用いることによって印刷した後、十分に乾燥させる。これによって、半導体層4上には、所望の形状のソース電極5及びドレーン電極6が形成される。
その後、ゲート絶縁層3を形成するために、所定の絶縁材料を予めパターニングされたスクリーン版を用いることによって、ソース電極5、ドレーン電極6、及び半導体層4上に印刷した後、十分に乾燥させる。これにより、半導体層4、ソース電極5及びドレーン電極6上には、所望の形状のゲート絶縁層3が形成される。
そして、最後に、ゲート絶縁層3上にゲート電極2を形成するため、上記と同様にして、所定の電極材料を、所望の形状が得られるように予めパターニングされたスクリーン版を用いることによって印刷した後、これを十分に乾燥させる。これによって、ゲート絶縁層3上には所望の形状のゲート電極2が形成される。
このように、TFT100は、基板1上に半導体層4、ソース電極5及びドレーン電極6、ゲート絶縁層3、及びゲート電極2の各々がスクリーン版を用いる印刷法によって印刷され、その後十分に乾燥されることによって形成される。
本実施の形態では、TFT100の半導体特性(遮断周波数、キャリア移動度等)を評価するために、TFT100を複数個配設した半導体特性評価用試料を用いている。
図3は、実施の形態1に係る半導体特性評価用試料の構成を模式的に示す斜視図である。尚、図3では、半導体特性評価用試料の一部分を抜粋して示している。又、図3では、1つのTFTを1つの平行四辺形によって模式的に示している。
図3に示すように、本実施の形態に係る半導体特性評価用試料300は、断面構造が図1(c)の如く示されるTFT100を1枚のプラスティック基板7上において8×8のマトリクス状に有している。ここで、本実施の形態では、プラスティック基板7の大きさを70mm×70mmとしている。又、半導体特性評価用試料300には、プラスティック基板7の上方から各TFT100の各電極に電気的にコンタクトできるようにするため、プロービングパッド部が設けられている。更に、個々のTFT100において、ソース電極とドレーン電極との間の距離(チャネル長)は、各々100μmとしている。
又、本実施の形態では、有機物半導体材料の内部に分散された無機物半導体材料の粒子の平均粒子径を測定する方法として、画像認識を用いた平均粒子径測定方法を用いている。
図4(a)は、TFTを構成する半導体層の一部の断面を模式的に示している。ここで、図4(a)に示すように、前記半導体層の一部の断面400を観察することにより、無機物半導体材料の粒子8が有機物半導体材料9の内部に分散されている状態が容易に確認できる。無機物半導体材料の粒子8は、様々な粒子径の粒子から構成されている。
図4(a)に示すように、TFT100を構成する半導体層4の断面400を光学顕微鏡や電子顕微鏡等の観察手段によって観察すると、色調の違い(又は、濃淡の違い)によって、無機物半導体材料の粒子8と有機物半導体材料9とを区別して認識することが可能である。例えば、図4(a)では、無機物半導体材料の粒子8は白色体として認識可能である。一方、有機物半導体材料9は黒色体として認識可能である。この場合、図4(a)に示したように必ずしも無機物半導体材料の粒子8が白色であり、有機物半導体材料9が黒色として観察される訳ではないが、観察した画像には材料の種類毎に色調の違い(又は、色の濃淡)が現れるため、画像処理によって閾値を調整等して2値化することにより、無機物半導体材料の粒子8と有機物半導体材料9とを区別することが可能である。そして、前述した観察手段によって無機物半導体材料の粒子8と有機物半導体材料9とが識別されると、所定の画像認識ソフトウェア及びデータ処理装置によって無機物半導体材料の粒子8の面積が算出された後、その算出された面積に基づいて無機物半導体材料の粒子8の粒子径が算出される。すると、データ処理装置では、その算出された各々の無機物半導体材料の粒子8の粒子径が蓄積され、有機物半導体材料9の内部に分散された無機物半導体材料の粒子8の粒子径分布が求められる。
図4(b)は、画像認識によって導出された無機物半導体材料の粒子の粒子径分布を模式的に例示している。尚、図4(b)において、横軸は画像認識手段によって求められた無機物半導体材料の粒子8の粒子径を示しており、縦軸は頻度(度数)を示している。
図4(b)に例示するように、画像認識によって求められた粒子径分布から、有機物半導体材料9の内部に分散された無機物半導体材料の粒子8の平均粒子径が求められる。例えば、図4(b)におけるピークaは、無機物半導体材料の粒子8に係る第1の粒子群の平均粒子径を示している。又、図4(b)におけるピークbは、無機物半導体材料の粒子8に係る第2の粒子群の平均粒子径を示している。これらのピークa及びピークbの分離、及びそれに基づく各々の粒子群に係る平均粒子径の算出は、画像認識ソフトウェアによって自動で行うことが可能である。
このように、本実施の形態では、有機物半導体材料9の内部に分散された無機物半導体材料の粒子8の平均粒子径を、画像認識手段を利用することによって求めている。尚、本実施の形態で示した画像認識手段を利用した平均粒子径の算出方法は、種々ある平均粒子径の算出方法の一例である。従って、平均粒子径の算出は上述した画像認識手段を利用した方法に限定されず、如何なる手段を利用してもよい。
図5は、実施の形態1で用いたP型シリコン結晶の粒子の種類(ここでは、平均粒子径の種類)と、それぞれの粒子のオリゴチオフェン中における含有率(体積%)と、オリゴチオフェン中の粒子全体の総充填率(体積%)とを示している。ここで、本実施の形態では、P型シリコン結晶の粒子として、その平均粒子径が20μmである第1の粒子(P型シリコン結晶1)と、その平均粒子径が1.5μmである第2の粒子(P型シリコン結晶2)とを用いている。
図5に示すように、本実施の形態では、総充填率が40体積%までは平均粒子径が20μmである第1の粒子の1種類のみで半導体層用材料を作製した。又、それ以上の総充填率については、平均粒子径が1.5μmである第2の粒子を更に加えていくことによって、半導体層用材料を作製した。その理由は、単一粒子径の粒子によって充填率を一定の充填率以上に高めるためには、半導体層の成膜後にプレス工程を設ける等のプロセス上の工夫が必要となり、この余分な工程の追加を防止するためである。
