JP4330208B2 - 電動圧縮機の制御装置 - Google Patents

電動圧縮機の制御装置 Download PDF

Info

Publication number
JP4330208B2
JP4330208B2 JP20894899A JP20894899A JP4330208B2 JP 4330208 B2 JP4330208 B2 JP 4330208B2 JP 20894899 A JP20894899 A JP 20894899A JP 20894899 A JP20894899 A JP 20894899A JP 4330208 B2 JP4330208 B2 JP 4330208B2
Authority
JP
Japan
Prior art keywords
load torque
phase
compressor
circuit
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20894899A
Other languages
English (en)
Other versions
JP2001041168A (ja
Inventor
間 淳 之 蛭
品 治 信 温
嶋 裕 一 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP20894899A priority Critical patent/JP4330208B2/ja
Publication of JP2001041168A publication Critical patent/JP2001041168A/ja
Application granted granted Critical
Publication of JP4330208B2 publication Critical patent/JP4330208B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、負荷トルクの脈動位相を検出する手段を備えた電動圧縮機の制御装置に関する。
【0002】
【従来の技術】
例えば空調機の冷凍サイクルに冷媒を循環させるために用いられる圧縮機を、これに直結された無整流子電動機により駆動することは公知である。図6は、そのような圧縮機を可変速駆動する無整流子電動機の周知の回路構成を示すものである。図6において、交流電源1から供給された交流電力を整流器2で直流電力に変換し、得られた直流電力を平滑コンデンサ3で平滑し、さらにインバータ4で任意周波数の交流電力に変換して同期電動機5(以下、単に「電動機5」と称する)に供給し、これを駆動する。電動機5の回転子位置が位置検出器(PS)6によって検出され、その検出信号を用いて、インバータ4の出力周波数が電動機5の回転周波数と同期するように制御回路7およびドライブ回路8を介して制御される。電動機5には例えば空調機の冷凍サイクルに冷媒を循環させるための圧縮機(CP)9が直結されている。ここで、圧縮機9以外の電気回路構成部品、すなわち、整流器2、平滑コンデンサ3、インバータ4、電動機5、位置検出器6、制御回路7およびドライブ回路8によって周知の無整流子電動機が構成されている。
【0003】
整流器2としてダイオードからなる非制御型のものが図示されているが、これを可制御型にしてその出力電圧を可変とすることもできる。インバータ4の各アームは、半導体スイッチング素子、例えばトランジスタとこれに逆並列接続されたダイオードからなっている。電動機5は例えば4極型の同期電動機であり、圧縮機9は例えばシングルロータリー圧縮機である。
【0004】
【発明が解決しようとする課題】
空調機における圧縮機9の負荷トルクは1回転角度範囲(360°)にわたって一様ということはなく、回転角により大きく変化し、シリンダ位置が吸込・圧縮・吐出の3工程のうち吸込工程の負荷トルクは比較的小さいが、圧縮工程のそれは比較的大きい。その場合、最大トルクは軽負荷時のトルクの2倍以上にも達することが知られている。従って、圧縮機9を駆動する電動機5の負荷トルクも回転角によって大きく脈動することになる。
【0005】
このトルク脈動は圧縮機駆動軸の1回転を周期として繰り返され、それが圧縮機に振動や騒音を生ずる原因となる。空調機に設けられている圧縮機の場合、圧縮機に連結されている空調機器にも振動や騒音が伝播し、そこに振動や騒音を生じたり、配管応力集中による配管破損を生じたりするおそれがある。
【0006】
このような問題に対処し、振動と騒音を低減するためには、まず圧縮機9すなわち電動機5のトルク脈動位相を正確に検出することが必要であり、その上でトルク脈動位相を考慮して電動機5の出力トルクを補正するのが望ましい。ところが、負荷トルクの脈動位相の検出結果に大きな誤差があるとすれば、出力トルクの補正により振動や騒音を逆に増大させてしまうことになりかねない。
【0007】
圧縮機9を駆動する電動機5を特に低速領域まで運転する場合には、回転速度が低下するのに伴い、高速時と等しい瞬時角加速度に対しては回転脈動の振幅が増大し、その回転脈動の周波数も低下する。このために生ずる振動も回転脈動に応じて振幅が大きく振動周波数が低下する。この低周波数での振動や騒音を抑制するための防振・防音の手段は構造的に大形になるため、実用レベルでの実現が困難であった。
【0008】
