CN101752499B - 一种无机-并五苯类物质复合半导体材料及其制备方法 - Google Patents

一种无机-并五苯类物质复合半导体材料及其制备方法 Download PDF

Info

Publication number
CN101752499B
CN101752499B CN200810239802.2A CN200810239802A CN101752499B CN 101752499 B CN101752499 B CN 101752499B CN 200810239802 A CN200810239802 A CN 200810239802A CN 101752499 B CN101752499 B CN 101752499B
Authority
CN
China
Prior art keywords
pentacene
inorganic
compound semiconductor
organic solvent
pentacene class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810239802.2A
Other languages
English (en)
Other versions
CN101752499A (zh
Inventor
张敬畅
黄忠
杨秀英
曹维良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Hainan Institute of Science and Technology
Original Assignee
Beijing University of Chemical Technology
Hainan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology, Hainan Institute of Science and Technology filed Critical Beijing University of Chemical Technology
Priority to CN200810239802.2A priority Critical patent/CN101752499B/zh
Publication of CN101752499A publication Critical patent/CN101752499A/zh
Application granted granted Critical
Publication of CN101752499B publication Critical patent/CN101752499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Thin Film Transistor (AREA)

Abstract

一种无机-并五苯类物质复合半导体材料及其制备方法属于导电材料领域。纯净的并五苯及其衍生物应用于电子器件中在较低电位时电流强度小、起始还原电位低。本发明所制备的无机-并五苯类物质复合半导体材料由摩尔配比为10∶1-1∶10的并五苯类物质和无机材料组成。本发明通过将并五苯类物质溶于有机溶剂中,加入无机材料,无机材料与并五苯类物质的摩尔比为10∶1-1∶10,密封,并分散0.5-10h后,去除有机溶剂,得到无机-并五苯类物质复合半导体材料。本发明所提供的复合半导体材料兼顾了n型半导体和p型半导体各自的优点,制备工艺简单,成本低。