ここで、P型シリコン結晶の平均粒子径の設定に関し、上述した第2の粒子の粒子径の設定根拠について説明する。
図6は、第2の粒子の平均粒子径と限界総充填率との関係を示す相関グラフである。尚、図6において、横軸は第2の粒子の平均粒子径(μm)を示しており、縦軸は限界総充填率(体積%)を示している。
本実施の形態では、第1の粒子(平均粒子径:20μm)の含有率が40体積%である半導体層用材料に対して、第2の粒子の平均粒子径を変化させて加えた場合の限界総充填率を確認することにより、第2の粒子の平均粒子径を設定している。具体的には、図6に示すように、第2の粒子の平均粒子径を3μm(つまり、第1の粒子の粒子径の15%)より小さくした場合、単一粒子径の粒子による場合の限界総充填率(図6において黒丸で表示)を上回る総充填率が得られることが分かる。一方、図6に示すように、第2の粒子の粒子径が第1の粒子の粒子径の15%を上回る場合には、総充填率が前記限界総充填率を下回ることが分かる。つまり、プレス工程等の成膜後の追加処理を行わない場合、第1の粒子より小さい粒子径を備える第2の粒子を混合することにより、P型シリコン結晶の粒子の充填率を容易に高めることが可能である。そして、本実施の形態では、このような調査結果に基づいて、第2の粒子の粒子径を、第1の粒子の粒子径の0%を超え15%未満とすることとしている。具体的には、ここでは、第2の粒子の粒子径を1.5μmに設定している。
以下、本実施の形態におけるTFTの半導体特性に関する評価結果について説明する。
図7は、P型シリコン結晶の粒子の充填率とTFTのキャリア移動度との関係を示す相関グラフである。尚、図7において、横軸はP型シリコン結晶の粒子の総充填率(体積%)を示しており、縦軸はTFTのキャリア移動度(cm2/Vs)の平均値を示している。
図7に示すように、図5で示したP型シリコン結晶の粒子の充填率が異なる種々の半導体層用材料を用いてTFTを作製し、このTFTを用いてキャリア移動度の評価を行った。その結果、P型シリコン結晶の粒子の充填率が上昇するに従って、TFTのキャリア移動度が向上することが判明した。
次に、作製したTFTの曲げに対する信頼性の評価を行った結果について説明する。
図8は、実施の形態1に係る耐屈曲性評価を行うための試験形態を模式的に示す形態図である。
本耐屈曲性評価では、図3に示したプラスティック基板7上に8×8のマトリクス状にTFT100が形成された半導体特性評価用試料300を、図8に示すようにその中心部分を上下に5mm変位させる試験を1サイクルとする10サイクルの信頼性試験を行った。そして、半導体特性評価用試料300を構成する全64素子のTFT100の内、1つでも動作しないTFTがあった場合、不良と判定することとした。尚、本耐屈曲性評価は、P型シリコン結晶の粒子の各充填量毎に10枚の試料を用意し、その試料を用いてTFTの不良率を算出した。
図9は、P型シリコン結晶の粒子の充填率と不良率との関係を示す相関グラフである。尚、図9において、横軸はP型シリコン結晶の粒子の総充填率(体積%)を示しており、縦軸はTFTの不良率(%)を示している。
図9に示すように、P型シリコン結晶の粒子の充填率が低い場合にはTFTの不良は殆ど発生しないが、充填率が60体積%で40%の不良が発生し、充填率が65体積%では全試料が曲げ試験によって不良となることが判明した。これは、無機物半導体材料であるP型シリコン結晶の粒子の充填率が高まるにつれて、半導体層の弾性が失われるためであると考えられる。この評価結果から、半導体層における無機物半導体材料の粒子の含有率は、0体積%を超え60体積%以下であることが好ましいことが判明した。
尚、本実施の形態では、有機物半導体材料としてオリゴチオフェンを用い、有機物半導体材料の内部に分散させる無機物半導体材料としてP型シリコン結晶の粒子を用いているが、本発明の効果はこれらの材料に限定されるものではない。例えば、有機物半導体材料として、ペンタセン、テトラセン、オリゴアセン等のアセン系の有機物半導体材料や、それらの構造の一部を置換又は化学修飾した誘導体を用いてもよい。又、チオフェン系ポリマーやアセン系ポリマーの誘導体に限らず、アセチレン系、ピロール系、又はフェニレン系のポリマーの誘導体を用いても、本発明の効果と同様の効果を得ることが可能である。更に、前記材料の何れかを組み合わせたコポリマーの誘導体を用いても、本発明の効果と同様の効果が得られる。又、無機物半導体材料として、ゲルマニウムや金属間化合物の半導体等を用いても、本発明の効果と同様の効果を得ることが可能である。
又、有機物半導体材料の内部に分散させる無機物半導体材料の粒子の粒子径についても、図5に示した粒子径に限定されるものではない。即ち、弾性に優れる有機物半導体材料の内部に電気抵抗の低い無機物半導体材料の粒子を分散させるという本発明の思想に沿った材料の組み合わせであれば、本発明の効果は同様に得られる。
又、本実施の形態では、ソース電極、ドレーン電極、及びゲート電極の各々の電極材料としてPEDOTを主成分とする電極材料を用いているが、その他の導電性高分子材料を用いることも可能である。又、ITO、Au、又はCu等の無機材料を用いることも可能である。但し、機械的柔軟性、耐衝撃性のあるTFTを構成するためには弾性のある材料を選択するか、若しくは曲げの影響を受けにくい電極構成を選択することが好ましい。又、ゲート絶縁層や基板も本実施の形態で用いた材料に限定はされないが、電極と同様に弾性のある材料を選択するか、若しくは曲げの影響を受けにくい材料を用いることが好ましい。
又、上述したように、有機物半導体材料、及び無機物半導体材料の各材料要素は各々が単一材料である必要はなく、2種類以上の材料が混合された材料(無機物半導体材料については、別々に有機物半導体材料の内部に分散されてもよいし、混合粒子として分散されてもよい)であってもよい。かかる構成としても、本発明の効果と同様の効果が得られることは容易に類推できる。
(実施の形態2)
本発明の実施の形態2では、半導体層が無機物導体材料の粒子をその内部に複数含有する有機物半導体材料によって構成されたTFTに関し、その代表的な構成、製造方法、及び評価結果等について説明する。
本実施の形態では、TFT自体の構成としては、実施の形態1の場合と同様、図1(c)に示す構成を用いている。そして、基板1を構成する材料として、ポリエチレン系のプラスティック基板を用いている。又、半導体層4を構成する材料としては、有機物半導体材料として置換系オリゴチオフェンを用い、その内部に分散させる無機物導体材料として粒子状のCuを用いている。又、ソース電極5、ドレーン電極6、及びゲート電極2を構成する材料としては、PEDOTを主成分とする電極材料を用いている。又、ゲート絶縁層3を構成する材料としては、ポリビニルフェノールを用いている。
又、本実施の形態に係るTFTの製造方法は、基本的に実施の形態1の場合と同様の製造方法である。その製造方法の概略を説明すると、先ず有機物半導体材料の内部に分散させるCu粒子を所望の粒子径毎に一定の粒度分布に収まるように選別する。その後、半導体層形成時に所望の充填量となるように、置換系オリゴチオフェンが溶解された溶液中にCu粒子を添加する。この時、Cu粒子の凝集や、不均一な密度分布が生じないようにするため、置換系オリゴチオフェンとCu粒子とを有する溶液を十分に混合する。これにより、半導体層を形成した際のCu粒子の分散状態を良好にすることが可能になる。そして、このようにして準備した半導体層4を形成するための半導体層形成用材料をプラスティック基板1上にスピンコーティング法によって塗布し、乾燥させることで半導体層4を形成する。そして、最後に、ソース電極5、ドレーン電極6、ゲート電極2、及びゲート絶縁層3を、所望の形状が得られるようにスクリーン印刷によって形成した後、十分に乾燥させる。
又、本実施の形態では、TFTの半導体特性等の評価を行う際、実施の形態1と同様、その寸法が70mm×70mmのプラスティック基板7上にTFT100を8×8のマトリクス状に構成した半導体特性評価用試料300を用いている。又、有機物半導体材料の内部へのCu粒子の分散方法としては、図5で示した実施の形態1におけるP型シリコン結晶の粒子の場合と同様、図10に示すようにCu粒子の総充填率の高いケースについては第1の粒子(Cu粒子1;平均粒子径10μm)と第2の粒子(Cu粒子2;平均粒子径1μm)との2種類の粒子を混合することとしている。
以下、本実施の形態におけるTFTの半導体特性に関する評価結果について説明する。
図11は、Cu粒子の総充填率とTFTのキャリア移動度との関係を示す相関グラフである。尚、図11において、横軸はCu粒子の総充填率(体積%)を示しており、縦軸はTFTのキャリア移動度(cm2/Vs)の平均値を示している。
図11に示すように、図10で示したCu粒子の総充填率が異なる種々の半導体層用材料を用いてTFTを作製し、このTFTを用いてキャリア移動度の評価を行った。その結果、Cu粒子の充填率が上昇するに従って、TFTのキャリア移動度が向上することが判明した。尚、図11では、Cu粒子の総充填率が60体積%の試料では1つの試料中でソース電極とドレーン電極との間が短絡して半導体特性が測定できない試料が半数以上あったため、キャリア移動度が測定可能であったTFTのみの平均値を示している。又、図10には示していないが、Cu粒子の総充填率を60体積%以上に高めた場合は、全てのTFTにおいて前記短絡が発生して半導体特性の測定が不能であった。このように、有機物半導体材料の内部におけるCu粒子の総充填率が上昇するに従って、TFTのキャリア移動度が向上することが判明した。
図12は、Cu粒子の総充填率とTFTの遮断周波数(利得が1になる周波数)との関係を示す相関グラフである。尚、図12において、横軸はCu粒子の総充填率(体積%)を示しており、縦軸はTFTの遮断周波数(Hz)の平均値を示している。
図12に示すように、有機物半導体材料の内部におけるCu粒子の総充填率が上昇するに従って、TFTの遮断周波数も上昇することが分かる。つまり、有機物半導体材料を用いるTFTの遮断周波数の改善に対し、半導体層へのCu粒子の添加の有効性が認められた。
尚、本実施の形態では、有機物半導体材料として置換系オリゴチオフェンを、分散させる無機物導体材料としてCu粒子を用いたが、本発明の効果はこれらの材料に限定された場合に発現するものではない。又、分散させるCu粒子の粒子径についても、図10に示した粒子径に限定されるものではない。即ち、弾性に優れる有機物半導体材料の内部に電気抵抗の低い無機物導体材料の粒子を分散させるという本発明の思想に沿った材料の組み合わせであれば、本発明の効果は同様に得られる。その他の点については、実施の形態1の場合と同様である。
(実施の形態3)
本発明の実施の形態3では、半導体層が無機物半導体材料の粒子と無機物導体材料の粒子とを複数内部に含有する有機物半導体材料によって構成されたTFTについて説明する。尚、本実施の形態では、TFT自体の構成、半導体特性等を評価するための試料の構成、及びTFTの製造方法等は、実施の形態1,2の場合と同様である。従って、ここでは、その説明は省略する。又、TFTを構成する各構成要素の適用材料は、半導体層を除いて実施の形態1の場合と同様としている。例えば、半導体層を形成するためのベースとなる有機物半導体材料は、実施の形態1の場合と同様のオリゴチオフェンを用いている。
以下、本実施の形態におけるTFTの半導体特性に関する評価結果について説明する。
図13は、実施の形態3に係る半導体層における無機物半導体材料及び無機物導体材料の種類と、各々の粒子の粒子径及び総充填率、更にそれらを用いて作製したTFTのキャリア移動度と遮断周波数との平均値について、実施の形態1において作製したTFTの場合と比較した結果を示す比較図である。
図13に示すように、無機物半導体材料の粒子としてP型シリコン結晶の粒子のみを有機物半導体材料の内部に分散させた実施の形態1の場合に比べて、Cu粒子も一緒に分散させた実施の形態3(図13において、実施の形態3(1)及び(2))の場合の方が、キャリア移動度、遮断周波数共に向上していることが分かる。つまり、有機物半導体材料を用いるTFTのキャリア移動度及び遮断周波数の改善に対し、半導体層へのP型シリコン結晶粒子及びCu粒子の2種類の粒子の添加が有効であることが認められた。
尚、本実施の形態では、有機物半導体材料としてオリゴチオフェンを用い、分散させる無機物半導体材料としてP型シリコン結晶の粒子を、分散させる無機物導体材料としてCu粒子を用いているが、本発明の効果はこれらの材料に限定された場合に発現するものではない。又、分散させる粒子の粒子径についても、図13に示した粒子径に限定されるものではない。即ち、弾性に優れる有機物半導体材料の内部に電気抵抗の低い無機物半導体材料の粒子と無機物導体材料の粒子とを分散させるという本発明の思想に沿った材料の組み合わせであれば、本発明の効果は同様に得られる。尚、その他の点については、実施の形態1,2の場合と同様である。
又、実施の形態1〜3において、有機物半導体材料の内部に分散させる無機物材料の粒子の形状は何れも球状としたが、本発明の効果はこの構成に限定された場合に発現するものではなく、針状粒子や鱗片状粒子等の非球状粒子を用いても、同様の効果が得られる。又、これらを混合したものを用いても、同様の効果が得られる。
又、実施の形態1〜3におけるTFTの製造方法では、半導体層を形成するためにスピンコーティング法を用いた例を説明しているが、本発明の構成を実現するための半導体層の形成手段は、これに限定されるものではない。例えば、インクジェット印刷、浸漬コーティング、又はスクリーン印刷等のプロセスを用いても、実施の形態1〜3の場合と同等の半導体層を形成することが可能であり、同様の効果が得られる。
(実施の形態4)
本発明の実施の形態4では、実施の形態1〜3で説明したTFTを用いたアプリケーション例として、シートライクなフレキシブルディスプレイ、無線IDタグ、及び、携帯テレビ、通信端末、携帯用医療機器等の携行用機器について説明する。
先ず、シートライクなフレキシブルディスプレイとして有機ELを表示部に用いたアクティブマトリクス型ディスプレイの構成例について説明する。
図14は、本実施の形態に係る有機ELを表示部に用いたアクティブマトリクス型ディスプレイの構成を模式的に示す斜視図である。
図14に示すように、本実施の形態に係るアクティブマトリクス型ディスプレイは、プラスティック基板101上に画素電極に接続されたTFT駆動回路110がアレイ状に配置されており、そのTFT駆動回路110の上に有機EL層102と保護フィルム104とが配設されている。尚、有機EL層102の上面には、透明電極103が設けられる。ここで、有機EL層102は、電子輸送層、発光層、正孔輸送層等の各層が積層され構成されている。そして、各々のTFTの所定の電極から延長されたソース電極線105とゲート電極線106とは、各々ここでは図示しない制御回路へ接続されている。ここで、TFT駆動回路部110の拡大図を図15に示す。尚、TFT自体の積層構成は、基本的に実施の形態1〜3で示した積層構造と同様である。つまり、図15に示すTFTは、半導体層113と、ソース電極114及びドレーン電極115と、ゲート絶縁層112と、ゲート電極111とが積層されてなる。そして、図15に示すように、ドレーン電極115は有機ELの画素電極116に電気的に接続されている。又、ゲート電極111が接続されたゲート電極線106と、ソース電極114が接続されたソース電極線105とが交差する部分には、絶縁層117が配設されている。
このように、実施の形態1〜3で説明したTFTを用いてアクティブマトリクス型のディスプレイを構成することにより、TFT部分を低コストプロセスで作製できるため、ディスプレイ全体としても安価で、かつ機械的柔軟性及び耐衝撃性に優れたシートライクなディスプレイを実現することができる。又、表示速度(反応速度)の速いアクティブマトリクス型のディスプレイを提供することが可能になる。
尚、本実施の形態では、表示部に有機ELを用いた場合について説明したが、本発明の効果はこの構成を有するアクティブマトリクス型のディスプレイに限定されるものではない。つまり、TFT回路を必要とするアクティブマトリクス型のディスプレイであれば、その効果は同様に発揮される。
又、画素を駆動する駆動回路部の構成は、本実施の形態で示した構成に限定されるものではない。つまり、例えば、1つの画素を駆動するために電流駆動用のTFTとそれを制御するためのスイッチング用TFTとを組み合わせた構成としても良い。又、更に複数個のTFTを組み合わせた回路構成とすることも可能である。
次に、本発明に係るTFTを無線IDタグに応用した場合について説明する。
図16は、本実施の形態に係るTFTを用いた無線IDタグの構成を模式的に示した斜視図である。
図16に示すように、本実施の形態に係る無線IDタグ120は、フィルム状のプラスティック基板121を基材として使用している。この基板121上には、アンテナ部122とメモリーIC部123とが設けられている。ここで、メモリーIC部123は、実施の形態1〜3において説明したTFTを利用して構成することが可能である。そして、この無線IDタグ120は、裏面に粘着効果を持たせることで、菓子袋やドリンク缶のような平坦でないものにも貼り付けて使用することが可能である。尚、無線IDタグ120の表面には、必要に応じて保護膜が設けられる。
このように、実施の形態1,2で説明したTFTを用いて無線IDタグを構成することにより、様々な形状、又は素材へ貼り付けることが可能な無線IDタグを具現化することが可能になる。又、反応速度(処理速度)の速い無線IDタグを提供することが可能になる。
尚、本発明の効果は、図16に示した無線IDタグの構成に限定され得られるものではない。従って、アンテナ部、メモリーIC部の配置や構成方法は、任意に設定可能である。又、例えば、倫理回路部を無線IDタグに組み込むことも可能である。
又、本実施の形態では、プラスティック基板121上に予めアンテナ部122とメモリーIC部123とを形成しておく形態について説明したが、本発明はこの形態に限定されるものではなく、インクジェット印刷のような方法を用いて、直接対象物に無線IDタグを形成することも可能である。そして、その際も、本発明に係るTFTの構成を用いることにより、機械的柔軟性、耐衝撃性に優れた高性能な無線IDタグを低コストで作製することが可能になる。
最後に、本発明に係るTFTを携行用機器に応用した場合について説明する。図17〜図19では、本発明に係るTFTを利用した携行用機器の幾つかの具体的な応用例を示している。
先ず、本発明に係るTFTを携帯テレビに応用した場合について説明する。
図17は、本実施の形態に係るTFTを用いた携帯テレビの構成を模式的に示した正面図である。
図17に示すように、本実施の形態に係る携帯テレビ130は、テレビ映像を表示する液晶表示装置等からなる表示部131と、ここでは伸縮自在なロッドアンテナからなる放送電波を受信可能な受信部132と、携帯テレビ130電源のON/OFFを制御する電源スイッチ133と、後述する音声出力装置135から出力される音声出力の音量の調整や受信するテレビ放送のチャンネルの切り換えを行うための操作スイッチ134と、テレビ音声を出力するスピーカ等からなる音声出力部135と、音声信号や映像信号を携帯テレビ130に入力又は携帯テレビ130から出力する入出力端子136と、受信したテレビ放送等に係る音声信号及び映像信号が必要に応じて記録される記録メディアを挿入する記録メディア挿入部137とを備えている。
この携帯テレビ130は、図17では特に図示しないが、その内部にICやLSI等の集積回路を有している。そして、本発明に係るTFTを利用した集積回路が、携帯テレビ130を構成する演算素子、記憶素子、スイッチング素子等として適宜使用されている。これにより、携帯テレビ130は、携帯型のテレビ放送受信機として機能する。
次に、本発明に係るTFTを通信端末に応用した場合について説明する。尚、ここでは、通信端末として、携帯電話を例示している。
図18は、本実施の形態に係るTFTを用いた携帯電話の構成を模式的に示した正面図である。
図18に示すように、本実施の形態に係る携帯電話140は、電話番号等を表示する液晶表示装置等からなる表示部141と、ここでは収納自在なホイップアンテナからなる通信電波を送受信可能な送受信部142と、通信音声を出力するスピーカ等からなる音声出力部143と、写真撮影可能なCCD素子等を有するカメラ部144と、携帯電話140を必要に応じて折り畳むための折り畳み用可動部145と、電話番号や文字を入力するための複数の操作スイッチ146と、通信音声を入力するコンデンサマイク等からなる音声入力部147とを備えている。
この携帯電話140は、図18では特に図示しないが、その内部にICやLSI等の集積回路を有している。そして、本発明に係るTFTを利用した集積回路が、携帯電話140を構成する演算素子、記憶素子、スイッチング素子等として適宜使用されている。これにより、携帯電話140は、携帯型の通信端末として機能する。
次に、本発明に係るTFTを携帯用医療機器に応用した場合について説明する。
図19は、本実施の形態に係るTFTを用いた携帯用医療機器の構成を模式的に示した斜視図である。尚、ここでは、携帯用医療機器の一例として、取得された生体情報に基づいて患者に対し薬物投与等の医療的処置を自動的に行う携帯用医療機器を例示している。又、図19では、後述する患者の腕155を透視的に表している。
図19に示すように、本実施の形態に係る携帯用医療機器150は、機器の動作状態や取得された生体情報等を表示する液晶表示装置等からなる表示部151と、携帯用医療機器150の動作に係る設定等を行うための操作スイッチ152と、後述する経皮コンタクト部154によって取得された生体情報を処理しかつその処理の結果に基づいて経皮コンタクト部154を介した患者に対する薬物投与等の医療的処置を行う医療的処置部153と、医療的処置のための患者の生体情報を逐次収集すると共に患者に対する医療的処置を実質的に行う経皮コンタクト部154とを備えている。
この携帯用医療機器150が用いられて患者に対する医療的処置が行われる場合、携帯用医療機器150は、例えば図19に示すように患者の腕155に巻き付けられて携行される。この図19に示す装着状態において、経皮コンタクト部154と患者の腕155の表面とは相互に密着している。そして、携帯用医療機器150は、この図19に示す装着状態において、経皮コンタクト部154を介して腕155から医療的処置のための生体情報を取得する。患者の生体情報が取得されると、この取得された生体情報は医療的処置部153に入力される。医療的処置部153では、取得された生体情報の医療的処置のための所定の処理が行われる。そして、その処理の結果に基づいて、医療的処置部153によって経皮コンタクト部154を介した患者に対する薬物投与等の医療的処置が行われる。
この携帯用医療機器150は、図19では特に図示しないが、その内部にICやLSI等の集積回路を有している。そして、本発明に係るTFTを利用した集積回路が、携帯用医療機器150を構成する演算素子、記憶素子、スイッチング素子等として適宜使用されている。これにより、携帯用医療機器150は、携帯型の医療機器として機能する。
このように、実施の形態1〜3で説明したTFTが利用された集積回路を用いて携行用機器を構成することにより、以下に記す効果が得られる。即ち、上述した携行用機器において利用される集積回路としては演算素子、記憶素子、及びスイッチング素子等の半導体特性を使った素子が種々考えられるが、前記携行用機器において、機械的柔軟性、耐衝撃性、廃却する際の対環境性や軽量、安価等の有機材料の利点として挙げられる性能が要求される際にその一部を本発明に係るTFTを利用して構成することにより、高性能な素子を安価に実現することが可能になる。又、その結果として、前記利点を備えた携行用機器を安価に製造することが可能になる。
実施の形態4では、本発明に係るTFTを応用した携行用機器として幾つかの例を挙げて説明したが、これらの例示した機器の構成は上述した構成に限定されるものではない。又、本発明に係るTFTを応用可能な携行用機器についても、上述した機器に限定されるものではない。例えば、PDA端末、ウェアラブルなAV機器、ポータブルなコンピュータ、腕時計タイプの通信機器等、機械的柔軟性、耐衝撃性、廃却する際の対環境性、軽量、安価等が要求される携行用機器に対して本発明に係るTFTを好適に応用することが可能である。
尚、実施の形態1〜3では、図1(c)の構成のTFTに本発明を適用したが、図1(a)、図1(b)、図1(d)、図2(a)及び図2(b)の構成のTFTにも本発明を同様に適用することが可能である。ここで、図1(a)は、基板1上にゲート電極2、ゲート絶縁層3、及び半導体層4が積層され、この半導体層4の上にソース電極5及びドレーン電極6が積層され構成されている。又、図1(b)は、基板1上にゲート電極2、ゲート絶縁層3、ソース電極5及びドレーン電極6が積層され、このソース電極5及びドレーン電極6とゲート絶縁層3との上に半導体層4が積層され構成されている。又、図1(d)は、基板1上にソース電極5及びドレーン電極6、半導体層4、及びゲート絶縁層3が積層され、このゲート絶縁層3の上にゲート電極2が積層され構成されている。又、図2(a)は、基板1上にゲート電極2、ゲート絶縁層3、及びソース電極5が積層され、このソース電極5及びゲート絶縁層3の上に半導体層4が積層され、この半導体層4の上にドレーン電極6が積層され構成されている。更に、図2(b)は、基板1上にソース電極5が積層され、このソース電極5の上に、その内部にゲート絶縁層3によって覆われた図2(b)では円形の断面形状を有するゲート電極2を備えた半導体層4が積層され、この半導体層4の上にドレーン電極6が積層され構成されている。
本発明は以上に述べたような形態で実施され、低コストプロセスで構成可能な、機械的柔軟性、耐衝撃性が優れた高キャリア移動度の半導体層を使用したTFTと、その製造方法を提供することができる。又、キャリア移動度が改善されたTFTを複数個配置した、安価でかつ、機械的柔軟性、耐衝撃性の優れた、アクティブマトリクス型のディスプレイ、前記TFTを集積回路部に用いた無線IDタグ、前記TFTを集積回路部に用いた携行用機器等を提供することができるという効果を奏する。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明に係るTFT及びその製造方法は、低コストプロセスによって構成可能な、機械的柔軟性、及び耐衝撃性が優れた高キャリア移動度のTFTと、そのTFTの製造方法として有用である。
又、本発明に係るTFTは、シートライク又はペーパーライクなアクティブマトリクス型のディスプレイや、無線IDタグ、携帯テレビや携帯電話等の携行用機器等を製造するために有用である。
図1(a)〜図1(d)は、TFTの第1の代表的な構成の各々を模式的に示す断面図である。 図2(a)及び図2(b)は、TFTの第2の代表的な構成の各々を模式的に示す断面図である。 図3は、実施の形態1に係る半導体特性評価用試料の構成を模式的に示す斜視図である。 図4(a)はTFTを構成する半導体層の一部の断面を模式的に示す断面図であり、図4(b)は画像認識によって導出された無機物半導体材料の粒子の粒子径分布を模式的に例示する分布図である。 図5は、実施の形態1で用いたP型シリコン結晶の粒子の種類と、それぞれの粒子のオリゴチオフェン中における含有率と、オリゴチオフェン中の粒子全体の総充填率とを示す組み合わせ図である。 図6は、第2の粒子の平均粒子径と限界総充填率との関係を示す相関グラフである。 図7は、P型シリコン結晶の粒子の充填率とTFTのキャリア移動度との関係を示す相関グラフである。 図8は、実施の形態1に係る耐屈曲性評価を行うための試験形態を模式的に示す形態図である。 図9は、P型シリコン結晶の粒子の充填率と不良率との関係を示す相関グラフである。 図10は、実施の形態2で用いたCu粒子の種類と、それぞれの粒子のオリゴチオフェン中における含有率と、オリゴチオフェン中の粒子全体の総充填率とを示す組み合わせ図である。 図11は、Cu粒子の総充填率とTFTのキャリア移動度との関係を示す相関グラフである。 図12は、Cu粒子の総充填率とTFTの遮断周波数との関係を示す相関グラフである。 図13は、実施の形態3に係る半導体層における無機物半導体材料及び無機物導体材料の種類と、各々の粒子の粒子径及び総充填率、更にそれらを用いて作製したTFTのキャリア移動度と遮断周波数との平均値について、実施の形態1において作製したTFTの場合と比較した結果を示す比較図である。 図14は、有機ELを表示部に用いたアクティブマトリクス型ディスプレイの構成を模式的に示す斜視図である。 図15は、TFT駆動回路部の構成を拡大して示した模式図である。 図16は、本実施の形態に係るTFTを用いた無線IDタグの構成を模式的に示した斜視図である。 図17は、本実施の形態に係るTFTを用いた携帯テレビの構成を模式的に示した正面図である。 図18は、本実施の形態に係るTFTを用いた携帯電話の構成を模式的に示した正面図である。 図19は、本実施の形態に係るTFTを用いた携帯用医療機器の構成を模式的に示した斜視図である。
符号の説明
1 基板
2 ゲート電極
3 ゲート絶縁層
4 半導体層
5 ソース電極
6 ドレーン電極
7 プラスティック基板
8 粒子
9 有機物半導体材料
100 TFT
101 プラスティック基板
102 有機EL層
103 透明電極
104 保護フィルム
105 ソース電極線
106 ゲート電極線
110 TFT駆動回路
111 ゲート電極
112 ゲート絶縁層
113 半導体層
114 ソース電極
115 ドレーン電極
116 画素電極
117 絶縁層
120 無線IDタグ
121 プラスティック基板
122 アンテナ部
123 メモリーIC部
130 携帯テレビ
131 表示部
132 受信部
133 電源スイッチ
134 操作スイッチ
135 音声出力装置
136 入出力端子
137 記録メディア挿入部
140 携帯電話
141 表示部
142 送受信部
143 音声出力部
144 カメラ部
145 折り畳み用可動部
146 操作スイッチ
147 音声入力部
150 携帯用医療機器
151 表示部
152 操作スイッチ
153 医療的処置部
154 経皮コンタクト部
155 腕
200 TFT
300 半導体特性評価用試料
400 断面

Claims (17)

  1. 半導体層と、該半導体層に相互に分離して設けられたソース領域とドレーン領域とゲート領域とを有する薄膜トランジスタであって、
    前記半導体層が複合材料で構成されており、
    前記複合材料が、有機物半導体材料の内部に少なくとも1種類の無機物材料の粒子が複数分散された複合材料であり、
    前記半導体層における前記粒子の含有率が、0体積%を超え60体積%以下である、薄膜トランジスタ。
  2. 薄膜トランジスタのON動作時における前記無機物材料の電気抵抗が、前記ON動作時における前記有機物半導体材料の電気抵抗より低い、請求項1記載の薄膜トランジスタ。
  3. 前記粒子の最大粒子径が、前記ソース領域と前記ドレーン領域との間の距離より小さい、請求項1記載の薄膜トランジスタ。
  4. 前記半導体層における前記粒子の含有率が、前記粒子のネットワークによって前記ソース領域と前記ドレーン領域とが電気的に接続されないように制限されている、請求項1記載の薄膜トランジスタ。
  5. 前記複数分散された前記粒子の群が、互いに平均粒子径が異なる少なくとも第1の粒子群及び第2の粒子群の2つの粒子群を含んで構成されている、請求項1記載の薄膜トランジスタ。
  6. 前記第1の粒子群の平均粒子径が、前記第2の粒子群の平均粒子径の0%を超え15%未満である、請求項記載の薄膜トランジスタ。
  7. 前記無機物材料が、導体材料である、請求項1記載の薄膜トランジスタ。
  8. 前記無機物材料が、半導体材料である、請求項1記載の薄膜トランジスタ。
  9. 前記無機物材料が、導体材料及び半導体材料を含有する2種類以上の材料の複合材料である、請求項1記載の薄膜トランジスタ。
  10. 半導体層と、該半導体層に相互に分離して設けられたソース領域とドレーン領域とゲート領域とを有する薄膜トランジスタの製造方法であって、
    有機物半導体材料の内部に少なくとも1種類の無機物材料の粒子を複数分散させて、前記半導体層における前記粒子の含有率が0体積%を超え60体積%以下である複合材料を製造する第1の製造工程と、
    前記第1の製造工程で得られた前記複合材料を用いて前記半導体層を形成する第2の製造工程と、
    を備えている、薄膜トランジスタの製造方法。
  11. 前記無機物材料として、薄膜トランジスタのON動作時における電気抵抗が前記ON動作時における前記有機物半導体材料の電気抵抗より低い無機物材料を用いる、請求項10記載の薄膜トランジスタの製造方法。
  12. 前記粒子の粒度分布を所定の粒度分布とするための粒子選別工程を更に備えている、請求項10記載の薄膜トランジスタの製造方法。
  13. 前記粒子の前記半導体層内における分散状態を所定の分散状態とするための分散制御工程を更に備えている、請求項10記載の薄膜トランジスタの製造方法。
  14. 前記第2の製造工程が、
    前記複合材料を所定の溶液中に溶解若しくは非溶解の状態で分散させて半導体層形成用材料を得る第1の準備工程と、
    前記第1の準備工程で得られた前記半導体層形成用材料を所定の位置に噴霧、塗布若しくは印刷した後に乾燥させて前記半導体層を形成する第2の準備工程と、
    を備えている、請求項10記載の薄膜トランジスタの製造方法。
  15. 請求項1乃至の何れか1つに記載の薄膜トランジスタが、画素を駆動するためのスイッチング素子として複数個配設されてなる、アクティブマトリクス型ディスプレイ。
  16. 請求項1乃至の何れか1つに記載の薄膜トランジスタが、集積回路を構成するための半導体素子として利用されてなる、無線IDタグ。
  17. 請求項1乃至の何れか1つに記載の薄膜トランジスタが、集積回路を構成するための半導体素子として利用されてなる、携行用機器。
JP2005511904A 2003-07-17 2004-07-15 薄膜トランジスタおよびその製造方法 Expired - Lifetime JP4354953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003275895 2003-07-17
JP2003275895 2003-07-17
PCT/JP2004/010436 WO2005008785A1 (ja) 2003-07-17 2004-07-15 薄膜トランジスタおよびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2005008785A1 JPWO2005008785A1 (ja) 2006-09-07
JP4354953B2 true JP4354953B2 (ja) 2009-10-28

Family

ID=34074570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005511904A Expired - Lifetime JP4354953B2 (ja) 2003-07-17 2004-07-15 薄膜トランジスタおよびその製造方法

Country Status (6)

Country Link
US (1) US7564051B2 (ja)
EP (1) EP1650809A4 (ja)
JP (1) JP4354953B2 (ja)
KR (1) KR100694947B1 (ja)
CN (1) CN100456499C (ja)
WO (1) WO2005008785A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457835B (zh) * 2004-02-04 2014-10-21 Semiconductor Energy Lab 攜帶薄膜積體電路的物品
TWI372413B (en) * 2004-09-24 2012-09-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same, and electric appliance
JP2006216654A (ja) * 2005-02-02 2006-08-17 Konica Minolta Holdings Inc 有機半導体膜の形成方法および有機薄膜トランジスタの製造方法
JP2006253380A (ja) * 2005-03-10 2006-09-21 Seiko Epson Corp 有機強誘電体メモリ及びその製造方法
WO2007080576A1 (en) * 2006-01-09 2007-07-19 Technion Research And Development Foundation Ltd. Transistor structures and methods of fabrication thereof
JP4831406B2 (ja) * 2006-01-10 2011-12-07 ソニー株式会社 半導体装置の製造方法
CN101752499B (zh) * 2008-12-12 2012-08-08 北京化工大学 一种无机-并五苯类物质复合半导体材料及其制备方法
JP6651165B2 (ja) * 2014-09-17 2020-02-19 旭化成株式会社 薄膜トランジスタ及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273811A (ja) * 1993-03-22 1994-09-30 Mitsubishi Electric Corp 光・電子機能材料およびその薄膜の製法
EP1450412A3 (en) * 1996-05-15 2005-03-09 Seiko Epson Corporation Thin film device and method for making
US6180956B1 (en) * 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
WO2001008242A1 (en) * 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6509217B1 (en) * 1999-10-22 2003-01-21 Damoder Reddy Inexpensive, reliable, planar RFID tag structure and method for making same
JP2002204012A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 有機トランジスタ及びその製造方法
US6992322B2 (en) * 2001-01-02 2006-01-31 Kavassery Sureswaran Narayan Photo-responsive organic field effect transistor
DE10153563A1 (de) * 2001-10-30 2003-05-15 Infineon Technologies Ag Verringerung des Kontaktwiderstandes in organischen Feldeffekttransistoren durch Einbettung von Nanopartikeln zur Erzeugung von Feldüberhöhungen
US6949762B2 (en) * 2002-01-11 2005-09-27 Xerox Corporation Polythiophenes and devices thereof
AU2003235181A1 (en) * 2002-04-22 2003-11-03 Konica Minolta Holdings, Inc. Organic semiconductor composition, organic semiconductor element, and process for producing the same
JP4635410B2 (ja) * 2002-07-02 2011-02-23 ソニー株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
EP1650809A4 (en) 2011-08-10
WO2005008785A1 (ja) 2005-01-27
US20060177972A1 (en) 2006-08-10
KR100694947B1 (ko) 2007-03-14
CN1823427A (zh) 2006-08-23
EP1650809A1 (en) 2006-04-26
KR20060034708A (ko) 2006-04-24
US7564051B2 (en) 2009-07-21
JPWO2005008785A1 (ja) 2006-09-07
CN100456499C (zh) 2009-01-28

Similar Documents

Publication Publication Date Title
KR100757615B1 (ko) 전계 효과형 트랜지스터 및 그 제조 방법
CN1949309B (zh) 柔性平板显示器
CN1797807B (zh) 有机半导体器件和其制造方法
CN101903993A (zh) 形成半导体薄膜的方法和制造薄膜半导体器件的方法
KR20060064987A (ko) 전도성 잉크와 이를 이용한 유기 반도체 트랜지스터 및 그제작 방법
US9000418B2 (en) Field effect transistor, method of manufacturing the same, and electronic device using the same
JP4856900B2 (ja) 電界効果トランジスタの製造方法
JP4354953B2 (ja) 薄膜トランジスタおよびその製造方法
CN101262042B (zh) 有机晶体管、其制造方法及电子设备
US20070290196A1 (en) Organic light emitting display device and method for manufacturing the organic light emitting display device
JP2007281188A (ja) トランジスタ、画素電極基板、電気光学装置、電子機器及び半導体素子の製造方法
US7563638B2 (en) Semiconductor device and method for manufacturing the same
CN103855085A (zh) 薄膜器件、薄膜器件制造方法和显示器制造方法
JP4365825B2 (ja) 薄膜トランジスタ及びその製造方法
JP4767856B2 (ja) 電界効果トランジスタの製造方法
JP2006073774A (ja) 薄膜トランジスタ及びその製造方法
JP2005210086A (ja) 半導体装置とその作製方法
JP2006156983A (ja) 半導体装置とその作製方法
KR100751380B1 (ko) 유기 발광 표시장치
JP2006165341A (ja) 電子回路基板とその製造方法及び電子回路基板を用いた表示装置
JP2013089760A (ja) 積層構造、有機半導体素子、配線および表示装置、並びに有機半導体素子の製造方法
KR101510898B1 (ko) 유기박막 트랜지스터

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Ref document number: 4354953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4