従って本発明は、直結された同期電動機によって駆動される圧縮機の振動と騒音を低減するために適用し得る電動圧縮機の制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、
請求項1に係る発明は、直結された同期電動機により圧縮機を可変速駆動する電動圧縮機の制御装置において、前記圧縮機の1回転角度範囲を複数の単位区間に分割し、1回転角度範囲における前記単位区間の通過所要時間を計測し、前記通過所要時間の長短比較により負荷トルク脈動位相を検出する負荷トルク脈動位相判定手段と、
この負荷トルク脈動位相判定手段によって判定された負荷トルク脈動の位相に基づいて前記同期電動機の発生トルクをトルク脈動が軽減するように補正する発生トルク補正手段と、
前記負荷トルク脈動位相判定手段が負荷トルクの位相判定処理をしている間は前記同期電動機に対する速度指令を低速域に制限し、前記負荷トルク脈動位相判定手段が負荷トルク脈動位相判定を開始してから所定時間経過しても位相判定をすることができないときは、前記同期電動機に対する速度指令の下限を制限する速度制限手段とを設けた
ことを特徴とする。
【0010】
請求項2に係る発明は、
請求項1に記載の電動圧縮機の制御装置において、前記電動圧縮機は1つのシリンダ内で単一の偏心ロータを駆動させる1シリンダ型ロータリ式の圧縮機構を備えている
ことを特徴とする。
【0011】
【発明の実施の形態】
図1は、図6の系統構成のもとで駆動されるインバータ4、電動機5および圧縮機9を前提とし、横軸を時間軸として、(a)シングルロータリー圧縮機9の負荷トルク、後述の負荷トルク補正を行わない時と行った時の電動機および圧縮機の角速度、(b)インバータ4の通電モード、(c)インバータ4の通電アーム、(d)各通電モードにおける周期時間、および(e)後述のトルク補正量をそれぞれ示すものである。電動機5は4極であるとし、かつ120°通電方式のインバータで駆動しているものとする。(d)通電モード周期時間は、(b)インバータ4の通電モードに対応させて電動機5および圧縮機9の機械角1回転360°を12個の単位区間に等分した場合の各単位区間(機械角30°)の通過所要時間を意味する。
【0012】
シングルロータリーの圧縮機では単一のシリンダだけを備え、このシリンダ内に1つの偏心ロータを設けたシリンダ機構となっているので、図示のごとく、1回転区間を周期とした負荷トルク変動すなわち負荷トルクの脈動を生ずる。このとき、圧縮機9のシリンダ角度として12分割されたときの各単位区間の角速度または各単位区間の所要時間は一様でなく、負荷トルクが小さいとき、例えば圧縮機9が吸込工程にあるモード11,12のときは、所要時間は短くて角速度は速く、負荷トルクが大きいとき、例えば圧縮機9が圧縮工程にあるモード21,22のときは、所要時間は長くて角速度は遅い。なお、圧縮機9が1回転する間、電動機5は4極型であることに対応して各アームの通電は2周期分が繰り返されている。電動機軸と圧縮機シリンダ機構部が固定されている場合、電動機5の2周期の通電モードと圧縮機9の1周期の負荷トルク脈動との間には図1に示すように一定の関係が保たれる。このことを利用してインバータ4の通電状態から、圧縮機9または電動機5がどのような負荷状態にあるかを知ることができる。
仮にインバータ4が同じ通電状態にあっても負荷の軽い通電モード区間と負荷の重い通電モード区間があるため、負荷の軽重と通電モードとの対応関係を知るためには、負荷トルク脈動(図1(a))の位相検出を行う必要がある。
【0013】
この検出を行うため、ある特定モードに着目し、そのモードと次の通電サイクルでの同一モードの所要時間の長短比較を行う。この比較結果により、自己の通電モードから負荷トルク脈動位相を検出することができる。例えば、通電モード11の所要時間と、それから1/2回転後の同じ通電状態である通電モード21の所要時間とを比較し、所要時間の長い方がより大きな負荷トルク状態にあることを知ることができる。
【0014】
図2は本発明を適用する無整流子電動機のブロック図を示すものである。図6と共通の主回路部分には共通の符号を付して示している。図示の制御回路10はマイクロコンピュータを含んで構成されており、マイクロプロセッサ(CPU)をはじめ、メモリやその他の周辺機器をも含んでいるが、ここには図示されていない。制御回路10に対し、電動機5の電機子巻線の誘起電圧によって回転子位置を間接的に検出する間接式位置検出回路(PS)11の出力、整流器2の出力側電流を検出する電流検出器12の出力に基づいて電動機負荷を検出する負荷検出回路13の出力、およびインバータ4の入力電流を検出する電流検出器14の出力に基づいてインバータ4の過負荷保護を行うための保護回路15の出力が導入される。制御回路10は、各入力信号に基づいて後述する所定の制御動作を行うための制御信号を作成し、波形合成回路16およびドライブ回路8を介してインバータ4を制御する。
【0015】
制御回路10はマイクロコンピュータによって構成され、図3に示すように、CPU100をはじめROM110や図示していないRAM等を備えており、種々の機能をソフトウェア的に実行する。ここには種々の機能回路として、位置検出回路11によって検出された電動機5の実際の回転位相が内部で生成される図示していないインバータ用の駆動信号と同期しているか否かを判定する同期判定回路101と、負荷トルク脈動の位相を判定する負荷トルク位相判定回路102と、負荷トルク脈動によって発生する角速度の変動を低減するためのトルク補正を行う発生トルク補正回路103と、電動機5の回転速度を指令する速度指令回路105と、その速度指令に対し最低値および最高値等を制限する速度制限回路104とが示されている。
