WO2013127227A1 - 含氧化胺基团的共轭聚合物光电材料及其应用 - Google Patents

含氧化胺基团的共轭聚合物光电材料及其应用 Download PDF

Info

Publication number
WO2013127227A1
WO2013127227A1 PCT/CN2012/086424 CN2012086424W WO2013127227A1 WO 2013127227 A1 WO2013127227 A1 WO 2013127227A1 CN 2012086424 W CN2012086424 W CN 2012086424W WO 2013127227 A1 WO2013127227 A1 WO 2013127227A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amine
polymer
conjugated polymer
amine oxide
Prior art date
Application number
PCT/CN2012/086424
Other languages
English (en)
French (fr)
Inventor
黄飞
管星
张凯
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US14/382,238 priority Critical patent/US9159928B2/en
Publication of WO2013127227A1 publication Critical patent/WO2013127227A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of polymer photovoltaic materials, and in particular to a class of conjugated polymer photovoltaic materials containing amine oxide groups and applications thereof.
  • conjugated polyelectrolytes and their neutral precursors are a class of very excellent electron injecting/transporting materials. These materials have good solubility in polar solvents and excellent electron transport properties. It is possible to prepare a polymer electroluminescent device of high efficiency multilayer structure. In addition, these materials can also effectively increase the metal from high work functions.
  • conjugated polyelectrolytes have free-moving counter ions, which are likely to diffuse into the luminescent layer and affect the long-term stability of the device.
  • both the response speed of the device and the charge mobility of the conjugated polyelectrolyte are greatly affected by the ions.
  • the present invention provides a class of conjugated polymer optoelectronic materials containing an amine oxide group and applications thereof;
  • the present invention provides a class of oxidized amine group-containing conjugated polymer photovoltaic materials having excellent alcohol/water solubility and high efficiency electron transport/injection properties, such polymers not only having very excellent alcohol/water solubility, and There are no freely movable ions; it can be used as an electron transport/injection material or interface modification material in organic optoelectronic devices (eg organic light emitting diodes, organic solar cells, organic field effect transistors).
  • organic optoelectronic devices eg organic light emitting diodes, organic solar cells, organic field effect transistors.
  • the amine oxide group-containing conjugated polymer of the present invention has the following structure:
  • One or more carbon atoms may be substituted by an oxygen atom, a hydroxyl group, an amino group, a sulfone group, an alkenyl group, a blocked group, an aryl group, an ester group or a carbonyl group, and the hydrogen atom may be a fluorine atom, a hydroxyl group, an amino group, a sulfone group or an alkenyl group. Substituted by a block group, an aryl group, an ester group or a carbonyl group.
  • the above A and B are conjugated main chain units, and have one or more of the following structures:
  • the amine oxide group-containing conjugated polymer photovoltaic material is used in an organic optical device.
  • the copolymer synthesized by the present invention has excellent electron injection/transport performance and is not affected by the work function of the metal cathode
  • the effect may be that a high work function metal such as gold, silver or aluminum is used as the cathode;
  • the copolymer synthesized by the present invention contains a strong polar group of an amine oxide, and the electron injecting property is superior to that of a general polar group-containing neutral polymer; compared with the conjugated polyelectrolyte, Contains no mobile ions, does not undergo ion migration during use and reduces device performance;
  • the amine oxide group-containing conjugated polymer synthesized by the present invention can be dissolved in a polar solvent such as methanol or ethanol, and the active layer material is generally insoluble in such a solvent, and thus the active layer is constructed when a multilayer device is constructed. No intermixing occurs between the modified layer and the cathode interface.
  • a polar solvent such as methanol or ethanol
  • FIG. 1 is a schematic view showing the structure of an organic conjugated polymer light-emitting diode and an organic/polymer solar cell used in the present invention
  • FIG. 2 is a graph showing the current density/luminescence brightness of a green electroluminescent P-PPV-based organic electroluminescent device using the polymers PF6NO, PF6N025Py, PF6N026Py, and PF6N035Py synthesized as the cathode interface modification layer in Examples 1, 2, 3, and 4.
  • Voltage curve diagram
  • PF6NO green light-based material
  • PF6N025Py PF6N026Py
  • PF6N035Py precursors PF6N, PF6N25Py, PF6N26Py, PF6N35Py as a cathode interface modification layer for the first, second, third, and fourth embodiments.
  • 6 is a normalized organic electroluminescent device in which the polymers PF6NO, PF6N025Py, PF6N026Py, PF6N035Py and their precursors PF6N, PF6N25Py, PF6N26Py, and PF6N35Py synthesized as the cathode interface modification layer were synthesized in Examples 1, 2, 3, and 4. Electroluminescence spectrum;
  • FIG. 7 is a current density of a PCDTBT:PC 71 BM-based solar cell device based on the polymer PF6N025Py synthesized in Example 2 and its precursor PF6N25Py as a cathode interface modification layer at 100 mW/cm 2 and AM 1.5 G illumination. Relationship with voltage;
  • FIG. 8 is a graph showing current density versus voltage in a dark place of a PCDTBT:PC 71 BM-based solar cell device using the polymer PF6N025Py synthesized in Example 2 and its precursor PF6N25Py as a cathode interface modification layer.
  • the organic/polymer electroluminescent diode and the organic/polymer solar cell structure used in the present invention are as shown in Fig. 1, which are composed of a cathode 1, a cathode interface modifying layer 2, an active layer 3, a hole transporting layer 4,
  • the anode 5 and the glass substrate 6 are sequentially laminated, and the organic/polymer electroluminescent diode and the cathode interface modification layer 2 of the organic/polymer solar cell are each composed of the amine oxide group-containing conjugated polymer material synthesized by the present invention. composition.
  • the conjugated polymer containing an amine oxide group was characterized by nuclear magnetic resonance, gel permeation chromatography, elemental analysis and the like, and the polymer electroluminescence prepared by the above conjugated polymer and the solar cell device were characterized.
  • Example 1 Synthesis of poly ⁇ 2,7-[9,9,-bis(indene, fluorenyl-diethylhexyl-6-amine oxide) ruthenium] ⁇ (PF6NO)
  • Monomers 1, 2 are prepared according to the method disclosed in the literature [Adv. Mater., 2011, 23, 1665];
  • the sodium carbonate aqueous solution was refluxed for 48 hours under the protection of argon gas, then cooled to room temperature, and the reaction liquid was precipitated in methanol to obtain a crude product.
  • the crude product was dissolved in tetrahydrofuran, passed through an organic filter of 0.45 ⁇ , and concentrated. This solution was precipitated in methanol to obtain polymer particles, which were removed by an acetone Soxhlet extractor, and finally dried in a vacuum oven at 45 ° C for 24 hours to obtain a product.
  • Example 6 The polymers PF6NO, PF6N025Py, PF6N035Py, and PF6N026Py synthesized in Example 1, Example 2, Example 3, and Example 4 are used as examples to illustrate such polymers as cathode interface modifying materials in organic/polymer electroluminescent devices. (ITO anode/hole transport layer/light emitting layer/cathode interface modified layer/aluminum cathode) application
  • PEDOT PSS aqueous dispersion (approx. 1%) purchased from Bayer, buffer layer with high speed spin coating (KW-4A), thickness is determined by solution concentration and speed, surface profiler (Tritek Alpha-Tencor- Model 500) Measured monitoring. After film formation, the solvent residue and the vertical film were removed in a constant temperature vacuum oven.
  • the film thickness of PEDOT:PSS is preferably about 40 nm.
  • the fluorescent conjugated polymer P-PPV (P-PPV is a green-emitting material) was weighed in a clean bottle and transferred to a nitrogen-protected film-forming glove box (VAC company), dissolved in toluene, filtered at 0.45 ⁇ m. Membrane filtration.
  • the fluorescent polymer is fluorinated on the PEDOT:PSS film, and the optimal thickness of the polymer light-emitting layer is 70 to 90 nm.
  • the film thickness was measured using an Alpha-Tencor-500 surface profiler.
  • the amine oxide group-containing conjugated polymers PF6NO, PF6N025Py, PF6N026Py PF6N035Py, and the amine-substituted precursor polymers PF6N, PF6N25Py, PF6N26Py, and PF6N35Py were placed in a clean vial and transferred to a special glove box for nitrogen protection film formation.
  • the polar solvent methanol was mixed into a solution having a concentration of 0.5%, placed on a stirring table and stirred uniformly, and filtered through a 0.45 ⁇ m filter to obtain a clear solution.
  • the above solution was spin-coated on the polymer light-emitting layer to form a cathode interface modification layer.
  • Aluminum (80 nm) was vacuum-deposited on the cathode interface modification layer as a cathode.
  • the vacuum degree of the plating chamber is below 3x10 - 4 Pa, and the coating rate and the thickness of each metal electrode film are monitored in real time by a quartz vibrating film thickness monitor (STM-100, manufactured by Sycon).
  • STM-100 quartz vibrating film thickness monitor
  • the luminescence spectrum of the device was measured by a calibrated ORIEL Inc. Instaspec IV charge coupled photodetector CCD.
  • the luminescence intensity and external quantum efficiency of the device were measured using a semiconductor measurement system consisting of a Keithley 236 current and voltage source and a calibrated silicon photodiode.
  • FIG. 3 is a polyphenyl-substituted styrene-supported P-PPV based on a green light material as a light-emitting layer, and four conjugated polymers containing an amine oxide group (PF6NO, PF6N025Py, PF6N026Py, PF6N035Py) and precursors thereof.
  • Body polymer PF6NO, PF6N025Py, PF6N026Py, PF6N035Py
  • FIG. 4 and FIG. 5 are polystyrene-substituted styrene-supported P-PPV as a light-emitting layer, and four kinds of conjugated polymers containing amine oxide groups (PF6NO, PF6N025Py, PF6N026Py, PF6N035Py) and their precursors.
  • Body polymer PF6NO, PF6N025Py, PF6N026Py, PF6N035Py
  • PF6NO amine oxide group-containing conjugated polymers
  • PF6N025Py PF6N026Py
  • PF6N035Py precursor polymers thereof
  • PF6N, PF6N25Py, PF6N26Py, PF6N35Py normalized electroluminescence spectra of organic electroluminescent devices of polymer light-emitting diodes prepared as cathode interface modification layers, respectively.
  • LE max maximum current efficiency
  • LE current efficiency
  • V voltage current efficiency
  • n Electricity with a brightness of 1 cd/m2 Pressure
  • L max maximum brightness
  • J current density
  • the amine oxide group-containing conjugated polymers (PF6NO, PF6N025Py, PF6N026Py, PF6N035Py) prepared by the present invention can be used as a cathode interface modification layer to greatly improve the performance of conventional luminescent materials in high work function metal aluminum electrode devices.
  • the effect is even higher than that of the amine-substituted precursor polymer (PF6N, PF6N25Py, PF6N26Py, PF6N35Py).
  • the device performance has approached or exceeded the corresponding low work function metal ⁇ as the cathode device.
  • the polar solvent may be one or more selected from the group consisting of ethanol, water, N, N-dimethylformamide, isopropyl alcohol, ethylene glycol, and ethylene glycol monomethyl ether in addition to methanol.
  • Example 7 Taking the polymer PF6N025Py synthesized in Example 2 as an example, this polymer can be used as a cathode interface modification material in an organic/polymer solar cell device (ITO anode/hole transport layer/active layer/cathode interface modification) Layer/aluminum cathode) application
  • organic/polymer solar cell device ITO anode/hole transport layer/active layer/cathode interface modification
  • Layer/aluminum cathode Layer/aluminum cathode
  • PEDOT PSS aqueous dispersion (approx. 1%) purchased from Bayer, buffer layer with high speed spin coating (KW-4A), thickness is determined by solution concentration and speed, surface profiler (Tritek Alpha-Tencor- Model 500) Measured monitoring. After film formation, the solvent residue and the vertical film were removed in a constant temperature vacuum oven.
  • the film thickness of PEDOT:PSS is preferably about 40 nm.
  • the active layer donor material conjugated polymer PCDTBT and the acceptor material PC 71 BM were weighed in a clean bottle (mass ratio 1:4), and transferred to a nitrogen-protected film-forming glove box (VAC company).
  • the chlorobenzene/chlorobenzene mixed solvent (3:1 by volume) was dissolved and filtered through a 0.45 ⁇ m filter.
  • the PCDTBT/PC 71 BM film was deposited on a PEDOT:PSS film with an optimum thickness of 70 to 90 nm. The film thickness was measured using an Alpha-Tencor-500 surface profiler.
  • the amine oxide group-containing conjugated polymer PF6N025Py and the amine-substituted precursor polymer PF6N25Py were placed in a clean vial, transferred to a nitrogen-protected film-forming glove box, and a 0.5% solution was prepared using a polar solvent methanol. Place on a mixing table and mix well. Filter through a 0.45 ⁇ m filter to obtain a clear solution. The above solution was spin coated on the active layer to form a cathode interface modification layer. Aluminum (80 nm) was vacuum-deposited on the cathode interface modification layer as a cathode.
  • the vacuum degree of the plating chamber is below 3x10 - 4 Pa, and the coating rate and the thickness of each metal electrode film are monitored in real time by a quartz vibrating film thickness monitor (STM-100, manufactured by Sycon). All preparations were carried out in a glove box providing a nitrogen atmosphere.
  • the current-voltage characteristics of the device were measured by a Keithley 236 current-voltage-measurement system and a calibrated silicon photodiode.
  • the energy conversion efficiency of the device was measured under a standard solar spectrum AM 1.5G simulator (Oriel model 91192). The energy of the simulated sunlight was corrected to 100 mW/cm 2 using a standard silicon solar cell prior to testing.
  • A1 was vacuum-deposited on the active layer as a cathode.
  • the relationship between current density and voltage of the device under illumination is shown in Fig. 7.
  • the relationship between current density and voltage in the dark is shown in Fig. 8.
  • Figure 7 is a conjugated polymer PF6N025Py based on polyoxazole dithiophene benzothiadiazole (PCDTBT) / fullerene derivative (PC 71 BM) as an active layer, and an amine oxide group-containing conjugated polymer
  • PCDTBT polyoxazole dithiophene benzothiadiazole
  • PC 71 BM fullerene derivative
  • an amine oxide group-containing conjugated polymer The current density-voltage curve of a polymer solar cell prepared by using PF6N25Py as a cathode interface modification layer at 100 mW/cm 2 and AM 1.5 G illumination, it can be seen that the conjugated polymer containing an amine oxide group
  • the addition of PF6N025Py greatly increases the open circuit voltage and short circuit current of the device.
  • Table 2 The specific performance of related devices is shown in Table 2.
  • Figure 8 is a conjugated polymer PF6N025Py and its precursor polymer based on polyoxazole dithiophene benzothiadiazole (PCDTBT) / fullerene derivative (PC 71 BM) as active layer, containing amine oxide groups.
  • PF6N25Py is used as a cathode interface modification layer to obtain the relationship between current density and voltage in a dark place. It can be seen that after the introduction of the cathode interface layer, the starting voltage of the device is increased by 0.5 to 0.6 V than that of the pure aluminum cathode device, indicating that the introduction of the cathode interface layer can increase the built-in potential of the device, thereby increasing the open circuit voltage of the device.
  • Table 2 Solar cell device performance of PF6N025Py as cathode interface modification layer
  • PCDTBT PC 7 iBM
  • the amine oxide group-containing conjugated polymer PF6N025Py prepared by the invention can be used as a cathode interface modification layer, which can greatly improve the performance of the conventional battery material in the high work function metal aluminum electrode device, and the effect even exceeds the amine group.
  • the polar solvent may be one or more selected from the group consisting of ethanol, water, N, N-dimethylformamide, isopropyl alcohol, ethylene glycol, and ethylene glycol monomethyl ether in addition to methanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

公开了一类含氧化胺基团的共轭聚合物光电材料及其应用。所述含氧化胺基团的共轭聚合物光电材料由共轭的主链及含有氧化胺单元的侧链组成,应用在有机光电器件中。所述材料具有良好的醇/水溶性以及光电性能,适合做多层溶液加工器件,同时可避免常见聚电解质中可自由移动的反离子对器件的不利影响,所述材料可以作为阴极界面修饰层应用在发光、光伏等有机光电器件中,改善器件性能。

Description

含氧化胺基团的共轭聚合物光电材料及其应用 技术领域
本发明涉及高分子光电材料领域, 具体涉及一类含氧化胺基团的共轭聚合物光电材料及 其应用。
背景技术
自从 1990年第一个聚合物电致发光二极管发明以来, 聚合物电光电材料得到了学术界 和工业界的广泛关注。
为了实现高效的聚合物电致发光器件, 电子和空穴分别从阴极和阳极高效的注入是其中 的关键。 因此, 很多高效的聚合物电致发光器件都是采用多层器件结构, 即除了发光层外, 还含有一层或多层空穴传输 /注入层或电子传输 /注入层。 因此, 除了开发优异的发光材料, 开发优异的电子传输 /注入材料和空穴传输 /注入材料也是实现高效聚合物电致发光器件的关 键。
此前的研究发现共轭聚电解质及其中性前驱体是一类非常优异的电子注入 /传输材料,这 类材料在极性溶剂中有很好的溶解性, 同时具有优异的电子传输性能, 从而使得制备高效多 层结构的聚合物电致发光器件成为可能。 此外, 这类材料还能有效的增加从高功函数的金属
(如铝, 银, 金) 向聚合物半导体的电子注入, 更有利于以印刷的方式实现高分子多层器件
(Adv. Mater. 2007, 19, 810.)。后续的研究表明,这类共轭聚电解质材料不但可用于发光器件, 还可作为界面修饰层大幅提高有机太阳能电池、 场效应晶体管的性能。
然而, 绝大多数的共轭聚电解质都有可自由移动的对离子, 对离子有可能能够扩散到发 光层从而影响器件的长期稳定性。 此外, 器件的响应速度与共轭聚电解质的电荷迁移率都受 到对离子很大影响。
发明内容
为了克服现有技术中存在的缺点与不足,本发明提供了一类含氧化胺基团的共轭聚合物 光电材料及其应用;
本发明提供了一类具有优异的醇 /水溶性和高效的电子传输 /注入性能的含氧化胺基团的 共轭聚合物光电材料, 这类聚合物不仅具有非常优异的醇 /水溶性, 并且没有可自由移动的离 子; 可以作为电子传输 /注入材料或界面修饰材料应用于有机光电器件中(例如有机发光二极 管, 有机太阳能电池, 有机场效应晶体管)。
本发明采用如下技术方案:
本发明所述含氧化胺基团的共轭聚合物, 具有如下结构:
Figure imgf000003_0001
其中 A、 B为共轭的主链单元; 、 n2表示 A、 B两种单元的相对含量, 且 +n2 = 100%, 为 C1〜C20的直链烷基、 支链烷基、 环状烷基链或烷氧基链;
其中一个以上的碳原子可被氧原子、 羟基、 氨基、 砜基、 烯基、 块基、 芳基、 酯基、 羰基取 代, 氢原子可被氟原子、 羟基、 氨基、 砜基、 烯基、 块基、 芳基、 酯基或羰基取代。
上述 A、 B为共轭的主链单元, 具有如下结构的一种以上:
Figure imgf000003_0002
所述的含氧化胺基团的共轭聚合物光电材料在有机光器件中应用。
本发明与现有技术相比具有以下优点:
( 1 ) 本发明所合成的共聚物具有优异的电子注入 /传输性能, 且不受金属阴极功函数的 影响, 可使用金、 银、 铝等高功函数金属作为阴极;
(2) 本发明所合成的共聚物含有氧化胺强极性基团, 电子注入性能要优于一般的含极 性基团的中性聚合物; 其与共轭聚电解质相比, 由于该共聚物不含移动离子, 在使用时不会 发生离子迁移而降低器件性能;
( 3 ) 本发明所合成的含氧化胺基团的共轭聚合物能溶于极性溶剂如甲醇、 乙醇中, 而 活性层材料一般不溶于这类溶剂, 因而在构筑多层器件时活性层与阴极界面修饰层之间不会 发生互混现象。
附图说明
图 1 为本发明中所使用的有机共轭聚合物发光二极管以及有机 /聚合物太阳能电池结构 示意图;
图 2为实施例 1、 2、 3、 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py 作为阴极界面修饰层的基于绿光材料 P-PPV的有机电致发光器件的电流密度 /发光亮度 -电压 曲线图;
图 3为实施例 1、 2、 3、 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py 的前驱体 PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py 作为阴极界面修饰层的基于绿光材料 P-PPV的有机电致发光器件的电流密度 /发光亮度-电压曲线图;
图 4为实施例 1、 2、 3、 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py 以及作为对比的 CsF、 Ba作为阴极界面修饰层的基于绿光材料 P-PPV的有机电致发光器件 的电流效率-电流密度曲线图;
图 5为实施例 1、 2、 3、 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py 的前驱体 PF6N、 PF6N25Py、 PF6N26Py PF6N35Py以及作为对比的 CsF、 Ba作为阴极界面 修饰层的基于绿光材料 P-PPV的有机电致发光器件的电流效率 -电流密度曲线图;
图 6为实施例 1、 2、 3、 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py 及其前驱体 PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py作为阴极界面修饰层的有机电致发光 器件的归一化电致发光光谱图;
图 7为以实施例 2所合成的聚合物 PF6N025Py及其前驱体 PF6N25Py作为阴极界面修 饰层的基于 PCDTBT:PC71BM的太阳能电池器件在 100毫瓦 /平方厘米, AM 1.5 G光照下的 电流密度与电压关系;
图 8为以实施例 2所合成的聚合物 PF6N025Py及其前驱体 PF6N25Py作为阴极界面修 饰层的基于 PCDTBT:PC71BM的太阳能电池器件在暗处的电流密度与电压关系。
具体实施方式
下面通过具体实施例对本发明作进一步的说明, 其目的在于帮助更好的理解本发明的内 容, 具体包括合成、 表征与器件制备, 但这些具体实施方案不以任何方式限制本发明的保护 范围。
本发明中使用的有机 /聚合物电致发光二极管以及有机 /聚合物太阳能电池结构如附图 1 所示, 都是由阴极 1、 阴极界面修饰层 2、 活性层 3、 空穴传输层 4、 阳极 5、 玻璃衬底 6依 次层叠构成, 所述有机 /聚合物电致发光二极管以及有机 /聚合物太阳能电池的阴极界面修饰 层 2均由本发明合成的含氧化胺基团的共轭聚合物材料组成。
用核磁共振、 凝胶渗透色谱、 元素分析等分析手段对含有氧化胺基团的共轭聚合物进行 表征, 对用上述共轭聚合物制备的聚合物电致发光以及太阳能电池器件进行性能表征。 实施例 1 : 聚 {2,7-[9,9,-二 (Ν,Ν-二乙基己基 -6-氧化胺)芴] } (PF6NO) 的合成
Figure imgf000005_0001
PF6N PF6NO
( 1 ) 单体 1、 2是按文献 [Adv. Mater., 2011, 23, 1665]公开的方法制备;
(2) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-胺基) 笏] } (PF6N) 的制备
将单体 2,7-二(三亚甲基硼酸酯) -9,9'-二 (N,N-二乙基己基 -6-胺基)芴(728 mg, 1 mmol)、 单体 2,7-二溴 -9,9'-二 (N,N-二乙基己基 -6-胺基) 芴 (634 mg, 1 mmol) 禾 B IO mg四合三苯 基磷钯催化剂溶于 10 ml甲苯和 5 ml四氢呋喃的混合溶剂中, 加入 4 ml 2 mol/L的碳酸钠水 溶液, 在氩气的保护下, 回流反应 48 小时, 然后冷却到室温, 将反应液在甲醇中沉淀得到 粗品, 将粗品溶于四氢呋喃中, 过 0.45 μηι的有机滤膜, 浓縮, 将此溶液在甲醇中沉淀得到 聚合物颗粒, 用丙酮索氏提取器除去小分子物质, 最后在真空烘箱中 45°C下干燥 24小时, 得到产物。 1H NMR (300 MHz, CDC13, δ): 7.82-7.93 (m, 6H), 3.02-3.05 (m, 12H), 2.90-2.93 (m, 4H), 1.98-2.21 (m, 4H), 0.88-1.23 (m, 24H)。 Mn = 13500, PDI = 1.403;
(3 ) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-氧化胺) 笏] } (PF6NO) 的制备
取 PF6N 100 mg, 加入 10 ml的甲醇后再加入过量的 30%过氧化氢溶液, 反应体系在室温下 反应 2天, 减压蒸馏浓縮后, 加入 80 ml的乙酸乙酯沉淀产物, 离心分离并用氯仿洗涤后在 真空烘箱中 45°C下干燥 24小时,得到产物。 1H NMR (300 MHz, CD30D, δ): 7.82-7.93 (m, 6H), 3.22-3.24 (m, 12H), 3.07-3.18 (m, 4H), 1.56-1.57 (m, 4H), 1.18-1.23 (m, 24H)。
实施例 2: 聚 {2,7-[9,9,-二(Ν,Ν-二乙基己基 -6-氧化胺) 芴] 共 -2,5-吡啶 } (PF6N025Py) 的 合成
Figure imgf000006_0001
( 1 ) 单体 2,5-二溴吡啶直接从百灵威公司购买, 用甲醇重结晶后使用;
(2) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-胺基) 芴] 共 -2,5-吡啶 } (PF6N25Py) 的制备; 将实施例 1中制备的单体 2,7-二 (三亚甲基硼酸酯) -9,9'-二 (N,N-二乙基己基 -6-胺基) 芴 (728 mg, 1 mmol)、 单体 2,5-二溴吡啶 (237 mg, 1 mmol) 禾卩 10 mg四合三苯基磷钯 催化剂溶于 10 ml甲苯和 5 ml四氢呋喃的混合溶剂中, 加入 4 ml 2 mol/L的碳酸钠水溶液, 在氩气的保护下, 回流反应 48 小时, 然后冷却到室温, 将反应液在甲醇中沉淀得到粗品, 将粗品溶于四氢呋喃中, 过 0.45 μηι的有机滤膜, 浓縮, 将此溶液在甲醇中沉淀得到聚合物 颗粒, 用丙酮索氏提取器除去小分子物质, 最后在真空烘箱中 45°C下干燥 24小时, 得到产 物。 1H NMR (300 MHz, CDC13, δ): 9.08 (s, 1H), 7.62-8.15 (m, 8H), 2.40-2.45 (m, 12H), 2.27-2.29 (m, 4H), 1.21-1.24 (m, 4H), 1.08-1.10 (m, 8H), 0.90-0.96 (m, 12H), 0.84 (m, 4H)。 Mn = 22401 , PDI = 1.607;
(3 ) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-氧化胺) 芴] 共 -2,5-吡啶 } (PF6N025Py) 的制备 取 PF6N25Py 100 mg, 加入 10 ml的甲醇后再加入过量的 30%过氧化氢溶液, 反应体系 在室温下反应 2天, 减压蒸馏浓縮后, 加入 80 ml的乙酸乙酯沉淀产物, 离心分离并用氯仿 洗涤后在真空烘箱中 45 °C下干燥 24小时, 得到产物。 iH NMR (300 MHz, CD3OD, δ): 9.06 (s, 1Η), 7.88-8.54 (m, 8H), 3.09-3.12 (m, 12H), 2.87-2.89 (m, 4H), 1.50-1.52 (m, 4H), 0.98-1.18 (m, 24H
实施例 3: 聚 {2,7-[9,9,-二 (Ν,Ν-二乙基己基 -6-氧化胺) 芴] 共 -3,5-吡啶 } (PF6N035Py) 的 合成
Figure imgf000007_0001
PF6N035Py
( 1 ) 单体 3,5-二溴吡啶直接从百灵威公司购买, 用甲醇重结晶后使用;
(2) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-胺基) 芴] 共 -3,5-吡啶 } (PF6N35Py)
的制备
将实施例 1中制备的单体 2,7-二 (三亚甲基硼酸酯) -9,9'-二 (N,N-二乙基己基 -6-胺基) 芴 (728 mg, 1 mmol)、 单体 3,5-二溴吡啶 (237 mg, 1 mmol) 禾卩 10 mg四合三苯基磷钯 催化剂溶于 10 ml甲苯和 5 ml四氢呋喃的混合溶剂中, 加入 4 ml 2 mol/L的碳酸钠水溶液, 在氩气的保护下, 回流反应 48 小时, 然后冷却到室温, 将反应液在甲醇中沉淀得到粗品, 将粗品溶于四氢呋喃中, 过 0.45 μηι的有机滤膜, 浓縮, 将此溶液在甲醇中沉淀得到聚合物 颗粒, 用丙酮索氏提取器除去小分子物质, 最后在真空烘箱中 45 °C下干燥 24小时, 得到产 物。 1H NMR (300 MHz, CDC13, δ): 8.90 (s, 2H), 8.23 (s, 1H), 7.91-7.92 (m, 2H), 7.66-7.73 (m, 4H), 2.66-2.73 (m, 8H), 2.50-2.56 (m, 4H), 2.11 (m, 4H), 1.40-1.41 (m, 4H), 1.09-1.11 (m, 8H), 1.02-1.07 (m, 12H), 0.74 (m, 4H), Mn = 10300, PDI = 1.553;
( 3 ) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-氧化胺) 芴] 共 -3,5-吡啶 } (PF6N035Py) 的制备 取 PF6N35Py 100 mg, 加入 10ml的甲醇后再加入过量的 30%过氧化氢溶液, 反应体系 在室温下反应 2天, 减压蒸馏浓縮后, 加入 80 ml的乙酸乙酯沉淀产物, 离心分离并用氯仿 洗涤后在真空烘箱中 45°C下干燥 24小时, 得到产物。 iH NMR (300 MHz, CD3OD, δ): 8.92 (s, 2Η), 8.50 (s, 1H), 8.03-8.05 (m, 2H), 7.88-7.94 (m, 4H), 3.09-3.16 (m, 8H), 2.97-3.01 (m, 4H), 2.30 (m, 4H), 1.53-1.54 (m, 4H), 1.14-1.28 (m, 20H), 0.94 (m, 4H)。
实施例 4: 聚 {2,7-[9,9,-二(Ν,Ν-二乙基己基 -6-氧化胺) 芴] 共 -2,6-吡啶 } (PF6N026Py) 的 合成
Figure imgf000008_0001
PF6N026Py
( 1 ) 单体 2,6-二溴吡啶直接从百灵威公司购买, 用甲醇重结晶后使用;
(2) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-胺基) 芴] 共 -2,6-吡啶 } (PF6N26Py)
的制备;
将实施例 1中制备的单体 2,7-二 (三亚甲基硼酸酯) -9,9'-二 (N,N-二乙基己基 -6-胺基) 芴 (728 mg, 1 mmol)、 单体 2,6-二溴吡啶 (237 mg, 1 mmol) 禾卩 10 mg四合三苯基磷钯 催化剂溶于 10 ml甲苯和 5 ml四氢呋喃的混合溶剂中, 加入 4 ml 2 mol/L的碳酸钠水溶液, 在氩气的保护下, 回流反应 48 小时, 然后冷却到室温, 将反应液在甲醇中沉淀得到粗品, 将粗品溶于四氢呋喃中, 过 0.45 μηι的有机滤膜, 浓縮, 将此溶液在甲醇中沉淀得到聚合物 颗粒, 用丙酮索氏提取器除去小分子物质, 最后在真空烘箱中 45°C下干燥 24小时, 得到产 物。 1H NMR (300 MHz, CDC13, δ): 8.29-8.31 (m, 2H), 8.16 (s, 2H), 7.81-7.94 (m, 5H), 2.38-2.45 (m, 8H), 2.25-2.30 (m, 4H), 2.18 (m, 4H), 1.25-1.28 (m, 4H), 1.10-1.12 (m, 8H), 0.91-0.97 (m, 12H),0.81 (m,4H)。 Mn = 12100, PDI = 1.587。
(3 ) 聚 {2,7-[9,9'-二 (N,N-二乙基己基 -6-氧化胺) 芴] 共 -2,6-吡啶 } (PF6N026Py) 的制备; 取 PF6N26Py 100 mg, 加入 10 ml的甲醇后再加入过量的 30%过氧化氢溶液, 反应体系 在室温下反应 2天, 减压蒸馏浓縮后, 加入 80ml的乙酸乙酯沉淀产物, 离心分离并用氯仿 洗涤后在真空烘箱中 45 °C下干燥 24小时,得到产物。 1H NMR (300 MHz, CD3OD, δ): 8.36-8.53 (m, 4H), 7.98-8.04 (m, 5H), 3.01-3.03 (m, 8H), 2.90-2.91 (m, 4H), 2.31 (m, 4H), 1.46-1.47 (m, 4H): 1.27-1.29 (m, 8H), 1.04-1.09 (m, 12H), 0.86 (m, 4H)。
实施例 5: 聚 {2,7-[9,9,-二 (Ν,Ν-二羟乙基己基 -6-氧化胺) 芴] } (PF60HNO ) 的合成 合成路线如下:
Figure imgf000009_0001
PF60HNO
( 1 ) 单体 1、 2及聚合物前驱体 PF6Br、 PF60HN是按文献 [Adv. Mater. 2007, 19, 2010] 公 开的方法制备;
(2) 聚 {2,7-[9,9'-二 (N,N-二羟乙基己基 -6-氧化胺) 笏] } (PF60HNO ) 的制备;
取 PF6OHN100mg, 加入 10ml的甲醇后再加入过量的 30%过氧化氢溶液, 反应体系在 室温下反应 2天, 减压蒸馏浓縮后, 加入 80ml的乙酸乙酯沉淀产物, 离心分离并用氯仿洗 涤后在真空烘箱中 45 °C下干燥 24小时, 得到产物。 1H NMR (300 MHz, CD3OD, δ): 8.05-7.79 (m, 6H), 4.94 (m, 8H), 2.81-2.70 (m, 16H), 1.42-0.94(m, 16H)。 实施例 6:以实施例 1、例 2、例 3、例 4所合成的聚合物 PF6NO、 PF6N025Py、 PF6N035Py、 PF6N026Py为例说明此类聚合物作为阴极界面修饰材料在有机 /聚合物电致发光器件(ITO 阳极 /空穴传输层 /发光层 /阴极界面修饰层 /铝阴极) 中应用
将 ITO导电玻璃, 方块电阻〜 20欧 /平方厘米,预切成 15毫米 xl5毫米方片。依次用丙酮、 微米级半导体专用洗涤剂、 去离子水、 异丙醇超声清洗, 氮气吹哨后置于恒温烘箱备用。 使 用前, ITO玻璃片在氧等离子体刻蚀仪中以等离子体轰击 10分钟。 PEDOT:PSS水分散液(约 1%) 购自 Bayer公司, 缓冲层以匀胶机 (KW-4A) 高速旋涂, 厚度由溶液浓度和转速决定, 用表面轮廓仪 (Tritek公司 Alpha-Tencor-500型) 实测监控。 成膜后, 于恒温真空烘箱中驱 除溶剂残余、 竖膜。 在 ITO基片上甩 PEDOT:PSS的膜厚 40纳米左右为佳。
将荧光共轭聚合物 P-PPV (P-PPV为发绿光材料) 于干净瓶中称量后, 转入氮气保护成 膜专用手套箱(VAC公司) , 在甲苯中溶解, 以 0.45微米滤膜过滤。 在 PEDOT:PSS膜上甩 荧光聚合物, 聚合物发光层最佳厚度为 70〜90纳米。 膜厚用 Alpha-Tencor-500表面轮廓仪测 定。 将含氧化胺基团的共轭聚合物 PF6NO、 PF6N025Py、 PF6N026Py PF6N035Py, 以及 胺基取代前驱聚合物 PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py置于洁净小瓶中, 转入氮气 保护成膜专用手套箱中, 用极性溶剂甲醇配成浓度为 0.5%的溶液, 置于搅拌台上搅拌均匀, 用 0.45微米滤膜过滤得澄清溶液。将上述溶液在聚合物发光层上旋涂为阴极界面修饰层。在 阴极界面修饰层上真空蒸镀铝 (80纳米) 作阴极。 镀腔真空度在 3xlO—4 Pa以下, 镀膜速率 与各层金属电极薄膜厚度由石英振子膜厚监测仪 (STM— 100型, Sycon公司制造) 实时监 控。 器件的发光光谱由经校准的 ORIEL公司的 Instaspec IV电荷耦合光探测仪 CCD测得。 利用由 Keithley236 电流电压源及一个经校准的硅光二极管组成的半导体测量系统测出器件 的发光强度和外量子效率。 外量子效率与发光强度分别用 Labsphere 公司 IS080 积分球及 PR705光度光谱仪 (Photoresearch)校准。 为显示本发明所采用的阴极界面修饰层的效果, 采 用在发光层上真空蒸镀 Ba/Al、 CsF/Al作为阴极, 或者在发光层上真空蒸镀 A1作为阴极。
附图 2、 附图 3为基于绿光材料聚苯基取代苯乙烯撑 P-PPV作为发光层, 四种含氧化胺 基团的共轭聚合物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py) 及其前驱体聚合物
(PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py) 分别作为阴极界面修饰层所制得的高分子发 光二极管的电流密度 /发光亮度一电压曲线图; 可以明显看出, 四种含氧化胺基团的共轭聚合 物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py) 的加入可以大幅提高器件的亮度。
附图 4、 附图 5为基于绿光材料聚苯基取代苯乙烯撑 P-PPV作为发光层, 四种含氧化胺 基团的共轭聚合物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py) 及其前驱体聚合物
(PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py) 分别作为阴极界面修饰层所制得的高分子发 光二极管的电流效率一电流密度曲线图。 可以看出, 四种含氧化胺基团的共轭聚合物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py) 的加入大幅提高了器件的电流效率。 附图 6为基于绿光材料聚苯基取代苯乙烯撑 P-PPV作为发光层,四种含氧化胺基团的共 轭聚合物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py) 及其前驱体聚合物 (PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py)分别作为阴极界面修饰层所制得的高分子发光二极管的 有机电致发光器件的归一化电致发光光谱图。 可以看出, 所有器件的载流子复合区域都在 P-PPV层, 引入阴极界面层并没有改变器件的载流子复合区域, 相关器件的具体性能如表 1。 表 1 : PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py作为阴极界面修饰层器件的电致发光 性能
器件结构 ITO/PEDOT 4083/Active Layer (P-PPV, 80 nm)/ETL/Al (-80 nm)
Figure imgf000011_0001
其中 LEmax: 最大电流效率, LE: 电流效率, V电压, V。n: 亮度为 1坎德拉 /平方米时的电 压, Lmax: 最大亮度, J: 电流密度
以上结果表明采用本发明制备的含氧化胺基团的共轭聚合物 (PF6NO、 PF6N025Py、 PF6N026Py、 PF6N035Py)作为阴极界面修饰层, 可以大幅提高传统发光材料在高功函金属 铝电极器件中的性能,其效果甚至超过了胺基取代前驱聚合物(PF6N、 PF6N25Py、 PF6N26Py、 PF6N35Py) 。 其器件性能已经接近或超过相应低功函数金属钡作阴极的器件。
上述极性溶剂除甲醇外, 还可以为乙醇、 水、 N, N-二甲基甲酰胺、 异丙醇、 乙二醇、 乙二醇单甲醚等的一种以上。
实施例 7: 以实施例 2所合成的聚合物 PF6N025Py为例说明此类聚合物能作为阴极界面修 饰材料在有机 /聚合物太阳能电池器件(ITO 阳极 /空穴传输层 /活性层 /阴极界面修饰层 /铝阴 极) 中应用
以下实例将对本发明所提出的含氧化胺基团的共轭聚合物光电材料在高分子太阳能器 件中的应用工艺过程进行说明, 但本发明不限于所列之例。
将 ITO导电玻璃, 方块电阻〜 20欧 /平方厘米,预切成 15毫米 xl5毫米方片。依次用丙酮、 微米级半导体专用洗涤剂、 去离子水、 异丙醇超声清洗, 氮气吹哨后置于恒温烘箱备用。 使 用前, ITO玻璃片在氧等离子体刻蚀仪中以等离子体轰击 10分钟。 PEDOT:PSS水分散液(约 1%) 购自 Bayer公司, 缓冲层以匀胶机 (KW-4A) 高速旋涂, 厚度由溶液浓度和转速决定, 用表面轮廓仪 (Tritek公司 Alpha-Tencor-500型) 实测监控。 成膜后, 于恒温真空烘箱中驱 除溶剂残余、 竖膜。 在 ITO基片上甩 PEDOT:PSS的膜厚 40纳米左右为佳。
将活性层给体材料共轭聚合物 PCDTBT及受体材料 PC71BM于干净瓶中称量后 (质量比 1 :4), 转入氮气保护成膜专用手套箱(VAC公司), 在邻二氯苯 /氯苯混合溶剂(体积比 3:1 ) 中溶解,以 0.45微米滤膜过滤。在 PEDOT:PSS膜上甩 PCDTBT/PC71BM膜,最佳厚度为 70〜90 纳米。膜厚用 Alpha-Tencor-500表面轮廓仪测定。将含氧化胺基团的共轭聚合物 PF6N025Py 以及胺基取代前驱聚合物 PF6N25Py置于洁净小瓶中, 转入氮气保护成膜专用手套箱中, 用 极性溶剂甲醇配成浓度为 0.5%的溶液, 置于搅拌台上搅拌均匀, 用 0.45微米滤膜过滤得澄 清溶液。将上述溶液在活性层上旋涂为阴极界面修饰层。在阴极界面修饰层上真空蒸镀铝(80 纳米)作阴极。镀腔真空度在 3xlO—4 Pa以下, 镀膜速率与各层金属电极薄膜厚度由石英振子 膜厚监测仪 (STM— 100型, Sycon公司制造) 实时监控。 所有制备过程均在提供氮气氛围 的手套箱内进行。 器件的电流 -电压特性, 由 Keithley236电流电压 -测量系统及一个经校正的 硅光二极管测得。 器件的能量转换效率在标准太阳光谱 AM1.5G模拟器(Oriel model 91192) 下测得。模拟阳光的能量在测试前用标准硅太阳能电池校正为 100毫瓦 /平方厘米。为显示本 发明所采用的阴极界面修饰层的效果, 在活性层上真空蒸镀 A1作为阴极。 器件在光照下的 电流密度与电压关系如图 7所示, 在暗处的电流密度与电压关系如图 8所示。 附图 7为基于聚咔唑二噻吩苯并噻二唑 (PCDTBT ) /富勒烯衍生物 (PC71BM) 作为活 性层, 含氧化胺基团的共轭聚合物 PF6N025Py及其前驱体聚合物 PF6N25Py分别作为阴极 界面修饰层所制得的高分子太阳能电池在 100毫瓦 /平方厘米, AM 1.5 G光照下的电流密度- 电压曲线图, 可以看出, 含氧化胺基团的共轭聚合物 PF6N025Py的加入大幅提高了器件的 开路电压与短路电流, 相关器件的具体性能如表 2所示。
附图 8为基于聚咔唑二噻吩苯并噻二唑 (PCDTBT ) /富勒烯衍生物 (PC71BM) 作为活 性层, 含氧化胺基团的共轭聚合物 PF6N025Py及其前驱体聚合物 PF6N25Py分别作为阴极 界面修饰层所制得的高分子太阳能电池在暗处的电流密度与电压关系。 可以看出, 引入阴极 界面层后, 器件的启动电压比纯铝阴极器件提高了 0.5〜 0.6 V, 表明引入阴极界面层能提高 器件的内建电势, 从而提高器件的开路电压。
表 2: PF6N025Py作为阴极界面修饰层的太阳能电池器件性能
器件结构 ITO/PEDOT 4083/Active Layer (PCDTBT/PC71BM, 80 nm)/ETL/Al (-80 nm)
Jsc(毫安 /平方
Active Layer ETL Voc (伏) FF (%) PCE (%)
厘米)
- 1 1.41 0.65 53.79 3.99
PCDTBT:PC7iBM
PF6N25Py 1 1.31 0.90 56.00 5.70
(1 :4)
PF6N025Py 1 1.55 0.91 66.18 6.88
其中 Jsc : 短路电流, V。c: 开路电压, FF: 填充因子, PCE: 能量转换效率
以上结果表明采用本发明制备的含氧化胺基团的共轭聚合物 PF6N025Py作为阴极界面 修饰层, 可以大幅提高传统电池材料在高功函金属铝电极器件中的性能, 其效果甚至超过了 胺基取代前驱聚合物 PF6N25Py。
上述极性溶剂除甲醇外, 还可以为乙醇、 水、 N, N-二甲基甲酰胺、 异丙醇、 乙二醇、 乙二醇单甲醚等的一种以上。

Claims

权利要求书
类含氧化胺基团 结构为:
Figure imgf000014_0001
其中 A、 B为共轭的主链单元; ηι、 n2表示 A、 B两种单元的相对含量, 且!^+ 二 100%, 为 C1~C20的直链垸基、 支链垸基、 环状垸基链或垸氧基链。
2、根据权利要求 1所述含氧化胺基团的共轭聚合物光电材料,其特征在于所述结构 RrR4 中一个以上的碳原子被氧原子、 羟基、 氨基、 砜基、 烯基、 炔基、 芳基、 酯基或羰基取代, 氢原子被氟原子、 羟基、 氨基、 砜基、 烯基、 炔基、 芳基、 酯基或羰基取代。
3、根据权利要求 1所述含氧化胺基团的共轭聚合物光电材料, 其中 A、 B为共轭的主链 单元, 一种以上:
Figure imgf000014_0002
4、 权利要求 1至 3任一项所述的含氧化胺基团的共轭聚合物光电材料在有机光器件中 应用。
PCT/CN2012/086424 2012-02-29 2012-12-12 含氧化胺基团的共轭聚合物光电材料及其应用 WO2013127227A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/382,238 US9159928B2 (en) 2012-02-29 2012-12-12 Amine-oxide-group-containing conjugated polymer photoelectric material and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210050653.1A CN102604048B (zh) 2012-02-29 2012-02-29 含氧化胺基团的共轭聚合物光电材料及其应用
CN201210050653.1 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013127227A1 true WO2013127227A1 (zh) 2013-09-06

Family

ID=46521860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086424 WO2013127227A1 (zh) 2012-02-29 2012-12-12 含氧化胺基团的共轭聚合物光电材料及其应用

Country Status (3)

Country Link
US (1) US9159928B2 (zh)
CN (1) CN102604048B (zh)
WO (1) WO2013127227A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604048B (zh) 2012-02-29 2014-04-02 华南理工大学 含氧化胺基团的共轭聚合物光电材料及其应用
CN103012756B (zh) * 2012-12-28 2014-12-17 东莞市后博科技服务有限公司 含两性侧链的共轭聚电解质光电材料及其应用
CN103928614B (zh) * 2014-04-21 2016-08-17 电子科技大学 一种高填充因子的有机薄膜太阳能电池
CN104821374B (zh) * 2015-03-12 2017-10-20 华南理工大学 基于共轭聚电解质的有机光电器件阴极界面层的制备方法及应用
CN106565970B (zh) * 2016-11-11 2020-06-19 华南理工大学 基于柱芳烃超分子聚合物光电材料及其制备方法与应用
CN114284434B (zh) * 2021-12-14 2023-05-30 常州大学 一种葡聚糖或其衍生物作为太阳电池阴极界面修饰层的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273022A (ja) * 1999-03-19 2000-10-03 Mitsubishi Chemicals Corp 毛髪化粧料
CN1555103A (zh) * 2003-12-25 2004-12-15 �Ϻ���ͨ��ѧ 有机/高分子发光二极管
CN101139427A (zh) * 2007-10-18 2008-03-12 北京印刷学院 含氧化叔胺侧基的水溶性酚醛树脂的制备及应用
CN102263205A (zh) * 2011-07-25 2011-11-30 华南理工大学 可交联共轭聚合物材料在倒装有机光电器件中的应用
CN102304121A (zh) * 2011-07-07 2012-01-04 华南理工大学 水溶性噻吩单体与水溶性聚噻吩衍生物及其制备方法
WO2012009484A2 (en) * 2010-07-13 2012-01-19 Stc.Unm Structure, synthesis, and applications for poly (phenylene) ethynylenes (ppes)
CN102604048A (zh) * 2012-02-29 2012-07-25 华南理工大学 含氧化胺基团的共轭聚合物光电材料及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573363B1 (ja) * 2010-06-01 2010-11-04 テイカ株式会社 有機溶剤系導電性高分子分散液の製造方法およびその応用
CN102329411B (zh) * 2011-07-25 2013-07-03 华南理工大学 含可交联基团的水醇溶共轭聚合物材料及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273022A (ja) * 1999-03-19 2000-10-03 Mitsubishi Chemicals Corp 毛髪化粧料
CN1555103A (zh) * 2003-12-25 2004-12-15 �Ϻ���ͨ��ѧ 有机/高分子发光二极管
CN101139427A (zh) * 2007-10-18 2008-03-12 北京印刷学院 含氧化叔胺侧基的水溶性酚醛树脂的制备及应用
WO2012009484A2 (en) * 2010-07-13 2012-01-19 Stc.Unm Structure, synthesis, and applications for poly (phenylene) ethynylenes (ppes)
CN102304121A (zh) * 2011-07-07 2012-01-04 华南理工大学 水溶性噻吩单体与水溶性聚噻吩衍生物及其制备方法
CN102263205A (zh) * 2011-07-25 2011-11-30 华南理工大学 可交联共轭聚合物材料在倒装有机光电器件中的应用
CN102604048A (zh) * 2012-02-29 2012-07-25 华南理工大学 含氧化胺基团的共轭聚合物光电材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEI HUANG ET AL.: "Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices", CHEM. SOC. REV., vol. 39, 10 March 2010 (2010-03-10), pages 2500 - 2521 *
XING GUAN ET AL: "Amino N-Oxide Functionalized Conjugated Polymers and their Amino Functionalized Precursors: New Cathode Interlayers for High-Performance Optoelectronic Devices", ADV. FUNCT. MATER., vol. 22, 10 April 2012 (2012-04-10), pages 2846 - 2854, XP001576340, DOI: doi:10.1002/adfm.201200199 *

Also Published As

Publication number Publication date
US20150038602A1 (en) 2015-02-05
CN102604048A (zh) 2012-07-25
CN102604048B (zh) 2014-04-02
US9159928B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
Zhu et al. A low-temperature, solution-processable organic electron-transporting layer based on planar coronene for high-performance conventional perovskite solar cells
Zhang et al. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells
Wang et al. Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells
Zhao et al. Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer
WO2013127227A1 (zh) 含氧化胺基团的共轭聚合物光电材料及其应用
Wang et al. Nonacyclic carbazole-based non-fullerene acceptors enable over 12% efficiency with enhanced stability for organic solar cells
Peng et al. An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency
WO2011160021A2 (en) Fullerene derivatives
Xu et al. A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics
Kwon et al. Rational design of a main chain conjugated copolymer having donor–acceptor heterojunctions and its application in indoor photovoltaic cells
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
Zhou et al. High open-circuit voltage solution-processed organic solar cells based on a star-shaped small molecule end-capped with a new rhodanine derivative
CN106410042B (zh) 有机太阳能电池给体材料、有机太阳能电池及其制备方法
CN107946463A (zh) 基于以萘[1,2‑c:5,6‑c]二[1,2,5]噻二唑为核的聚合物的光探测器
He et al. Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells
Kwon et al. Solution processable donor materials based on thiophene and triphenylamine for bulk heterojunction solar cells
JP5701453B2 (ja) ジフルオロベンゾトリアゾリル太陽電池材料、調合法、およびその使用方法
Chau et al. Complementary absorbing ternary blend containing structural isomeric donor polymers for improving the performance of PC61BM-based indoor photovoltaics
KR101821971B1 (ko) 랜덤 삼원 공중합체 형태의 전자 수용체 고분자, 그의 제조방법 및 이를 포함하는 반전형 고분자 태양전지
KR101744523B1 (ko) 싸이에노피롤 유도체를 포함하는 공중합체 및 그를 포함하는 유기전자소자
KR101012542B1 (ko) 고분자 화합물 및 그를 포함하는 태양전지
KR101012589B1 (ko) 공중합체 및 그를 포함하는 태양전지
CN112778504B (zh) 一种d-a型共轭聚合物给体光伏材料及其制备方法和应用
KR101354468B1 (ko) N형 수용성 공액 고분자 화합물 및 이의 제조방법
JP2014531482A (ja) ジフルオロベンゾトリアゾリル有機物半導体材料、調合法、およびその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14382238

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12869644

Country of ref document: EP

Kind code of ref document: A1