Description

一种无机-并五苯类物质复合半导体材料及其制备方法
技术领域
本发明属于导电材料领域,具体涉及一种无机-并五苯类物质复合半导体材料及其制备方法。
背景技术
并五苯类物质在场效应晶体管中的载流子迁移率达到1.5cm2/(Vs)以上,最高可达到5cm2/(Vs),是有机半导体领域中的研究热点。无机纳米材料呈现小尺寸效应、量子尺寸效应、表面与界面效应和宏观量子隧道效应。当并五苯类物质与无机纳米材料复合后,两种材料的原子电荷分布,分子堆积方式,LUMO能级,HOMO能级,禁带宽度等均会改变,因而复合半导体材料表现出与无机材料和并五苯类物质不同的性能,可应用于场效应晶体管,发光二极管,太阳能电池等领域。如,Minakata等人早在1992年就观察到,将碘掺到并五苯后,并五苯的导电率在240K的温度时显现出反常现象。Matsuo等人在2001年报道,并五苯中掺入碘制成的复合薄膜材料的导电率是纯并五苯薄膜导电率的1010以上。但是目前应用于电子器件中的并五苯类物质多限于纯净的并五苯及其衍生物,因并五苯类物质属于p型半导体,在较低电位时电流强度小、起始还原电位低。
发明内容
本发明的目的在于解决现有技术中的问题,而提供一种无机-并五苯类物质复合半导体材料及其制备方法。
本发明所提供的一种无机-并五苯类物质复合半导体材料由摩尔配比为10∶1-1∶10的并五苯类物质和无机材料组成。
其中,所述的并五苯类物质选自通式I-IX中所示的并五苯类物质:
Figure G2008102398022D00021
式中,R1-R8基团独立的选自氢原子、烷基、烷氧基、环烷基、硅烷基、芳基和氨基中的一种;R9基团选自氢原子、苯基、取代苯基、呋喃极、噻吩基、取代噻吩基、喹啉基、吲哚基、炔基或取代炔基中的一种。
所述的无机材料选自卤素单质、碱金属、纳米粒子中的一种。
其中,所述的R1-R8基团独立的优选氢原子、C1-C20的烷基、C1-C20的烷氧基、C4-C7的环烷基及其同分异构基、三甲基硅基、三乙基硅基、苯基、呋喃基、噻吩基、对C1-C20的烷基苯基、(2,6-二甲基)苯基、(2,6-二乙基)苯基、(2,4,6-三甲基)苯基、(2,4,6-三乙基)苯基、对C1-C20的烷氧基苯基、对三甲基硅基苯基、(1-萘)基、(2-萘)基、(1-蒽)基、(2-蒽)基、(9-蒽)基、(1-菲)基、(2-菲)基、(3-菲)基、(4-菲)基、(9-菲)基、二甲基氨基、二乙基氨基中的一种。
所述的R9基团优选氢原子、苯基、对C1-C20的烷基苯基、对C1-C20的烷氧基苯基、(2,6-二甲基)苯基、(2,6-二乙基)苯基、(2,4,6-三甲基)苯基、(2,4,6-三乙基)苯基、对三甲基硅基苯基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、(5-C1-C20的烷基)噻吩基、2-吡啶基、3-吡啶基、2-喹啉基、1-异喹啉基、2-吲哚基、3-吲哚基、2-苯并呋喃基、3-苯并呋喃基、2-苯并噻吩基、3-苯并噻吩基、乙炔基、(1-丙炔)基、(1-丁炔)基、(1-戊炔)基、(1-己炔)基、(1-庚炔)基、(1-辛炔)基、(1-壬炔)基、(1-癸炔)基、苯乙炔基、三甲基硅基乙炔基、对C1-C20烷基苯乙炔基、对C1-C20烷氧基苯乙炔基、(2-甲基)苯乙炔基、(2,6-二甲基)苯乙炔基、(2-乙基)苯乙炔基、(2,6-二乙基)苯乙炔基、(2,4,6-三甲基)苯乙炔基、(2,4,6-三乙基)苯乙炔基或对三甲基硅基苯乙炔基中的一种。
所述的无机材料优选纳米ZnO、纳米TiO2、纳米CdS、纳米CdO、纳米Fe2O3、纳米SnO2、纳米MnO、纳米ZrO2、纳米FeO、纳米Fe3O4、纳米银、纳米铜、纳米金、纳米MgFe2O4、纳米NiFe2O4、纳米FeFe2O4、纳米CoFe2O4、纳米ZnFe2O4、纳米CuFe2O4、纳米MnFe2O4、纳米BaFe2O4、纳米SrFe2O4、纳米MgFe2O4、I2、Br2、金属钾、金属钠或金属铷中的一种。
本发明所提供的无机-并五苯类物质复合半导体材料的制备方法,包括以下步骤:将并五苯类物质溶于有机溶剂中,加入无机材料,无机材料与并五苯类物质的摩尔比为10∶1-1∶10,密封,并分散0.5-10h后,去除有机溶剂,得到无机-并五苯类物质复合半导体材料。
其中,所述的有机溶剂为氯仿、四氢呋喃、二氯甲烷、苯、甲苯、乙二醇或异丙醇中的一种。
本发明可采用超声分散、物理搅拌或回流分散法将所述的无机材料分散到并五苯类物质的有机溶液中;可通过真空干燥、旋转蒸干或自然干燥去除有机溶剂。
本发明具有以下有益效果:
①本发明工艺简单,成本低,无需苛刻的制备条件,无机材料与并五苯类物质的配比可控。
②本发明采用可作为n型半导体的无机材料与并五苯类物质复合,所制备的复合半导体材料为n型和p型两种半导体的复合,克服了n型半导体和p型半导体各自的不足。
以下结合具体实施方式对本发明作进一步说明。
具体实施方式
下述实施例均在避光条件下进行。
实施例1
纳米TiO2-6,13-双(对丙基苯基)并五苯复合材料的制备
将334mg(0.625mmol)6,13-双(对丙基苯基)并五苯溶于20mL氯仿中,再加入10mg(0.125mmol)TiO2(粒径约为8nm),密封后,常温下,超声分散3h,将所得混合物进行真空去除溶剂,得到纳米TiO2-6,13-双(对丙基苯基)并五苯复合材料。
实施例2
纳米ZnO-6,13-二苯基并五苯复合材料的制备
将284mg(0.626mmol)6,13-二苯基并五苯溶于10mL四氢呋喃中,再加入25mg(0.313mmol)ZnO(粒径约为10nm),密封后,常温下,超声分散6h,将所得混合物进行真空去除溶剂,得到纳米ZnO-6,13-二苯基并五苯复合材料。
实施例3
纳米TiO2-6,13-二苯基并五苯复合材料的制备
将284mg(0.626mmol)6,13-二苯基并五苯溶于20mL氯仿中,再加入10mg(0.125mmol)TiO2(粒径约为8nm),密封后,常温下,超声分散3h,将所得混合物进行真空去除溶剂,得到纳米TiO2-6,13-二苯基并五苯复合材料。
实施例4
纳米TiO2-1,4,8,11-四甲基-6,13-二苯基并五苯复合材料的制备
将153mg(0.3mmol)1,4,8,11-四甲基-6,13-二苯基并五苯溶于20mL氯仿中,再加入24mg(0.3mmol)TiO2(粒径约为8nm),密封后,回流分散3h,将所得混合物进行真空去除溶剂,得到纳米TiO2-1,4,8,11-四甲基-6,13-二苯基复合材料。
实施例5
纳米ZnO-6,13-二苯基并五苯复合材料的制备
将284mg(0.626mmol)6,13-二苯基并五苯溶于30mL二氯甲烷中,再加入10mg(0.125mmol)ZnO(粒径约为10nm),密封后,常温下,超声分散1h,将所得混合物进行真空去除溶剂,得到纳米ZnO-6,13-二苯基并五苯复合材料。
实施例6
I2-6,13-二苯乙炔基并五苯复合材料的制备
将251mg(0.5mmol)6,13-二苯乙炔基并五苯溶于30mL氯仿中,再加入127mg(0.5mmol)I2,密封后,常温下,超声分散0.5h,将所得混合物进行真空去除溶剂,得到I2-6,13-二苯乙炔基并五苯复合材料。
实施例7
纳米Ag-6,13-二苯基并五苯复合材料的制备
将284mg(0.626mmol)6,13-二苯基并五苯溶于20mL氯仿中,再加入68mg(0.626mmol)纳米Ag(粒径约为20nm),密封后,常温下超声分散3h,将所得混合物进行真空去除溶剂,得到纳米Ag-6,13-二苯基并五苯复合材料。
实施例8
纳米Cu-2,3,9,10-四甲氧基并五苯复合材料的制备
将194mg(0.5mmol)2,3,9,10-四甲氧基并五苯溶于20mL甲苯,再加入32mg(0.5mmol)纳米Cu(粒径约为15nm),密封后,回流分散2h,将所得混合物进行真空去除溶剂,得到纳米Cu-2,3,9,10-四甲氧基并五苯复合材料。
实施例9
纳米Ag-6,13-二苯乙炔基并五苯复合材料的制备
将251mg(0.5mmol)6,13-二苯乙炔基并五苯溶于30mL氯仿中,再加入54mg纳米银(粒径约为20nm),密封后,常温下超声分三3h,将所得混合物进行真空去除溶剂,得到纳米Ag-6,13-二苯乙炔基并五苯复合材料。
实施例10
I2-6,13-二苯基并五苯复合材料的制备
将227mg(0.5mmol)6,13-二苯基并五苯溶于30mL氯仿中,再加入25mg(0.1mmol)I2,密封后,常温下超声0.5h,将所得混合物进行真空去除溶剂,得到I2-6,13-二苯基并五苯复合材料。
取实施例(1)制备的TiO2-6,13-双(对丙基苯基)并五苯复合材料与TiO2和纯6,13-双(对丙基苯基)并五苯的循环伏安曲线进行比较,结论如下:1)复合材料的能隙有大幅度减小;2)6,13-双(对丙基苯基)并五苯和TiO2复合后,其Eox onset没有发生明显变化,而且具有较大的电流,体现出了p型有机半导体的性质,Ered onset大幅度提高,体现出TiO2的n型半导体的性质;3)在同样的电压扫描范围内,纯6,13-双(对丙基苯基)并五苯的还原峰电流值与氧化峰电流值之比约为0.166,而复合材料相对应的值约为0.386,说明复合材料在还原电压下的导电能力明显增强,也体现了复合材料的n型半导体性能。综上所述,本发明复合材料克服了n型半导体在氧化区起始氧化电位高、电流密度小和p型半导体在还原区起始还原电位低、电流密度小的缺点,使其在整个扫描电压区间内的导电性能都有大幅度改善。

Claims (4)

1.一种无机-并五苯类物质复合半导体材料,所述的复合半导体材料由摩尔配比为10∶1-1∶10的并五苯类物质和无机材料组成,其特征在于,制备方法包括以下步骤:将并五苯类物质溶于有机溶剂中,加入无机材料,无机材料与并五苯类物质的摩尔比为10∶1-1∶10,密封,并分散0.5-10h后,去除有机溶剂,得到无机-并五苯类物质复合半导体材料;
所述的并五苯类物质选自通式I所示的并五苯类物质:
所述的R1-R8基团独立的选自氢原子、C1-C20的烷基中的一种;R9基团选自苯基、对C1-C20的烷基苯基中的一种;
所述的无机材料选自纳米ZnO、纳米TiO2中的一种;
所述的有机溶剂为氯仿、四氢呋喃、二氯甲烷中的一种。
2.根据权利要求1所述的一种无机-并五苯类物质复合半导体材料的制备方法,其特征在于,包括以下步骤:将并五苯类物质溶于有机溶剂中,加入无机材料,无机材料与并五苯类物质的摩尔比为10∶1-1∶10,密封,并分散0.5-10h后,去除有机溶剂,得到无机-并五苯类物质复合半导体材料;
所述的并五苯类物质选自通式I所示的并五苯类物质:
Figure FSB00000822593300021
所述的R1-R8基团独立的选自氢原子、C1-C20的烷基中的一种;R9基团选自苯基、对C1-C20的烷基苯基中的一种;
所述的无机材料选自纳米ZnO、纳米TiO2中的一种;
所述的有机溶剂为氯仿、四氢呋喃、二氯甲烷中的一种。
3.根据权利要求2所述的方法,其特征在于,采用超声分散、物理搅拌或回流分散法将无机材料分散到并五苯类物质的有机溶液中。
4.根据权利要求2所述的方法,其特征在于,采用真空干燥、旋转蒸干或自然干燥去除有机溶剂。
CN200810239802.2A 2008-12-12 2008-12-12 一种无机-并五苯类物质复合半导体材料及其制备方法 Expired - Fee Related CN101752499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810239802.2A CN101752499B (zh) 2008-12-12 2008-12-12 一种无机-并五苯类物质复合半导体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810239802.2A CN101752499B (zh) 2008-12-12 2008-12-12 一种无机-并五苯类物质复合半导体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101752499A CN101752499A (zh) 2010-06-23
CN101752499B true CN101752499B (zh) 2012-08-08

Family

ID=42479151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810239802.2A Expired - Fee Related CN101752499B (zh) 2008-12-12 2008-12-12 一种无机-并五苯类物质复合半导体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101752499B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331144A (zh) * 2020-04-02 2020-06-26 河北铷铯科技有限公司 一种金属铷纳米溶胶的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266287A (zh) * 1999-03-03 2000-09-13 国际商业机器公司 用有机和无机杂化材料作半导电沟道的薄膜晶体管
CN1823427A (zh) * 2003-07-17 2006-08-23 松下电器产业株式会社 薄膜晶体管及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266287A (zh) * 1999-03-03 2000-09-13 国际商业机器公司 用有机和无机杂化材料作半导电沟道的薄膜晶体管
CN1823427A (zh) * 2003-07-17 2006-08-23 松下电器产业株式会社 薄膜晶体管及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fang B. et al.Electrochemical hydrogen storage in Li-doped pentacene.《The Journal of Chemical Physics》.2006,第124卷204718. *
Kaneko Y. et al.Metallic electrical conduction in alkaline metal-doped pentacene.《Synthetic Metals》.2005,第154卷177-180. *
Matsuo Y. et al.Electric properties on iodine doped pentacene.《Synthetic Metals》.2001,第121卷1383-1384. *

Also Published As

Publication number Publication date
CN101752499A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
Okamoto et al. Bent-shaped p-type small-molecule organic semiconductors: A molecular design strategy for next-generation practical applications
Di et al. High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes
Li et al. Novel spiro-based hole transporting materials for efficient perovskite solar cells
Wu et al. Influence of nonfused cores on the photovoltaic performance of linear triphenylamine-based hole-transporting materials for perovskite solar cells
Wen et al. Recent progress in n‐channel organic thin‐film transistors
Sun et al. High‐performance and stable organic thin‐film transistors based on fused thiophenes
CN101952988B (zh) 苝半导体及其制备方法和用途
TWI294687B (en) Organic thin film transistor
Ponomarenko et al. Decyl-end-capped thiophene− phenylene oligomers as organic semiconducting materials with improved oxidation stability
JP5986173B2 (ja) ポリマー半導体、デバイス、および関連する方法
EP2111654B1 (en) Organic transistor using thiazolothiazole derivatives and method for fabricating the same
Ma et al. The first solution-processable n-type phthalocyaninato copper semiconductor: tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents
JP2006117672A (ja) (オリゴチオフェン−アリーレン)誘導体およびこれを用いた有機薄膜トランジスタ
CN105051928B (zh) 有机薄膜晶体管、萘并双噻嗪化合物及其类似骨架的化合物与其用途
TW201429978A (zh) 新穎的縮合多環芳香族化合物及其用途
JP5131701B2 (ja) 有機半導体材料およびこれを用いた有機半導体デバイス並びにそれらの製造方法
Yu et al. High-k polymeric gate insulators for organic field-effect transistors
Kawabata et al. Synthesis of soluble dinaphtho [2, 3-b: 2′, 3′-f] thieno [3, 2-b] thiophene (DNTT) derivatives: One-step functionalization of 2-bromo-DNTT
Wei et al. Theoretical Studies of Bipolar Transport in C n BTBT–F m TCNQ Donor–Acceptor Cocrystals
CN101348491B (zh) 苯乙烯封端的并四噻吩衍生物及其制备方法与应用
Moggia et al. Synthesis and thin film electronic properties of two pyrene-substituted oligothiophene derivatives
Dong et al. Improving the air-stability of n-type organic thin-film transistors by polyacrylonitrile additive
CN101752499B (zh) 一种无机-并五苯类物质复合半导体材料及其制备方法
Ashizawa et al. Improved stability of organic field-effect transistor performance in oligothiophenes including β-isomers
Sun et al. Utilization of hole trapping effect of aromatic amines to convert polymer semiconductor from ambipolar into n-type

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120808

Termination date: 20121212