【0016】
図4において、(a)〜(c)は図2の装置における電動機5の各相誘起電圧VU,VV,VWを示し、以下同様に、(d)〜(f)は位置検出回路11から出力される各相の位置検出信号PSU,PSV,PSWを、(g)は既に述べたインバータ4の各アーム11〜16および21〜26の通電区間を示す通電モードを、(h)は各通電モードの時間すなわち周期時間Tを、(i)は各周期時間Tの初めの1/2時間を、(j)〜(l)は制御回路11の出力に基づいて波形合成回路16から出力されるインバータアームのための正側各相アームの駆動信号DSU,DSV,DSWを、さらに(m)〜(o)は同じく負側各相アームの駆動信号DSX,DSY,DSZを、さらに(p)は圧縮機9の吸込工程、圧縮工程および吐出工程からなる一連の圧縮機工程を電動機5側の各信号と対応させて、それぞれ示したものである。
【0017】
図4(d)〜(f)に示す位置検出信号PSU,PSV,PSWは位置検出回路11により電動機5の入力端子で検出された誘起電圧に基づいて生成され、各相の誘起電圧が正電圧にある区間で出力される。図4(j)〜(o)に示すインバータ4の各アームに対する駆動信号として、インバータ4のPWM制御に対応して各モードでオン動作される正負一対のアームのいずれか一方に対してPWM駆動信号が与えられ、他方のアームには連続オン信号が与えられる。
【0018】
図4の例では、電動機5および圧縮機9の回転子位置(機械角)360°に対し、電動機5の誘起電圧およびインバータ4の駆動信号は電動機5が4極であることに対応して電気角360°×2=720°が対応している。電動機5の負荷トルクは図1に示すように機械角360°に対し周期的に変化し、電動機5の出力トルクが一定の場合は、負荷トルクの脈動により電動機5の角速度も回転子位置によって変動し、そのため同一機械角単位区間を回動するのに要する時間すなわち周期時間が図1に示すように変動する。この周期時間ないし回転子位置による角速度の変動により電動機5が振動すると共に騒音を発生する。
【0019】
図2および図3の装置において、位置検出回路11からの位置検出信号に基づき同期判定回路101により電動機5の回転子位置に対応した同期信号を形成し、それを波形合成回路16に送出する共に、負荷トルク位相判定回路102および速度制限回路104に送出する。負荷トルク位相判定回路102は同期判定回路101の出力信号を用いて、予め測定して得た相関関係を用いて負荷トルク位相を検出し、発生トルク補正回路103にトルク補正を指令する負荷トルク信号を送出する。発生トルク補正回路103は入力された負荷トルク信号を用いて、負荷トルクの変動を低減するためのトルク補正信号を形成し、波形合成回路16に送出する。波形合成回路16は発生トルク補正回路103からのトルク補正信号を参照して波形合成を行い、ドライブ回路8を介してインバータ4の出力を制御する。インバータ4はトルク補正信号成分により負荷トルクの変動を低減し角速度の変動を低減するような単位区間毎に補正されたトルク電流を電動機5に供給し発生トルクの変動を緩和し角速度の変動を低減させる。この補正により、電動機5の角速度変化は図1に波線で示すように低減することができる。これにより、電動機5の振動および騒音を低減することができる。
【0020】
負荷トルク位相判定回路102による負荷トルク脈動位相の判定に関しては、位置検出回路11からの検出パルスを検出できた後で電動機5の起動加速中に負荷トルク脈動の位相を判定すればよい。さらに比較対象とする両検出パルス周期の差が小さい時は検出誤差が大きくなり得るので負荷トルク脈動の位相判定を保留したり、比較対象の両検出パルス周期の差がプラスかマイナスかの符号判定を数回実行し、出現回数の多い方の符号に係る周期データに基づいてトルク脈動の周期を判定したり、さらには、比較対象の両検出パルス周期の差の正負符号を判定し、同一符号が少なくとも3回連続して出現したときにトルク脈動の周期判定を実行したりすることができる。
【0021】
また、電動機5への印加電圧に対する補正データを電動機5に流れる電流に応じて変化させたり、単位区間を単位としてプラス補正またはマイナス補正を実行したりすることができる。
【0022】
発生トルクの補正に関しては、負荷トルクの位相判定が可能になるまでは補正を行わずに、位相判定が可能になってから、その判定結果に基づいて発生トルクの補正を行うようにすることができる。その場合、負荷トルク位相判定ができるようになるまでは判定結果に影響しない範囲でなんらかの補正を行うこともできる。
【0023】
例えば、負荷トルクの位相判定が可能になるまでは仮に決定した負荷トルク位相で発生トルクの補正を行っておき、負荷トルク位相判定が可能になってから、その判定結果に基づいて発生トルクを修正するようにしてもよい。この時、負荷トルクの位相判定が可能になるまでは電動機5および圧縮機9を含む空気調和機等に悪影響を与えない程度の範囲で、すなわち補正切換後の補正により振動低減効果が少なく、たとえ仮の設定位相が適切でなかった時であっても振動が大きくなりすぎて製品寿命を短くする等の問題を発生しない程度に控えめの補正をし位相判定を待つようにすることもできる。
【0024】
電動機5の起動時などのように同期がとれていない場合、位置検出回路11の検出パルス位相と電動機5の実際の回転子位置との間には大きな誤差が生ずるので、負荷トルク位相判定回路102による負荷トルク位相判定の精度が低下するという問題がある。これを回避するためには、同期がとれていない期間の位置検出パルス周期誤差の影響を小さくするために、位相判定のデータ取得の積算回数を増やすことが考えられる。しかし、この方式には判定に時間がかかるという問題がある。そこで同期がとれてから負荷トルク位相を判定することにより、精度の高い、迅速な判定をすることができ、電動機5の振動の大きい時間を短縮することができる。
【0025】
図2における速度制限回路104の機能について説明する。
【0026】
速度制限回路104の一つの機能は、負荷トルク位相判定回路102が負荷トルクの位相判定処理をしている間は、位相判定処理を確実に実行できるように電動機5に対する速度指令を低速域に制限することである。しかしながら、負荷トルク位相判定回路102が負荷トルク脈動位相の判定を開始してから所定時間経過しても負荷トルクの位相判定をすることができないときは電動機5の起動を優先して速度制限回路104による電動機5に対する速度指令の制限を解除するか、または速度制限回路104による電動機5に対する速度指令の下限を制限するのがよい。
【0027】
図2〜4のシステムでは、波形合成回路16でPWMデューティを制御してインバータ4の出力電圧を調整し、電動機5の発生トルクを制御する。また、PWMデューティのオン期間にしか正しい位置検出信号を発生することができないので、最大でPWMデューティのオフ期間に相当する位置検出間隔相当の時間誤差を発生し得る。負荷トルクの脈動による位置検出間隔の時間の差とPWMデューティ期間による誤差が近い場合、ただ1度の判定では誤判定する(負荷トルク大の位相を負荷トルク小と判定する)ことがあり得る。このような場合、発生トルク補正回路103の出力によるトルク補正を行うことにより、かえって振動と騒音が非補正時よりも大きくなってしまう事態が起こり得る。
【0028】
そこで、図1に示すように、負荷トルクの脈動パターンが予め分かっている場合、負荷トルクの大きい区間で判定することによってPWMデューティオフ期間の誤差より大きな位置検出間隔の時間差を得ることができ、それにより一層正確な位相判定をすることができる。また、負荷トルクが大きい時と小さい時の位置検出間隔の時間差がPWMデューティーオフ期間より小さい時(例えば、PWM周期の1/2以下とすることもできる)は判定処理をしないことにすれば高精度の判定をすることができる。
【0029】
位置検出間隔の時間差を積算し、または、位相判定を複数回行うことにより一層高精度の判定をすることができる。判定を複数回行う方法として、判定回数の多い位相を採用する方法がある。
【0030】
負荷トルク脈動による位置検出間隔の時間差は電動機5の回転速度の低い方が大きくなるので、負荷トルクの位相を判定している間は回転速度を低く抑えることにより、より高精度の判定をすることができる。また、同期電動機に対する速度指令が所定値よりも低い速度範囲の時のみ判定することによっても同様に高精度の判定をすることができる。
【0031】
電動機5の回転速度が低い時は振動も大きいので、長時間運転すると振動によって機器が壊れる場合があり得る。そのため、一定時間待っても判定できない時は、判定を中止し、振動が機器に悪影響を与えないように電動機5の回転速度の下限を速度制限回路104によって速度指令回路105を介して制限することにより、機器の寿命を延ばすことができる。
【0032】
図2,3の位置検出回路11は間接式位置検出の原理に従い電動機5の一次側から直接に得た電圧信号に基づいて位置検出信号を得ているが、電流検出器14および保護回路15を通して検出されるインバータ4の電流値から判定することもできる。
【0033】
図1の負荷検出回路13の入力は電流検出器12により整流器2の出力電流を検出することによって得ているが、実電流を用いる代わりに波形合成回路16の出力信号に基づいてインバータ4から電動機5に供給される電力からの計算によって得ることもできる。
【0034】
位置検出回路11は間接式位置検出の原理に従いセンサレスで簡易型に構成され、そのため負荷トルクの変動を簡易的に検出できるのが望ましい。この負荷トルクは回転周波数や電動機5に接続された負荷の状態によっても大きく異なり、電動機5が安定した回転トルクを出力するためには負荷状態の検出が不可欠となる。そこで負荷検出回路13または保護回路15により検出された電流を制御回路10に取り込み、これを、ROM110に予め格納されている周期時間とトルク補正量との関係を示すテーブルを参照して発生トルク補正回路103を介して補正することができる。
【0035】
負荷トルクの検出を正確に行おうとすれば、制御回路10の内部処理が複雑になり、内部演算回路の仕様によってはそれが演算能力の低下、適正回転トルクの出力不良、速度制御不良につながる場合がある。このため、負荷トルクに応じたインバータ4の出力電圧の補正は固定値制御または比率制御で行うこととし、制御回路内部での処理を簡略化するのがよい。
【0036】
負荷トルク脈動による位置検出時間の差は電動機5の回転速度が低いほど大きくなり、位置検出時間の差が大きいほど発生振動も増大する。他方、高速で回転するにつれ、位置検出時間も短くなり、また回転子自体も慣性エネルギーを持つため高速回転域でのトルク補正は効率の低下を招きやすい。そのため、電圧補正量は適切に分割された単位区間を単位として負荷トルクの大小に応じてプラス補正またはマイナス補正を行うのがよい。
【0037】
上述したように電動機5の低速領域では負荷トルクの最大値は軽負荷時の2倍以上にもなり、そのため回転中に発生する振動や騒音は増大する。そこで、軽負荷時に電動機5に印加する電圧を抑える補正(マイナス補正)を行い、重負荷時に電圧を上げる補正(プラス補正)を行うことにより、負荷トルクに対する電動機5の回転トルクの差を減少させることができ、電動機5の速度脈動を減少させることができる。また電動機5の回転周期はインバータ4を構成する半導体スイッチング素子の動作周期と相関があり、出力電圧の補正周期においても規則性を持たせることにより、制御回路10および内部演算回路での処理を簡略化することができる。
【0038】
しかしながら、特に低速回転領域ではPWMデューティ幅(インバータ4からの出力電圧)が低いため、マイナス補正を行うことによって電動機5の回転トルクそのものを低下させてしまう懸念がある。このため、回転トルクを所定レベルに維持するために最低出力電圧を設定しておき、それ以下には低下しないようにするのがよい。
【0039】
次に、より正確に、より安定した周期時間の測定とトルク補正を行う実施の形態について説明する。ここでは、周期時間の測定を回転子1回転区間で2つの単位区間で行い、それを8回転にわたって計8回行って、その平均をとる。図5はこの実施形態を示すフローチャートである。装置の起動指令ありを確認する(ステップ201)と起動制御に入る(ステップ202)。一連の制御に入ったときの初期処理として、n=0(ステップ203)、Tf1=T1=0(ステップ204)、およびTf2=T2=0(ステップ205)を実行する。ここで、nは各単位区間(図E参照)の所要時間すなわち周期時間の平均値を計算するのに用いる測定回数を表す変数であり、ここでは最終的にn=8回の測定結果の平均値をとるので、n=8となるまで測定を繰り返す。Tf1は通電モード10の単位区間の所要時間すなわち周期時間T1の積算値を表す変数であり、Tf2は通電モード20の単位区間の所要時間すなわち周期時間T2の積算値を表す変数である。
【0040】
以上の初期処理の後、いよいよ周期時間測定に入る。まず、通電モード10の周期時間T1を測定し(ステップ206)、その測定結果を変数Tf1に入れる(ステップ207)。同様に通電モード20の周期時間T2を測定し(ステップ208)、その測定結果を変数Tf2に入れる(ステップ209)。次に測定回数を表す変数nに“1”を加えてn=1とし(ステップ210)、n=8ではないことを確認して(ステップ211)ステップ206に戻り、周期時間T1およびT2の測定を、n=8となるまで都合8回繰り返す。ステップ211で、n=8になったことを確認したら、いよいよ平均周期時間の計算に入り、周期時間T1の8回の測定値の積算値Tf1を8で割算して通電モード10の平均周期時間Tavg1を求め、周期時間T2の8回の測定値の積算値Tf2を8で割算して通電モード20の平均周期時間Tavg2を求める(ステップ212)。このようにして求めた平均周期時間Tavg1およびTavg2の長短比較を行い(ステップ213)、Tavg1<Tavg2なら、モード11側の電源電圧をマイナス補正すると共に、モード21側の電源電圧をプラス補正する(ステップ214)ことによりトルク補正を行い、逆に、Tavg1<Tavg2でなかったら、モード11側の電源電圧をプラス補正すると共に、モード21側の電源電圧をマイナス補正する(ステップ215)。以上により一連のトルク補正動作を終了する。
【0041】
このように本実施形態によれば、予め圧縮機機構部とモータ回転子位置との関係が分かっていて、さらに負荷トルクパターンを想定できている場合には、上記のような単純な時間比較によってトルク脈動位相を検出できるので、低機能で低コストのマイクロプロセッサを使用して位相検出を行うことができる。
【0042】
【発明の効果】
本発明によれば、圧縮機の1回転角度範囲を複数の単位区間に等分し、単位区間の通過所要時間の長短比較により電動圧縮機の負荷トルク脈動位相を比較的簡易に判定することができる。また、所定時間待っても判定できない時は、判定を中止し、振動が機器に悪影響を与えないように電動機5の回転速度の下限を制限することにより、機器の寿命を延ばすことができる。
【図面の簡単な説明】
【図1】 本発明による負荷トルク脈動位相検出方法を説明するための線図。
【図2】 本発明に係る圧縮機直結の整流子電動機を示すブロック図。
【図3】 本発明に係る制御回路の内部構成を示すブロック図。
【図4】 同期電動機の負荷トルク、角速度、位置検出パルスおよび位置検出周期を圧縮 機工程との関係で示す線図。
【図5】 本発明の一実施形態による負荷トルク補正の手順を示すフローチャート。
【図6】 公知の整流子電動機の回路構成とそれによって駆動される圧縮機を示すブロック図。
【符号の説明】
1 交流電源
2 整流器
3 平滑コンデンサ
4 インバータ
5 同期電動機
8 ドライブ回路
9 圧縮機
10 制御回路
100 CPU
101 同期判定回路
102 負荷トルク位相判定回路
103 発生トルク補正回路
104 速度制限回路
105 速度指令回路
110 ROM
11 位置検出回路
12,14 電流検出器
13 負荷検出回路
15 保護回路
16 波形合成回路

Claims (2)

  1. 直結された同期電動機により圧縮機を可変速駆動する電動圧縮機の制御装置において、前記圧縮機の1回転角度範囲を複数の単位区間に分割し、1回転角度範囲における前記単位区間の通過所要時間を計測し、前記通過所要時間の長短比較により負荷トルク脈動位相を検出する負荷トルク脈動位相判定手段と、
    この負荷トルク脈動位相判定手段によって判定された負荷トルク脈動の位相に基づいて前記同期電動機の発生トルクをトルク脈動が軽減するように補正する発生トルク補正手段と、
    前記負荷トルク脈動位相判定手段が負荷トルクの位相判定処理をしている間は前記同期電動機に対する速度指令を低速域に制限するとともに、前記負荷トルク脈動位相判定手段が負荷トルク脈動位相判定を開始してから所定時間経過しても位相判定をすることができないときは、前記同期電動機に対する速度指令の下限を制限する速度制限手段を設けた、
    ことを特徴とする電動圧縮機の制御装置。
  2. 請求項1に記載の電動圧縮機の制御装置において、前記電動圧縮機は1つのシリンダ内で単一の偏心ロータを駆動させる1シリンダ型ロータリ式の圧縮機構を備えていることを特徴とする電動圧縮機の制御装置。
JP20894899A 1999-07-23 1999-07-23 電動圧縮機の制御装置 Expired - Fee Related JP4330208B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20894899A JP4330208B2 (ja) 1999-07-23 1999-07-23 電動圧縮機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20894899A JP4330208B2 (ja) 1999-07-23 1999-07-23 電動圧縮機の制御装置

Publications (2)

Publication Number Publication Date
JP2001041168A JP2001041168A (ja) 2001-02-13
JP4330208B2 true JP4330208B2 (ja) 2009-09-16

Family

ID=16564805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20894899A Expired - Fee Related JP4330208B2 (ja) 1999-07-23 1999-07-23 電動圧縮機の制御装置

Country Status (1)

Country Link
JP (1) JP4330208B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494906B2 (ja) * 2004-08-30 2010-06-30 株式会社コロナ 空気調和機
US8365544B2 (en) 2009-08-20 2013-02-05 Trane International Inc. Screw compressor drive control
GB2556576B (en) * 2015-08-12 2021-07-28 Mitsubishi Electric Corp Motor driving device and refrigerating air-conditioning device

Also Published As

Publication number Publication date
JP2001041168A (ja) 2001-02-13

Similar Documents

Publication Publication Date Title
KR100447559B1 (ko) 동기 모터의 기동 제어 방법, 제어 장치 및 각각 상기제어 장치를 구비한 공기 조화기, 냉장고, 세탁기 및 진공청소기
US9088236B2 (en) Method for controlling a permanent magnet synchronous electric motor at steady-state, electronic device for implementing said method and motor assembly comprising said electronic device
JP4957223B2 (ja) モータの起動装置
JP2005168287A (ja) 負荷の下で動作するモータの効率を最適化する方法及び装置
WO2013191183A1 (ja) モータ制御装置
JP4233303B2 (ja) 空気調和機の室外ファンモータ駆動制御装置
JP5094674B2 (ja) モーター制御装置及びその方法
JP2008220156A (ja) 電子制御式モータにおける不均衡状態を検出するためのシステム及び方法
JP4330208B2 (ja) 電動圧縮機の制御装置
JP3833918B2 (ja) モータ制御装置
JPH11103585A (ja) インバータ保護装置
JP2001352777A (ja) モータ制御装置
JP2000188891A (ja) ブラシレスモータの駆動方法及び駆動装置
JP3236322B2 (ja) 直流電動機の運転制御装置
JP6079353B2 (ja) Dcブラシレスモータの制御装置
JP2009017613A (ja) 制御装置、駆動システム、および熱移動システム
JPH05288412A (ja) 空気調和機用圧縮機の駆動装置
JP3666319B2 (ja) モータの制御方法
JP2005526982A (ja) 回転数を求める方法および回転数を求める装置
JP4804521B2 (ja) モータ制御装置
JPH10150793A (ja) モータ制御装置、冷凍・空調装置
KR100594387B1 (ko) 모터의 제어장치 및 방법
JP4475867B2 (ja) モータ制御装置および方法
JP2007006676A (ja) モータ制御装置
JP4494906B2 (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees