JP4345030B2 - 光ディスク装置及び集光位置補正方法 - Google Patents

光ディスク装置及び集光位置補正方法 Download PDF

Info

Publication number
JP4345030B2
JP4345030B2 JP2007155283A JP2007155283A JP4345030B2 JP 4345030 B2 JP4345030 B2 JP 4345030B2 JP 2007155283 A JP2007155283 A JP 2007155283A JP 2007155283 A JP2007155283 A JP 2007155283A JP 4345030 B2 JP4345030 B2 JP 4345030B2
Authority
JP
Japan
Prior art keywords
light beam
optical disc
information
objective lens
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007155283A
Other languages
English (en)
Other versions
JP2008310848A5 (ja
JP2008310848A (ja
Inventor
公博 齊藤
浩孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007155283A priority Critical patent/JP4345030B2/ja
Priority to US12/131,333 priority patent/US7948840B2/en
Priority to TW097121593A priority patent/TWI382412B/zh
Priority to KR1020080054515A priority patent/KR20080109635A/ko
Priority to DE602008002786T priority patent/DE602008002786D1/de
Priority to EP08158050A priority patent/EP2006848B1/en
Priority to CN2008101094439A priority patent/CN101325067B/zh
Publication of JP2008310848A publication Critical patent/JP2008310848A/ja
Publication of JP2008310848A5 publication Critical patent/JP2008310848A5/ja
Application granted granted Critical
Publication of JP4345030B2 publication Critical patent/JP4345030B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals

Description

本発明は、光ディスク装置及び集光位置補正方法に関し、例えば光ディスク装置に適用して好適なものである。
従来、光ディスク装置においては、CD(Compact Disc)、DVD(Digital Versatile Disc)及びBD(Blu-ray Disc、登録商標)等、光ディスクに対して光ビームを照射し、その反射光を読み取ることにより情報を再生するようになされたものが広く普及している。
またかかる従来の光ディスク装置では、当該光ディスクに対して光ビームを照射し、当該光ディスクの局所的な反射率等を変化させることにより、情報の記録を行うようになされている。
この光ディスクに関しては、当該光ディスク上に形成される光スポットの大きさは、およそλ/NA(λ:光ビームの波長、NA:開口数)で与えられ、解像度もこの値に比例することが知られている。例えば、直径120[mm]の光ディスクにおよそ25[GB]のデータを記録し得るBDの詳細については、非特許文献1に示されている。
ところで光ディスクには、音楽コンテンツや映像コンテンツ等の各種コンテンツ、或いはコンピュータ用の各種データ等のような種々の情報が記録されるようになされている。特に近年では、映像の高精細化や音楽の高音質化等により情報量が増大し、また1枚の光ディスクに記録するコンテンツ数の増加が要求されているため、当該光ディスクのさらなる大容量化が要求されている。
そこで、1枚の光ディスク内で記録層を重ねることにより、1枚の光ディスクにおける記録容量を増加させる手法も提案されている(例えば、非特許文献2参照)。
一方、光ディスクに対する情報の記録手法として、ホログラムを用いた光ディスク装置も提案されている(例えば、非特許文献3参照)。
例えば図1に示すように、光ディスク装置1は、照射された光強度によって屈折率が変化するフォトポリマ等でなる光ディスク8中に、光学ヘッド7から一旦光ビームを集光し、その後光ディスク8の裏面側(図1では下側)に設けられた反射装置9を用いて、もう一度逆方向から光ビームを同一焦点位置に集光するようになされている。
光ディスク装置1は、レーザ2からレーザ光でなる光ビームを出射させ、音響光学変調器3によりその光波を変調し、コリメータレンズ4により平行光に変換する。続いて光ビームは、偏光ビームスプリッタ5を透過し、1/4波長板6により直線偏光から円偏光に変換されてから、光学ヘッド7へ入射される。
光学ヘッド7は、情報の記録及び再生を行い得るようになされており、光ビームをミラー7Aにより反射し、対物レンズ7Bにより集光して、スピンドルモータ(図示せず)により回転されている光ディスク8に照射する。
このとき光ビームは、光ディスク8の内部で一旦合焦されてから、当該光ディスク8の裏面側に配置された反射装置9によって反射され、当該光ディスク8の裏面側から光ディスク8の内部における同一焦点に集光される。因みに反射装置9は、集光レンズ9A、シャッタ9B、集光レンズ9C及び反射ミラー9Dにより構成されている。
この結果、図2(A)に示すように、光ビームの焦点位置に定在波が生じ、全体的に2つの円錐体を互いの底面同士で貼り合わせたような形状でなる、光スポットサイズの小さなホログラムでなる記録マークRMを形成する。かくしてこの記録マークRMが情報として記録される。
光ディスク装置1は、光ディスク8の内部にこの記録マークRMを複数記録する際、当該光ディスク8を回転させ各記録マークRMを同心円状又は螺旋状のトラックに沿って配置することにより一つのマーク記録層を形成し、さらに光ビームの焦点位置を調整することにより、マーク記録層を複数層重ねるように各記録マークRMを記録することができる。
これにより光ディスク8は、内部に複数のマーク記録層を有する多層構造となる。例えば光ディスク8は、図2(B)に示すように、記録マークRM間の距離(マークピッチ)p1が1.5[μm]、トラック間の距離(トラックピッチ)p2が2[μm]、層間の距離p3が22.5[μm]となっている。
また光ディスク装置1は、記録マークRMが記録されたディスク8から情報を再生する場合、反射装置9のシャッタ9Bを閉じ、光ディスク8の裏面側から光ビームを照射しないようにする。
このとき光ディスク装置1は、光学ヘッド7によって光ディスク8中の記録マークRMへ光ビームを照射し、当該記録マークRMから発生する再生光ビームを当該光学ヘッド7へ入射させる。この再生光ビームは、1/4波長板6により円偏光から直線偏光に変換され、偏光ビームスプリッタ5により反射される。さらに再生光ビームは、集光レンズ10により集光され、ピンホール11を介してフォトディテクタ12へ照射される。
光ディスク装置1は、このときフォトディテクタ12により再生光ビームの光量を検出し、その検出結果を基に情報を再生する。
また、対物レンズの位置制御と情報の記録・再生とで異なる種類の光ビームを用いる光ディスク装置も提案されている(例えば、非特許文献4参照)。
例えば図3に示すように、光ディスク装置15は、ビームスプリッタ16及び対物レンズ17を介して位置制御光ビームL1を光ディスク18へ照射する。
また光ディスク装置15は、光ディスク18の反射面18Aにおいて位置制御光ビームL1が反射されてなる戻り光を検出し、その検出結果に応じて対物レンズ17のフォーカス制御及びトラッキング制御といった位置制御を行い、位置制御光ビームL1を反射面18Aの所望トラックに合焦させる。
この状態で光ディスク装置15は、位置制御光ビームL1と異なる記録再生光ビームL2をビームスプリッタ16により反射させ、位置制御された対物レンズ17を介して光ディスク18の記録層18Bに合焦させ、情報(記録マークRM等)の記録又は再生を行うようになされている。
ところで光ディスク装置15は、図3に示したように、収束光又は発散光でなる位置制御光ビームL1及び記録再生光ビームL2を対物レンズ17により集光させている。
このとき対物レンズ17は、図3の一部を拡大した図4(A)に示すように、位置制御光ビームL1の本来焦点が焦点P1であった場合、集光作用により、当該位置制御光ビームL1を焦点F1に集光する。また対物レンズ17は、図4(A)と対応する図4(B)に示すように、収束光である記録再生光ビームL2の焦点が焦点P2であった場合、当該記録再生光ビームL2を焦点F2に集光する。
ここで対物レンズ17の焦点距離をf、対物レンズの光学的な基準線LSから点P1及、点F1、点P2、点F2までの距離をそれぞれr1、s1、r2、s2とすると、次に示す(1)式及び(2)式のような関係が成立する。
Figure 0004345030
Figure 0004345030
ところで光ディスク装置15は、図4(A)に示したように、当該対物レンズ17の光軸Cが位置制御光ビームL1の光軸A1及び記録再生光ビームL2の光軸A2と重なる状態を基準として設計されている(以下、このときの対物レンズ17の位置を基準位置と呼ぶ)。
光ディスク装置15は、図4(A)及び(B)を重ね合わせた図5に示すように、対物レンズ17が基準位置にある場合、位置制御光ビームL1の焦点F1及び記録再生光ビームL2の焦点F2をいずれも中心軸C上に位置させることになる。
すなわち光ディスク装置15は、対物レンズ17側からみて焦点F1の真下に焦点F2を位置させており、このような位置関係を前提として、焦点F1を所望のトラックに合わせることにより、焦点F2を所望の位置に合わせ得るようになされている。
しかしながら対物レンズ17は、位置制御光ビームL1の焦点F1を光ディスク18の所望トラックに追従させるべくトラッキング制御が行われると、基準位置から移動されることになる。
ここで、図5と対応する図6に示すように、対物レンズ17が矢印a方向へ移動された場合を想定する。この場合、収束光である位置制御光ビームL1及び記録再生光ビームL2の光軸A1及びA2は、いずれも対物レンズ17の中心軸から外れるために、当該対物レンズ17により屈折することになる。
かかる光軸A1及びA2の屈折に伴い、位置制御光ビームL1の焦点F1及び記録再生光ビームL2の焦点F2は、いずれも矢印a方向又はその反対方向、すなわちトラッキング方向へそれぞれ移動し、焦点F1m及び焦点F2mに合焦する。
このとき焦点F1m及び焦点F2mは、対物レンズ17の基準線LSからの距離が互いに異なるため、それぞれトラッキング方向に関する移動量がずれ量gmだけ異なる。
すなわち光ディスク装置15は、対物レンズ17を基準位置からトラッキング方向へ移動させた場合、「焦点F1の真下に焦点F2が位置する」といった位置関係を崩してしまうため、記録再生光ビームL2の焦点F2を所望の位置に合わせることができず、記録再生精度を低下させるおそれがあった。
本発明は以上の点を考慮してなされたもので、対物レンズをトラッキング移動させたときにおける情報の記録再生精度を向上し得る光ディスク装置及び光ビームの焦点を目標位置に高精度に合わせ得る集光位置補正方法を提案しようとするものである。
かかる課題を解決するため本発明の光ディスク装置においては、情報が記録される記録層と当該記録層における情報の記録位置を特定するためのトラックが設けられた位置決め層とを有する光ディスクに対して光ビームを照射する光ディスク装置であって、所定の位置決め用光ビームを位置決め層の所望トラックに合わせて集光すると共に、当該位置決め用光ビームと光軸を共有する情報用光ビームを記録層に集光する対物レンズと、トラックとほぼ直交するトラッキング方向に対物レンズを移動することにより、位置決め用光ビームの焦点を所望のトラックに追従させる移動部と、対物レンズのトラッキング方向に関する移動量を検出する検出部と、移動量に応じて情報用光ビームの集光位置を補正する補正部とを設けるようにした。
これにより、対物レンズがトラッキング方向へ移動した際における、当該トラッキング方向に関する位置決め用光ビームと情報用光ビームとの集光位置のずれを解消することができる。
また本発明の集光位置補正方法においては、情報が記録される記録層と当該記録層における上記情報の記録位置を特定するためのトラックが設けられた位置決め層とを有する光ディスクに対して光ビームを照射する際の集光位置補正方法であって、所定の位置決め用光ビームを上記位置決め層の所望トラックに合わせて集光すると共に、当該位置決め用光ビームと光軸を共有する情報用光ビームを上記記録層に集光する対物レンズを、上記トラックとほぼ直交するトラッキング方向に移動する移動ステップと、上記対物レンズの上記トラッキング方向に関する移動量を検出する検出ステップと、上記移動量に応じて上記情報用光ビームの集光位置を補正することにより、上記位置決め用光ビームの焦点を所望の上記トラックに追従させる補正ステップとを設けるようにした。
これにより、対物レンズがトラッキング方向へ移動した際における、当該トラッキング方向に関する位置決め用光ビームと情報用光ビームとの集光位置のずれを解消することができる。
本発明によれば、対物レンズがトラッキング方向へ移動した際における、当該トラッキング方向に関する位置決め用光ビームと情報用光ビームとの集光位置のずれを解消することができ、かくして対物レンズをトラッキング移動させたときにおける情報の記録再生精度を向上し得る光ディスク装置及び光ビームの焦点を目標位置に高精度に合わせ得る集光位置補正方法を実現できる。
以下、図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
(1−1)光ディスク装置の全体構成
図7に示すように、光ディスク装置20は、光ディスク100に対して光ビームを照射することにより、トラッキング制御及びフォーカス制御を行った上で、情報の記録や再生を行うようになされている。
光ディスク装置20は、制御部21により全体を統括制御するようになされている。制御部21は、図示しないCPU(Central Processing Unit)を中心に構成されており、図示しないROM(Read Only Memory)から基本プログラムや情報記録プログラム等の各種プログラムを読み出し、これらを図示しないRAM(Random Access Memory)に展開することにより、情報記録処理等の各種処理を実行するようになされている。
例えば制御部21は、光ディスク100が装填された状態で、図示しない外部機器等から情報記録命令、記録情報及び記録アドレス情報を受け付けると、駆動命令及び記録アドレス情報を駆動制御部22へ供給すると共に、記録情報を信号処理部23へ供給する。
因みに光ディスク100の記録層101には、螺旋状又は同心円状のトラックが形成されると共に当該トラックの位置を特定するためのアドレスが適宜割り付けられている。記録アドレス情報は、情報を記録又は再生すべきトラック(以下、これを目標トラックと呼ぶ)のアドレスを示す情報である。
駆動制御部22は、制御部21と同様に図示しないCPUを中心に構成されており、図示しないROMから情報記録プログラム等の各種プログラムを読み出し、これらを図示しないRAMに展開することにより、情報記録処理等の各種処理を実行するようになされている。
駆動制御部22は、駆動命令に従ってスピンドルモータ24を駆動制御することにより光ディスク100を所定の回転速度で回転させると共に、スレッドモータ25を駆動制御することにより、光ピックアップ26を移動軸25A及び25Bに沿って光ディスク100のトラック方向(すなわち内周方向又は外周方向)における記録アドレス情報に対応した位置へ移動させる。
信号処理部23は、供給された記録情報に対して所定の符号化処理や変調処理等の各種信号処理を施すことにより記録信号を生成し、これを光ピックアップ26へ供給する。
光ピックアップ26は、駆動制御部22の制御に基づいてフォーカス制御及びトラッキング制御を行うことにより、光ディスク100の記録層101に形成されているトラックに光ビームの照射位置を合わせ、信号処理部23からの記録信号に応じた記録マークRMを記録するようになされている(詳しくは後述する)。
また制御部21は、例えば外部機器(図示せず)から情報再生命令及び当該記録情報のアドレスを示す再生アドレス情報を受け付けると、駆動制御部22に対して駆動命令を供給すると共に、再生処理命令を信号処理部23へ供給する。
駆動制御部22は、情報を記録する場合と同様、スピンドルモータ24を駆動制御することにより光ディスク100を所定の回転速度で回転させると共に、スレッドモータ25を駆動制御することにより光ピックアップ26を再生アドレス情報に対応した位置へ移動させる。
光ピックアップ26は、駆動制御部22の制御に基づいてフォーカス制御及びトラッキング制御を行うことにより、光ディスク100の記録層101における再生アドレス情報により示されるトラック(すなわち目標トラック)に光ビームの照射位置を合わせ、所定光量の光ビームを照射する。このとき光ピックアップ26は、光ディスク100における記録層101の記録マークRMから発生される再生光ビームを検出し、その光量に応じた検出信号を信号処理部23へ供給するようになされている(詳しくは後述する)。
信号処理部23は、供給された検出信号に対して所定の復調処理や復号化処理等の各種信号処理を施すことにより再生情報を生成し、この再生情報を制御部21へ供給する。これに応じて制御部21は、この再生情報を外部機器(図示せず)へ送出するようになされている。
このように光ディスク装置20は、制御部21によって光ピックアップ26を制御することにより、光ディスク100の記録層101における目標トラックに情報を記録し、また当該目標トラックから情報を再生するようになされている。
(1−2)光ピックアップの構成
光ピックアップ26は、図8に示すように、大きく分けて対物レンズ36の位置制御を行う位置制御光学系30と、光ディスク100に情報の記録又は再生を行う記録再生光学系50とにより構成されている。
(1−2−1)位置制御光学系の構成
位置制御光学系30のレーザダイオード31は、駆動制御部22(図7)からの制御命令に基づき、波長約660[nm]の発散光でなる位置決め用光ビームとしての赤色光ビームLr1を射出して、グレーティング32へ入射させる。
グレーティング32は、回折格子(図示せず)が設けられており、当該回折格子の回折作用により赤色光ビームLr1をトラッキング制御用のメイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cに分割し、いずれも無偏光ビームスプリッタ33へ入射させる。
因みに、メイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cは、それぞれの光軸(図示せず)の角度が僅かにずれた状態となり、ほぼ同様の光路を進むことになる。以下では、説明の便宜上、メイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cをまとめて赤色光ビームLr1と呼ぶ。
無偏光ビームスプリッタ33は、赤色光ビームLr1を所定の割合で透過し、コリメータレンズ34へ入射させる。コリメータレンズ34は、赤色光ビームLr1を平行光に変換し、ダイクロイックプリズム35へ入射させる。
ダイクロイックプリズム35の反射透過面35Sは、波長選択性を有しており、波長約660[nm]でなる赤色光ビームをほぼ100%の割合で透過し、波長約405[nm]でなる青色光ビームをほぼ100%の割合で反射するようになされている。このためダイクロイックプリズム35は、反射透過面35Sにおいて赤色光ビームLr1を透過し、対物レンズ36へ入射させる。
対物レンズ36は、赤色光ビームLr1を集光し光ディスク100へ照射する。ここで光ディスク100は、図9に断面図を示すように、情報を記録するための記録層101と基板102とが張り合わされ、その境界面に位置決め層としての反射透過膜104が挟まれるように構成されている。なお図9は、説明の都合上、図8と上下を反転している。
基板102は、例えばポリカーボネイトやガラス等の材料により構成されており、一面から入射される光をその反対面へ高い透過率で透過させるようになされている。また基板102は、ある程度の強度を有しており、光ディスク100全体の形状を保持する役割も担うようになされている。
記録層101は、光ディスク8(図1)及び記録媒体M(図7)と同様、照射された光強度によって屈折率が変化するフォトポリマ等でなり、波長405[nm]でなる青色光ビームに反応するようになされている。
実際上、光ディスク100は、情報の記録時及び再生時に、対物レンズ36により青色光ビームLb1が集光された状態で照射されるようになされている(詳しくは後述する)。
反射透過層としての反射透過膜104は、誘電体多層膜等でなり、波長405[nm]でなる青色光ビームを透過すると共に、波長660[nm]でなる赤色光ビームLr1を反射するといった波長選択性を有している。
また反射透過膜104は、トラッキングサーボ用の案内溝を形成しており、具体的には、一般的なBD−R(Recordable)ディスク等と同様のランド及びグルーブにより螺旋状のトラックを形成している。このトラックには、所定の記録単位ごとに一連の番号でなるアドレスが付されており、情報を記録又は再生するトラックを当該アドレスにより特定し得るようになされている。
因みに反射透過膜104(すなわち記録層101と基板102との境界面)には、案内溝に代えてピット等が形成され、或いは案内溝とピット等とが組み合わされていても良く、要は光ビームの反射光を基にアドレスを認識し得るようになされていれば良い。
対物レンズ36は、赤色光ビームLr1を構成する3本の光ビーム、すなわちメイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cをそれぞれ集光することにより、図10に示すように、ビームスポットPA、PB及びPCを光ディスク100の反射透過膜104上にそれぞれ形成する。
ここでビームスポットPB及びPCは、グレーティング32の作用により、トラックT1の走行方向と直交するトラッキング方向に関して、ビームスポットPAを中心に1/4トラック幅ずつ左右にずれた位置に形成されるようになされている。
またメイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cは、それぞれ光ディスク100の反射透過膜104において反射されることにより、メイン反射光ビームLr2A並びにサブ反射光ビームLr2B及びLr2Cとなり、赤色光ビームLr1の光路を反対方向へ進んでいく。以下、説明の便宜上、メイン反射光ビームLr2A並びにサブ反射光ビームLr2B及びLr2Cをまとめて赤色反射光ビームLr2と呼ぶ。
対物レンズ36は、赤色反射光ビームLr2を発散光から平行光に変換し、ダイクロイックプリズム35を介してコリメータレンズ34へ入射させる。コリメータレンズ34は、赤色反射光ビームLr2を収束光に変換し、無偏光ビームスプリッタ33へ入射させる。
無偏光ビームスプリッタ33は、赤色反射光ビームLr2の一部を反射し、シリンダーレンズ37により非点収差を持たせた上で当該赤色反射光ビームLr2をサーボ用フォトディテクタ38へ照射する。
サーボ用フォトディテクタ38は、図11に示すように、メイン検出領域38mが格子状に4分割されてなる検出領域38A、38B、38C及び38Dに加え、当該メイン検出領域38mを中心に互いに対向し、当該メイン検出領域38mからやや離れた位置に検出領域38E及び38Fが形成されている。
メイン検出領域38m、検出領域38E及び38Fには、赤色反射光ビームLr2を構成する3本の光ビーム、すなわちメイン反射光ビームLr2A並びにサブ反射光ビームLr2B及びLr2Cがそれぞれ照射されることにより、ビームスポットQA、QB及びQCがそれぞれ形成される。
因みに光ピックアップ26は、各光学部品の配置により、光ディスク100の反射透過膜104に対するメイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cの照射状態、すなわちトラックT1(図9)に対するピームスポットPA、PB及びPCの形成位置や集光状態等に応じて、ビームスポットQA、QB及びQC(図10)の照射状態、すなわち形成位置や大きさ、及び光量等が変動するようになされている。
サーボ用フォトディテクタ38は、検出領域38A〜38Dによりメイン反射光ビームLr2Aの一部をそれぞれ検出し、このとき検出した光量に応じて検出信号SDA、SDB、SDC及びSDDをそれぞれ生成して、これらを信号処理部23(図7)へ送出する。
またサーボ用フォトディテクタ38は、検出領域38E及び38Fによりサブ反射光ビームLr2B及びLr2Cをそれぞれ検出し、このとき検出した光量に応じて検出信号SDE及びSDFをそれぞれ生成し、これらを信号処理部23(図7)へ送出する。
信号処理部23は、いわゆる非点収差法により、次の(3)式に従ってフォーカスエラー信号SFEを算出し、これを駆動制御部22(図7)へ供給する。
Figure 0004345030
このフォーカスエラー信号SFEは、上述した光ピックアップ26における各光学部品の配置により、光ディスク100の反射透過膜104とメイン光ビームLr1Aの焦点Frとの間における、フォーカス方向(すなわち光ディスク100に近接又は離隔する方向)のずれ量の大きさを表すことになる。
また信号処理部23は、いわゆる3スポット法により、次の(4)式に従って3スポットトラッキングエラー信号STE3を算出し、これを駆動制御部22(図7)へ供給する。
Figure 0004345030
この3スポットトラッキングエラー信号STE3は、上述した光ピックアップ26における各光学部品の配置により、光ディスク100の反射透過膜104における目標トラックとメイン光ビームLr1Aの焦点Frとの間における、トラッキング方向(すなわち光ディスクの内周側又は外周側へ向かう方向)に関するずれ量の大きさを表すことになる。
駆動制御部22は、フォーカスエラー信号SFEを基にフォーカス制御信号DFを生成すると共に、3スポットトラッキングエラー信号STE3を基にトラッキング制御信号DTを生成し、当該フォーカス制御信号DF及び当該トラッキング制御信号DTを光ピックアップ26の2軸アクチュエータ36A(図8)へ供給する。
2軸アクチュエータ36Aは、フォーカス制御信号DFに基づいて対物レンズ36をフォーカス方向へ駆動する、いわゆるフォーカス制御を行うことにより、目標トラックとメイン光ビームLr1Aの焦点Frとの間におけるフォーカス方向に関するずれ量を減少させる。
また2軸アクチュエータ36Aは、トラッキング制御信号DTに基づいて当該対物レンズ36をトラッキング方向へ駆動する、いわゆるトラッキング制御を行うことにより、目標トラックとメイン光ビームLr1Aの焦点Frとの間におけるトラッキング方向のずれ量(以下、これをトラックずれ量と呼ぶ)を減少させる。
このように駆動制御部22は、フォーカスエラー信号SFE及び3スポットトラッキングエラー信号STE3を基に、対物レンズ36をフォーカス方向及びトラッキング方向にフィードバック制御することにより、メイン光ビームLr1Aの焦点Frを光ディスク100の反射透過膜104における目標トラックに合焦させ、また追従させるようになされている。
(1−2−2)記録再生光学系の構成
一方、記録再生光学系50のレーザダイオード51は、例えば光ディスク100に情報を記録する場合、駆動制御部22(図7)からの制御命令に基づき、波長約405[nm]の発散光でなる情報用光ビームとしての青色光ビームLb1を射出して、無偏光ビームスプリッタ52へ入射させる。
無偏光ビームスプリッタ52は、青色光ビームLb1を所定の割合で透過し、コリメータレンズ53へ入射させる。コリメータレンズ53は、青色光ビームLb1の発散角を調整し、ガルバノミラー54のミラー面54Sにより反射させて、ダイクロイックプリズム35へ入射させる。
ダイクロイックプリズム35は、青色光ビームLb1の波長に応じて反射透過面37Sにより当該青色光ビームLb1を反射し、対物レンズ36へ入射させる。
対物レンズ36は、上述したフォーカス制御により、平行光でなる赤色光ビームLr1の焦点Frを反射透過膜104上の目標トラックに合焦させるよう位置制御されている。このため対物レンズ36は、発散光でなる青色光ビームLb1を当該目標トラックよりも遠方となる、光ディスク100の記録層101内に合焦させる。
ところで光ディスク100の記録層101は、例えば波長405[nm]でなる青色光ビームに反応し、照射された光強度によって屈折率が変化するフォトポリマ等により構成されている。
この記録層101は、図12(A)に示すように、事前のフォーマット処理において、互いに対向する2方向、例えば光ディスク100の両面からから波長405[nm]でなるフォーマット用の青色光ビームLbF1及びLbF2が全体的に照射されることにより、一様にホログラムが形成されている。
記録層101は、青色光ビームLb1が所定の強度で照射され集光された場合、当該青色光ビームLb1によりホログラムが局所的に破壊され、図12(B)に示すように、ホログラムが破壊された部分でなる記録マークRMが形成される。
ここで図12(C)に示すように、記録層101は、記録マークRMが形成されていない箇所に対してフォーマット時と同波長の青色光ビームLb1が照射された場合、ホログラムとしての性質により、当該青色光ビームLb1の照射箇所から再生光ビームLb2が発生する。
一方、記録層101は、記録マークRMが記録された箇所のホログラムが破壊されていることから、青色光ビームLb1が照射されても、ホログラムとしての性質を呈さないこととなり、再生光ビームLb2は発生しない。
そこで記録層101は、例えば情報を2進数表示したときの値「0」及び「1」がそれぞれ「記録マークRMなし(すなわちホログラム未破壊)」及び「記録マークRMあり(すなわちホログラム破壊済み)」に割り当てられることにより、情報を記録できると共に再生し得るようになされている。
すなわち記録層101は、青色光ビームLb1の強度が比較的強い場合、当該青色光ビームLb1の焦点Fbの位置に記録マークRMが情報として記録される。また記録層101は、青色光ビームLb1の強度が比較的弱い場合、当該青色光ビームLb1の焦点Fbの位置にホログラムが形成されていれば、青色再生光ビームLb2を発生させ、対物レンズ36へ入射させる。
この青色再生光ビームLb2は、対物レンズ36により発散角(又は収束角)が変換された後、ダイクロイックプリズム35の反射透過面35S及びガルバノミラー54により順次反射され、コリメータレンズ53へ入射される。
コリメータレンズ53は、青色再生光ビームLb2を集光し無偏光ビームスプリッタ52へ入射させる。無偏光ビームスプリッタ52は、青色再生光ビームLb2の偏光方向に応じて反射透過面52Sにより当該青色再生光ビームLb2を反射し、フォトディテクタ55へ照射させる。
フォトディテクタ55は、青色再生光ビームLb2の光量を検出し、このとき検出した光量に応じて再生検出信号SDpを生成し、これを信号処理部23(図7)へ供給する。これに応じて信号処理部23は、再生検出信号SDpに対して所定の復調処理や復号化処理等を施すことにより再生情報を生成し、この再生情報を制御部21へ供給するようになされている。
因みに駆動制御部22(図7)は、アクチュエータ53Aによってコリメータレンズ53を青色光ビームLb1の光軸方向へ移動させることにより、対物レンズ36へ入射する青色光ビームLb1の発散角を調整し、当該青色光ビームLb1の焦点Fbと反射透過膜104との距離(以下、これを焦点Fbの深さdfと呼ぶ)を調整し得るようになされている。
この場合、制御部21(図7)は、外部から供給されるアドレス情報等を基に、焦点Fbの深さdfを決定し、当該深さdfを表す深さ指示Idfを駆動制御部22に通知する。駆動制御部22は、通知された深さ指示Idfを基に、コリメータレンズ53を駆動するための駆動信号DCを生成して当該アクチュエータ53Aに供給することにより、コリメータレンズ53を移動させ、結果的に深さdfを調整させる。
実際上、光ピックアップ26は、青色光ビームLb1における焦点Fbの深さdfを調整することにより、記録層101内に記録マークRMの層(以下、これをマーク記録層と呼ぶ)を複数形成し得ると共に、各マーク記録層から記録マークRMを読み取り得るようになされている。
このように光ピックアップ26は、位置制御光学系30により、赤色光ビームLr1の焦点Frを目標トラックに追従させるようレンズ36の位置制御を行い、記録再生光学系50により青色光ビームLb1を用いて記録マークRMの記録又はホログラムの再生を行うことにより情報の記録及び再生を行い得るようになされている。
(1−3)青色光ビームの照射位置の調整
ところで光ピックアップ26は、その設計上、青色光ビームLb1の光軸Abが赤色光ビームLr1の光軸Arと重なり、さらに対物レンズ36の中心軸Cにも重なる状態を基準とされている(以下、これを基準状態と呼ぶ)。この場合、図9に示したように、焦点Frの真下に焦点Fbが位置することになる。
しかしながら光ピックアップ26の対物レンズ36は、上述したように、赤色光ビームLr1の焦点Frを目標トラックに追従させるべくトラッキング方向に移動制御されるため、基準状態からは変位している(すなわちシフトする)ことが多い。このような場合、対物レンズ36は、図6の場合と同様、「焦点Frの真下に焦点Fbが位置する」といった位置関係を崩してしまう。
例えば、対物レンズ36は、図6と対応する図13に示すように、基準状態となる位置(図中線で示す)から矢印a方向へトラッキング制御により移動された(シフトされた)とする。このとき対物レンズ36は、平行光で入射する赤色光ビームLr1について、焦点Frを中心線C上に位置させることはできるものの、発散光で入射する青色光ビームLb1については、焦点Fbを中心線C上から外すことになる。
このとき青色光ビームLb1の焦点Fbは、本来集光したい位置、すなわち赤色光ビームLr1の焦点Frの真下である目標集光位置Ptからずれ量gmだけトラッキング方向に離れた位置に形成される。
ここで光ピックアップ26では、このずれ量gmの方向及び大きさに応じて焦点Fbの位置を適切に調整することができれば、赤色光ビームLr1の焦点Frの真下に当該焦点Fbを位置させることが可能となる。
そこで光ピックアップ26では、ずれ量gmを検出すると共に、当該ずれ量gmに応じて青色光ビームLb1の照射位置(すなわち焦点Fbの位置)を調整するようになされている。
(1−3−1)ずれ量の検出原理
一般に、トラッキングエラー信号の算出手法としては、上述した3スポット法以外にも、例えばサーボ用フォトディテクタ38(図8)から供給される検出信号SDA、SDB、SDC及びSDDを用いる、いわゆるプッシュプル法が知られている。プッシュプル法では、次の(5)式に従い、プッシュプルトラッキングエラー信号STEpを算出する。
Figure 0004345030
このプッシュプルトラッキングエラー信号STEpは、ビームスポットQA(図11)における検出領域38A及び38B側(すなわち図の上側)と検出領域38C及び38D側(すなわち図の下側)との光量の差から、トラッキング方向に関する目標トラックと赤色光ビームLr1の焦点Frとのずれ量(すなわちトラックずれ量)を算出したものである。
しかしながらプッシュプルトラッキングエラー信号STEpは、図14(A)及び(B)に示すように、対物レンズ36のトラッキング方向への移動によりビームスポットQAが移動することになる。この場合、(5)式からわかるように、プッシュプルトラッキングエラー信号STEpは、赤色光ビームLr1の焦点Frにより目標トラックを正しく追従していたとしても「0」以外の値をとる、いわゆるオフセットを有することが知られている。
このため、プッシュプルトラッキングエラー信号STEpの値のみでは、対物レンズ36のトラッキング方向への移動によりオフセットが含まれているのか、または赤色光ビームLr1の焦点Frが目標トラックからずれているのか、或いはその両方であるのかを区別することができない。
一方、3スポットトラッキングエラー信号STE3は、その原理上、対物レンズ36が基準位置からトラッキング方向に移動したとしても、その移動による影響を受けにくい、すなわちオフセットが殆ど含まれないことが知られている。
これは、対物レンズ36がトラッキング方向へ移動することによりサブスポットQB及びQC(図11)が多少移動したとしても、当該サブスポットQB及びQCが検出領域38E及び38F内に照射されていれば、当該検出領域38E及び38Fにおいてそれぞれの光量を正しく検出することができ、(4)式に従い3スポットトラッキングエラー信号STE3を正しく算出できるためである。
すなわち、信号処理部23において、プッシュプルトラッキングエラー信号STEpと3スポットトラッキングエラー信号STE3との信号レベルを揃えた上で差分を算出すれば、対物レンズ36のシフト量を算出することができる。
(1−3−2)ずれ量の調整原理
ところで光ピックアップ26(図8)は、上述したガルバノミラー54におけるミラー面54Sの角度を変更し得るようになされている。この場合、ガルバノミラー54は、駆動制御部22(図7)から供給されるミラー制御信号DMに基づいて当該ミラー面54Sの角度を調整することにより、反射後における青色光ビームLb1の光軸を変化させることができる。
すなわち光ピックアップ26は、上述したシフト量に応じてミラー面54Sの角度を調整すれば、青色光ビームLb1の光軸Ab(図13)を変化させることにより、青色光ビームLb1の焦点Fbを目標集光位置Ptに合わせることが可能となる。
また図13からわかるように、青色光ビームLb1の焦点Fbと目標集光位置Ptとのずれ量gmは、当該焦点Fbの深さdfに応じて変化する。この焦点Fbの深さdfは、上述したように、コリメータレンズ53(図8)の青色光ビームLb1の光軸方向における位置に応じて定められる。
実際上、駆動制御部22(図7)は、制御部21から通知された深さ情報Idfを基に駆動信号DCを生成してアクチュエータ53Aに供給している。このため信号処理部23は、制御部21から深さ情報Idfを取得することにより、深さdfを認識できることになる。
すなわち光ピックアップ26は、プッシュプルトラッキングエラー信号STEp、3スポットトラッキングエラー信号STE3及び深さ情報Idfを用いてミラー面54Sの角度の調整幅を補正すれば、青色光ビームLb1の光軸の変化幅を調整することができ、深さdfに応じて異なるずれ量gmを調整し、このずれを適切に解消することができる。
このことを別の観点からとらえれば、光ピックアップ26は、シフト量及び深さdfの双方に応じて青色光ビームLb1の光軸を変化させることにより、青色光ビームLb1の焦点Fbを目標集光位置Ptに合わせることになる。
(1−3−3)ずれの解消
実際上、信号処理部23(図7)は、位置制御光学系30のサーボ用フォトディテクタ38(図8)から供給される検出信号SDA、SDB、SDC及びSDDを基に、上述した3スポット法による3スポットトラッキングエラー信号STE3に加え、(5)式に従いプッシュプルトラッキングエラー信号STEpを算出する。
また信号処理部23は、制御部21から深さ情報Idfを取得し、当該深さ情報Idf及び所定の深さ係数j1を用い、次に示す(6)式に従って距離係数k1を算出する。
Figure 0004345030
この深さ係数j1は、光ピックアップ26の光学系における各設計値を基に、設計段階等に予め算出されたものであり、深さdfとずれ量gm(図13)との関係をガルバノミラー54に反映させるための値となっている。
次に信号処理部23は、(6)式より得られた距離係数k1を用いて、次に示す(7)式に従い、ガルバノミラー54のミラー面54Sの角度を制御するためのミラー駆動信号DMを算出し、これを駆動制御部22へ供給する。
Figure 0004345030
駆動制御部22は、ミラー駆動信号DMを所定倍に増幅する等した上で光ピックアップ26のガルバノミラー54へ供給する。これに応じてガルバノミラー54は、青色光ビームLb1の光軸Abを変化させる。
この結果、光ピックアップ26は、対物レンズ36から照射する青色光ビームLb1の焦点Fbを目標集光位置Pt(図13)に合わせるように移動させ、両者のずれを解消することができる。
(1−4)動作及び効果
以上の構成において、第1の実施の形態による光ディスク装置20の信号処理部23は、光ピックアップ26のサーボ用フォトディテクタ38(図11)から供給される検出信号SDE及びSDFを基に、(4)式に従って3スポットトラッキングエラー信号STE3を算出し、これを駆動制御部22へ供給してトラッキング制御を行わせる。
また信号処理部23は、検出信号SDA、SDB、SDC及びSDDを基に、(5)式に従ってプッシュプルトラッキングエラー信号STEpを算出し、深さ情報Idf及び深さ係数j1を用い(6)式に従って距離係数k1を算出し、さらに(7)式に従いプッシュプルトラッキングエラー信号STEp、3スポットトラッキングエラー信号STE3及び距離係数k1を用いてミラー駆動信号DMを算出し、これを駆動制御部22へ供給することにより、青色光ビームLb1の光軸Abを変化させ、焦点Fbを目標集光位置Pt(図13)に合わせる。
従って光ディスク装置20の信号処理部23は、オフセット量を含むプッシュプルトラッキングエラー信号STEp及び当該オフセット量を含まない3スポットトラッキングエラー信号STE3を基にシフト量を算出することができるので、当該シフト量に応じてガルバノミラー54により青色光ビームLb1の焦点Fbを移動させることができる。
これにより光ディスク装置20は、シフト量に拘わらず焦点Fbを目標集光位置Ptに合わせることができるので、光ディスク100に対する情報の記録精度及び再生精度を常に高い状態に維持することができる。
このとき信号処理部23は、2種類のトラッキングエラー信号を基にシフト量を算出することができるので、例えば別途位置センサを設けてシフト量を検出するような場合と比較して、光ピックアップ26の構成を簡素化することができ、不必要に重量を増加させずに済む。
また信号処理部23は、オフセット量を含むトラッキングエラー信号の生成手法としてプッシュプル法を利用しているため、フォーカスエラー信号SFEの生成時に用いる検出信号SDA、SDB、SDC及びSDDをそのまま用いることができ、別途検出領域や検出素子等を設ける必要が無く、光ピックアップ26やサーボ用フォトディテクタ38の構成を複雑化せずに済む。
さらに信号処理部23は、深さ情報Idfを基に距離係数k1を算出するため、シフト量及び深さdfの双方に応じて変動するずれ量gmを適切に解消(すなわち0に収束)させることができる。このとき信号処理部23は、コリメータレンズ53の移動量を決定するための深さ情報Idfを用いて距離係数k1を算出するため、深さdfを認識するためのセンサ等を別途用いる必要が無い。
そのうえ光ピックアップ26は、赤色光ビームLr1を変化させることなく、ガルバノミラー54により青色光ビームLb1の光軸Abのみを変化させるため、当該赤色光ビームLr1による目標トラックの追従について影響を及ぼすことがない。
以上の構成によれば、光ディスク装置20の信号処理部23は、対物レンズ36のトラッキング移動によるオフセット量を含むプッシュプルトラッキングエラー信号STEpと、当該オフセット量を含まない3スポットトラッキングエラー信号STE3と、深さ情報Idfとを基に、(6)式及び(7)式に従い対物レンズ36のシフト量及び深さdfに応じたミラー駆動信号DMを算出することができるので、当該ミラー駆動信号DMを基にガルバノミラー54を調整することにより、青色光ビームLb1の焦点Fbを目標集光位置Ptに合わせることができる。
(2)第2の実施の形態
(2−1)光ディスク装置の構成
第2の実施の形態による光ディスク装置120(図7)は、第1の実施の形態による光ディスク装置20と比較して、制御部21、駆動制御部22、信号処理部23及び光ピックアップ26に代えて制御部121、駆動制御部122、信号処理部123及び光ピックアップ126を有している点が異なっているものの、他は同様に構成されている。
すなわち光ディスク装置120は、第1の実施の形態における光ディスク装置20と同様に、制御部121によって光ピックアップ126を制御することにより、光ディスク100の記録層101における目標トラックに情報を記録し、また当該目標トラックから情報を再生するようになされている。
(2−2)光ピックアップの構成
図8との対応部分に同一符号を付した図15に示すように、光ピックアップ126は、光ピックアップ26と比較して、グレーティング32、サーボ用フォトディテクタ38及びガルバノミラー54に代えて、グレーティング132、サーボ用フォトディテクタ138及びミラー154を有している点が異なっているものの、他は同様に構成されている。
ミラー154は、ガルバノミラー54と異なりミラー面の角度が固定されているため、青色光ビームLb1の光軸Ab(図13)を変化させ得ないようになされている。
グレーティング132は、第1の実施の形態におけるグレーティング32と比較して、回折作用により赤色光ビームLr1をメイン光ビームLr1A並びにサブ光ビームLr1B及びLr1Cに分割する際の回折角が異なっている。
すなわち光ピックアップ126は、図10と対応する図16に示すように、反射透過膜104において、ビームスポットPAを中心にビームスポットPB及びPCをトラッキング方向に1/4トラック幅ではなく1/2トラック幅ずつ左右にずれた位置に形成させるようになされている。
またサーボ用フォトディテクタ138は、図11と対応する図17に示すように、検出領域38A〜38Dとそれぞれ同様に構成された検出領域138A〜138Dに加え、検出領域38E及び38Fがそれぞれ2分割されたような検出領域138E、138F、138G及び138Hを有している。
サーボ用フォトディテクタ138は、サーボ用フォトディテクタ38と同様、検出領域138A〜138Dによりメイン反射光ビームLr2Aの一部をそれぞれ検出し、このとき検出した光量に応じて検出信号SDA、SDB、SDC及びSDDをそれぞれ生成して、これらを信号処理部123(図7)へ送出する。
またサーボ用フォトディテクタ138は、検出領域138E及び138Fによりサブ反射光ビームL2rBの一部をそれぞれ検出すると共に、検出領域138G及び138Hによりサブ反射光ビームL2rCの一部をそれぞれ検出し、検出した光量に応じて検出信号SDE、SDF、SDG及びSDHをそれぞれ生成し、これらを信号処理部123(図7)へ送出する。
信号処理部123は、信号処理部23と同様、非点収差法により(3)式に従ってフォーカスエラー信号SFEを算出し、これを駆動制御部122(図7)へ供給する。
また信号処理部123は、信号処理部23と同様、検出信号SDA、SDB、SDC及びSDDを用い(5)式に従ってプッシュプルトラッキングエラー信号STEpを算出した上で、いわゆるDPP(Differential Push Pull)法により、次の(8)式に従ってDPPトラッキングエラー信号STEdを算出し、これを駆動制御部122(図7)へ供給する。
Figure 0004345030
ここでDPP係数mは、サブ反射光ビームL2rB及びL2rCの光量の和とメイン反射光ビームLr2Aの光量との比率に応じて定められる。またDPPトラッキングエラー信号STEdは、その原理上、第1の実施の形態における3スポットトラッキングエラー信号STE3と同様に、オフセットが殆ど含まれないことが知られている。
(2−3)青色光ビームの照射位置の調整
信号処理部123は、信号処理部23と同様に青色光ビームLb1の焦点Fbの位置を調整するようになされているものの、第1の実施の形態における信号処理部23と一部異なる手法を用いるようになされている。
すなわち信号処理部123は、第1の実施の形態と同様の算出原理によりシフト量及び深さdfを算出し、これらを基にずれ量gm(図13)を値「0」に収束するよう対物レンズ36のシフト量を補正するようになされている。
具体的に信号処理部123は、第1の実施の形態における距離係数k1の場合と同様に、深さ情報Idfと所定の深さ係数j2を用い、次に示す(9)式に従い補正係数k2を算出する。
Figure 0004345030
この深さ係数j2は、光ピックアップ126の光学系における各設計値を基に設計段階等に予め算出されたものであり、深さdfとずれ量gm(図13)との関係をトラッキングエラー信号に反映させるための値となっている。
次に信号処理部123は、次に示す(10)式に従って補正トラッキングエラー信号STErを生成し、これを駆動制御部122へ供給する。
Figure 0004345030
駆動制御部122は、補正トラッキングエラー信号STErを基にトラッキング制御信号DTを生成し、これを光ピックアップ126のアクチュエータ36Aへ供給することにより、対物レンズ36をトラッキング制御する。
このとき駆動制御部122は、補正トラッキングエラー信号STErが深さdf及びシフト量に応じて補正されているため、青色光ビームLb1の焦点Fbと目標集光位置Ptとのずれを解消することができる。
このことを別の観点からとらえれば、光ピックアップ126は、第1の実施の形態と同様、シフト量及び深さdfの双方に応じて青色光ビームLb1の光軸を変化させることにより、青色光ビームLb1の焦点Fbを目標集光位置Ptに合わせることになる。
因みに光ディスク装置120は、光ディスク100の偏心等によりトラッキング制御する場合(すなわち目標トラックに追従するとき)における対物レンズ36の移動量が例えば約50[μm]であるのに対し、ずれ量gmを収束するための当該対物レンズ36の移動量は約4〜5[μm]となる。このため光ディスク装置120では、実際上、当該補正によって本来のトラッキング制御に影響を及ぼすことはない。
(2−4)動作及び効果
以上の構成において、第2の実施の形態による光ディスク装置120の信号処理部123は、光ピックアップ126のサーボ用フォトディテクタ138(図17)から供給される検出信号SDA、SDB、SDC及びSDDを用い、(5)式に従ってプッシュプルトラッキングエラー信号STEpを算出した上で、(8)式に従いDPPトラッキングエラー信号STEdを算出する。
また信号処理部123は、(9)式に従い補正係数k2を算出した上で、(10)式に従い補正トラッキングエラー信号STErを生成し、これを駆動制御部122へ供給することにより、青色光ビームLb1の光軸Abを変化させ、焦点Fbを目標集光位置Pt(図13)に合わせる。
従って光ディスク装置120の信号処理部123は、オフセット量を含むプッシュプルトラッキングエラー信号STEp及び当該オフセット量を含まないDPPトラッキングエラー信号STEdを基にシフト量を算出することができるので、当該シフト量に応じて対物レンズ36のトラッキング制御における移動量を補正することにより、青色光ビームLb1の焦点Fbを移動させることができる。
これにより光ディスク装置120は、第1の実施の形態と同様、シフト量に拘わらず焦点Fbを目標集光位置Ptに合わせることができるので、光ディスク100に対する情報の記録精度及び再生精度を常に高い状態に維持することができる。
このとき信号処理部123は、第1の実施の形態と同様、オフセット量を含むトラッキングエラー信号の生成手法としてプッシュプル法を利用しているため、フォーカスエラー信号SFE及びDPPトラッキングエラー信号STEdの生成時に用いる検出信号SDA、SDB、SDC及びSDDをそのまま用いることができ、別途検出領域や検出素子等を設ける必要が無く、光ピックアップ126やサーボ用フォトディテクタ138の構成を複雑化せずに済む。
さらに信号処理部123は、深さ情報Idfを基に距離係数k2を算出するため、シフト量及び深さdfの双方に応じて変動するずれ量gmを適切に収束させることができる。このとき信号処理部123は、コリメータレンズ53の移動量を決定するための深さ情報Idfを用いて距離係数k2を算出するため、深さdfを認識するためのセンサ等を別途用いる必要が無い。
また光ピックアップ126は、対物レンズ36のトラッキング制御における移動量を補正することにより青色光ビームLb1の焦点Fbの位置を調整することができるため、第1の実施の形態と比較して、ガルバノミラー54を設け駆動制御部22(122)を介して駆動制御する必要が無いため、構成を簡易化することができる。
以上の構成によれば、光ディスク装置120の信号処理部123は、対物レンズ36のトラッキング移動によるオフセット量を含むプッシュプルトラッキングエラー信号STEpと、当該オフセット量を含まないDPPトラッキングエラー信号STEdと、深さ情報Idfとを基に、(9)式及び(10)式に従い対物レンズ36のシフト量及び深さdfに応じた補正トラッキングエラー信号STErを算出することができるので、当該補正トラッキングエラー信号STErに基づき対物レンズ36をトラッキング制御することにより、青色光ビームLb1の焦点Fbを目標集光位置Ptに合わせることができる。
(3)他の実施の形態
なお上述した実施の形態においては、3スポット法またはDPP法によりオフセットを含まないトラッキングエラー信号を生成するようにした場合について述べたが、本発明はこれに限らず、他の手法によりオフセットを含まないトラッキングエラー信号を生成するようにしても良い。
またオフセットを含むトラッキングエラー信号についても、プッシュプル法以外の手法により生成するようにしても良く、要はオフセットを含まないトラッキングエラー信号とオフセットを含むトラッキングエラー信号とを基に対物レンズ36のシフト量を算出できれば良い。
さらには、図18に示すように、光ディスクの信号記録面に、図10及び図16に示したようなトラックが設けられた記録領域Urに加え、当該トラックが設けられていないミラー領域Umを適宜、例えば放射状に、または周期的に配置し、プッシュプル法等の手法によりオフセットを含むトラッキングエラー信号を検出するようにしても良い。
この場合、記録領域Urでは、トラッキングエラー信号にトラックずれ量及びシフト量の双方が含まれ、ミラー領域Umでは、トラックが形成されていないことからトラッキングエラー信号にシフト量のみが含まれる。このため、信号処理部23等において、当該ミラー領域Umにおけるトラッキングエラー信号を基にシフト量を算出することができる。
さらに上述した実施の形態においては、2種類のトラッキングエラー信号を基に対物レンズ36のシフト量を算出するようにした場合について述べたが、本発明はこれに限らず、例えば光ピックアップ26に位置センサや距離センサ等を設け、当該位置センサや距離センサ等により対物レンズ36のシフト量を検出するようにしても良い。
さらに上述した実施の形態においては、深さdf(図13)に応じ(6)式及び(9)式に従って距離係数k1及びk2を変化させるようにした場合について述べたが、本発明はこれに限らず、例えば深さdfと距離係数k1及びk2との関係が他の関数で表される場合に、当該他の関数を用いて当該距離係数k1及びk2を算出するようにし、或いは深さdfと距離係数k1及びk2との対応関係が非線形であることがわかっている場合に、予めテーブルを作成して不揮発性メモリ等に格納しておき、当該テーブルを参照して深さdfから距離係数k1及びk2を決定する等しても良い。
さらには、光ピックアップ26及び126の光学設計上、目標集光位置Ptの深さが変化してもずれ量gmが殆ど変化しないような場合に、距離係数k1及びk2をそれぞれ固定値とするようにしても良い。
さらに上述した第1の実施の形態においては、ガルバノミラー54のミラー面54Sを駆動制御し、また第2の実施の形態においては、トラッキングエラー信号を補正して対物レンズ36のトラッキング方向への移動量を補正することにより、青色光ビームLb1の焦点Fbを目標集光位置Pt(図13)に合わせるようにした場合について述べたが、本発明はこれに限らず、例えば第1の実施の形態において、ガルバノミラー54のミラー面54Sに代えてコリメータレンズ53をアクチュエータ53Aにより青色光ビームLb1の光軸と直交する方向(例えばトラッキング方向)へシフトさせることにより当該青色光ビームLb1の光軸を変化させる等、種々の手法により焦点Fbを目標集光位置Ptに合わせるようにしても良い。
さらに上述した実施の形態においては、対物レンズ36に対して赤色光ビームLr1を平行光として入射させると共に青色光ビームLb1を発散光として入射させるようにした場合について述べたが、本発明はこれに限らず、例えば当該対物レンズ36に対して赤色光ビームLr1を収束光として入射させると共に青色光ビームLb1を平行光として入射させ、或いは図4〜図6に示した場合と同様に赤色光ビームLr1及び青色光ビームLb1のいずれも発散光として入射させる等しても良く、要は対物レンズ36の焦点距離や光ピックアップ26(126)の光学的設計に合わせて赤色光ビームLr1及び青色光ビームLb1の発散角が調整されていれば良い。
この場合、光ピックアップ26(126)の光学的設計等に応じて深さ係数j1及びj2並びに距離係数k1及びk2等を適宜定めれば良い。
さらに上述した実施の形態においては、事前のフォーマット処理によって光ディスク100の記録層101に一様なホログラムが形成され、青色光ビームLb1が集光されることにより当該記録層101内のホログラムを局所的に破壊して情報を記録するようにした場合について述べたが、本発明はこれに限らず、他の手法により記録マークRMを形成し、また再生するようにしても良い。
例えば図12と対応する図19に示すように、記録層Mに有機金属化合物が配合され予め光硬化されており、青色光ビームLb1を集光し高温化することにより、当該目標位置の近傍に金属化合物又は純粋な金属を析出させ、高い反射率を有する記録マークRMを形成する情報記録手法に本発明を適用するようにしても良い。この場合、記録マークRMに対して比較的弱い青色光ビームLb1を集光することにより、青色光ビームLb1が反射されてなる青色再生光ビームLb2が得られ、これを基に情報を再生することができる。
さらに上述した実施の形態においては、光ディスク100に対し1本の青色光ビームLb1を用いて情報としての記録マークRMを形成し、また当該光ディスク100に1本の青色光ビームLb1を照射したときに得られる青色再生光ビームLb2を基に情報を再生する、いわゆる片面光学系の光ディスク装置20に本発明を適用するようにした場合について述べたが、これに限らず、例えば光ディスク100の両面からそれぞれ1本の青色光ビームLbを照射してホログラムを形成することにより記録マークRMを形成し、当該光ディスク100の片面から1本の青色光ビームLbを当該記録マークRMに照射することにより再生光を発生させて情報を再生する、いわゆる両面光学系の光ディスク装置に対して本発明を適用するようにしても良い。
さらに上述した実施の形態においては、記録層101(図9)のうち最も対物レンズ36に近い側、すなわち記録層101と基板102との間に反射透過膜104を設けるようにした場合について述べたが、本発明はこれに限らず、例えば記録層101のうち対物レンズ36から最も遠い側(すなわち図9における最下部)や記録層101の内部に当該反射透過膜104を設けるようにしても良く、要は実際に記録マークRMが記録される記録層101とは別に、サーボ用の反射透過膜104が設けられていれば良い。また反射透過膜104には、螺旋状のトラックが形成される以外にも、例えば同心円状のトラックが形成され、或いは溝構造ではなくピット等が形成されていても良い。
さらに上述した実施の形態においては、対物レンズとしての対物レンズ36と、移動部としての移動制御部22及びアクチュエータ36Aと、検出部及び補正部としての信号処理部23とによって光ディスク装置としての光ディスク装置20を構成する場合について述べたが、本発明はこれに限らず、その他種々の回路構成でなる対物レンズと、移動部と、検出部と、補正部とによって光ディスク装置を構成するようにしても良い。
本発明は、大容量の映像データや音声データ等を光ディスクに記録し、また再生する光ディスク装置でも利用できる。
従来の定在波記録型光ディスク装置の構成を示す略線図である。 ホログラム形成を示す略線図である。 2種類の光ビームを用いる光ディスク装置の構成を示す略線図である。 光ビームの集光(1)の説明に供する略線図である。 光ビームの集光(2)の説明に供する略線図である。 対物レンズのトラッキング移動による集光点の移動の説明に供する略線図である。 本発明の一実施形態による光ディスク装置の構成を示す略線図である。 第1の実施の形態による光ピックアップの構成を示す略線図である。 光ディスクの内部構成を示す略線図である。 第1の実施の形態におけるビームスポットの様子を示す略線図である。 第1の実施の形態によるサーボ用フォトディテクタの検出領域を示す略線図である。 ホログラムの記録再生原理を示す略線図である。 対物レンズのシフトによる焦点のずれの説明に供する略線図である。 対物レンズのシフトによるビームスポットの移動の説明に供する略線図である。 第2の実施の形態による光ピックアップの構成を示す略線図である。 第2の実施の形態におけるビームスポットの様子を示す略線図である。 第2の実施の形態によるサーボ用フォトディテクタの検出領域を示す略線図である。 ミラー領域を有する光ディスクの構成を示す略線図である。 他の実施の形態による情報の記録再生原理の説明に供する略線図である。
符号の説明
20、120……光ディスク装置、21、121……制御部、22、122……駆動制御部、23、123……信号処理部、26、126……光ピックアップ、30……位置制御光学系、31、51……レーザダイオード、32、132……グレーティング、34、53……コリメータレンズ、36……対物レンズ、36A……2軸アクチュエータ、37……シリンダーレンズ、38、138……サーボ用フォトディテクタ、54……ガルバノミラー、100……光ディスク、101……記録層、104……反射透過膜、154……ミラー、Lr1……赤色光ビーム、Lr2……赤色反射光ビーム、Lb1……青色光ビーム、Lb2……青色反射光ビーム、C……中心線、Ar、Ab……光軸、Fr、Fb……焦点、df……深さ、gm……ずれ量。

Claims (12)

  1. 情報が記録される記録層と当該記録層における上記情報の記録位置を特定するためのトラックが設けられた位置決め層とを有する光ディスクに対して光ビームを照射する光ディスク装置であって、
    所定の位置決め用光ビームを上記位置決め層の所望トラックに合わせて集光すると共に、当該位置決め用光ビームと光軸を共有する情報用光ビームを上記記録層に集光する対物レンズと、
    上記トラックとほぼ直交するトラッキング方向に上記対物レンズを移動させることにより、上記位置決め用光ビームの焦点を所望の上記トラックに追従させる移動部と、
    上記対物レンズの上記トラッキング方向に関する移動量を検出する検出部と、
    上記移動量に応じて上記情報用光ビームの集光位置を補正する補正部と
    を具えることを特徴とする光ディスク装置。
  2. 上記検出部は、
    上記トラッキング方向に関する上記位置決め用光ビームの焦点と上記所望トラックとのずれ量を表すトラッキングエラー信号を基に上記移動量を検出する
    ことを特徴とする請求項1に記載の光ディスク装置。
  3. 上記位置決め用光ビームが上記位置決め層により反射されてなる反射光ビームを受光する受光部を具え、
    上記検出部は、
    上記受光部の受光結果を基に、上記対物レンズの上記トラッキング方向に関する上記移動量に応じたオフセット成分が含まれる第1トラッキングエラー信号を生成すると共に、当該オフセット成分が殆ど含まれない第2トラッキングエラー信号を生成し、第1トラッキングエラー信号及び第2トラッキングエラー信号の差分を基に上記移動量を検出する
    ことを特徴とする請求項1に記載の光ディスク装置。
  4. 上記受光部は、
    上記位置決め用光ビームを受光するための受光領域が複数の分割受光領域に分割され、
    上記検出部は、
    上記分割受光領域におけるそれぞれの受光結果の差分を用いるプッシュプル法により上記第1トラッキングエラー信号を検出する
    ことを特徴とする請求項3に記載の光ディスク装置。
  5. 上記光ディスクに照射される前の上記位置決め用光ビームを1本のメインビーム及び2本のサブビームに分光する分光素子を具え、
    上記受光部は、
    上記メインビーム及び2本のサブビームをそれぞれ受光するメイン受光領域及び2つのサブ受光領域を有し、
    上記検出部は、
    上記サブ受光領域におけるそれぞれの受光結果の差分を用いる3スポット法により上記第2トラッキングエラー信号を検出する
    ことを特徴とする請求項3に記載の光ディスク装置。
  6. 上記光ディスクに照射される前の上記位置決め用光ビームをメインビーム及び2本のサブビームに分光する分光素子を具え、
    上記受光部は、
    上記メインビーム及び上記2本のサブビームをそれぞれ受光するメイン受光領域及び2つのサブ受光領域を有し、
    上記検出部は、
    上記サブ受光領域におけるそれぞれの受光結果の差分を用いる3スポット法により上記第2トラッキングエラー信号を検出する
    ことを特徴とする請求項3に記載の光ディスク装置。
  7. 上記検出部は、
    位置センサまたは距離センサにより上記移動量を検出する
    ことを特徴とする請求項1に記載の光ディスク装置。
  8. 上記補正部は、
    上記移動量に応じて上記情報用光ビームの進行方向を変化させることにより上記情報用光ビームの集光位置を補正する
    ことを特徴とする請求項1に記載の光ディスク装置。
  9. 上記情報用光ビームを反射面により反射すると共に、当該反射面の角度を調整することにより上記情報用光ビームの進行方向を変化させるガルバノミラーを具え、
    上記補正部は、
    上記移動量に応じて上記ガルバノミラーにおける上記反射面の角度を調整することにより上記情報用光ビームの集光位置を補正する
    ことを特徴とする請求項8に記載の光ディスク装置。
  10. 上記補正部は、
    上記移動量に応じて上記移動部における上記対物レンズの移動量を調整することにより上記情報用光ビームの集光位置を補正する
    ことを特徴とする請求項1に記載の光ディスク装置。
  11. 上記補正部は、
    上記対物レンズから上記情報用光ビームの焦点までの距離及び上記移動量を基に上記情報用光ビームの集光位置を補正する
    ことを特徴とする請求項1に記載の光ディスク装置。
  12. 情報が記録される記録層と当該記録層における上記情報の記録位置を特定するためのトラックが設けられた位置決め層とを有する光ディスクに対して光ビームを照射する際の集光位置補正方法であって、
    所定の位置決め用光ビームを上記位置決め層の所望トラックに合わせて集光すると共に、当該位置決め用光ビームと光軸を共有する情報用光ビームを上記記録層に集光する対物レンズを、上記トラックとほぼ直交するトラッキング方向に移動する移動ステップと、
    上記対物レンズの上記トラッキング方向に関する移動量を検出する検出ステップと、
    上記移動量に応じて上記情報用光ビームの集光位置を補正することにより、上記位置決め用光ビームの焦点を所望の上記トラックに追従させる補正ステップと
    を具えることを特徴とする集光位置補正方法。
JP2007155283A 2007-06-12 2007-06-12 光ディスク装置及び集光位置補正方法 Expired - Fee Related JP4345030B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007155283A JP4345030B2 (ja) 2007-06-12 2007-06-12 光ディスク装置及び集光位置補正方法
US12/131,333 US7948840B2 (en) 2007-06-12 2008-06-02 Optical disc device and converging position correction method
TW097121593A TWI382412B (zh) 2007-06-12 2008-06-10 光碟裝置與收斂位置校正方法
DE602008002786T DE602008002786D1 (de) 2007-06-12 2008-06-11 Optische Scheibenvorrichtung und Verfahren zur Korrektur der Konvergenzposition
KR1020080054515A KR20080109635A (ko) 2007-06-12 2008-06-11 광 디스크 장치 및 수렴 위치 보정 방법
EP08158050A EP2006848B1 (en) 2007-06-12 2008-06-11 Optical disc device and converging position correction method
CN2008101094439A CN101325067B (zh) 2007-06-12 2008-06-12 光盘装置和会聚位置校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155283A JP4345030B2 (ja) 2007-06-12 2007-06-12 光ディスク装置及び集光位置補正方法

Publications (3)

Publication Number Publication Date
JP2008310848A JP2008310848A (ja) 2008-12-25
JP2008310848A5 JP2008310848A5 (ja) 2009-04-16
JP4345030B2 true JP4345030B2 (ja) 2009-10-14

Family

ID=39777018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155283A Expired - Fee Related JP4345030B2 (ja) 2007-06-12 2007-06-12 光ディスク装置及び集光位置補正方法

Country Status (7)

Country Link
US (1) US7948840B2 (ja)
EP (1) EP2006848B1 (ja)
JP (1) JP4345030B2 (ja)
KR (1) KR20080109635A (ja)
CN (1) CN101325067B (ja)
DE (1) DE602008002786D1 (ja)
TW (1) TWI382412B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345030B2 (ja) * 2007-06-12 2009-10-14 ソニー株式会社 光ディスク装置及び集光位置補正方法
JP4565353B2 (ja) 2007-12-06 2010-10-20 ソニー株式会社 光ディスク装置及び位置制御方法並びに光ピックアップ
JP4596284B2 (ja) * 2008-05-26 2010-12-08 ソニー株式会社 光ディスク装置及びフォーカス制御方法
JP2010040064A (ja) * 2008-07-31 2010-02-18 Sony Corp 光ディスク装置及び信号生成方法
US9373351B2 (en) 2008-12-31 2016-06-21 General Electric Comany System and method for dual-beam recording and readout of multilayered optical data storage media
JP2011216171A (ja) * 2010-04-02 2011-10-27 Sony Corp 光学ピックアップ、光学ドライブ装置、光照射方法
US8254224B2 (en) * 2010-11-18 2012-08-28 General Electric Company Servoing system for master with parallel tracks in a holographic replication system
US8139462B1 (en) * 2010-11-24 2012-03-20 General Electric Company System and method for precise recording
EP2645370A1 (en) * 2010-11-24 2013-10-02 Kabushiki Kaisha Toshiba Information recording and reproducing apparatus
WO2012111105A1 (ja) * 2011-02-16 2012-08-23 パイオニア株式会社 情報記録再生装置及び情報記録再生方法
JP2012221538A (ja) * 2011-04-13 2012-11-12 Hitachi Consumer Electronics Co Ltd 光ディスク装置およびその制御方法
JP5452542B2 (ja) * 2011-04-21 2014-03-26 株式会社日立メディアエレクトロニクス 光ピックアップ装置および光ディスク装置
CN106713726B (zh) * 2015-07-14 2019-11-29 无锡天脉聚源传媒科技有限公司 一种识别拍摄方式的方法和装置
CN109524029B (zh) * 2017-09-20 2020-10-09 上海纳光信息科技有限公司 基于双光束超分辨的多层光盘存储装置及方法
CN112750470B (zh) * 2019-10-30 2022-05-31 华为技术有限公司 一种检测装置、光驱及检测方法
JP7426656B2 (ja) * 2020-03-31 2024-02-02 パナソニックIpマネジメント株式会社 焦点距離調整装置及びレーザ加工装置
CN113074915A (zh) * 2021-03-29 2021-07-06 业成科技(成都)有限公司 偏心量测装置及其量测方法
CN114627900B (zh) * 2022-03-23 2023-07-04 华中科技大学 一种能在透明、均一存储介质定位的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892739A (en) * 1998-02-13 1999-04-06 International Business Machines Corporation In system for creating reading and writing on rotatable information storage media, an apparatus for multilayer source positioning using the laser source as a detector
US6738322B2 (en) * 1999-07-29 2004-05-18 Research Investment Network, Inc. Optical data storage system with focus and tracking error correction
JP2001266367A (ja) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd 光ディスク装置
AU2001256991A1 (en) 2000-04-07 2001-10-23 Siros Technologies, Inc. Optical information medium
JP4043175B2 (ja) * 2000-06-09 2008-02-06 Tdk株式会社 光情報媒体およびその製造方法
EP1162614A3 (en) * 2000-06-09 2006-04-05 TDK Corporation Optical information medium
CN1502103A (zh) * 2000-11-07 2004-06-02 ���µ�����ҵ��ʽ���� 记录介质、其控制装置及其控制方法
US7242648B2 (en) * 2003-04-28 2007-07-10 Matsushita Electric Industrial Co., Ltd. Tracking error signal generation device, optical disc apparatus, tracking error signal generation method and tracking control method
EP1734515A4 (en) 2004-03-29 2008-09-10 Pioneer Corp HOLOGRAM RECORDING CARRIER AND RECORDING / REPLAYING METHOD AND DEVICE
JP2005302085A (ja) 2004-04-07 2005-10-27 Hitachi Ltd 光記録媒体のトラック形成方法及び情報記録方法
EP1701341A1 (en) * 2005-03-07 2006-09-13 Deutsche Thomson-Brandt Gmbh Holographic recording medium and pickup for this medium
JP2006268888A (ja) * 2005-03-22 2006-10-05 Hitachi Ltd 情報記録装置、情報記録媒体及び情報記録方法
JP2007004897A (ja) * 2005-06-23 2007-01-11 Hitachi Ltd 情報記録再生方法及び情報記録再生装置
JP2007149250A (ja) 2005-11-29 2007-06-14 Canon Inc 光学式情報記録再生装置
JP4724546B2 (ja) 2005-12-08 2011-07-13 新日本製鐵株式会社 スクラップの予熱処理装置及び予熱処理方法
JP4714704B2 (ja) * 2007-03-08 2011-06-29 株式会社日立製作所 情報記録再生方法及び情報記録再生装置
JP4345030B2 (ja) * 2007-06-12 2009-10-14 ソニー株式会社 光ディスク装置及び集光位置補正方法

Also Published As

Publication number Publication date
TW200910338A (en) 2009-03-01
US7948840B2 (en) 2011-05-24
DE602008002786D1 (de) 2010-11-11
EP2006848B1 (en) 2010-09-29
TWI382412B (zh) 2013-01-11
CN101325067A (zh) 2008-12-17
EP2006848A3 (en) 2009-05-27
EP2006848A2 (en) 2008-12-24
CN101325067B (zh) 2012-03-21
KR20080109635A (ko) 2008-12-17
US20080316902A1 (en) 2008-12-25
JP2008310848A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4345030B2 (ja) 光ディスク装置及び集光位置補正方法
JP4961922B2 (ja) 光ディスク装置及び焦点位置制御方法
JP4305776B2 (ja) 光ディスク装置及び焦点位置制御方法
JP4419098B2 (ja) 光ディスク装置及び焦点位置制御方法
JP4985050B2 (ja) 光ディスク装置及び情報再生方法
JP2008251134A (ja) 光ディスク装置、情報記録方法及び情報再生方法
JP4538759B2 (ja) 情報記録装置、情報再生装置及び光ピックアップ
JP5281115B2 (ja) 光記録媒体の製造方法及び光記録媒体
JP5621227B2 (ja) 光情報装置及び光ピックアップ
JP2009187633A (ja) 光ディスク装置及び光ビーム照射角度調整方法
JP2008097693A (ja) 多層光記録再生装置及び光記録再生方法、並びに多層光記録媒体
JP4483898B2 (ja) 記録装置、再生装置、記録方法、再生方法及び記録媒体
JP2008108383A (ja) 多層光記録再生装置及び光記録再生方法、並びに多層光記録媒体
JP4784473B2 (ja) 光ディスク装置及びディスクチルト補正方法、並びに光ディスク
US20090003155A1 (en) Optical information recording device, optical pickup, optical information recording method and optical information recording medium
JP2009271954A (ja) 情報記録装置及び情報記録方法
US8503273B2 (en) Optical disc device and recording method
JP2009140573A (ja) 光ディスク装置及びフォーカスジャンプ方法
JP2009277292A (ja) 光情報記録装置及び光ピックアップ
JP2009170035A (ja) 光ディスク装置及び対物レンズ制御方法
JP2008251133A (ja) 光ディスク装置、焦点位置制御方法及び体積型記録媒体
JP2008041230A (ja) 情報記録媒体、情報記録装置および情報再生装置
JP2009099176A (ja) 光ピックアップ及びこれを用いた光ディスク装置
JP2011003258A (ja) 光ピックアップ及び光ディスク装置
JP2015011750A (ja) 光ディスク装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees