CN102604048B - 含氧化胺基团的共轭聚合物光电材料及其应用 - Google Patents

含氧化胺基团的共轭聚合物光电材料及其应用 Download PDF

Info

Publication number
CN102604048B
CN102604048B CN201210050653.1A CN201210050653A CN102604048B CN 102604048 B CN102604048 B CN 102604048B CN 201210050653 A CN201210050653 A CN 201210050653A CN 102604048 B CN102604048 B CN 102604048B
Authority
CN
China
Prior art keywords
amine oxide
polymer
conjugated polymer
conjugated
containing amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210050653.1A
Other languages
English (en)
Other versions
CN102604048A (zh
Inventor
黄飞
管星
张凯
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210050653.1A priority Critical patent/CN102604048B/zh
Publication of CN102604048A publication Critical patent/CN102604048A/zh
Priority to US14/382,238 priority patent/US9159928B2/en
Priority to PCT/CN2012/086424 priority patent/WO2013127227A1/zh
Application granted granted Critical
Publication of CN102604048B publication Critical patent/CN102604048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一类含氧化胺基团的共轭聚合物光电材料及其应用。所述的含氧化胺基团的共轭聚合物光电材料由共轭的主链及含有氧化胺单元的侧链组成,应用在有机光电器件中。本发明的材料具有良好的醇/水溶性以及光电性能,适合做多层溶液加工器件,同时可避免常见聚电解质中可自由移动的反离子对器件的不利影响,可以作为阴极界面修饰层应用在发光、光伏等有机光电器件中,改善器件性能。

Description

含氧化胺基团的共轭聚合物光电材料及其应用
技术领域
本发明涉及高分子光电材料领域,具体涉及一类含氧化胺基团的共轭聚合物光电材料及其应用。
背景技术
自从1990年第一个聚合物电致发光二极管发明以来,聚合物电光电材料得到了学术界和工业界的广泛关注。
为了实现高效的聚合物电致发光器件,电子和空穴分别从阴极和阳极高效的注入是其中的关键。因此,很多高效的聚合物电致发光器件都是采用多层器件结构,即除了发光层外,还含有一层或多层空穴传输/注入层或电子传输/注入层。因此,除了开发优异的发光材料,开发优异的电子传输/注入材料和空穴传输/注入材料也是实现高效聚合物电致发光器件的关键。
此前的研究发现共轭聚电解质及其中性前驱体是一类非常优异的电子注入/传输材料,这类材料在极性溶剂中有很好的溶解性,同时具有优异的电子传输性能,从而使得制备高效多层结构的聚合物电致发光器件成为可能。此外,这类材料还能有效的增加从高功函数的金属(如铝,银,金)向聚合物半导体的电子注入,更有利于以印刷的方式实现高分子多层器件(Adv.Mater.2007,19,810.)。后续的研究表明,这类共轭聚电解质材料不但可用于发光器件,还可作为界面修饰层大幅提高有机太阳能电池、场效应晶体管的性能。
然而,绝大多数的共轭聚电解质都有可自由移动的对离子,对离子有可能能够扩散到发光层从而影响器件的长期稳定性。此外,器件的响应速度与共轭聚电解质的电荷迁移率都受到对离子很大影响。
发明内容
为了克服现有技术中存在的缺点与不足,本发明提供了一类含氧化胺基团的共轭聚合物光电材料及其应用;
本发明提供了一类具有优异的醇/水溶性和高效的电子传输/注入性能的含氧化胺基团的共轭聚合物光电材料,这类聚合物不仅具有非常优异的醇/水溶性,并且没有可自由移动的离子;可以作为电子传输/注入材料或界面修饰材料应用于有机光电器件中(例如有机发光二极管,有机太阳能电池,有机场效应晶体管)。
本发明采用如下技术方案:
本发明所述含氧化胺基团的共轭聚合物,具有如下结构:
Figure BDA0000139644430000021
其中A、B为共轭的主链单元;n1、n2表示A、B两种单元的相对含量,且n1+n2=100%,R1-R4为C1~C20的直链烷基、支链烷基、环状烷基链或烷氧基链;其中一个以上的碳原子可被氧原子、羟基、氨基、砜基、烯基、炔基、芳基、酯基、羰基取代,氢原子可被氟原子、羟基、氨基、砜基、烯基、炔基、芳基、酯基或羰基取代。
上述A、B为共轭的主链单元,具有如下结构的一种以上:
Figure BDA0000139644430000031
所述的含氧化胺基团的共轭聚合物光电材料在有机光器件中应用。
本发明与现有技术相比具有以下优点:
(1)本发明所合成的共聚物具有优异的电子注入/传输性能,且不受金属阴极功函数的影响,可使用金、银、铝等高功函数金属作为阴极;
(2)本发明所合成的共聚物含有氧化胺强极性基团,电子注入性能要优于一般的含极性基团的中性聚合物;其与共轭聚电解质相比,由于该共聚物不含移动离子,在使用时不会发生离子迁移而降低器件性能;
(3)本发明所合成的含氧化胺基团的共轭聚合物能溶于极性溶剂如甲醇、乙醇中,而活性层材料一般不溶于这类溶剂,因而在构筑多层器件时活性层与阴极界面修饰层之间不会发生互混现象。
附图说明
图1为本发明中所使用的有机共轭聚合物发光二极管以及有机/聚合物太阳能电池结构示意图;
图2为实施例1、2、3、4所合成的聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py作为阴极界面修饰层的基于绿光材料P-PPV的有机电致发光器件的电流密度/发光亮度-电压曲线图;
图3为实施例1、2、3、4所合成的聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py的前驱体PF6N、PF6N25Py、PF6N26Py、PF6N35Py作为阴极界面修饰层的基于绿光材料P-PPV的有机电致发光器件的电流密度/发光亮度-电压曲线图;
图4为实施例1、2、3、4所合成的聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py以及作为对比的CsF、Ba作为阴极界面修饰层的基于绿光材料P-PPV的有机电致发光器件的电流效率-电流密度曲线图;
图5为实施例1、2、3、4所合成的聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py的前驱体PF6N、PF6N25Py、PF6N26Py、PF6N35Py以及作为对比的CsF、Ba作为阴极界面修饰层的基于绿光材料P-PPV的有机电致发光器件的电流效率-电流密度曲线图;
图6为实施例1、2、3、4所合成的聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py及其前驱体PF6N、PF6N25Py、PF6N26Py、PF6N35Py作为阴极界面修饰层的有机电致发光器件的归一化电致发光光谱图;
图7为以实施例2所合成的聚合物PF6NO25Py及其前驱体PF6N25Py作为阴极界面修饰层的基于PCDTBT:PC71BM的太阳能电池器件在100毫瓦/平方厘米,AM 1.5G光照下的电流密度与电压关系;
图8为以实施例2所合成的聚合物PF6NO25Py及其前驱体PF6N25Py作为阴极界面修饰层的基于PCDTBT:PC71BM的太阳能电池器件在暗处的电流密度与电压关系。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,具体包括合成、表征与器件制备,但这些具体实施方案不以任何方式限制本发明的保护范围。
本发明中使用的有机/聚合物电致发光二极管以及有机/聚合物太阳能电池结构如附图1所示,都是由阴极1、阴极界面修饰层2、活性层3、空穴传输层4、阳极5、玻璃衬底6依次层叠构成,所述有机/聚合物电致发光二极管以及有机/聚合物太阳能电池的阴极界面修饰层2均由本发明合成的含氧化胺基团的共轭聚合物材料组成。
用核磁共振、凝胶渗透色谱、元素分析等分析手段对含有氧化胺基团的共轭聚合物进行表征,对用上述共轭聚合物制备的聚合物电致发光以及太阳能电池器件进行性能表征。
实施例1:聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]}(PF6NO)的合成合成路线如下:
Figure BDA0000139644430000061
(1)单体1、2是按文献[Adv.Mater.,2011,23,1665]公开的方法制备;
(2)聚{2,7-[9,9’-二(N,N-二乙基己基-6-胺基)芴]}(PF6N)的制备
将单体2,7-二(三亚甲基硼酸酯)-9,9’-二(N,N-二乙基己基-6-胺基)芴(728mg,1mmol)、单体2,7-二溴-9,9’-二(N,N-二乙基己基-6-胺基)芴(634mg,1mmol)和10mg四合三苯基磷钯催化剂溶于10ml甲苯和5ml四氢呋喃的混合溶剂中,加入4ml 2mol/L的碳酸钠水溶液,在氩气的保护下,回流反应48小时,然后冷却到室温,将反应液在甲醇中沉淀得到粗品,将粗品溶于四氢呋喃中,过0.45μm的有机滤膜,浓缩,将此溶液在甲醇中沉淀得到聚合物颗粒,用丙酮索氏提取器除去小分子物质,最后在真空烘箱中45℃下干燥24小时,得到产物。1H NMR(300MHz,CDCl3,δ):7.82-7.93(m,6H),3.02-3.05(m,12H),2.90-2.93(m,4H),1.98-2.21(m,4H),0.88-1.23(m,24H)。Mn=13500,PDI=1.403;
(3)聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]}(PF6NO)的制备取PF6N 100mg,加入10ml的甲醇后再加入过量的30%过氧化氢溶液,反应体系在室温下反应2天,减压蒸馏浓缩后,加入80ml的乙酸乙酯沉淀产物,离心分离并用氯仿洗涤后在真空烘箱中45℃下干燥24小时,得到产物。1H NMR(300MHz,CD3OD,δ):7.82-7.93(m,6H),3.22-3.24(m,12H),3.07-3.18(m,4H),1.56-1.57(m,4H),1.18-1.23(m,24H)。
实施例2:聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-2,5-吡啶}(PF6NO25Py)的合成
合成路线如下:
Figure BDA0000139644430000071
(1)单体2,5-二溴吡啶直接从百灵威公司购买,用甲醇重结晶后使用;
(2)聚{2,7-[9,9’-二(N,N-二乙基己基-6-胺基)芴]共-2,5-吡啶}(PF6N25Py)的制备;
将实施例1中制备的单体2,7-二(三亚甲基硼酸酯)-9,9’-二(N,N-二乙基己基-6-胺基)芴(728mg,1mmol)、单体2,5-二溴吡啶(237mg,1mmol)和10mg四合三苯基磷钯催化剂溶于10ml甲苯和5ml四氢呋喃的混合溶剂中,加入4ml 2mol/L的碳酸钠水溶液,在氩气的保护下,回流反应48小时,然后冷却到室温,将反应液在甲醇中沉淀得到粗品,将粗品溶于四氢呋喃中,过0.45μm的有机滤膜,浓缩,将此溶液在甲醇中沉淀得到聚合物颗粒,用丙酮索氏提取器除去小分子物质,最后在真空烘箱中45℃下干燥24小时,得到产物。1HNMR(300MHz,CDCl3,δ):9.08(s,1H),7.62-8.15(m,8H),2.40-2.45(m,12H),2.27-2.29(m,4H),1.21-1.24(m,4H),1.08-1.10(m,8H),0.90-0.96(m,12H),0.84(m,4H)。Mn=22401,PDI=1.607;
(3)聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-2,5-吡啶}(PF6NO25Py)的制备
取PF6N25Py 100mg,加入10ml的甲醇后再加入过量的30%过氧化氢溶液,反应体系在室温下反应2天,减压蒸馏浓缩后,加入80ml的乙酸乙酯沉淀产物,离心分离并用氯仿洗涤后在真空烘箱中45℃下干燥24小时,得到产物。1H NMR(300MHz,CD3OD,δ):9.06(s,1H),7.88-8.54(m,8H),3.09-3.12(m,12H),2.87-2.89(m,4H),1.50-1.52(m,4H),0.98-1.18(m,24H)。
实施例3:聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-3,5-吡啶}(PF6NO35Py)的合成
合成路线如下:
Figure BDA0000139644430000091
(1)单体3,5-二溴吡啶直接从百灵威公司购买,用甲醇重结晶后使用;
(2)聚{2,7-[9,9’-二(N,N-二乙基己基-6-胺基)芴]共-3,5-吡啶}(PF6N35Py)的制备
将实施例1中制备的单体2,7-二(三亚甲基硼酸酯)-9,9’-二(N,N-二乙基己基-6-胺基)芴(728mg,1mmol)、单体3,5-二溴吡啶(237mg,1mmol)和10mg四合三苯基磷钯催化剂溶于10ml甲苯和5ml四氢呋喃的混合溶剂中,加入4ml 2mol/L的碳酸钠水溶液,在氩气的保护下,回流反应48小时,然后冷却到室温,将反应液在甲醇中沉淀得到粗品,将粗品溶于四氢呋喃中,过0.45μm的有机滤膜,浓缩,将此溶液在甲醇中沉淀得到聚合物颗粒,用丙酮索氏提取器除去小分子物质,最后在真空烘箱中45℃下干燥24小时,得到产物。1HNMR(300MHz,CDCl3,δ):8.90(s,2H),8.23(s,1H),7.91-7.92(m,2H),7.66-7.73(m,4H),2.66-2.73(m,8H),2.50-2.56(m,4H),2.11(m,4H),1.40-1.41(m,4H),1.09-1.11(m,8H),1.02-1.07(m,12H),0.74(m,4H),Mn=10300,PDI=1.553;
(3)聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-3,5-吡啶}(PF6NO35Py)的制备
取PF6N35Py 100mg,加入10ml的甲醇后再加入过量的30%过氧化氢溶液,反应体系在室温下反应2天,减压蒸馏浓缩后,加入80ml的乙酸乙酯沉淀产物,离心分离并用氯仿洗涤后在真空烘箱中45℃下干燥24小时,得到产物。1HNMR(300MHz,CD3OD,δ):8.92(s,2H),8.50(s,1H),8.03-8.05(m,2H),7.88-7.94(m,4H),3.09-3.16(m,8H),2.97-3.01(m,4H),2.30(m,4H),1.53-1.54(m,4H),1.14-1.28(m,20H),0.94(m,4H)。
实施例4:聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-2,6-吡啶}(PF6NO26Py)的合成
合成路线如下:
Figure BDA0000139644430000101
(1)单体2,6-二溴吡啶直接从百灵威公司购买,用甲醇重结晶后使用;
(2)聚{2,7-[9,9’-二(N,N-二乙基己基-6-胺基)芴]共-2,6-吡啶}(PF6N26Py)的制备;
将实施例1中制备的单体2,7-二(三亚甲基硼酸酯)-9,9’-二(N,N-二乙基己基-6-胺基)芴(728mg,1mmol)、单体2,6-二溴吡啶(237mg,1mmol)和10mg四合三苯基磷钯催化剂溶于10ml甲苯和5ml四氢呋喃的混合溶剂中,加入4ml 2mol/L的碳酸钠水溶液,在氩气的保护下,回流反应48小时,然后冷却到室温,将反应液在甲醇中沉淀得到粗品,将粗品溶于四氢呋喃中,过0.45μm的有机滤膜,浓缩,将此溶液在甲醇中沉淀得到聚合物颗粒,用丙酮索氏提取器除去小分子物质,最后在真空烘箱中45℃下干燥24小时,得到产物。1HNMR(300MHz,CDCl3,δ):8.29-8.31(m,2H),8.16(s,2H),7.81-7.94(m,5H),2.38-2.45(m,8H),2.25-2.30(m,4H),2.18(m,4H),1.25-1.28(m,4H),1.10-1.12(m,8H),0.91-0.97(m,12H),0.81(m,4H)。Mn=12100,PDI=1.587。
(3)聚{2,7-[9,9’-二(N,N-二乙基己基-6-氧化胺)芴]共-2,6-吡啶}(PF6NO26Py)的制备;
取PF6N26Py 100mg,加入10ml的甲醇后再加入过量的30%过氧化氢溶液,反应体系在室温下反应2天,减压蒸馏浓缩后,加入80ml的乙酸乙酯沉淀产物,离心分离并用氯仿洗涤后在真空烘箱中45℃下干燥24小时,得到产物。1H NMR(300MHz,CD3OD,δ):8.36-8.53(m,4H),7.98-8.04(m,5H),3.01-3.03(m,8H),2.90-2.91(m,4H),2.31(m,4H),1.46-1.47(m,4H),1.27-1.29(m,8H),1.04-1.09(m,12H),0.86(m,4H)。
实施例5:聚{2,7-[9,9’-二(N,N-二羟乙基己基-6-氧化胺)芴]}(PF6OHNO)的合成
合成路线如下:
Figure BDA0000139644430000121
(1)单体1、2及聚合物前驱体PF6Br、PF6OHN是按文献[Adv.Mater.2007,19,2010]公开的方法制备;
(2)聚{2,7-[9,9’-二(N,N-二羟乙基己基-6-氧化胺)芴]}(PF6OHNO)的制备;
取PF6OHN100mg,加入10ml的甲醇后再加入过量的30%过氧化氢溶液,反应体系在室温下反应2天,减压蒸馏浓缩后,加入80ml的乙酸乙酯沉淀产物,离心分离并用氯仿洗涤后在真空烘箱中45℃下干燥24小时,得到产物。1H NMR(300MHz,CD3OD,δ):8.05-7.79(m,6H),4.94(m,8H),2.81-2.70(m,16H),1.42-0.94(m,16H)。
实施例6:以实施例1、例2、例3、例4所合成的聚合物PF6NO、PF6NO25Py、PF6NO35Py、PF6NO26Py为例说明此类聚合物作为阴极界面修饰材料在有机/聚合物电致发光器件(ITO阳极/空穴传输层/发光层/阴极界面修饰层/铝阴极)中应用
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。使用前,ITO玻璃片在氧等离子体刻蚀仪中以等离子体轰击10分钟。PEDOT:PSS水分散液(约1%)购自Bayer公司,缓冲层以匀胶机(KW-4A)高速旋涂,厚度由溶液浓度和转速决定,用表面轮廓仪(Tritek公司Alpha-Tencor-500型)实测监控。成膜后,于恒温真空烘箱中驱除溶剂残余、竖膜。在ITO基片上甩PEDOT:PSS的膜厚40纳米左右为佳。
将荧光共轭聚合物P-PPV(P-PPV为发绿光材料)于干净瓶中称量后,转入氮气保护成膜专用手套箱(VAC公司),在甲苯中溶解,以0.45微米滤膜过滤。在PEDOT:PSS膜上甩荧光聚合物,聚合物发光层最佳厚度为70~90纳米。膜厚用Alpha-Tencor-500表面轮廓仪测定。将含氧化胺基团的共轭聚合物PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py,以及胺基取代前驱聚合物PF6N、PF6N25Py、PF6N26Py、PF6N35Py置于洁净小瓶中,转入氮气保护成膜专用手套箱中,用极性溶剂甲醇配成浓度为0.5%的溶液,置于搅拌台上搅拌均匀,用0.45微米滤膜过滤得澄清溶液。将上述溶液在聚合物发光层上旋涂为阴极界面修饰层。在阴极界面修饰层上真空蒸镀铝(80纳米)作阴极。镀腔真空度在3×10-4Pa以下,镀膜速率与各层金属电极薄膜厚度由石英振子膜厚监测仪(STM-100型,Sycon公司制造)实时监控。器件的发光光谱由经校准的ORIEL公司的Instaspec IV电荷耦合光探测仪CCD测得。利用由Keithley236电流电压源及一个经校准的硅光二极管组成的半导体测量系统测出器件的发光强度和外量子效率。外量子效率与发光强度分别用Labsphere公司IS080积分球及PR705光度光谱仪(Photoresearch)校准。为显示本发明所采用的阴极界面修饰层的效果,采用在发光层上真空蒸镀Ba/Al、CsF/Al作为阴极,或者在发光层上真空蒸镀Al作为阴极。
附图2、附图3为基于绿光材料聚苯基取代苯乙烯撑P-PPV作为发光层,四种含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)及其前驱体聚合物(PF6N、PF6N25Py、PF6N26Py、PF6N35Py)分别作为阴极界面修饰层所制得的高分子发光二极管的电流密度/发光亮度-电压曲线图;可以明显看出,四种含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)的加入可以大幅提高器件的亮度。
附图4、附图5为基于绿光材料聚苯基取代苯乙烯撑P-PPV作为发光层,四种含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)及其前驱体聚合物(PF6N、PF6N25Py、PF6N26Py、PF6N35Py)分别作为阴极界面修饰层所制得的高分子发光二极管的电流效率-电流密度曲线图。可以看出,四种含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)的加入大幅提高了器件的电流效率。
附图6为基于绿光材料聚苯基取代苯乙烯撑P-PPV作为发光层,四种含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)及其前驱体聚合物(PF6N、PF6N25Py、PF6N26Py、PF6N35Py)分别作为阴极界面修饰层所制得的高分子发光二极管的有机电致发光器件的归一化电致发光光谱图。可以看出,所有器件的载流子复合区域都在P-PPV层,引入阴极界面层并没有改变器件的载流子复合区域,相关器件的具体性能如表1。
表1:PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py作为阴极界面修饰层器件的电致发光性能
器件结构ITO/PEDOT 4083/Active Layer(P-PPV,80nm)/ETL/Al(~80nm)
Figure BDA0000139644430000151
其中LEmax:最大电流效率,LE:电流效率,V电压,Von:亮度为1坎德拉/平方米时的电压,Lmax:最大亮度,J:电流密度
以上结果表明采用本发明制备的含氧化胺基团的共轭聚合物(PF6NO、PF6NO25Py、PF6NO26Py、PF6NO35Py)作为阴极界面修饰层,可以大幅提高传统发光材料在高功函金属铝电极器件中的性能,其效果甚至超过了胺基取代前驱聚合物(PF6N、PF6N25Py、PF6N26Py、PF6N35Py)。其器件性能已经接近或超过相应低功函数金属钡作阴极的器件。
上述极性溶剂除甲醇外,还可以为乙醇、水、N,N-二甲基甲酰胺、异丙醇、乙二醇、乙二醇单甲醚等的一种以上。
实施例7:以实施例2所合成的聚合物PF6NO25Py为例说明此类聚合物能作为阴极界面修饰材料在有机/聚合物太阳能电池器件(ITO阳极/空穴传输层/活性层/阴极界面修饰层/铝阴极)中应用
以下实例将对本发明所提出的含氧化胺基团的共轭聚合物光电材料在高分子太阳能器件中的应用工艺过程进行说明,但本发明不限于所列之例。
将ITO导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。使用前,ITO玻璃片在氧等离子体刻蚀仪中以等离子体轰击10分钟。PEDOT:PSS水分散液(约1%)购自Bayer公司,缓冲层以匀胶机(KW-4A)高速旋涂,厚度由溶液浓度和转速决定,用表面轮廓仪(Tritek公司Alpha-Tencor-500型)实测监控。成膜后,于恒温真空烘箱中驱除溶剂残余、竖膜。在ITO基片上甩PEDOT:PSS的膜厚40纳米左右为佳。
将活性层给体材料共轭聚合物PCDTBT及受体材料PC71BM于干净瓶中称量后(质量比1∶4),转入氮气保护成膜专用手套箱(VAC公司),在邻二氯苯/氯苯混合溶剂(体积比3∶1)中溶解,以0.45微米滤膜过滤。在PEDOT:PSS膜上甩PCDTBT/PC71BM膜,最佳厚度为70~90纳米。膜厚用Alpha-Tencor-500表面轮廓仪测定。将含氧化胺基团的共轭聚合物PF6NO25Py以及胺基取代前驱聚合物PF6N25Py置于洁净小瓶中,转入氮气保护成膜专用手套箱中,用极性溶剂甲醇配成浓度为0.5%的溶液,置于搅拌台上搅拌均匀,用0.45微米滤膜过滤得澄清溶液。将上述溶液在活性层上旋涂为阴极界面修饰层。在阴极界面修饰层上真空蒸镀铝(80纳米)作阴极。镀腔真空度在3×10-4Pa以下,镀膜速率与各层金属电极薄膜厚度由石英振子膜厚监测仪(STM-100型,Sycon公司制造)实时监控。所有制备过程均在提供氮气氛围的手套箱内进行。器件的电流-电压特性,由Keithley236电流电压-测量系统及一个经校正的硅光二极管测得。器件的能量转换效率在标准太阳光谱AM1.5G模拟器(Oriel model 91192)下测得。模拟阳光的能量在测试前用标准硅太阳能电池校正为100毫瓦/平方厘米。为显示本发明所采用的阴极界面修饰层的效果,在活性层上真空蒸镀Al作为阴极。器件在光照下的电流密度与电压关系如图7所示,在暗处的电流密度与电压关系如图8所示。
附图7为基于聚咔唑二噻吩苯并噻二唑(PCDTBT)/富勒烯衍生物(PC71BM)作为活性层,含氧化胺基团的共轭聚合物PF6NO25Py及其前驱体聚合物PF6N25Py分别作为阴极界面修饰层所制得的高分子太阳能电池在100毫瓦/平方厘米,AM 1.5G光照下的电流密度-电压曲线图,可以看出,含氧化胺基团的共轭聚合物PF6NO25Py的加入大幅提高了器件的开路电压与短路电流,相关器件的具体性能如表2所示。
附图8为基于聚咔唑二噻吩苯并噻二唑(PCDTBT)/富勒烯衍生物(PC71BM)作为活性层,含氧化胺基团的共轭聚合物PF6NO25Py及其前驱体聚合物PF6N25Py分别作为阴极界面修饰层所制得的高分子太阳能电池在暗处的电流密度与电压关系。可以看出,引入阴极界面层后,器件的启动电压比纯铝阴极器件提高了0.5~0.6V,表明引入阴极界面层能提高器件的内建电势,从而提高器件的开路电压。
表2:PF6NO25Py作为阴极界面修饰层的太阳能电池器件性能
器件结构ITO/PEDOT 4083/Active Layer(PCDTBT/PC71BM,80nm)/ETL/Al(~80nm)
Figure BDA0000139644430000181
其中Jsc:短路电流,Voc:开路电压,FF:填充因子,PCE:能量转换效率
以上结果表明采用本发明制备的含氧化胺基团的共轭聚合物PF6NO25Py作为阴极界面修饰层,可以大幅提高传统电池材料在高功函金属铝电极器件中的性能,其效果甚至超过了胺基取代前驱聚合物PF6N25Py。
上述极性溶剂除甲醇外,还可以为乙醇、水、N,N-二甲基甲酰胺、异丙醇、乙二醇、乙二醇单甲醚等的一种以上。

Claims (3)

1.一类含氧化胺基团的共轭聚合物光电材料,其特征在于其结构为: 
Figure FDA0000385134990000011
其中A、B为共轭的主链单元;n1、n2表示A、B两种单元的相对含量,且n1+n2=100%,R1-R4为C1~C20的直链烷基、支链烷基、环状烷基链或烷氧基链, 
其中A、B为共轭的主链单元, 
所述A单元为如下结构:
Figure FDA0000385134990000012
所述B单元为如下结构中的一种:
Figure FDA0000385134990000013
2.根据权利要求1所述含氧化胺基团的共轭聚合物光电材料,其特征在于所述结构R1-R4中一个以上的碳原子被氧原子、羟基、氨基、砜基、烯基、炔基、芳基、酯基或羰基取代,氢原子被氟原子、羟基、氨基、砜基、烯基、炔基、芳基、酯基或羰基取代。 
3.权利要求1至2任一项所述的含氧化胺基团的共轭聚合物光电材料在有机光器件中的应用。 
CN201210050653.1A 2012-02-29 2012-02-29 含氧化胺基团的共轭聚合物光电材料及其应用 Active CN102604048B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210050653.1A CN102604048B (zh) 2012-02-29 2012-02-29 含氧化胺基团的共轭聚合物光电材料及其应用
US14/382,238 US9159928B2 (en) 2012-02-29 2012-12-12 Amine-oxide-group-containing conjugated polymer photoelectric material and use thereof
PCT/CN2012/086424 WO2013127227A1 (zh) 2012-02-29 2012-12-12 含氧化胺基团的共轭聚合物光电材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210050653.1A CN102604048B (zh) 2012-02-29 2012-02-29 含氧化胺基团的共轭聚合物光电材料及其应用

Publications (2)

Publication Number Publication Date
CN102604048A CN102604048A (zh) 2012-07-25
CN102604048B true CN102604048B (zh) 2014-04-02

Family

ID=46521860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210050653.1A Active CN102604048B (zh) 2012-02-29 2012-02-29 含氧化胺基团的共轭聚合物光电材料及其应用

Country Status (3)

Country Link
US (1) US9159928B2 (zh)
CN (1) CN102604048B (zh)
WO (1) WO2013127227A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604048B (zh) * 2012-02-29 2014-04-02 华南理工大学 含氧化胺基团的共轭聚合物光电材料及其应用
CN103012756B (zh) * 2012-12-28 2014-12-17 东莞市后博科技服务有限公司 含两性侧链的共轭聚电解质光电材料及其应用
CN103928614B (zh) * 2014-04-21 2016-08-17 电子科技大学 一种高填充因子的有机薄膜太阳能电池
CN104821374B (zh) * 2015-03-12 2017-10-20 华南理工大学 基于共轭聚电解质的有机光电器件阴极界面层的制备方法及应用
CN106565970B (zh) * 2016-11-11 2020-06-19 华南理工大学 基于柱芳烃超分子聚合物光电材料及其制备方法与应用
CN114284434B (zh) * 2021-12-14 2023-05-30 常州大学 一种葡聚糖或其衍生物作为太阳电池阴极界面修饰层的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263205A (zh) * 2011-07-25 2011-11-30 华南理工大学 可交联共轭聚合物材料在倒装有机光电器件中的应用
JP2011252055A (ja) * 2010-06-01 2011-12-15 Tayca Corp 有機溶剤系導電性高分子分散液の製造方法およびその応用
CN102329411A (zh) * 2011-07-25 2012-01-25 华南理工大学 含可交联基团的水醇溶共轭聚合物材料及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273022A (ja) 1999-03-19 2000-10-03 Mitsubishi Chemicals Corp 毛髪化粧料
CN100490206C (zh) * 2003-12-25 2009-05-20 华南理工大学 有机/高分子发光二极管
CN101139427B (zh) 2007-10-18 2010-08-25 北京印刷学院 含氧化叔胺侧基的水溶性酚醛树脂的制备及应用
US9527806B2 (en) 2010-07-13 2016-12-27 Stc.Unm Structure, synthesis, and applications for poly (phenylene) ethynylenes (PPEs)
CN102304121A (zh) 2011-07-07 2012-01-04 华南理工大学 水溶性噻吩单体与水溶性聚噻吩衍生物及其制备方法
CN102604048B (zh) 2012-02-29 2014-04-02 华南理工大学 含氧化胺基团的共轭聚合物光电材料及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252055A (ja) * 2010-06-01 2011-12-15 Tayca Corp 有機溶剤系導電性高分子分散液の製造方法およびその応用
CN102263205A (zh) * 2011-07-25 2011-11-30 华南理工大学 可交联共轭聚合物材料在倒装有机光电器件中的应用
CN102329411A (zh) * 2011-07-25 2012-01-25 华南理工大学 含可交联基团的水醇溶共轭聚合物材料及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"The Dipole Moments of Amine Oxides";E.P.Linton;《Journal of American Chemical Society》;19400831;第62卷(第8期);第1945-1948页 *
"共轭两性聚电解质的合成及其作为高效聚合物发光二极管电子注入层的研究";段春晖、王磊、张凯、管星、黄飞、曹镛;《2011年全国高分子学术论文报告会》;20110924;第614页 *
E.P.Linton."The Dipole Moments of Amine Oxides".《Journal of American Chemical Society》.1940,第62卷(第8期),第1945-1948页.
PoJen Yang, HsuanChih Chu, YuHsien Lee,et al.."Quenching effects of gold nanoparticles in nanocomposites formed in watersoluble".《Polymer》.2012,第53卷(第4期),第939-946页.
PoJen Yang, HsuanChih Chu, YuHsien Lee,et al.."Quenching effects of gold nanoparticles in nanocomposites formed in watersoluble".《Polymer》.2012,第53卷(第4期),第939-946页. *
段春晖、王磊、张凯、管星、黄飞、曹镛."共轭两性聚电解质的合成及其作为高效聚合物发光二极管电子注入层的研究".《2011年全国高分子学术论文报告会》.2011,第614页.

Also Published As

Publication number Publication date
CN102604048A (zh) 2012-07-25
WO2013127227A1 (zh) 2013-09-06
US20150038602A1 (en) 2015-02-05
US9159928B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
Jin et al. A novel naphtho [1, 2‐c: 5, 6‐c′] bis ([1, 2, 5] thiadiazole)‐based narrow‐bandgap π‐conjugated polymer with power conversion efficiency over 10%
CN102604048B (zh) 含氧化胺基团的共轭聚合物光电材料及其应用
Tamilavan et al. Synthesis and characterization of indenofluorene‐based copolymers containing 2, 5‐bis (2‐thienyl)‐N‐arylpyrrole for bulk heterojunction solar cells and polymer light‐emitting diodes
Gasparini et al. Photophysics of molecular‐weight‐induced losses in indacenodithienothiophene‐based solar cells
Xu et al. A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics
Xu et al. Conjugated polyelectrolytes and neutral polymers with poly (2, 7‐carbazole) backbone: Synthesis, characterization, and photovoltaic application
CN112646129B (zh) 含苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
Chen et al. A polymer electron donor based on isoindigo units bearing branched oligo (ethylene glycol) side chains for polymer solar cells
Zhang et al. Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells
CN112646130B (zh) 基于双自由基苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
Sharma et al. Photovoltaic properties of bulk heterojunction devices based on CuI-PVA as electron donor and PCBM and modified PCBM as electron acceptor
CN105254466B (zh) 芘类有机材料、制备方法、及其应用
Lee et al. Investigation of short-term stability in high efficiency polymer: nonfullerene solar cells via quick current-voltage cycling method
KR102069409B1 (ko) 공중합체 및 이를 포함하는 유기태양전지
WO2013134913A1 (zh) 含噻吩-苯-噻吩单元的聚合物及其制备方法和太阳能电池器件
JP5701453B2 (ja) ジフルオロベンゾトリアゾリル太陽電池材料、調合法、およびその使用方法
KR20170140582A (ko) 에탄올-가용성 광기전 폴리머 및 풀러렌 유도체, 그 제조방법, 상기 광기전 폴리머 및 풀러렌 유도체를 활성층으로 포함하는 폴리머 태양전지 및 그 제조방법
KR20160004923A (ko) 축합고리 유도체 및 이를 포함하는 유기 태양 전지
Liu et al. Efficient Polymer Solar Cells Based on New Random Copolymers with Porphyrin‐Incorporated Side Chains
Xie et al. Triphenylamine–thiazolothiazole–benzodithiophene based conjugated copolymers for polymer solar cells
KR101744523B1 (ko) 싸이에노피롤 유도체를 포함하는 공중합체 및 그를 포함하는 유기전자소자
Miao et al. An approach to high open-circuit voltage polymer solar cells via alcohol/water-soluble cathode interlayers based on anthrathiadiazole derivatives
CN105713186A (zh) 有机半导体材料的聚合物的制备方法
CN105140407B (zh) 一种还原氧化石墨烯‑3,4,9,10‑苝四甲酸钾复合物及其制备方法和用途
CN104292424A (zh) 一种聚合物电子传输材料及其制备方法和有机电致发光器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant