KR101626128B1 - 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지 - Google Patents

고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지 Download PDF

Info

Publication number
KR101626128B1
KR101626128B1 KR1020140012257A KR20140012257A KR101626128B1 KR 101626128 B1 KR101626128 B1 KR 101626128B1 KR 1020140012257 A KR1020140012257 A KR 1020140012257A KR 20140012257 A KR20140012257 A KR 20140012257A KR 101626128 B1 KR101626128 B1 KR 101626128B1
Authority
KR
South Korea
Prior art keywords
polymer
thin film
organic thin
solar cell
film solar
Prior art date
Application number
KR1020140012257A
Other languages
English (en)
Other versions
KR20140099424A (ko
Inventor
우한영
김진영
이원호
응웬탄루안
모하마드 아프사르 우딘
최효성
고서진
Original Assignee
부산대학교 산학협력단
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단, 울산과학기술원 filed Critical 부산대학교 산학협력단
Publication of KR20140099424A publication Critical patent/KR20140099424A/ko
Application granted granted Critical
Publication of KR101626128B1 publication Critical patent/KR101626128B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/32Polythiazoles; Polythiadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Thin Film Transistor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 고효율 유기 박막 태양전지에 관한 것으로, 구체적으로 본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 전자 주게 작용기 함유 화합물과, 하기 화학식 3 내지 화학식 5 및 화학식 8 중에서 선택된 하나로 표시되는 전자 받게 작용기 함유 화합물이 교차 반복 도입되는, 고분자 중합체를 개시한다:
Figure 112015111281105-pat00082
Figure 112015111281105-pat00083
Figure 112015111281105-pat00084

(단, 상기 화학식에서, X는 각각 동일하거나 상이하게 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며; R, R'은 각각 동일하거나 상이하게 C1-30인 선형 또는 가지형의 알킬기이며; Y는 각각 동일하거나 상이하게, H, F, Cl 또는 CN이고, 각 화학식에서 적어도 하나의 Y는 F, Cl 또는 CN이며; R1, R2, R3, R4, R5, R6, R7, R11 및 R12는 각각 동일하거나 상이하게, C8-30인 선형 또는 가지형의 알킬기이며; n은 각가 동일하거나 상이하게 1 내지 3의 정수이다.)

Description

고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지{NEW POLYMER MATERIALS FOR ORGANIC THIN FILM SOLAR CELLS WITH HIGH PCE, AND ORGANIC THIN FILM SOLAR CELLS USING THE SAME}
본 발명은 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 고효율 유기 박막 태양전지에 관한 것이다.
태양 전지는 무한하고 재생 가능하며 환경친화적인 전기 에너지원으로서 주목받고 있다. 현재 태양전지는 무기물을 이용한 (가장 대표적인 주원료인 실리콘 결정형 태양전지) 1세대 결정형 태양전지가 태양광 발전 시장의 90%를 차지하고 있다. 그러나 석탄이나 석유, 가스에 비해 발전 단가가 5~20배나 높아 수지가 맞지 않다. 이로 인해 2세대 기술이 대안으로 급부상하였다. 2세대 박막 태양전지 시장 점유율은 실리콘(5.2%), CdTe(4.7%), CIGS(0.5%)등이 전체 시장의 10%를 차지하고 있으나 아직은 미미한 상태이다. 그러나 2세대 태양전지 기술 또한 소자의 제작 공정이 까다롭고 고가의 장비가 필요하여 단가가 높다는 문제점이 있다. 비용 상승의 주요 요인은 주로 진공 및 고온 하에서 반도체 박막을 제공하는 공정에 기인한다. 따라서, 저온 용액 공정에 의해 생산 단가를 획기적으로 낮출 수 있는 유기 고분자 태양 전지가 새로운 가능성으로 검토되고 있다. 현재 유기고분자를 이용한 에너지 소재의 경우 무기소재에 비해 광전 변환 효율은 낮지만 소자 제작의 용이성, 기계적 유연성, 분자 디자인의 용이성, 가격 등 유기재료가 갖는 다양한 장점으로 인해 그 중요성이 점차 부각되고 있다.
그러나 공액계 중합체 등의 유기 반도체를 이용한 유기 태양 전지는 종래의 무기 반도체를 이용한 태양 전지에 비해 광전 변환 효율이 낮다는 것이 최대의 과제이며, 아직 실용화에는 이르지 못하고 있다. 종래의 공액계 중합체를 이용한 유기 태양 전지의 광전 변환 효율이 낮은 이유로서, 주로 다음 3가지 점을 들 수 있다. 제1로서, 태양광의 흡수 효율이 낮다는 것이다. 제2로서, 유기 반도체의 경우 태양광에 의해서 생성된 엑시톤의 결합에너지가 커서 전자와 정공으로 분리되기 어렵다는 것이다. 제3으로, 캐리어(전자, 정공)을 포획하는 트랩이 형성되기 쉽기 때문에 생성된 캐리어가 트랩에 포획되기 쉬워, 캐리어의 이동도가 낮다는 것이다. 즉, 반도체 소재에는 일반적으로 그 소재가 갖는 캐리어의 높은 이동도가 요구되는데, 공액계 중합체로서는 종래의 무기 결정 반도체나 비정질 실리콘과 비교하여 전하 캐리어의 이동도가 낮다는 문제가 있다.
이 때문에, 많은 태양빛을 흡수하고 생성된 전자와 정공을 엑시톤으로부터 잘 분리하는 수단과 공액계 중합체의 비정 영역이나 공액계 중합체 쇄 사이에서의 캐리어의 산란이나 트랩에 의한 캐리어 포획을 억제하여 이동도를 향상시킬 수 있는 수단을 개발하는 것이 유기 반도체 태양 전지를 실용화하기 위한 매우 중요한 열쇠가 된다.
지금까지 알려져 있는 유기 반도체에 의한 광전 변환 소자는 일반적으로 다음과 같은 소자 구성으로 분류할 수 있다. 전자 공여성 유기 재료(p형 유기 반도체)와 일함수가 작은 금속을 접합시키는 쇼트키 접합, 전자 수용성 유기 재료(n형 유기 반도체)와 전자 공여성 유기 재료(p형 유기 반도체)를 접합시키는 헤테로 접합형 등이다. 이들 소자는 접합부의 부근의 유기층(수분자층 정도)만이 광전류 생성에 기여하기 때문에 광전 변환 효율이 낮아서 그 향상이 과제로 되어있다.
광전 변환 효율 향상의 하나의 방법으로서, 전자 수용성 유기 재료와 전자 공여성 유기 재료를 혼합하고, 광전 변환에 기여하는 접합면을 증가시킨 벌크 헤테로 접합(Bulk heterojunction)형이 있다. 그 중에서도 전자 공여성 유기 재료로서 공액계 중합체를 이용하고 전자 수용성 유기 재료로서 n형의 반도체 특성을 갖는 반도체 고분자, C60 등의 플러렌 유도체 등을 이용한 광전 변환 소자가 보고되고 있다.
이러한 벌크 헤테로 접합 구조를 기반으로 한 유기 태양전지는 초기 ~1%의 낮은 효율을 기록하였으나, P3HT를 광활성층으로 사용함으로써 4~6%의 효율을 일반적으로 얻을 수 있게 되었고, 이후 좁은 밴드갭을 기반으로 한 유기 재료의 발명으로 7% 이상의 고효율 유기 태양전지가 보고되고 있다. 좁은 밴드갭 고분자는 전자 풍부 단량체에서 전자 부족 단량체로 분자 내 전하 이동 (Intramolecular Cahrge Transfer, ICT) 현상에 의해 밴드갭이 감소하고 그 결과 넓은 영역의 태양광을 효율적으로 흡수할 수 있다.
따라서 현재 고분자 태양전지의 가장 큰 문제점은 실리콘, CIGS 등 무기물 구조 (20% 내외)에 비하여 현저히 낮은 광전 변환 효율인 바, 효율이 우수한 유기태양전지의 개발을 위해서는, 태양광을 흡수하여 전기로 변환시키는 역할을 하는 활성층의 역할이 중요하며, 공정 조건의 최적화를 통하여 더욱 우수한 효율을 갖는 신규 활성층 물질의 개발이 필요한 실정이다. 이를 위해서는, 태양광을 효과적으로 흡수할 수 있는 넓은 흡수 영역대와 높은 몰흡광계수를 갖는 좁은 밴드갭 고분자의 개발, 높은 광전류 특성을 위한 정공 및 전자 이동도의 향상, 높은 개방 전압을 위한 고분자의 전자구조 제어, 고분자 다층 태양전지 기술 개발이 필수적이라 할 것이다.
이에, 본 발명에서는 고효율 유기 박막 태양전지를 위한 신규의 유기 재료로서 고분자 중합체를 제공하는 것을 그 해결과제로 한다.
또한 본 발명은 상기 고분자 중합체를 태양광 흡수 광활성층 물질로 이용하는 유기 박막 태양전지를 제공하는 것을 그 해결과제로 한다.
또한 본 발명은 고효율의 유기 박막 태양전지를 제조하는 방법을 제공하는 것을 그 해결과제로 한다.
또한 본 발명은 상기 고분자 중합체를 활성 물질로 이용하는 유기 박막 트랜지스터를 제공하는 것을 그 해결과제로 한다.
상기 본 발명의 과제를 해결하기 위한 본 발명은,
하기 화학식 1 또는 화학식 2로 표시되는 전자 주게 작용기 함유 화합물과,
하기 화학식 3 내지 화학식 8 중에서 선택된 하나로 표시되는 전자 받게 작용기 함유 화합물이 교차 반복 도입되는, 고분자 중합체에 관한 것이다.
Figure 112014010564061-pat00001
Figure 112014010564061-pat00002
Figure 112014010564061-pat00003
(단, 상기 화학식에서,
X는 각각 동일하거나 상이하게 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는
Te이며;
R, R'은 각각 동일하거나 상이하게 C1-30인 선형 또는 가지형의 알킬기이며;
Y는 각각 동일하거나 상이하게, H, F, Cl 또는 CN이며;
R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11및 R12는 각각 동일하거나 상이하게, C8-30인 선형 또는 가지형의 알킬기이며;
n은 각가 동일하거나 상이하게 1 내지 3의 정수이다.)
상기 전자 주게 작용기 함유 화합물은 화학식 1로 표시되는 화합물이고, 상기 전자 받게 작용기 화합물은 화학식 3으로 표시되는 화합물인 것을 특징으로 하고, 더욱 바람직하게는 상기 본 발명의 고분자 중합체는 하기 화학식 9 내지 화학식 11 중에서 선택된 어느 하나의 화합물인 것을 특징으로 한다.
Figure 112014010564061-pat00004
Figure 112014010564061-pat00005
Figure 112014010564061-pat00006
(상기 화학식에서, n은 1 내지 3의 정수이고; m은 10 내지 100의 정수이며; R13, R14,R15,R16,R17 및 R18은 각각 동일하거나 상이하게 C8-30인 선형 또는 가지형의 알킬기이다.)
또한 바람직하게는 본 발명의 상기 고분자 중합체는 수평균 분자량이 10,000 g/mol 내지 100,000 g/mol인 것을 특징으로 한다.
또한 본 발명의 다른 과제를 해결하기 위한 본 발명은,
클로로벤젠을 용매로 사용하고, 첨가제로서 디페닐에테르(diphenylether)를 첨가하여 상기 고분자 중합체를 태양광 흡수 광활성층에 포함하도록 하는 유기 박막 태양전지의 제조방법에 관한 것이다.
또한 본 발명의 또다른 과제를 해결하기 위한 본 발명은,
태양광 흡수 광활성층이 상기 고분자 중합체를 포함하는 것을 특징으로 하는 유기 박막 태양전지에 관한 것으로, 바람직하게는 상기 방법으로 제조되는 것을 특징으로 한다.
또한 본 발명에 있어서 바람직하게는 상기 유기 박막 태양전지는 캐소드 층과 상기 태양광 흡수 광활성층 사이에 폴리(플루오렌-페닐렌) 기반의 공액고분자 전해질(CPE)을 포함하는 버퍼층을 더 포함하는 것을 특징으로 한다. 더욱 바람직하게는 상기 공액고분자 전해질은 PAHFP-Br (poly[9,9-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-alt-phenylene] with bromide)인 것을 특징으로 한다.
또한 본 발명의 또다른 과제를 해결하기 위한 본 발명은,
상기 고분자 중합체를 활성 물질로 포함하는 것을 특징으로 하는 유기 박막 트랜지스터에 관한 것이다.
본 발명에 따르면, 전자 풍부 단량체와 전자 부족 단량체로 이루어진 ICT 타입의 고분자 중합체를 합성함으로써 높은 정공 이동도와 광전 변환 효율을 나타내는 고효율의 유기 박막 태양전지를 위한 신규의 고분자 재료를 제공할 수 있게 된다. 따라서 본 발명에서 합성된 고분자는 유기 고분자 박막 태양전지 소자의 광활성층의 물질로 이용될 수 있고, 상기 소자는 높은 광전 변환 효율(PCE)을 가질 수 있다.
도 1은 본 발명의 일 실시예에 따른 고분자 중합체의 합성 메커니즘을 나타낸 것이다.
도 2는 본 발명에 따른 고분자 중합체의 합성예를 나타낸 것이다.
도 3은 본 발명의 일 실시예에서 제조한 고분자 구조 유도체의 Density Functional Theory에 따른 분자간 packing 계산 결과를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 고분자 중합체 PPDTBT, PPDTFBT, PPDT2FBT의 cyclic voltammetry 및 UV-Vis 흡수 스펙트럼을 나타낸 것이다. (a) 산화 포텐셜(페로센/페로세늄 기준, -4.8 eV)클로로포름 용액; (b) 클로로포름 용액; (c) 필름 상태;
도 5는 클로로벤젠 용액(5M)에서의 온도에 따른 (a) PPDTFBT, (b) PPDT2FBT의 UV-Vis 흡수 스펙트럼을 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 고분자 중합체 PPDTBT, PPDTFBT, PPDT2FBT의 (a) TGA 그래프 및 (b) DSC 그래프를 나타낸 것이다.
도 7은 전형적 유형(Conventional-type)의 유기 박막 태양전지 소자의 구조(a) 및 에너지-밴드 다이아그램(b)을 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 고분자 중합체와 PC70BM의 혼합 박막의 TEM 분석 이미지를 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 고분자 중합체와 PC70BM의 혼합 박막의 2D-GIXRD 분석결과를 나타낸 것이다.
도 10은 용매 및 어닐링에 따른 (a) PPDTBT, (b) PPDTFBT, (c) PPDT2FBT의 전압-전류밀도 그래프를 나타낸 것이다.
도 11은 용매 및 첨가제에 따른 (a) PPDTBT, (b) PPDTFBT, (c) PPDT2FBT의 전압-전류밀도 그래프를 나타낸 것이다.
도 12는 용매, 첨가제 및 어닐링에 따른 PPDTBT의 (a) 전압-전류밀도 그래프와 (b) IPCE를 나타낸 것이다.
도 13은 용매, 첨가제 및 어닐링에 따른 PPDTFBT의 (a) 전압-전류밀도 그래프와 (b) IPCE를 나타낸 것이다.
도 14는 용매, 첨가제 및 어닐링에 따른 PPDT2FBT의 (a) 전압-전류밀도 그래프와 (b) IPCE를 나타낸 것이다.
도 15는 용매 및 열 어닐링에 따른 PPDTBT, PPDTFBT, PPDT2FBT의 UV-Vis 흡수 스펙트럼을 나타낸 것이다.
도 16은 용매 및 첨가제에 따른 PPDTBT, PPDTFBT, PPDT2FBT의 UV-Vis 흡수 스펙트럼을 나타낸 것이다.
도 17은 용매, 어닐링 및 첨가제에 따른 (a) PPDTBT, (b) PPDTFBT, (c) PPDT2FBT의 AFM 이미지를 나타낸 것이다.
도 18은 PPDT2FBT의 Space charge limited current (SCLC) 분석 결과를 나타낸 것이다.
도 19는 PPDTBT, PPDTFBT 및 PPDT2FBT의 소자 안정성을 그래프로 나타낸 것이다.
도 20은 전형적(conventional) 구조와 반전된(inverted) 구조에서 전압-전류밀도 그래프를 나타낸 것이다.
도 21은 전형적 구조와 반전된 구조에서 IPCE 그래프를 나타낸 것이다.
도 22는 전형적 구조와 반전된 구조에서 광활성층 단면의 TEM 분석 이미지를 나타낸 것이다.
도 23은 PPDT2FBT기반의 ITO-free PSC의 전형적 구조와 반전된 구조를 도식화하여 나타낸 것이다.
도 24는 전형적 구조와 반전된 구조에서 전압-전류밀도 그래프를 나타낸 것이다.
도 25는 전형적 구조와 반전된 구조에서 IPCE 그래프를 나타낸 것이다.
도 26은 양이온성 고분자 버퍼층 도입전후 PDT2FBT을 포함하는 태양전지 소자의 전압-전류밀도 그래프 및 IPCE 그래프를 나타낸 것이다.
도 27은 PPDTBT를 이용한 유기 고분자 박막 트랜지스터를 도시한 것으로 소자의 정공 이동도, 문턱 전압, 및 점멸비를 나타낸 것이다.
도 28은 PPDTFBT를 이용한 유기 고분자 박막 트랜지스터를 도시한 것으로 소자의 정공 이동도, 문턱 전압, 및 점멸비를 나타낸 것이다.
도 29는 PPDT2FBT를 이용한 유기 고분자 박막 트랜지스터를 도시한 것으로 소자의 정공 이동도, 문턱 전압, 및 점멸비를 나타낸 것이다.
본 발명은 높은 정공 이동도와 광전 변환 효율을 나타내는 고효율의 유기 박막 태양전지를 위한 신규의 고분자 재료에 관한 것으로, 전자 풍부 단량체와 전자 부족 단량체로 이루어진 ICT 타입의 고분자 중합체와 상기 고분자 중합체를 광활성층에 포함하고 매우 우수한 광전 변환 효율을 갖는 유기 박막 태양전지에 관한 것이다.
이하 본 발명을 자세히 설명하기로 한다.
본 발명은 제 1양태로서,
하기 화학식 1 또는 화학식 2로 표시되는 전자 주게 작용기 함유 화합물과,
하기 화학식 3 내지 화학식 8 중에서 선택된 하나로 표시되는 전자 받게 작용기 함유 화합물이 교차 반복 도입되는, 고분자 중합체에 관한 것이다.
Figure 112014010564061-pat00007
Figure 112014010564061-pat00008
Figure 112014010564061-pat00009
(단, 상기 화학식에서,
X는 각각 동일하거나 상이하게 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는
Te이며;
R, R'은 각각 동일하거나 상이하게 C1-30인 선형 또는 가지형의 알킬기이며;
Y는 각각 동일하거나 상이하게, H, F, Cl 또는 CN이며;
R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11및 R12는 각각 동일하거나 상이하게, C8-30인 선형 또는 가지형의 알킬기이며;
n은 각가 동일하거나 상이하게 1 내지 3의 정수이다.)
이러한 본 발명의 고분자 중합체에 포함되는, 화학식 3 내지 화학식 8 중에서 선택된 하나로 표시되는 화합물은 높은 전자 친화성을 가지는 벤조티아디아졸, 벤조셀레나디아졸, 벤조옥사디아졸, 벤조트리아졸, 퀴녹살린, 벤조티에나피롤디온, 디케토피롤로피롤, 이소인디고를 전자 받게 그룹으로서 포함하여 HOMO 에너지 준위를 낮추고 높은 개방전압을 갖도록 한 것이다. 특히, 전자 받게 그룹에 -F, -Cl 또는 -CN을 1개 또는 2개 도입함으로써 전자 친화성을 높여 전자간 상호작용에 의하여 비틀림 각도를 감소시켜 폴리머 백본의 평면성을 유지하고, 분자간 패킹 특성을 향상시켜 전하이동도의 향상에 기여할 수 있게 된다.
또한 유기 박막 태양전지에 있어서 균일한 박막 형성과 우수한 효율을 위해서는 높은 분자량이 바람직한데(Mn>20,000) 분자량이 커짐에 따라 중합체의 용해도가 저하되어 균일한 박막의 형성이 어렵게 된다. 본 발명에서는 상기 알콕시기를 도입함으로서 중합체의 용해도를 개선하고 높은 분자량을 가능하게 하여 균일한 박막의 형성을 용이하게 함으로써 우수한 광전환효율(power conversion efficiency, PCE)을 가능하게 된다.
상기 본 발명의 고분자 중합체에 있어서 바람직하게는, 상기 전자 주게 작용기 화합물은 화학식 1로 표시되는 화합물로서 디알콕시페닐렌을 전자 주게 그룹으로 포함하고, 상기 전자 받게 작용기 함유 화합물은 화학식 3으로 표시되는 화합물로서 벤조티아디아졸을 전자 받게 그룹으로서 포함하는 것을 특징으로 한다. 더욱 바람직하게는 상기 본 발명의 고분자 중합체는 하기 화학식 9 내지 화학식 11 중에서 선택된 어느 하나의 화합물인 것을 특징으로 한다.
Figure 112014010564061-pat00010
Figure 112014010564061-pat00011
Figure 112014010564061-pat00012
(상기 화학식에서, n은 1 내지 3의 정수이고; m은 10 내지 100의 정수이며; R13, R14,R15,R16,R17 및 R18은 각각 동일하거나 상이하게 C8-30인 선형 또는 가지형의 알킬기이다.)
이러한 상기 본 발명의 고분자 중합체는 상기 화학식 1 또는 화학식 2로 표시되는 화합물과 상기 화학식 3 내지 화학식 8 중에서 선택된 하나로 표시되는 화합물이 교차 반복 도입되는 고분자 중합체로서, X--O와 Y--X의 비공유결합성 상호작용은 비틀림 각도를 감소시켜 폴리머 백본의 평면성을 유지할 수 있게 된다. 특히, X--O 또는 Y--X 상호작용은 분자간 패킹 특성을 향상시켜 전하 이동도 향상에 기여를 할 수 있다.
또한 본 발명은 제 2양태로서, 상기 고분자 중합체를 태양광 흡수 광활성층 물질로 포함하되, 클로로벤젠을 용매로 사용하고, 첨가제로서 디페닐에테르를 첨가하는 것을 특징으로 하는 유기 박막 태양전지의 제조방법을 제공한다.
보다 구체적으로, 기판/투명전극/광활성층/금속전극으로 구성되는 전형적 유형의 유기 박막 태양전지는 다음과 같이 제조될 수 있다.
먼저, 기판의 상부에 투명전극 전극용 물질을 코팅한다. 여기서 기판으로는 통상적인 유기 박막 태양전지에 사용되는 기판을 사용하는데, 투명성, 취급용이성, 방기성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 바람직하다. 또한, 투명전극 전극용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화주석(SnO2), 카본나노튜브, 그라펜 등이 사용될 수 있다. 본 발명에서 사용 가능한 정공수송층 형성 물질은 특별히 제한되지는 않으나, 통상적으로 (폴리(스티렌설포닉에시드)(PSS)로 도핑된 폴리(3,4-에틸렌디옥시-티오펜)(PEDOT)인 PEDOT: PSS이 사용된다.
다음으로, 상기 중합체를 이용하여 광활성층을 형성하기 위하여 상기 본 발명의 고분자 중합체와 플러렌 유도체 등의 전자 수용체와의 혼합용액을 제조하는 것이 필요하다. 이때, 중합체와 플러렌 유도체의 비율은 1:0.1 ~ 1:10 무게비인 것이 바람직하며, 좀 더 바람직하게는 1:0.5 ~ 1:4 무게비가 바람직하다. 또한, 중합체 용액은 점도 조절을 용이하게 하고, 광흡수층의 두께를 조절하기 위하여, 고형분의 농도를 조절할 수 있으며, 상기 용매로는 중합체와 플러렌 유도체와의 혼화성이 우수한 용매를 사용할 수 있다.
본 발명의 일 실시예에서는, 용매의 차이에 따라 첨가제가 다르게 반응하여 모폴로지를 변화시킴으로써 유기 박막 태양전지 소자의 효율을 현저하게 높아짐(8.64%)을 확인하였는 바, 본 발명은 첨가제로서 디페닐에테르를 광활성층에 도입하고, 용매로 클로로벤젠을 사용함으로써 본 발명의 고분자 중합체와 플러렌 유도체의 첨가제에 대한 선택적 용해도와 첨가제의 끓는점 차이로 유도되는 효과적인 상분리를 유도할 수 있다. 이는 유기 박막 태양전지의 효율뿐 아니라, 유기 태양전지의 열적 안정성을 향상시켜 광전환 효율을 유지할 수 있게 되는 것이다.
다음으로는, 상기의 방법으로 제조한 중합체와 플러렌 유도체의 혼합용액을 기판 상에 도포하여 광활성층을 형성하는 단계이다. 상기 혼합용액 용액은, 예를 들어, 닥터 블레이드 코팅법, 스프레이 프린팅, 그라비아 프린팅, 잉크 프린팅 등의 공지의 방법을 이용하여 기판 위에 도포한다. 광활성층의 두께는 대략 50 ~ 500 nm 인 것이 바람직하며, 좀 더 바람직하게는 100~200인 것이 좋다. 광활성층은 대략 50 ~ 150 정도의 낮은 온도에서 건조하는 과정을 추가로 거칠 수 있다.
본 발명의 고분자 중합체는 상기에서 설명한 바와 같이 그 구조적 특징으로 인하여, 높은 광자 흡수능 및 용해도개선으로 인해 이를 구성으로 하는 소자의 모폴로지가 향상되어 종래 유기 박막 태양전지에 사용되던 P3HT(Poly(3-hexylthiophene)) 대비 월등한 효율을 구현할 수 있다.
마지막으로, 금속전극 전극용 물질을 코팅한다. 상기 금속전극 형성용 금속으로 는 통상적으로 알루미늄(Al)이 사용되며 일 함수(work function)가 작은 리튬(Li), 마그네슘(Mg), 칼슘(Ca), 바륨(Ba) 등과 함께 사용될 수 있다.
또한 본 발명은 제 3양태로서, 태양광 흡수 광활성층이 상기 고분자 중합체를 포함하는 것을 특징으로 하는 유기 박막 태양전지를 제공한다.
바람직하게는 상술한 방법으로 제조되는 것을 특징으로 한다.
또한 바람직하게는 상기 유기 박막 태양전지는 캐소드 층과 상기 태양광 흡수 광활성층 사이에 폴리(플루오렌-페닐렌) 기반의 공액고분자 전해질을 포함하는 버퍼층을 더 포함하는 것을 특징으로 하는 바, 상기 폴리(플루오렌-페닐렌) 기반의 공액고분자 전해질을 포함시켜 캐소드 층과 광활성층 사이에 버퍼층을 형성함으로써 물질의 일함수를 변화시키고, 이러한 일함수의 변화로 각 층간의 에너지 차이를 조절함으로써 전자의 수집효율을 증가시켜 단락전류의 향상을 유도하게 되어 현저하게 소자의 효율을 향상시킨 유기 박막 태양전지를 제공할 수 있게 된다. 더욱 바람직하게는 상기 공액고분자 전해질은 양이온성 고분자인 PAHFP-Br(poly[9,9-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-alt-phenylene] with bromide)인 것을 특징으로 한다.
또한 본 발명은 제 4양태로서, 상기 고분자 중합체를 활성물질로서 포함하는 것을 특징으로 하는 유기 박막 트랜지스터를 제공한다.
이 때, 상기 고분자 중합체는 일반적인 스핀코팅 공정에 의해 유기 박막 트랜지스터 소자 등을 제작할 수 있다. 구체적으로 유기 박막 트랜지스터 소자는 게이트 전극 기판 위에 게이트 절연층이 형성되고, 게이트 절연층 위에 본 발명에 따른 고분자 중합체를 이용한 유기 반도체층을 형성한 후 드레인과 소스 전극인 금속 전극이 형성될 수 있고, 다른 한편으로는 기판 위에 드레인과 소스 전극이 형성되고, 본 발명에 따른 고분자 중합체를 이용한 유기 반도체층을 형성한 후 절연층을 형성하고 게이트 전극을 형성할 수 있다. 따라서 바텀게이트 또는 탑게이트 방식 등 다양한 형태의 박막 트랜지스터에도 적용할 수 있는 것이다.
또한, 상기 유기 박막 트랜지스터는 통상 열적으로 어닐링되는데, 어닐링은 막이 기판상에 고정되어 있는 동안에 수행되며, 어닐링 온도는 중합체의 특성에 따라 결정되나, 바람직하게는 실온 내지 300이고, 더 바람직하게는 80 내지 150이다. 본 발명의 고분자 중합체는 130 이상에서 수행된다. 어닐링 온도가 너무 낮으면, 유기막에 남아있는 유기 용매가 잘 제거될 수 없고, 반대로 어닐링 온도가 너무 높으면, 유기막이 열분해될 수 있기 때문이다. 어닐링이 진공에서, 또는 질소, 아르곤 또는 대기 분위기 하에 수행되는 것이 바람직하고, 어닐링 시간은 중합체의 응집(aggregation) 속도에 따라 적절하게 정해진다.
또한, 본 발명에 따른 고분자 중합체는 전기전도성 재료, 반도체성 재료, 광전도성 재료, 발광재료, 전극재료 또는 전하이동 재료로 사용되는 것을 특징으로 하는 유기 발광소자, 유기 메모리 등의 유기 전자 소자 및 모듈에도 사용될 수 있다.
이하, 실시예를 참고로 하여 본 발명을 보다 상세하게 설명한다. 하기의 실시예는 본 발명을 구체적으로 설명하려는 것이며, 하기의 실시예에 의하여 본 발명의 범위가 제한되지는 않는다.
<합성예 1> 전구체 합성
앞서 보고된 문헌 [Samuel C. Price, Andrew C. Stuart, Liquing Yang, Huaxing Zhou, and Wei You, J. Am. Soc. 2011, 133, 4625-4631; Huaxing Zhou, Liqiang Yang, Andrew C. stuart, Samuel C. Price, Shubin Liu, and Wei You, Angew. Chem. Int. Ed. 2011, 50, 2995-2998]을 따라, 고분자 합성에 필요한 전구체인 5-플루오로-4,7-디(티오펜-2-일)-2,1,3-벤조티아디아졸 (5-fluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole) 과, 5,6-디플루오로-4,7-디(티오펜-2-일)-2,1,3-벤조티아디아졸 (5,6-difluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole)을 합성하였다.
<합성예 2> 고분자 합성
4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (1)
4,7-디브로모-2,1,3-벤조티아디아졸(4,7-dibromo-2,1,3-benzothiadiazole; 2g; 6.8mmol), 2-(트리부틸스태닐)티오펜(2-(tributylstannyl)thiophene; 5.3g; 2.1당량), 2mol%의 트리(디벤질리디엔 아세톤)디팔라듐(tris(dibenzylidene acetone)dipalladium; (0))과 8mol%의 트리(o-톨일)포스핀을 30ml 마이크로웨이브 용기에 넣고 질소를 충진하였다. 무수 클로로벤젠 10 mL를 첨가한 후, 마이크로웨이브 반응기로 80C에서 10분, 140C에서 1시간 동안 교반하였다. 반응이 완료된 물질의 용매를 제거하고 컬럼 크로마토그래피 (헥산/CHCl3=1/1)로 정제하였다.
수율: 98%. 1H NMR (300 MHz, CDCl3): 8.03 (dd, J = 3.60 Hz, J = 0.83 Hz, 2H), 7.78 (s, 2H), 7.41 (dd, J = 5.07 Hz, J = 0.87 Hz, 2H), 7.14 (dd, J = 3.63 Hz, J = 5.06 Hz, 2H). 13CNMR(75MHz,CDCl3):152.76,139.53,128.43,127.86,127.31,126.12,126.07
5-Fluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (2)
수율: 95%. 1H NMR (300 MHz, CDCl3): 8.22 (dd, J = 3.9 Hz, J = 0.9 Hz, 1H), 8.08 (dd, J = 3.9 Hz, J = 0.9 Hz, 1H), 7.78 (d, J = 12.9, 1H), 7.51 (dd, J = 5.1 Hz, J = 1.2 Hz, 1H), 7.46 (dd, J = 5.1 Hz, J = 1.2 Hz, 1H), 7.19 (m, 2H).
5,6-Difluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (3)
수율: 95%. 1H NMR (300 MHz, CDCl3): 8.33 (dd, J = 3.60 Hz, J = 0.83 Hz, 2H), 7.78 (s, 2H), 7.41 (dd, J = 5.07 Hz, J = 0.87 Hz, 2H), 7.14 (dd, J = 3.63 Hz, J = 5.06 Hz, 2H).
4,7-Bis(5-trimethylstannylthiophen-2-yl)-2,1,3-benzothiadiazole (M1)
질소로 충진된 플라스크에 화합물 1을 무수 THF(20ml)로 녹인 용액을 온도가 -78C가 되도록 낮추고, 무수 THF(2mL)에 디이소프로필아민(0.5g, 5.1mmol 3 당량)와 n-BuLi(3.12ml, 5.1mmol, 3 당량.) (1.6 M 헥산 용액)을 반응하여 준비한 LDA를 천천히 첨가하였다. 한 시간 교반 후, 트리메틸스테닐 클로라이드(3.8ml, 3.8mmol, 2.3 당량.) (1M THF 용액)를 첨가하고 한 시간동안 교반하였다. 물을 첨가하여 반응을 종료시키고, 에테르로 유기 층을 추출하고 물로 씻어준 뒤 무수황산마그네슘으로 수분을 제거하였다. 용매를 날려 제거하고 에탄올에서 재결정화를 통해 정제하여 바늘모양의 자주색 결정을 얻었다.
수율: 90%. 1H NMR (300MHz, CDCl3): 8.17 (d, J = 3.6 Hz, 2H,), 7.85 (s, 2H), 7.27 (d, J = 3.6 Hz, 2H), 0.43 (s, 18H). 13CNMR(75MHz,CDCl3): 152.7, 145.1, 140.2, 136.1, 128.4, 125.9, 125.8, 8.15
4,7-Bis(5-trimethylstannylthiophen-2-yl)-5-fluoro-2,1,3-benzothiadiazole (M2)
수율: 85%. 1H NMR (300MHz, CDCl3): 8.30 (d, J = 3 Hz, 1H,), 8.19 (d, J = 3.3, 1H), 7.79 (d, J = 12.9 Hz, 1H), 7.32 (d, J = 2.7 Hz, 1H), 7.29 (d, J = 3.3 Hz, 1H), 0.43 (s, 18H).
4,7-Bis(5-trimethylstannylthiophen-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (M3)
수율: 96%. 1H NMR (300MHz, CDCl3): 8.33 (d, J = 3 Hz, 2H), 7.35 (d, J = 3 Hz, 2H), 0.43 (s, 18H).
1,4-Dibromo-2,5-bis(2-hexyldecyl)benzene (M4)
2,5-디브로모-벤젠-1,4-디올(2g, 7.5 mmol), 1-브로모-2-헥실데칸 (5.7g, 2.5 당량), NaOH 50% (20ml), 톨루엔 (20 mL), 테트라부틸 암모늄 브로마이드가 섞여있는 플라스크를 80C에서 48시간 동안 교반하였다. 반응이 완료된 물질을 과량의 물에 넣고 헥산으로 3~4번 추출하였다. 유기층에 남은 수분은 무수 황산마그네슘으로 제거하고 농축시켰다. 컬럼 크로마토그래피(헥산)로 정제하여 무색의 액체를 얻었다.
수율: 80%. 1H NMR (300 MHz, CDCl3): 7.08 (s, 2H), 3.94 (d, J = 5.7 Hz, 4H), 1.80 (m, 2H), 1.54-1.27 (br, 44H), 0.90 (m, 18H); 13CNMR(75MHz,CDCl3):150.0,118.0,110.9,72.8,37.8,31.9,31.8,31.2,30.0,29.6,29.5,29.3,26.8,26.7,22.7,14.1.
고분자 중합체 (PPDTBT, PPDTFBT, PPDT2FBT) 합성
질소 환경에서 상기 M1(0.230 g, 0.32 mmol), M4(0.263g, 0.32mmol), 2mol%의 트리스(디벤질리덴아세톤)디팔라듐(0) (tris(dibenzylideneacetone)dipalla dium)과 8mol%의 트리(o-토일)포스핀을 5ml 마이크로웨이브 용기에 넣고 클로로벤젠 (1 mL)를 주사하였다. 마이크로웨이브 반응기로 80C에서 10분, 100C에서 10분, 140C에서 40분 동안 교반하였다. 반응 완료 후, 2-(트리부틸스태닐)티오펜 (0.1 당량)을 주사하고 140oC에서 20분간 교반하였다. 2-브로모티오펜(0.2 당량)을 주사하고 140oC에서 20분간 교반하고, 반응이 모두 완료되면 메탄올(350mL)과 HCl(10mL) 혼합 용액에 석출시켰다. 석출된 고분자는 아세톤, 헥산, 클로로포름 순으로 속슬렛 추출을 통해 정제하였다. 클로로포름에 녹아있는 고분자의 용매를 제거하고 차가운 메탄올에 석출시키고 여과한 후, 진공에서 말려 회수하였다.
상기 방법으로 합성된 고분자 및 그 화학식은 다음과 같다. 그 합성메카니즘은 도 1에 나타내었다.
PPDTBT: Poly[2,5-bis(2-hexyldecyl)phenylene-alt-[4,7-di(thiophen-2 -yl)benzo[c][1,2,5]thiadiazole]]
Figure 112014010564061-pat00013
PPDTFBT: Poly[2,5-bis(2-hexyldecyl)phenylene-alt-[5-fluoro-4,7 -di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]]
Figure 112014010564061-pat00014
PPDT2FBT: Poly[2,5-bis(2-hexyldecyl)phenylene-alt-[5,6-difluoro -4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]]
Figure 112014010564061-pat00015
또한 상기 방법으로 도 2에 나타낸 바와 같이 비슷한 구조를 가지는 다양한 고분자 중합체가 합성될 수 있고, 이들 고분자 중합체는 효율적인 태양전지로 작동할 것으로 기대된다.
<결과 분석>
이론적 계산
합성된 고분자 중합체에 있어서 F 원소의 영향을 확인하기 위하여 먼저 이론적인 계산을 하였다. 전자 주게 단량체로 사용된 디알콕시페닐렌 모이어티는 2-헥실데실 그룹을 포함하고 있어 일반적인 유기용매(클로로포름, 클로로벤젠 등)에 용해도를 가지고 있다.
Density functional theory (DFT)를 이용한 컴퓨터 계산을 통해 페닐렌의 알콕시 그룹과 벤조티아디아졸 그룹의 F 원소 치환의 영향을 조사하였다. 계산 결과 페닐렌에 알콕시를 도입했을 때 알킬 그룹에 비해 입체장애 효과가 최소화되어 ~19.4의 이면각을 보였다(알킬 그룹: 54.1). 구체적으로 F가 벤조티아디아졸에 치환된 경우 ~0에 해당하는 이면각을 보였으며, 이는 H원소와 비교했을 때 입체장애에 큰 영향을 주지 않는 것으로 보인다. 또한 F원소의 도입은 분자 패킹(packing)에 큰 영향을 끼치는데 합성된 세 가지 고분자의 반복단위를 이용하여 분자 패킹을 계산한 결과, 수미식(head-to-tail) 형태가 가장 안정하며 PPDT2FBT가 가장 안정한 구조를 보이는 것으로 나타났다. 이는 인접한 분자간의 F와 S의 비결합성 상호작용에 의한 것으로 보여진다 (도 3).
또한, 고분자의 HOMO 에너지 준위 계산 결과, PPDTBT, PPDTFBT, PPDT2FBT는 -4.98, -5.07, -5.09 eV로 계산되었고, LUMO 에너지 준위는 -2.49, -2.56, -2.60 eV로 계산되었다. 이 때, 고분자의 HOMO는 분자 전체에 걸쳐 분배되어 있으며 LUMO는 전자 받게 단량체인 벤조티아디아졸에 국한된 것으로 계산되었다. 또한 이러한 결과는 측정된 CV(Cyclic voltammetry) 결과(도 4a)와 비슷한 경향을 나타내었다.
고분자 중합체의 특성
상기 합성예에서 합성된 고분자 중합체의 특성을 조사하여 그 결과를 하기 표 1에 요약하여 나타내었다.
Figure 112014010564061-pat00016
(aMn=수평균분자량, bLUMO=HOMO+Eoptg (광학적 밴드갭), cTd=분해 온도, dTc=결정화 온도, eTm=녹는점.)
전기화학적 특성
도 4a는 상기 고분자 중합체의 Cyclic voltammogram(CV)의 특성(페로센/페로세늄 기준, -4.8 eV)을 나타낸 것이다. 측정 결과를 정리한 상기 표 1을 참고하면, F가 벤조티아디아졸에 도입됨에 따라 고분자의 HOMO, LUMO 에너지 준위가 감소함을 확인할 수 있는바, HOMO 에너지 준위 감소에 따라 공기안정성을 증가시키고 소자의 개방전압 특성을 증가시킬 수 있을 것으로 예상된다.
다만, 고분자의 환원과정은 관측되지 않았으며, 고분자의 LUMO 에너지 준위는 HOMO 에너지 준위와 광학적 밴드갭으로부터 계산되었다.
광학 특성
도 4b 및 도 4c는 상기 합성예에서 합성된 고분자 중합체의 클로로포름 용액 및 필름상태에서의 UV 흡수 스펙트럼을 나타낸다.
도 5는 클로로벤젠 용액에서의 온도에 따른 PPDTFBT(a), PPDT2FBT(b)의 UV 흡수 스펙트럼을 나타낸다.
도 4 b 및 도 4c를 참고하면, 합성된 고분자는 350-750nm에 이르는 넓은 범위의 광흡수 대역을 확인할 수 있다. 상기 흡수되는 파장은 -* 전이에 해당하는 단파장 흡수와 분자간 전하 이동 (intramolecular charge transfer) 전이에 의해 일어나는 장파장 흡수로 구분 지을 수 있는데, F가 치환된 고분자는 치환되지 않은 고분자에 비해 장파장으로 흡수가 이동하며, 고분자 간의 상호작용으로 인한 숄더 피크도 확인되었다. 이는 상기 이론적 계산 결과와 일치하며, 분자간의 상호작용으로 인한 숄더 피크를 확인하기 위해 도 5와 같이 온도 상승에 따른 피크의 세기 감소 현상을 확인 하였다. 또한 필름 상태에서의 흡수 관찰 결과(도 4c), F가 치환됨으로 인해 숄더 피크가 증가하며, 이는 F의 도입으로 인한 분자간 상호작용 향상에 의한 것으로 판단된다.
열적 특성
도 6은 상기 합성된 고분자 중합체의 TGA(Thermal gravimetric analysis) 그래프와, DSC(Differential scanning calorimetry) 그래프를 나타낸다.
먼저 도 6a를 참고하면, TGA 측정을 통한 고분자의 열적 안정성을 확인할 수 있는 바, PPDTBT, PPDTFBT, PPDT2FBT는 순서대로 396, 397, 402에 해당하는 분해 온도를 보였다. 이로부터 상기 고분자가 높은 열적 안정성을 가지는 것으로 판단된다.
또한 도 6b를 참고하면, DSC 측정 결과 PPDTBT, PPDTFBT, PPDT2FBT가 순서대로 257, 283, 317에서 녹는점과 239, 276, 308에서 재결정화 현상이 관측되었다. 이로부터 F 원소의 도입이 고분자의 결정성에 상당한 영향을 미치는 것으로 판단된다.
<시험예 1> 유기태양전지 소자의 제조 및 분석
상기 합성예에서 제조한 고분자 중합체 PPDTBT, PPDTFBT, PPDT2FBT를 전자공여체로 하고, PC70BM(시험예 1-1) 또는 PC71BM(시험예 1-2 및 1-3)을 전자수용체로 사용하여 공지의 방법으로 도 7a 및 도 7b에 나타낸 바와 같은 전형적 유형의 벌크-이종접합 유기 태양전지 소자를 제작하였다.
보다 구체적으로, 공지의 방법으로서 다음의 단계로 제조할 수 있다.
(1) 세척된 ITO 투명전극 (transparent electrode)을 10분간 UV ozone 처리한 후 폴리3,4-에틸렌다이옥시티오펜/폴리스티렌술폰산(PEDOT:PSS) (Heraeus사 제조, 상품명: CLEVIOS)를 스핀코팅하고 130~140에서 약 10분간 건조하여 약 40nm 두께의 PEDOT:PSS층을 형성한다.
(2) 상기 고분자 중합체 PPDTBT, PPDTFBT 및 PPDT2FBT 각각 1 중량%와 PC71BM 1.5 중량%를 용매에 녹인 혼합용액을 PEDOT:PSS층 상부에 스핀코팅하여 약 100~400nm 두께의 태양광 흡수 유기반도체 층을 형성한다.
(3) 상기 소자를 열진공 증착기(thermal evaporator)에 넣고 10-6 Torr 미만의 진공상태에서, 태양광 흡수층 상부에 금속 전극으로 알루미늄(Al)을 두께 약 100 nm로 증착함으로써 유기 박막 태양전지 소자를 제작한다.
<시험예 1-1> 첨가제에 따른 고분자 및 유기 박막의 결정성 분석
상기 합성예에서 합성한 고분자 중합체와 PC70BM의 혼합 박막의 디페닐에테르 존재 유무에 따른 결정성을 분석하기 위하여, TEM 분석 및 2D-GIXRD 분석을 실시하고 그 결과를 하기 도 8, 도 9 및 표 2에 나타내었다.
Figure 112014010564061-pat00017
TEM 분석 이미지를 도시한 도 8을 참고하면, 상기 합성된 고분자:PC70BM유기 박막은 디페닐에테르의 첨가에 의하여 보다 밀집된 구조를 가짐을 확인할 수 있다.
또한 상기 2D-GIXRD 측정결과(도 9 및 표 2)로부터 상기 합성된 고분자 및 고분자:PC70BM유기 박막의 정렬 상태를 확인할 수 있다.
구체적으로 도 9를 참고하면, 고분자 박막에서 F가 치환되지 않은 고분자(a)의 경우 qz축에 라멜라 정렬에 기인하는 (100), (200), (300) 피크가 관측되었고, F 원소가 치환됨(b, c)에 따라, qz축의 파이파이 정렬에 기인하는 피크가 증가하였으며 거리 또한 줄어들었다(PPDTFBT: 3.78 PPDT2FBT: 3.72 ).
또한 상기 고분자:PC70BM혼합 박막의 경우, 고분자 박막과 비슷한 경향을 나타내었다. 이는 PC70BM를 고분자와 섞었을 때, 비공유 결합 상호작용에 의해 기인하는 고분자의 결정성이 크게 영향을 받지 않는 것으로 간주되고, 고분자 및 고분자:PC70BM유기 박막에 디페닐에테르 첨가제가 들어가면서 더 강한 피크가 관측되었다.
또한 도 9를 참고하면 face-on 형태의 정렬을 확인할 수 있는 바, face-on 형태의 정렬은 고분자가 태양전지 소자 형태와 평행하게 배열하기 때문에 효율적인 전하 이동 및 수집 특성을 나타내는 것으로 상기 관측 결과에서 F 원소가 치환됨에 따라 face-on에 해당하는 더 밀집된 고분자 정렬이 유도됨이 확인인할 수 있었다.
<시험예 1-2> 용매와 열 어닐링에 따른 유기 박막 태양전지 소자의 특성
본 시험예에서는 용매의 영향과 열 어닐링이 소자에 어떠한 영향을 주는지 알아보기 위해서 상기 방법으로 용매로서 디클로로벤젠 및 클로로벤젠 각각을 사용하여 유기 박막 태양전지 소자를 제작하되, 어떤 첨가제도 넣지 않은 상태에서 소자특성을 비교하였다.
Figure 112014010564061-pat00018
(aThermalannealingat130 for 10 min)
사용된 용매에 따른 유기 박막 태양전지 소자에 대한 결과는 상기 표 3에 요약하여 나타내었고, 도 10에는 각 고분자 중합체에 대한 전압-전류밀도 그래프를 나타내었다.
표 3을 참고하면, F원자가 도입되지 않은 고분자 중합체 PPDTBT가 가장 낮은 개방전압을 나타내었고, F원자의 도입 수에 따라 PPDTFBT보다 PPDT2FBT의 개방전압이 높게 나타났다. 이는 각각의 물질의 HOMO 에너지 준위가 차이에 의한 것이다.
또한, 디클로로벤젠(DCB) 용매를 이용하였을 때, PPDTBT의 경우에는 클로로벤젠(CB) 용매를 이용했을 때와 광전 변환 효율(PCE) 및 열 어닐링 효과가 비슷한 것으로 나타났으나, F원자가 도입된 PPDTFBT 및 PPDT2FBT의 경우에는 광전 변환 효율에 있어서 차이를 보였다. 구체적으로, 디클로로벤젠을 이용한 경우 PPDTFBT 와 PPDT2FBT 각각 4.72와 7.18%의 광전 변환 효율을 얻을 수 있었는데, 클로로벤젠을 이용한 경우에는 효율이 현저히 줄어 각각 3.36 과 3.22%를 보여주었다.
또한 주목할 만한 결과로서 상기 표 3을 참고하면, 열 어닐링을 함에 따라 개방전압이 증가됨을 확인할 수 있다. 고분자 중합체의 HOMO 에너지 준위와 PCBM의 LUMO 에너지 준위에 의하여 결정되는 개방전압이 각각 고분자 중합체의 HOMO 준위와 일맥상통함을 의미하는 것이다.
반면 열 어닐링 후, 디클로로벤젠을 용매로 사용한 경우의 광전 변환 효율과, 클로로벤젠을 용매로 사용한 경우의 광전 변환 효율은 그 증감의 차이가 나타남을 확인할 수 있었다. 특히, PPDT2FBT의 경우에는 클로로벤젠을 용매로 한 경우 열 어닐링 후 효율이 급격히 감소하는 현상을 나타내었다.
<시험예 1-3> 용매와 첨가제에 따른 유기 박막 태양전지 소자의 특성
본 시험예에서는 유기 박막 태양전지 소자의 효율의 최적화와 관련하여, 소량의 첨가제를 이용하여 유기 박막 태양전지 소자를 제작하여 소자 특성을 비교하였다. 구체적으로, Octanedithiol (ODT), diiodooctane (DIO), chloronaphthalene (CN), diphenylether (DPE)를 2%정도를 활성용액에 첨가하여 유기 박막 태양전지 소자를 제작한 결과 디페닐에테르(DPE)를 사용한 경우 가장 좋은 효율을 얻을 수 있음을 확인하고, DPE의 첨가 유무와, 용매에 따른 소자 특성을 비교하였다.
Figure 112014010564061-pat00019
사용된 용매 및 첨가제 유무에 따른 유기 박막 태양전지 소자에 대한 결과는 상기 표 4에 요약하여 나타내었고, 도 11에는 각 고분자 중합체에 대한 전압-전류밀도 그래프를 나타내었다.
상기 표 4를 참고하면, PPDTBT의 경우에는 첨가제를 사용한 경우 디클로로벤젠과 클로로벤젠 용매에서 각각 4.27->5.25%, 4.13->5.17%로 광전 변환 효율이 증가됨을 확인할 수 있으나, 그 증가 폭은 크지 않은 것으로 나타났고, 용매의 영향도 크지 않았다.
또한 PPDTFBT 와 PPDT2FBT 경우에도 디클로로벤젠 용매를 사용하였을 때, 각각 4.72->7.03%, 7.18->7.41%로 광전 변환 효율이 증가됨을 나타내어 높은 효율을 보였으나, 그 증가 폭은 그리 크지 않음을 확인할 수 있었다.
그러나 PPDTFBT 와 PPDT2FBT 경우 클로로벤젠을 용매로 사용하였을 때, 각각 3.36->6.64%, 3.22->8.64%의 증가를 나타냄으로써 큰 폭으로 광전 변환 효율이 높아지면서 높은 효율을 나타내었다.
이는 용매의 차이에 따라 첨가제가 다르게 반응함에 따라 유기 박막 태양전지 소자의 효율이 달라지는 것을 의미한다.
결과 분석
상기 시험예 1-2 및 시험예 1-3의 결과에 따라 용매, 열 어닐링 및 첨가제에 따른 유기 박막 태양전지 소자의 특성을 하기 표 5에 요약하여 나타내었고, 도 12 내지 도 14에는 각 고분자 중합체에 대한 전압-전류밀도 그래프(a)와 광전변환효율을 EQE(external quantum efficiency, b)를 나타내었다.
Figure 112014010564061-pat00020
(aThermalannealingat130 for 10 min)
상기 표 5에서 확인할 수 있는 바와 같이, 광전 변환 효율(PCE)의 결과로 보았을 때 F원자의 도입 수에 따라, PPDTBT < PPDFTBT < PPDT2FBT 의 순서로 PPDT2FBT 가 가장 높은 효율을 나타내었다.
특히, 가장 높은 효율을 나타낸 PPDT2FBT의 경우에는 디클로로벤젠 용매에서 첨가제인 디페닐에테르의 첨가에 따라 단락전류 13.26 mA/cm2, 개방전압 0.84V, 필팩터 0.71의 값을 나타내어 7.97%의 광전 변환 효율(PCE)을 기록하였고, 클로로벤젠 용매에서 디페닐에테르의 첨가에 따라 단락전류 15.73 mA/cm2, 개방전압 0.78V, 필팩터 0.71의 값을 나타내어 8.64%의 높은 광전 변환 효율(PCE)을 나타내었다. 벌크-이종접합 태양전지 소자에서 단지 첨가제만을 이용하여 이러한 높은 광전 변환 효율을 얻어낸 것은 현재로서 보고된 바 없는 높은 효율이다.
이에 상기 용매, 어닐링 및 첨가제에 따른 소자 특성을 분석하기 위하여 용매 및 열 어닐링에 따른 흡수 스펙트럼, 용매 및 첨가제에 따른 흡수 스펙트럼, AFM 이미지, SCLC를 분석하여, 각각 도 15, 도 16, 도 17 및 도 18에 나타내었다.
도 15 및 도 16을 참고하면, PPDTBT(도 15a, 도 16a)의 경우 클로로벤젠을 사용하고 디페닐에테르를 첨가하지 않은 경우를 제외하고는 vibronic shoulder peak가 형성되는 것을 알 수 있었으나, PPDTFBT(도 15b, 도 16b)와 PPDT2FBT(도 15c, 도 16c)에서는 디페닐에테르의 첨가 유무에 상관 없이 vibronic shoulder peak가 변하지 않고 크기만 변화하는 것으로 나타났다. 이는 F원자가 도입된 PPDTFBT와 PPDT2FBT에서는 그 분자 구조상 첨가제를 사용하지 않더라도 물질 자체만으로 어느 정도 semi-crystalline을 형성함을 의미하는 것으로 판단된다.
관련하여, 도 17의 AFM 이미지를 참고하여 광활성층의 모폴로지를 분석하여 보면, PPDTBT의 경우(도 17a)에는 어닐링의 유무, 용매의 차이 및 첨가제의 유무에 상관없이 모폴로지에 대한 변화가 크지 않은 것으로 나타났다.
PPDTFBT의 경우(도 17b)에는, 디클로로벤젠과 클로로벤젠의 현저한 차이를 확인할 수 있었고, 디클로로벤젠에서는 어닐링을 한 경우에 도너와 억셉터의 상분리가 잘 된 것을 확인할 수 있고, 디페닐에테르의 첨가 후에도 같은 현상을 나타내었다. 그러나, 첨가제 없이 클로로벤젠만을 사용한 경우에는 응집이 심하게 일어나 상 분리가 잘 되지 않음을 확인할 수 있었다. 상 분리가 잘되면 전자와 정공의 이동경로가 잘 확보되기 때문에 소자 효율에 많은 영향을 미치게 되는 바, 이러한 결과는 상기 시험예 1-2 및 1-3에서 확인한 바와 같이 클로로벤젠 용매만으로 실험한 경우에 그 효율을 결정하는 모든 요소들이 낮은 이유를 설명하는 것이다. 즉, 첨가제를 사용하고 어닐링을 한 경우 상 분리가 잘 일어나 모두 효율이 증가됨을 의미하는 것이다.
또한 PPDT2FBT의 경우(도 17c)에는, 상기 PPDTFBT보다 그 차이가 확연히 나타났는바, 모폴로지가 클로로벤젠에서 엄청나게 응집이 된 것을 확인할 수 있다. 이는 상기 실험예 1에서 클로로벤젠 용매로만 실험한 경우, 세 물질 중 가장 효율이 낮게 나온 이유를 설명해주는 것이다. 또한 클로로벤젠을 용매로 하여 디페닐에테르를 첨가제로 사용한 경우에는 그렇지 않은 경우와는 정반대로 상 분리가 잘되어 모폴로지에 대한 변화폭이 큼을 확인할 수 있었다. 즉, 이러한 결과로서 8.64%라는 높은 광전 변환 효율을 얻을 수 있게 되는 것이다.
또한 도 18은 Space charge limited current (SCLC) 모델을 분석하여 PPDT2FBT의 정공 이동도(a) 및 전자 이동도(b)를 나타낸 것으로, 디클로로벤젠 용매만을 사용하였을 경우 정공과 전자의 이동도 비율이 1에 가까운 수치를 보임을 확인할 수 있다. 이러한 결과는 디클로로벤젠을 사용하였을 때 나타내는 필팩터가 높은 이유를 설명해주는 것이다. 또한 디클로로벤젠을 용매로 하고, 디페닐에테르를 첨가하였을 경우에도 비슷한 결과를 나타내어 정공과 전자의 이동도가 더욱 향상됨을 확인할 수 있다. 이러한 결과 역시 첨가제의 첨가에 의한 단락전류의 증가를 설명해주는 것이다.
클로로벤젠 용매를 이용한 경우에도 비슷한 결과를 보여주고, 특히 클로로벤젠에 첨가제를 넣은 경우에는 정공과 전자의 이동도가 디클로로벤젠을 용매로 한 경우나 클로로벤젠에 첨가제를 넣지 않은 경우보다 약 10배 정도 향상되는 것을 확인할 수 있었다. 이는 주목할 만한 결과인 것으로, 상기 표 5를 참고하면 15.73 mA/cm2의 높은 단락전류는 이러한 이동도의 향상과 밀접한 영향이 있음을 의미하는 것이다. 또한 높은 단락전류를 얻음과 동시에 IPCE(Incident photon to current conversion efficiency)에서도 82.3%라는 높은 값을 얻을 수 있었다.
<시험예 1-4> 유기 박막 태양전지 소자 안정성 분석
상기 합성예에서 중합한 세 개의 고분자 PPDTBT, PPDTFBT 및 PPDT2FBT의 소자 안정성을 200시간에 걸쳐 측정하여 그 결과 그래프 및 측정값을 도 19에 나타내었다.
도 19a 및 도 19b를 참고하면, F원자가 도입된 PPDTFBT와 PPDT2FBT가 F원자가 도입되지 않은 PPDTBT보다 열 안정성이 뛰어난 것으로 나타났다.
디클로로벤젠 또는 클로로벤젠 용매에 디페닐에테르를 첨가한 경우에는 열 안정성이 디페닐에테르를 첨가하지 않은 경우보다 안정하지 못하였으나, PPDTBT와 비교하면 PPDTFBT 및 PPDT2FBT는 상대적으로 200시간 동안 열적으로 매우 안정함을 나타내었다. 이러한 결과는 종래 보고된 바 없는 뛰어난 열 안정성을 나타내는 것으로, F 원소 도입에 따른 고분자 내 입체 장애가 최소화되어 고분자 간 상호작용이 증가하여 열 안정성이 증대된 것으로 판단된다. 또한 불소의 소수성 성질로 인하여 소자의 특성을 저하시키는 산소, 수분과 같은 친수성 물질의 침투가 어려울 것으로 예측된다.
<시험예 2> 유기태양전지 소자의 제조 및 분석
상기 시험예 1의 결과로부터 PPDT2FBT가 전형적인 유형의 구조에서 뛰어난 고효율의 성능을 나타남을 확인하였는바, 본 시험예에서는 반전된 구조에서 그 특성을 확인하였다.
도 20 및 도 21은 전형적(conventional) 구조와 반전된(inverted) 구조에서 전압-전류 곡선 및 IPCE 곡선을 나타내었고, 측정 결과는 하기 표 6에 나타내었다. 또한 도 22에 각각의 구조에서 광활성층 단면의 TEM 분석 이미지를 나타내었다.
Figure 112014010564061-pat00021
상기 표 6을 참고하면, PPDT2FBT 기반의 PSC(polymer solar cell)는 전형적 구조(conv.)와 반전된 구조(inv.)에서 광활성층 두께가 각각 290nm, 260nm로 나타났고, 광전 변환 효율(PCE)이 각각 9.07%, 8.91%로 높은 효율을 나타냄을 확인할 수 있다(도 21 참고).
또한 도 22는 거의 300nm 근처의 두꺼운 두께에서 전형적 구조와 반전된 구조에서 높은 소자 성능, 즉 두꺼운 두께에서의 높은 필팩터를 보여주는 이유를 설명하기 위해 광활성층 단면에 대하여 TEM 분석을 실시한 결과를 나타낸 것으로, 전형적 구조(도 22 a, c, e)와 반전된 구조(도 22 b, d, f)에서 수직방향으로 모두 같은 상분리가 일어나는 것을 볼 수 있다.
특히 도 22a, c는 전형적 구조에서의 인-포커스 이미지(a)와 디-포커스 이미지(c, e)를 나타내고, 도 22b, d는 반전된 구조에서의 인-포커스 이미지(b)와 디-포커스 이미지(d, f)를 나타낸 것으로, 상기 각 구조의 디-포커스 이미지를 살펴보면 나노-섬유상 구조(nano-fibrillar structure)를 가지는 모폴리지가 수직적으로 동등하게 분포되어있는 것을 볼 수 있다.
이와 같이 동등한 모폴리지를 갖기 때문에 얇은 혹은 두꺼운 두께에서 동등하게 높은 효율을 나타내게 되고, 전형적 구조와 반전된 구조 모두에서 동등하게 높은 효율을 보여주게 되는 것이다.
또한, 도 23은 PPDT2FBT기반의 ITO-free PSC의 전형적 구조와 반전된 구조를 도식화하여 나타낸 것으로, 전형적 구조의 경우 양극의 전극물질로 PEDOT:PSS(PH1000) 에 5%의 DMSO를 첨가하여 사용(Modi-PH1000)하였다. 반전된 구조의 경우에도 마찬가지로 같은 전극(Modi-PH1000)을 사용하되 그 위에다 polyethylenimine ethoxylated(PEIE) 층을 도입함으로써 상기 Modi-PH1000의 일 함수를 높여주어 음극으로 사용하였다.
도 24 및 도 25는 전형적(conventional) 구조와 반전된(inverted) 구조에서 전압-전류 곡선 및 IPCE 곡선을 나타낸 것이고, 측정 결과는 표 7에 나타내었다.
Figure 112014010564061-pat00022
상기 표 7에서 확인할 수 있는 바와 같이 전형적 구조와 반전된 구조의 ITO-free PSC에서 각각 7.39 와 6.98%의 광전 변환 효율(PCE)을 나타내었다. 이는 ITO 기반의 전형적 구조와 반전된 구조의 PSC에서와 마찬가지로 동등하게 높은 효율을 나타낸 것으로서, 현존 반전된 구조의 ITO-free PSC 중에서 가장 높은 효율을 보여준다. 이런 높은 효율은 상기 도 22에서 이미 제시한 바와 같이 PPDT2FBT의 가장 큰 장점에 해당하는 것이다.
<시험예 3> 광활성층의 표면 개질
상기 시험예로부터 최고의 효율을 얻음을 확인한 클로로벤젠 용매에 첨가제로서 디페닐에테르를 넣은 조건으로 유기 박막 태양전지 소자를 제조하되, 양이온성 고분자로서 PAHFP-Br (poly[9,9-bis(6'-(N,N,N-trimethylammonium)hexyl) fluorene-alt-phenylene] with bromide)을 광활성층과 금속 전극 사이에 도입하여 유기 박막 태양전지 소자를 제조하였다.
표 8 및 도 26는 PPDT2FBT의 소자 특성과 이에 따른 전압-전류밀도 그래프(도 26a) 및 IPCE 그래프(도 26b)를 나타낸 것으로, 양이온성 고분자를 버퍼층으로 삽입한 경우, 광활성층의 표면을 개질함으로써 광활성층과 전극의 계면을 좋게 하여 표 8에서 확인할 수 있는 바와 같이, 단락전류 16.61 mA/cm2, 개방전압 0.79V, 필팩터 0.74의 높은 값을 얻어 고분자 태양전지로는 최고의 효율인 9.74%를 달성하였다.
Figure 112014010564061-pat00023
a CB with 2% DPE as the solvent
b CPE solution (0.1 wt.%) dissolved in methanol was spin-cast at 1000 rpm 20 sec
<시험예 4> 유기 박막 트랜지스터 소자의 제작 및 분석
유기 박막 트랜지스터 제작
게이트 전극으로 사용하는 안티모니가 도핑된 Si 웨이퍼 (저항 : 0.008 - 0.02 ohm/cm) 위에 e-빔 증착기를 이용하여 게이트 절연체막인 SiO2 200nm 증착 한 후, 아세톤, 이소프로필알콜을 이용하여 기판을 세척하고 톨루엔에 1 중량%의 옥테인트라이클로로실렌 (OTS) (99:1 부피%) 혼합 용액에 10분간 담근 후 깨끗한 톨루엔 용액으로 씻었다. 상기 합성예에서 제조된 PPDTBT, PPDTFBT, PPDT2FBT 각각 1중량%를 클로로벤젠(chlorobenzene)에 녹인 용액을 OTS를 처리한 기판 상부에 2000 rpm, 60초간 스핀코팅하여 약 60 nm 두께의 고분자 반도체층을 형성하였다. 그리고 상기 소자를 열 진공 증착기 (thermal evaporator)에 넣고, 10-6 Torr 미만 진공상태에서, 고분자 반도체층 상부에 드레인, 소스 전극으로 금(Au) 금속을 두께 약 60 nm로 증착함으로써 유기 고분자 박막 트랜지스터 소자를 제작하였다.
유기 박막 트랜지스터 특성
도 27 내지 29는 각각 PPDTBT, PPDTFBT, PPDT2FBT 고분자를 이용한 유기 고분자 박막 트랜지스터 소자에 있어서, 소자의 정공 이동도, 문턱 전압, 및 점멸비를 나타낸 것이다.
이 때, 정공의 이동도 ()는 포화상태의 드레인 전류 (I ds ) 대비 게이트 전압 (V gs )을 이용하여 아래의 수학식 1을 통하여 구할 수 있다.
<수학식 1>
Ids=(WCi/2L)(Vgs-VT)2
(W 는 소자의 폭, L 은 소자의 길이, C i 는 SiO2의 축전 용량, V T 는 문턱 전압 이다.)
도 27 내지 29에서, V gs 대비 I ds 를 나타낸 그래프를 통해 점멸비를 구할 수 있고, I ds 를 역거듭제곱근하여 나타낸 그래프의 선형함수를 통하여 문턱 전압과 이동도를 구할 수 있다. 따라서, 도 27 내지 29를 참고하면, PPDTBT, PPDTFBT, PPDT2FBT의 점멸비는 각각 8.76 x 103, 1.96 x 104,1.20x106값을 나타내고, PPDTBT, PPDTFBT, PPDT2FBT의 문턱전압은 각각 6 V, 25 V, 44 V이며, 이동도는 0.0046 cm2/Vs, 0.0036 cm2/Vs,0.0340cm2/Vs이다. PPDTBT와 PPDT2FBT에서는 태양전지 소자에서와 마찬가지로 최적화 어닐링 조건인 130 에서 10분 간 어닐링을 해줌으로써 향상된 이동도 0.0135 cm2/Vs, 0.0640 cm2/Vs를 보여주었다. 이 값들은 표 9에 정리하여 나타내었다.
Figure 112014010564061-pat00024
상기 표 9를 참조하면, 이동도 결과에서 2개의 F 원자가 도입된 PPDT2FBT가 현저하게 높은 이동도를 보이고 있다. 이는 S--O와 F--S간의 상호작용에 의한 폴리머 백본의 평면성이 유지되는 것에 기인한다고 판단된다. 그리고 어닐링 효과를 통해서 고분자 백본의 평면성이 더욱 더 강해지면서 고분자 사슬 간-스택킹을 잘 이루게 만들어서 정공이동도가 2배 정도 향상되는 것을 알 수 있다.
상술한 바와 같이 상기 합성예 및 시험예를 통하여, 전자 풍부 단량체 (phenyl and thienyl moieties) 와 전자 부족 단량체 (benzothiadiazole, BT)로 이루어진 ICT 타입의 좁은 밴드갭 고분자 (PPDTBT, PPDTFBT, PPDT2FBT)를 합성하여 고효율 태양전지 소자를 제작하였다. 고효율 소자를 위해서는 높은 단락전류와 함께 개방전압 또한 중요한 요소인바, 이를 위해 높은 전자 친화성을 가지는 벤조티아디아졸 그룹에 F원자를 도입하여, F가 치환됨에 따라서 HOMO 준위가 낮아지는 것을 관찰할 수 있었다(-5.29 -5.35 -5.45 eV). 또한 UV 흡수 스펙트럼 및 2D-GIXRD(2-dimensional grazing incidence X-ray diffraction) 실험 결과 F가 치환됨에 따라서 결정성 또한 강화되는 것을 관찰할 수 있었다. 이는 F 원자와 S 원자의 상호작용에 의해 인접 분자간 정렬이 증대된 것으로 해석 할 수 있다.
이러한 특성을 바탕으로 전형적 유형의 유기 박막 태양전지 소자를 제작하였고 F의 도입, 용매의 선택 및 첨가제의 첨가에 따라서 소자 효율이 상승되는 결과를 확인할 수 있었다(PPDTBT: 5.25%, PPDTFBT: 7.39%, PPDT2FBT: 8.64%). 특히, PPDT2FBT를 기반으로 한 소자는 추가적인 버퍼층 삽입 없이 연구된 결과 중 현재까지 보고된 바 없는 높은 효율을 나타내었다. 이에, 소자의 효율을 높이기 위해 금속 전극 층과 광활성층 사이에 폴리(풀루오렌-페닐렌)기반의 공액고분자 전해질을 삽입하여 버퍼층을 도입한 경우, 74%의 높은 필팩터와 9.74%의 최고 효율을 나타냄을 확인하였다.
또한 상기 시험예에서 PPDTBT, PPDTFBT, PPDT2FBT 고분자를 이용한 유기 고분자 박막 트랜지스터 소자를 제작하였고, F원자의 도입 및 어닐링 효과를 통해서 고분자 백본의 평면성이 더욱 더 강해지면서 정공이동도가 2배 정도 향상되는 것을 확인하였다.
이와 같이 본 발명의 고분자 중합체는, 높은 전자 친화성을 가지는 벤조티아디아졸, 벤조셀레나디아졸, 벤조옥사디아졸, 벤조트리아졸, 퀴녹살린, 벤조티에나피롤디온, 디케토피롤로피롤, 이소인디고를 전자 받게 그룹으로서 포함하여 HOMO 에너지 준위를 낮추고 높은 개방전압을 갖도록 한 것으로, 특히, 전자 받게 그룹에 -F, -Cl 또는 -CN을 1개 또는 2개 도입함으로써 전자 친화성을 더욱 높임으로써 전자간 상호작용에 의하여 비틀림 각도를 감소시켜 폴리머 백본의 평면성을 유지하고, 분자간 패킹 특성을 향상시키게 된다. 이에 따라 전하이동도가 증가되게 되므로, 이러한 본 발명의 공중합체를 광활성층에 포함함으로써 상용화가 가능한 매우 우수한 광전 변환 효율을 갖는 유기 박막 태양전지 또는 유기 박막 트랜지스터등을 제공할 수 있을 것으로 기대된다.

Claims (10)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 전자 주게 작용기 함유 화합물과,
    하기 화학식 3 내지 화학식 5 및 화학식 8 중에서 선택된 하나로 표시되는 전자 받게 작용기 함유 화합물이 교차 반복 도입되는, 고분자 중합체.
    Figure 112015111281105-pat00025

    Figure 112015111281105-pat00026
    Figure 112015111281105-pat00081

    (단, 상기 화학식에서,
    X는 각각 동일하거나 상이하게 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며;
    R, R'은 각각 동일하거나 상이하게 C1-30인 선형 또는 가지형의 알킬기이며;
    Y는 각각 동일하거나 상이하게, H, F, Cl 또는 CN이고, 각 화학식에서 적어도 하나의 Y는 F, Cl 또는 CN이며;
    R1, R2, R3, R4, R5, R6, R7, R11 및 R12는 각각 동일하거나 상이하게, C8-30인 선형 또는 가지형의 알킬기이며;
    n은 각가 동일하거나 상이하게 1 내지 3의 정수이다.)
  2. 제 1 항에 있어서,
    상기 전자 주게 작용기 함유 화합물은 상기 화학식 1로 표시되는 화합물이고, 상기 전자 받게 작용기 화합물은 상기 화학식 3으로 표시되는 화합물인 것을 특징으로 하는, 고분자 중합체.
  3. 제 1 항에 있어서,
    상기 고분자 중합체는 하기 화학식 10 내지 화학식 11 중에서 선택된 어느 하나의 화합물인 것을 특징으로 하는, 고분자 중합체.
    Figure 112015111281105-pat00029

    Figure 112015111281105-pat00030

    (상기 화학식에서, n은 1 내지 3의 정수이고; m은 10 내지 100의 정수이며; R15, R16, R17 및 R18은 각각 동일하거나 상이하게 C8-30인 선형 또는 가지형의 알킬기이다.)
  4. 제 1 항에 있어서,
    상기 고분자 중합체는 수평균 분자량이 10,000 g/mol 내지 100,000 g/mol인 것을 특징으로 하는 고분자 중합체.
  5. 클로로벤젠을 용매로 사용하고, 첨가제로서 디페닐에테르(diphenylether)를 포함하며, 상기 제 1 항 내지 제 4 항 중 어느 한 항에 따른 고분자 중합체를 태양광 흡수 광활성층에 포함하는 유기 박막 태양전지의 제조방법.
  6. 태양광 흡수 광활성층이 제 1 항 내지 제 4 항 중 어느 한 항에 따른 고분자 중합체를 포함하는 것을 특징으로 하는 유기 박막 태양전지.
  7. 삭제
  8. 제 6 항에 있어서,
    상기 유기 박막 태양전지는 캐소드 층과 상기 태양광 흡수 광활성층 사이에 폴리(플루오렌-페닐렌) 기반의 공액고분자 전해질을 포함하는 버퍼층을 더 포함하는 것을 특징으로 하는 유기 박막 태양전지.
  9. 제 8 항에 있어서,
    상기 공액고분자 전해질은 PAHFP-Br(poly[9,9-bis(6'-(N,N,N-trimethyl ammonium)hexyl)fluorene-alt-phenylene] with bromide)인 것을 특징으로 하는 유기 박막 태양전지.
  10. 제 1 항 내지 제 4 항 중 어느 한 항에 따른 고분자 중합체를 활성 물질로서 포함하는 것을 특징으로 하는 유기 박막 트랜지스터.
KR1020140012257A 2013-02-01 2014-02-03 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지 KR101626128B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130012079 2013-02-01
KR1020130012079 2013-02-01

Publications (2)

Publication Number Publication Date
KR20140099424A KR20140099424A (ko) 2014-08-12
KR101626128B1 true KR101626128B1 (ko) 2016-05-31

Family

ID=51262608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140012257A KR101626128B1 (ko) 2013-02-01 2014-02-03 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지

Country Status (4)

Country Link
US (1) US9296864B2 (ko)
JP (1) JP2016518462A (ko)
KR (1) KR101626128B1 (ko)
WO (1) WO2014119962A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887644B2 (en) * 2014-07-30 2018-02-06 Seoul National University R&Db Foundation Stretchable triboelectric generator, stretchable electricity storage device, and wearable electronic device
KR101666353B1 (ko) * 2015-04-07 2016-10-17 한국화학연구원 중간 밴드갭을 가지는 공액 고분자, 이의 제조방법 및 이를 적용한 유기 전자 소자
KR102042301B1 (ko) * 2015-09-25 2019-11-07 주식회사 엘지화학 유기 태양전지 및 이의 제조방법
WO2018017345A1 (en) * 2016-07-19 2018-01-25 Phillips 66 Company Unsymmetrical benzothiadiazole-based random copolymers
KR102164048B1 (ko) * 2016-07-20 2020-10-12 주식회사 엘지화학 유기 태양 전지
US11011716B2 (en) * 2016-08-02 2021-05-18 King Abdullah University Of Science And Technology Photodetectors and photovoltaic devices
KR101822550B1 (ko) * 2016-09-28 2018-03-09 한국화학연구원 신규 고분자 화합물 및 이를 포함하는 태양전지 또는 광 검출용 장치
CN106848066A (zh) * 2017-02-08 2017-06-13 南昌大学 一种提高有机太阳能器件光电转换效率和光热稳定性的方法
KR102052415B1 (ko) * 2017-11-08 2019-12-05 고려대학교 산학협력단 결정성 공액 고분자 기반 정공수송층을 포함하는 페로브스카이트 태양전지
CN111628083B (zh) * 2019-12-30 2022-07-01 湖州师范学院 一种钙钛矿太阳能电池吸光层添加剂及其制备方法
CN112467036B (zh) * 2020-11-25 2024-04-05 中国科学院大学 一种有机太阳电池及其环保型溶剂保护的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038469B1 (ko) * 2009-04-13 2011-06-01 광주과학기술원 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
US8895693B2 (en) * 2010-06-25 2014-11-25 Samsung Electronics Co., Ltd. Electron-donating polymers and organic solar cells including the same
JP2012056990A (ja) * 2010-09-06 2012-03-22 Kuraray Co Ltd 導電性ベンゾチアジアゾール共重合体組成物
TW201238994A (en) * 2011-02-14 2012-10-01 Sumitomo Chemical Co Method for producing photoelectric transducering element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applications Macromolecules. 2008, vol.41, pp.6952-6952.
Photonics for Energy. 2011, vol.1, pp.011111-1~10.
Solar Energy Materials & Solar Cells. 2010, vol.94, pp.774-780 (Available online 2010.01.15.)*

Also Published As

Publication number Publication date
WO2014119962A1 (ko) 2014-08-07
KR20140099424A (ko) 2014-08-12
JP2016518462A (ja) 2016-06-23
US20150361223A1 (en) 2015-12-17
US9296864B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
KR101626128B1 (ko) 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지
US9035015B1 (en) Photovoltaic cell containing novel photoactive polymer
JP5547189B2 (ja) 新規な光活性コポリマー並びに同コポリマーを含む物品及びシステム
Cai et al. Low bandgap polymers synthesized by FeCl3 oxidative polymerization
US9246110B2 (en) Organic material and photoelectric conversion element
Huang et al. Donor–acceptor conjugated polymers based on thieno [3, 2-b] indole (TI) and 2, 1, 3-benzothiadiazole (BT) for high efficiency polymer solar cells
Keshtov et al. Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells
Ong et al. Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications
Mori et al. Highly crystalline, low band-gap semiconducting polymers based on phenanthrodithiophene-benzothiadiazole for solar cells and transistors
Mori et al. Phenanthrodithiophene (PDT)–difluorobenzothiadiazole (DFBT) copolymers: effect on molecular orientation and solar cell performance of alkyl substitution onto a PDT core
JP6200096B2 (ja) 共重合体およびこれを含む有機太陽電池
Kim et al. Synthesis and characterization of indeno [1, 2-b] fluorene-based low bandgap copolymers for photovoltaic cells
Lu et al. Improving the performance of polymer solar cells by altering polymer side chains and optimizing film morphologies
Zhu et al. Acceptor-rich bulk heterojunction polymer solar cells with balanced charge mobilities
EP3290422B1 (en) Compound and organic solar cell comprising same
Park et al. Novel wide-bandgap copolymer bearing alkylthio-thiophene-substituted benzodithiophene and methyl thiophene-3-carboxylate for highly stable fullerene-free simple polymer solar cells
KR101374377B1 (ko) 좁은 밴드갭을 갖는 평면성 공중합물 및 이를 이용한 유기 고분자 박막 태양 전지 소자
Chau et al. Complementary absorbing ternary blend containing structural isomeric donor polymers for improving the performance of PC61BM-based indoor photovoltaics
Wang et al. An extremely low bandgap donor–acceptor copolymer for panchromatic solar cells
Jia et al. All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells
Liu et al. Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors
KR101504864B1 (ko) 공액성 곁사슬이 도입된 고분자 및 이를 이용한 광전자소자
KR101905088B1 (ko) 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지
KR101282062B1 (ko) 페릴렌 단위를 포함하는 반도체성 고분자
Lee Combined Molecular Design, Morphology Control, and Device Engineering Towards Superior Organic Semiconductors

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 4