JP4804521B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP4804521B2
JP4804521B2 JP2008285666A JP2008285666A JP4804521B2 JP 4804521 B2 JP4804521 B2 JP 4804521B2 JP 2008285666 A JP2008285666 A JP 2008285666A JP 2008285666 A JP2008285666 A JP 2008285666A JP 4804521 B2 JP4804521 B2 JP 4804521B2
Authority
JP
Japan
Prior art keywords
motor
rotational speed
rotor
mechanical position
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008285666A
Other languages
English (en)
Other versions
JP2009027923A (ja
Inventor
浩幸 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008285666A priority Critical patent/JP4804521B2/ja
Publication of JP2009027923A publication Critical patent/JP2009027923A/ja
Application granted granted Critical
Publication of JP4804521B2 publication Critical patent/JP4804521B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明はモータ制御装置に関し、特に、モータのトルクを制御するモータ制御装置に関する。
従来より一般的に空気調和機、冷蔵庫などに用いられている圧縮機は冷凍サイクルの重要な構成部品であり、冷媒を圧縮させて高温・高圧状態にし熱交換を行っている。通常この圧縮動作は、大きく3つの過程に分けられ、まず圧縮機内部のシリンダ内に冷媒を満たす吸入過程があり、次にシリンダ内の冷媒を圧縮する圧縮過程があり、最後に圧縮した冷媒を圧縮機外部に放出する吐出過程がある。
また圧縮機はその圧縮機構により、ロータリ方式、レシプロ方式、スクロール方式などがある。なかでもロータリ方式は他方式に比べ、構造が簡単で部品点数も少なく、低コストであり、シリンダ部分の構造により圧縮効率も良く、高効率化が容易である。
ロータリ方式は圧縮動作を行うために、偏心したロータリピストンがシリンダ内部で回転することにより、吸入・圧縮・吐出の各工程を行っている。このため1回転中の吸入・圧縮・吐出による負荷変動と回転軸の偏心により、振動や騒音が大きくなるといった問題があった。
シリンダ部分を2つとして、ロータリピストンを180度回転をずらして、お互いの振動を打ち消すようにしたツインロータリ方式も実用化されているが、シリンダ部が1つのシングルロータリ方式に比べ、構造が複雑になりコスト高を招き、効率にもすぐれない。
このような課題を解消するために、シングルロータリ方式のモータトルクを制御して振動・騒音を抑制する方法が提案された。この方法は、負荷トルクの大きい位置ではモータトルクを大きくし、逆に負荷トルクの小さくなる位置ではモータトルクをカットして、1回転中のロータ速度を一定にして振動を低減させるものである。
この種の方法としては、圧縮機の吸込行程及び圧縮行程による負荷トルク変動に対応するように予め記憶されているトルクパターンを用い、ロータ機械的位置決定機能により決定されて出力されるロータ機械的位置に応じてインバータ装置の出力電圧を変化させ、1回転中におけるトルク制御を行なう方法がある(例えば、特許文献1参照)。
特開平11−187692号公報の明細書と図面
図14には、従来のロータ機械的位置判定タイミングが示される。図14では横軸に時間経過が示されて、縦軸にモータの回転数がとられている。タイミングT1でモータ起動後、トルク制御なしのまま目標回転数まで加速し、回転数安定後のタイミングT2においてロータ機械的位置判定を行なっている。しかしながら、上述のモータの制御方法においては、目標回転数で安定した後の任意タイミングでロータ機械的位置判定を行なうに過ぎず、判定の許可タイミングを決定するための諸条件は何ら設けらていない。
例えば、圧縮機モータをトルク制御なしで駆動する場合、一般に低回転数では、圧縮機の負荷脈動(負荷変動)に起因する回転数変動が大きくなり、位置検出間隔の変動も大きくなるが、高回転数では、圧縮機の負荷脈動に起因する回転数変動は小さくなり、位置検出間隔の変動も小さくなる。また、圧縮機の凝縮圧力と蒸発圧力の差が小さいと圧縮機の負荷脈動も小さくなり、回転数変動も小さくなるため位置検出間隔の変動も小さくなる。
ロータ機械的位置判定をこのような位置検出間隔の変動が小さい条件で行うと、判定間違いが発生する可能性が高い。判定間違いが発生すると、負荷トルク特性とトルクパターンの位相がずれ、その結果、圧縮機の振動を低減できず、ひいては圧縮機に接続されている配管も大きく振動し製品の寿命を縮める。
それゆえに、この発明の目的は、モータのトルク制御許可のタイミングを得てトルク制御を行なうモータ制御装置を提供することである。
この発明のある局面に従うモータ制御装置は、ロータを含むモータ回転に同期した負荷脈動を有した負荷装置を駆動するモータを制御するためのモータ制御装置であって、許可されたときにモータ内のロータの位置を検出して、検出したロータ位置に対応して予め準備されたパターンデータに基づきモータのトルクを制御するトルク制御手段と、位置検出の間隔の変動を示す情報に基づいてロータ位置の検出を許可する位置検出許可手段とを備える。
上述のモータ制御装置によれば、位置検出許可手段によりロータ位置検出が許可されたときに、ロータ位置が検出されて検出ロータ位置に対応のパターンデータに基づきモータトルクが制御される。
それゆえに、モータトルク制御許可のタイミングを得てトルク制御できる。また、トルク制御のためのロータ位置の検出は位置検出間隔の変動を示す情報に基づいて許可されるから、ロータ位置検出を高い検出精度を得ることができる位置検出間隔変動において許可することができる。なお、位置検出間隔変動が大きいときには高精度にロータ位置検出できる。
上述の位置検出許可手段は好ましくは、モータの回転数に基づいてロータ位置の検出を許可する。したがって、位置検出間隔の変動を示す情報としてモータ回転数を用いて、モータ回転数に基づいてロータ位置検出を許可できる。なお、低回転数では負荷装置の負荷脈動に起因する回転数変動が大きくなり位置検出間隔の変動も大きくなるが、高回転数では負荷脈動に起因する回転数変動は小さくなり位置検出間隔の変動も小さくなる。
上述の負荷装置は好ましくは圧縮機であり、上述の位置検出許可手段は好ましくは、圧縮機の凝縮圧力と蒸発圧力の差圧のレベルに基づいてロータ位置の検出を許可する。したがって、位置検出間隔の変動を示す情報として、この差圧を用いて、差圧に基づいてロータ位置検出を許可できる。なお、差圧が小さいと圧縮機の負荷脈動も小さくなり、これに起因する回転数変動も小さくなるため位置検出間隔の変動も小さくなる。
上述の位置検出許可手段は好ましくは、モータが起動されてからモータ回転数が目標回転数に移行する間の第1回転数に達しているときにロータ位置検出を許可する。
したがって、モータの回転数が目標回転数に移行するまでの第1回転数に達すればロータ位置検出が許可されてトルク制御がなされる。それゆえに、トルク制御せずに目標回転数に移行するまでの期間はモータの振動が生じるけれども、目標回転数に達しなくてもトルク制御がなされるから、速やかに振動を低減できる。
上述のモータ制御装置は好ましくは、モータが起動されてから所定時間を経過後においてロータ位置検出が許可されない場合に、目標回転数の下限を第1回転数を超える第4回転数に設定する。
したがって、ロータ位置検出が許可されずトルク制御なしで負荷装置を運転中は、第1回転数を超える第4回転数以上でモータが駆動されるから、低回転数運転による負荷装置の振動を回避できる。
上述のモータ制御装置では好ましくは、モータが起動されてから所定時間においてロータ位置検出が許可されることなく、モータ回転数が第1回転数を超える第5回転数以上となった場合に、目標回転数の下限を第5回転数を超える第6回転数に設定する。
したがって、トルク制御がなされずにモータおよび負荷装置の振動が大きくなるような低回転での運転を回避できる。
この発明によれば、モータトルク制御許可のタイミングを得てトルク制御できる。また、トルク制御のためのロータ位置の検出は位置検出間隔の変動を示す情報に基づいて許可されるから、高い検出精度を得ることができる位置検出間隔変動においてロータ位置検出を許可することができる。
以下、この発明の実施の形態について説明する。
本実施の形態では、モータ回転に同期した負荷脈動を有する負荷装置として空気調和機に使用される圧縮機を想定し、負荷装置を駆動する3相ブラシレスモータを制御する場合を想定して説明する。適用されるモータは3相ブラシレスモータに限定されない。また適用される圧縮機はシングルロータリ型圧縮機でもよく、またレシプロ型圧縮機であってもよい。該圧縮機が適用されるのは空気調和機に限定されず、たとえば冷蔵庫などであってもよい。
本実施の形態ではトルク制御のためのロータ機械的位置判定は、判定間違いが生じるのが抑制されるような条件、つまり位置検出間隔の変動が大きい条件のもとで許可される。具体的には、負荷脈動に起因する回転数変動を大きくして位置検出間隔の変動を大きくするような条件のもとで許可される。モータが低速で回転して回転数が低レベルであるとき、または圧縮機の凝縮圧力と蒸発圧力との差圧レベルが大きいときは回転数変動は大きいので、モータの回転数または差圧レベルの情報は位置検出間隔の変動の程度を示しているといえる。そこで、本実施の形態では、位置検出間隔の変動の程度を示すモータの回転数または差圧レベルの情報に基づいてロータ位置の検出許可のタイミングを決定する。
図1には、本実施の形態に係る圧縮機モータの制御装置の構成が示される。図1において制御装置は、商用交流電源11、リアクタなどにより構成される突入電流防止および力率改善回路12、ダイオードブリッジなどにより構成される全波整流回路13、電解コンデンサなどにより構成される平滑回路14、3相バイポーラ接続されたスイッチング素子とフライホイール・ダイオードなどにより構成されるインバータ部15、空気調和機(図示せず)のシングルロータリ型の圧縮機17を接続して、これを駆動するための3相スター結線されたU、VおよびW相の固定子巻線16U、16Vおよび16Wからなる3相ブラシレスモータ(以下、単にモータという)16、電圧レベル変換IC(Integrated Circuit)などにより構成されるベースドライバ部18、コンパレータおよび抵抗などにより構成されてモータ16の図示されないロータの位置を検出するロータ位置検出部19、該装置自体を集中的に制御・監視するための演算などの処理を行うマイクロプロセッサ20、モータ巻線電流検出回路21、DC電流検出回路22、およびAC電流検出回路23を備える。マイクロプロセッサ20はメモリ24、モータ回転数検出部25、圧力検出部27および温度検出部28を有する。また、圧縮機17には関連の圧力計26が設けられる。
圧力検出部27は、圧力計26で測定された圧縮機17の凝縮圧力(高圧側)と蒸発圧力(低圧側)の信号を入力して、これら圧力を検出する。
温度検出部28は、空気調和機の熱交換器(図示せず)の凝縮温度と蒸発温度をサーミスタなどで測定した信号TSを入力して、これら温度を検出する。
モータ巻線電流検出回路21は電流センサを有して、モータ16の巻線16U、16Vおよび16Wの中で特定の相(図1ではW相)に流れるモータ巻線電流を検出する。なお、電流センサは巻線とホール素子で構成されたセンサあるいはカレントトランスでもよい。
DC電流検出回路22は、図示されないがDC電流検出抵抗とDC電流検出アンプ部により構成されて、モータ16の駆動部側に供給されるDC電流レベルを検出する。
AC電流検出回路23は電流センサを有して、モータ16の駆動部側に供給されるAC電流レベルを検出する。電流センサは巻線とホール素子で構成されたセンサあるいはカレントトランスでもよい。
インバータ部15はモータ16の駆動を制御するためにU相上側に接続されたIGBT(Insulated Gate Bipolar Transistor)15u、V相上側に接続されたIGBT15v、W相上側に接続されたIGBT15w、U相下側に接続されたIGBT15x、V相下側に接続されたIGBT15y、およびW相下側に接続されたIGBT15zを有する。
以下に、その動作を説明する。空気調和機を運転するための電力は、モータ駆動装置であるインバータ部15に接続された商用交流電源11から供給される。その交流(AC)入力は全波整流回路13と平滑回路14により直流(DC)化され、インバータ部15へ入力される。マイクロプロセッサ20は、モータ16を目標回転数にて駆動するためのPWM(Pulse Width Modulation)による波形を、ロータ位置検出部19からのロータ位置信号を用いて演算生成してベースドライバ部18へ出力する。そこでPWM波形はIGBT駆動電圧に変換され、IGBT15u、15v、15w、15x、15y、および15zのスイッチングを行うように作用する。このようにしてインバータ部15よりモータ16へ電力が供給されることにより圧縮機17が駆動されて空気調和機が運転される。
図2(A)〜(C)には、誘起電圧によるロータ位置信号の検出方法が示される。図3には、モータ16の1回転中の負荷変動の大きいシングルロータリ型圧縮機17の負荷トルクとトルクパターンの関係が示される。
図2(A)は、モータ16の固定子巻線16U、16Vおよび16Wのそれぞれからの誘起電圧Eu、EvおよびEwの波形と基準電圧Bvを示している。誘起電圧Eu、EvおよびEwの波形は、図示のように120°ずつ位相がずれた状態になる。
ロータ位置検出部19は、誘起電圧Eu、EvおよびEwそれぞれを入力し、入力した誘起電圧Eu、EvおよびEwそれぞれと予め設定された基準電圧Bvを比較し、その比較結果を図2(B)の波形で示すロータ位置信号Hu、HvおよびHwとして出力する。ロータ位置信号Hu、HvおよびHwそれぞれは、誘起電圧Eu、EvおよびEwそれぞれが基準電圧Bvより大きい時はHighに、逆に小さい時にはLowになるように出力されるので、磁極の変化する誘起電圧波形のゼロクロス点で、立ち上がりまたは立ち下がりエッジのパルスが得られる。ただし、実際は誘起電圧検出の方法により、誘起電圧とロータ位置信号には位相の遅れが生じるが、ここでは説明を簡単にするために図2(A)の誘起電圧波形と図2(B)のロータ位置信号波形とは、同巻線では同位相になるように示している。
マイクロプロセッサ20はロータ位置信号Hu、HvおよびHwを入力し、入力したこれらロータ位置信号に基づき、モータ16を駆動する図2(C)の信号を作成する。図2(C)には、IGBT15u、15v、15w、15x、15y、および15zのそれぞれに対応して、対応のIGBTに供給されてスイッチングを行うためのインバータ駆動信号が示される。例えばロータ位置信号Huの立ち上がりエッジが検出されれば、U相上側のスイッチング素子(図1ではIGBT15u)をONさせる。次にロータ位置信号Hvの立ち上がりエッジが検出されると、U相上側のスイッチング素子をOFFさせ、V相上側のスイッチング素子(図1ではIGBT15v)をONさせる。ロータ位置信号Hwの立ち下がり信号が検出されると、V相下側のスイッチング素子(図1ではIGBT15y)からW相下側のスイッチング素子(図1ではIGBT15z)を転流させる。このようにロータ位置信号のエッジを検出する毎に順次インバータ回路のスイッチング素子を転流させて、モータ16を駆動する。
またモータ16の回転数(速度)と出力トルクを制御するため、通常、マイクロプロセッサ20は上述のインバータ駆動信号にPWMチョッピングを重畳させて、モータ16への印加電圧および電流を制御する。図では上側のみにPWMチョッピングしているが、下側であっても良いし、上下側であっても良い。このロータ位置信号Hu、HvおよびHwは、ロータの絶対位置と同期しており、位置検出間隔情報として検出できる。
この時、マイクロプロセッサ20はモータ16の出力トルクを制御する。つまり、マイクロプロセッサ20は入力したロータ位置信号Hu、HvおよびHwに基づいて内部のメモリ24に予め記憶された対応のトルクパターンデータを読出し、読出されたトルクパターンデータに基づいてPWM出力のデューティを制御し、デューティが制御されたPWM出力を用いて駆動信号を調整し、調整された駆動信号をインバータ部15に与える。これにより、モータ16の出力トルクは読出されたトルクパターンデータに従い増減され、負荷トルクに応じたトルク制御が行われるため、モータ16の1回転中の回転数変動が抑えられる。
図3には読出されたトルクパターンデータと、モータ1回転中の負荷トルクの変動とが対応付けて示される。
ここでメモリ24には、図4のようにロータ位置信号Hu、HvおよびHwが示すロータの機械的位置に対応したステートST0〜ST11のそれぞれについて、トルク補正量CTを示すトルクパターンデータがROM(Read Only Memory)化して記憶される。ここでステートとは図5に示すようにロータ1回転を各通電モードつまり転流毎に分割したものであり、4極ブラシレスモータでは12分割され、ステートST0〜ST11までの12ステートを持つ。ただし、ステートSTsとステートST(s+6)(s:0〜5の整数)のインバータ通電モードは同一である。
なお、ROM化するデータとしては、モータトルクをPWMデューティにより制御する場合は、PWMデューティの補正量である。ここで、振動低減に適したトルクパターンデータは、回転数や負荷トルクにより変化するため、図4に示すようにモータ16の回転数25を複数のランクに分け、ランク毎にトルクパターンデータTPを記憶し、回転数25に応じたトルクパターンデータTPをメモリ24から読出して用いることにより、制御性能を向上させることができる。
あるいは、複数の負荷トルクそれぞれ毎にトルクパターンデータを記憶し、検出された負荷トルクに応じたトルクパターンデータをメモリ24から選択的に読出すようにしてもよい。
このようなトルクパターンを用いた圧縮機モータのトルク制御方法においてはロータの機械的位置とトルクパターンデータが示すパターンの位相との対応をとる必要があるから、インバータ通電モードから検出できるロータの電気的位置ではなく機械的位置を検出する必要がある。例えば、4極ブラシレスモータでは、機械角180°が電気角360°となり、インバータ通電モードが同一である機械角180°位相のずれたロータ機械的位置判別が必要となる。
図6(A)〜(D)は、4極ブラシレスモータでの1回転中の負荷トルクとロータ位置検出間隔との関係を示す図である。図6(A)は、定義したステートST0〜ST11を示している。図示される関係はモータ16に同様に適用できる。
図6(B)は、圧縮機17の1回転中の負荷トルク変動を示している。圧縮機17は、1回転中に大きく3つの過程(吸入・圧縮・排出)の行程があるため、負荷トルクが大きく変動する。吸入状態から冷媒が圧縮されていくに従い負荷トルクは急激に増加し、吐出弁が開き冷媒が排出されると、負荷トルクは減少していく。この時、1回転中のインバータ回路のPWMデューティが一定であれば、負荷トルクの変動分だけ、実際にモータ16に印加されるトルクは減少し、ロータの角加速度も小さくなっていく。負荷トルクが大きく変化する区間(加速度の変化が大きく変化する)区間は、速度つまり図6(C)のロータ位置信号Hu、HvおよびHwから検出される位置検出間隔も大きく変化する(図6(D)参照)。これにより、図6(D)のように1回転中のロータ位置検出間隔Tn(n=0、1、…、11)から負荷トルク変動状態を検出できる。
ここで、ロータ機械的位置は、前述の特許文献1で示されているように、図6(D)のロータ位置検出間隔T0〜T11の長短を比較し、例えば最短(ロータ位置検出間隔T3)あるいは最長(ロータ位置検出間隔T9)の位置を基準として判定(決定)できる。あるいは、本願出願人が特開2002−44985公報で示すように、インバータ駆動信号パターンが同一となる電気角で360°離れた区間同士の位置検出間隔のうちの1組であるロータ位置検出間隔T3とT9の大小比較を行うことでロータ機械的位置を判定してもよい。
図7にトルク制御を行わない場合のシングルロータリ型圧縮機の振動特性が示される。図8には、ロータの機械的位置判定結果によるトルク制御の手順が示される。図8の手順に示すようにトルク制御を行なうためのロータの機械的位置判定の許可タイミングは算出されたモータ回転数または圧力差に基づいて決定される。ここでは、モータ回転数はモータ回転数検出部25により算出される。モータ回転数検出部25は、ロータ位置検出部19から得られる図2(B)のロータ位置信号Hu、HvおよびHwから、モータ1回転当たりの所要時間を測定し、モータ回転数を算出する。このための一連の処理はプログラム制御による。また、圧力差は圧力検出部27により検出された蒸発圧力レベルと凝縮圧力レベルの差を算出することにより求められる。この圧力差は、次のようにしても算出できる。例えば、温度検出部28により検出された凝縮温度と蒸発温度とから算出するようにしてもよい。
本実施の形態では、制御のためのモータ回転数が、次の特性1と2を考慮して第1〜第6回転数として設定される。
<特性1> 図7のようにモータ16の回転数が低いほど振動は大きくなる。これは、回転数が低いほど負荷脈動が回転数変動に及ぼす影響が大きく現れ、位置検出間隔変動が大きくなるととともに、振動も大きくなるためである。
<特性2> モータ16の回転数が1000rpm未満程度であれば、温度条件などによっては圧縮機17の凝縮圧力と蒸発圧力の差が大きくならず、負荷脈動も小さいままで推移し、回転数変動も小さくなり、位置検出間隔変動も小さくなる。このような特性1と2を考慮して第1〜第6回転数について説明する。
「第1回転数」とは、モータ16起動直後の目標回転数への加速中の回転数であり、トルク制御を行わない場合は圧縮機17の振動が大きくなる低回転数であり、例えば800rpmを指す。これは、目標回転数より十分低い値であり、なるべく早くロータ機械的位置判定を行い、トルク制御を開始して振動を低減するためである。
ここで「目標回転数」とは、モータ16に対する指令回転数であり、基本的には、空気調和機の冷/暖房能力を制御するための圧縮機17の回転数であり、温度条件などにより決定される。ただし、本実施の形態では、ロータ機械的位置判定が終了するまでは、温度条件などに関係なく目標回転数の上限を後述の第2回転数としている。マイクロプロセッサ20は決定された目標回転数となるようにインバータ部15に対して駆動信号(図2(C)参照)を出力してモータ16のトルク制御を実行する。
「第2回転数」とは、トルク制御を行わない場合は圧縮機17の振動が大きくなる低回転数を指し、<特性2>より圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるように第1回転数よりは高くし、例えば1500rpmを指す。第2回転数で回転数を制限するのは、これ以上回転数が高くなると<特性1>より、位置検出間隔の変動が小さくなり、ロータ機械的判定がしづらくなるのを回避するためである。
「第3回転数」とは、トルク制御を行わない場合は圧縮機17の振動が大きくなる低回転数を指し、<特性2>より圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるように第1回転数よりは高くし、例えば1500rpmを指す。本実施の形態ではモータ回転数が第3回転数以上となってもロータ機械的位置判定が行なわれない場合にはモータ16を停止する。これは、第3回転数以上に回転数が高くなると<特性1>より、位置検出間隔の変動が小さくなり、ロータ機械的判定がしづらくなり、またトルク制御なしで運転を長時間継続するのを防止するためである。
「第4回転数」とは、トルク制御を行わなくても振動が小さく、配管の寿命などに影響を及ぼさない回転数を指す。例えば図7に従えば3000rpm程度の高回転数を指す。
「第5回転数」とは、トルク制御を行わない場合は圧縮機17の振動が大きくなる低回転数であり、<特性2>より圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるように第1回転数よりは高くし、例えば1500rpmとする。
「第6回転数」とは、目標回転数の下限、例えば3000rpmを示す。これによりトルク制御を行わない場合に振動が大きくなる低回転での運転が禁止される。
以上より、回転数の大小は、第1回転数<第2、3、5回転数<第4,6回転数の関係になる。例えば、第2、3、5回転数は同じ回転数でも構わないが、その役割は上述のように異なる。
図8に、ロータ機械的位置判定のフローチャートの一例を、図9および図10にロータ機械的位置判定タイミングチャートをそれぞれ示す。圧縮機17起動時の温度条件などにより、モータ16起動後、圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるのが早い場合と遅い場合があり、図9は早い場合であり図10は遅い場合である。
図8のフローチャートを参照して、マイクロプロセッサ20はモータ16の起動後、所定時間(30秒)経過しているかどうかを確認する(ステップS(以下、単にSと略す)1)。ここで所定時間とはモータ16が起動されてから第1回転数に達するのに要する時間より十分長い時間を指す。S1の判定が真の場合は、モータ16のトルク制御を行わず、目標回転数の下限を所定の第4回転数(3000rpm)とする(S10,S11)。
S1が偽の場合は、モータ回転数が第1回転数(800rpm)以上であるかを確認する(S2,S3)。偽の場合はS1に戻り、真の場合は、圧力検出部27の検出結果に基づいて圧縮機17の凝縮圧力と蒸発圧力の差を算出し(S4)、圧力差が、所定のロータ機械的位置判定許可圧力差(0.5MPa)以上であるかを確認する(S5)。真の場合は、ロータ位置検出部19から入力するロータ位置信号Hu、HvおよびHwに基づいたロータ機械的位置判定(検出)を実施し(S6)、ロータ機械的位置判定(検出)が成功したかどうかを判定する(S7)。偽の場合はS1に戻るが、真の場合はトルク制御が許可されて(S8)、マイクロプロセッサ20はモータ16についての出力トルク制御を開始する。また、S5の確認が偽の場合は、目標回転数を第2回転数(1500rpm)とし(S9)、S1に戻る。
ここで、S7のロータ機械的位置判定(検出)が成功したかどうかの判定は、例えば、ロータ機械的位置判定(検出)結果が所定回数以上同一の結果となった場合は成功とすればよい。S5のロータ機械的位置判定(検出)許可のための圧力差は、実験により決定する。ここでは位置検出間隔変動が例えば±10%程度になる0.5MPa(メガパスカル)を用いている。
圧力差が所定レベル(0.5MPa)以上であるか否かの判定は、圧力差に相関したモータ巻線電流検出回路21の検出レベル、DC電流検出回路22の検出DCレベルおよびAC電流検出回路23の検出ACレベルに基づいた推定により判定するようにしてもよい。具体的には、モータ巻線電流検出回路21の検出電流レベルが前述の所定レベル(0.5MPa)に相当のレベル以上になったときに、ロータ位置検出が許可されるようにしてもよい。または、DC電流検出回路22による検出DC電流レベルが所定レベル(0.5MPa)に相当のレベル以上になったとき、ロータ位置検出が許可されるようにしてもよい。または、AC電流検出回路23による検出AC電流レベルが所定レベル(0.5MPa)に相当のレベル以上になったとき、ロータ位置検出が許可されるようにしてもよい。
図8の手順に従えば、図9に示すように、モータ16起動後、圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるのが早い場合は、圧縮機17の振動も早く大きくなるが、ロータ位置検出判定も早く行えるのでトルク制御も早く許可されるため、速やかに振動を低減できる。
一方、図10に示すように、モータ16起動後、圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるのが遅い場合は、圧縮機17の振動が大きくなるのも遅い。そこで、圧縮機17の凝縮圧力と蒸発圧力の差が大きくなり、位置検出間隔の変動が大きくなるまでS6のロータ機械的位置判定を保留することにより、正確にロータ機械的位置判定を行うことができる。
ただし、負荷脈動による位置検出間隔変動は回転数が低い方が大きくなるので、ロータ機械的位置判定を行うまでは、目標回転数を第1回転数よりは高い第2回転数に制限する。ここで、第2回転数はトルク制御を行わない場合は圧縮機17の振動が大きくなる低回転数であり、圧縮機17の凝縮圧力と蒸発圧力の差が大きくなるように第1回転数よりは高くする。目標回転数を第2回転数で制限せず、そのままモータ16が加速を継続すると、回転数が高くなり位置検出間隔の変動も小さくなるため、ロータ機械的位置判定が困難になる。また、目標回転数を第1回転数で制限してしまうと、温度条件によっては圧力差が大きくならないため、圧力差がある程度大きくなるように第1回転数より高い第2回転数に目標回転数を制限する。
所定時間を経過してもロータ機械的位置判定が行われない場合は、モータ16のトルク制御を行わず、目標回転数の下限を所定の第4回転数にする。ここで、第4回転数はトルク制御を行わなくても圧縮機17の振動が小さくなる高回転数を指す。これにより、圧縮機17の振動が製品(空気調和機)に悪影響を与えるのを防ぐことができる。
図11にロータ機械的位置判定フローチャートの他の例が示される。図8と図11のフローチャートを参照して異なる点は、図11では図8のS10とS11の処理に代替してS21の処理が設けられた点にある。図11の他のS1〜S9の処理は図8のそれと同じであるから説明は略す。図11の手順では、モータ16起動後、所定時間(30秒)経過しているかどうかを確認する(S1)。真の場合は、マイクロフプロセッサ20はモータ16を停止し(S21)、偽の場合には前述したS2以降の処理が行われる。
図11の手順に従えば、モータ16起動後から長時間(例えば、30秒間)経過してもロータ機械的位置判定(S6)が成功していない場合は、S2以降の処理は行われない(判定は中止される)ので、S21でモータ16を停止することにより、圧縮機17の振動が製品(空気調和機)に悪影響を与えるのを防ぐことができる。
図12にロータ機械的位置判定フローチャートのさらなる他の例が示される。図8と図12のフローチャートを参照して異なる点は、図12では図8のS9の処理に代替してS31とS32の処理が設けられた点にある。図12の他のS1〜S8、S10およびS11の処理は図8のそれと同じであるから説明は略す。図12の手順では、S6のロータの機械的位置判定が許可されない期間においてはモータ16の回転数が所定の第3回転数(1500rpm)以上となっているかが確認される(S31)。真の場合は、ロータ機械的位置判定をせずにモータ16を停止し(S32)、偽の場合はS1に戻る。
図12の手順に従えば、通常の条件であれば、ある程度の差圧が発生してしかるべき回転数である第3回転数となっても、その差圧が所定差圧(0.5MPa)より小さくロータ機械的位置判定が成功していない場合は、何らかの異常があると判断し、S32でモータ16を停止することにより、圧縮機17を異常な状態で運転するのを防ぐことができる。
図13にロータ機械的位置判定フローチャートのさらなる他の例が示される。図8と図13のフローチャートを参照して異なる点は、図13では図8のS4とS5の処理に代替してS41の処理が、S9の処理に代替してS42とS43の処理がそれぞれ設けられた点にある。図13の他のS1〜S3、S6〜S8、ならびにS10およびS11の処理は図8のそれと同じであるから説明は略す。
図13の手順では、モータ16の回転数が所定の第5回転数(1500rpm)以上となっているかを確認する(S41)。真の場合は、モータ16のトルク制御を行わず、目標回転数の下限を所定の第6回転数(3000rpm)とする(S42,S43)。
図13の手順に従えば、通常の条件であれば、ある程度の差圧が発生してしかるべき回転数である第5回転数となっても、ロータ機械的位置判定が成功していない場合は、トルク制御を行うと振動を助長する可能性があるため、マイクロプロセッサ20はトルク制御を行わず、目標回転数の下限を所定の第6回転数に制限する。トルク制御を行わなくても圧縮機17の振動が小さくなる高回転数で運転を行うことにより、圧縮機17の振動が製品(空気調和機)に悪影響を与えるのを防ぐことができる。
以上のように、ロータ機械的位置の検出は精度良く検出できるタイミングで許可されるから、検出されたロータ機械的位置に対応してメモリ24から読出されたパターンデータも適切なものとなり、読出されたパターンデータに基づくロータ制御も精度良くできる。また、このような特徴はマイクロプロセッサ20のプログラム制御によるから、構成を複雑にすることなくモータ16のトルク制御を精度良く実行できる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本実施の形態に係る圧縮機モータの制御装置のブロック構成図である。 (A)〜(C)には、誘起電圧によるロータ位置信号の検出方法を示す図である。 トルク制御時の負荷トルクとトルクパターンの関係を示す図である。 この発明の一実施形態によるトルクパターンデータを示す図である。 4極ブラシレスモータでのステートと機械角・電気角の関係及び各通電モード示す図である。 (A)〜(D)は4極ブラシレスモータでの1回転中の負荷トルクと位置検出間隔との関係を示す図である。 トルク制御を行わない場合のシングルロータリ型圧縮機の振動特性図である。 この発明の一実施形態のフローチャートの一例を示す図である。 この発明の一実施形態のロータ機械的位置判定タイミングを示す図である。 この発明の一実施形態のロータ機械的位置判定タイミングを示す図である。 この発明の一実施形態のフローチャートの他の例を示す図である。 この発明の一実施形態のフローチャートのさらなる他の例を示す図である。 この発明の一実施形態のフローチャートのさらなる他の例を示す図である。 従来のロータ機械的位置判定のタイミングを説明する図である。
符号の説明
11 商用交流電源、12 突入電流防止および力率改善回路、13 全波整流回路、14 平滑回路、15 インバータ部、16 3相ブラシレスモータ、17 圧縮機、18 ベースドライバ部、19 ロータ位置検出部、20 マイクロプロセッサ、21 モータ巻線電流検出回路、22 DC電流検出回路、23 AC電流検出回路、24 メモリ、25 モータ回転数検出部、26 圧力計、27 圧力検出部、28 温度検出部。

Claims (4)

  1. ロータを含むモータ回転に同期した負荷脈動を有した負荷装置を駆動する前記モータを制御するためのモータ制御装置であって、
    許可されたときに前記モータ内の前記ロータの機械的位置を検出して、検出された前記ロータ機械的位置に対応して予め準備されたパターンデータに基づき前記モータのトルクを制御するトルク制御手段と、
    前記位置検出の間隔の変動を示す情報に基づいて前記ロータ機械的位置の検出を許可する機械的位置検出許可手段とを備え、
    前記機械的位置検出許可手段は、前記モータが起動されてから前記モータ回転数が目標回転数に移行する間の第1回転数に達しているときに前記ロータ機械的位置検出を許可し、
    前記モータが起動されてから所定時間を経過後において前記ロータ機械的位置検出が許可されない場合に、前記目標回転数の下限を前記第1回転数を超える第4回転数に設定する、モータ制御装置。
  2. ロータを含むモータ回転に同期した負荷脈動を有した負荷装置を駆動する前記モータを制御するためのモータ制御装置であって、
    許可されたときに前記モータ内の前記ロータの機械的位置を検出して、検出された前記ロータ機械的位置に対応して予め準備されたパターンデータに基づき前記モータのトルクを制御するトルク制御手段と、
    前記位置検出の間隔の変動を示す情報に基づいて前記ロータ機械的位置の検出を許可する機械的位置検出許可手段とを備え、
    前記負荷装置は圧縮機であり、
    前記機械的位置検出許可手段は、前記圧縮機の凝縮圧力と蒸発圧力の差圧のレベルに基づいて前記ロータ機械的位置の検出を許可し、
    前記機械的位置検出許可手段は、前記モータが起動されてから前記モータ回転数が目標回転数に移行する間の第1回転数に達しているときに前記ロータ機械的位置検出を許可し、
    前記モータが起動されてから所定時間を経過後において前記ロータ機械的位置検出が許可されない場合に、前記目標回転数の下限を前記第1回転数を超える第4回転数に設定する、モータ制御装置。
  3. ロータを含むモータ回転に同期した負荷脈動を有した負荷装置を駆動する前記モータを制御するためのモータ制御装置であって、
    許可されたときに前記モータ内の前記ロータの機械的位置を検出して、検出された前記ロータ機械的位置に対応して予め準備されたパターンデータに基づき前記モータのトルクを制御するトルク制御手段と、
    前記位置検出の間隔の変動を示す情報に基づいて前記ロータ機械的位置の検出を許可する機械的位置検出許可手段とを備え、
    前記機械的位置検出許可手段は、前記モータが起動されてから前記モータ回転数が目標回転数に移行する間の第1回転数に達しているときに前記ロータ機械的位置検出を許可し、
    前記モータが起動されてから所定時間において前記ロータ機械的位置検出が許可されることなく、前記モータ回転数が前記第1回転数を超える第5回転数以上となった場合に、前記目標回転数の下限を前記第5回転数を超える第6回転数に設定する、モータ制御装置。
  4. ロータを含むモータ回転に同期した負荷脈動を有した負荷装置を駆動する前記モータを制御するためのモータ制御装置であって、
    許可されたときに前記モータ内の前記ロータの機械的位置を検出して、検出された前記ロータ機械的位置に対応して予め準備されたパターンデータに基づき前記モータのトルクを制御するトルク制御手段と、
    前記位置検出の間隔の変動を示す情報に基づいて前記ロータ機械的位置の検出を許可する機械的位置検出許可手段とを備え、
    前記負荷装置は圧縮機であり、
    前記機械的位置検出許可手段は、前記圧縮機の凝縮圧力と蒸発圧力の差圧のレベルに基づいて前記ロータ機械的位置の検出を許可し、
    前記機械的位置検出許可手段は、前記モータが起動されてから前記モータ回転数が目標回転数に移行する間の第1回転数に達しているときに前記ロータ機械的位置検出を許可し、
    前記モータが起動されてから所定時間において前記ロータ機械的位置検出が許可されることなく、前記モータ回転数が前記第1回転数を超える第5回転数以上となった場合に、前記目標回転数の下限を前記第5回転数を超える第6回転数に設定する、モータ制御装置。
JP2008285666A 2008-11-06 2008-11-06 モータ制御装置 Expired - Fee Related JP4804521B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285666A JP4804521B2 (ja) 2008-11-06 2008-11-06 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285666A JP4804521B2 (ja) 2008-11-06 2008-11-06 モータ制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002354030A Division JP4475867B2 (ja) 2002-12-05 2002-12-05 モータ制御装置および方法

Publications (2)

Publication Number Publication Date
JP2009027923A JP2009027923A (ja) 2009-02-05
JP4804521B2 true JP4804521B2 (ja) 2011-11-02

Family

ID=40399175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285666A Expired - Fee Related JP4804521B2 (ja) 2008-11-06 2008-11-06 モータ制御装置

Country Status (1)

Country Link
JP (1) JP4804521B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720867B2 (en) 2015-10-20 2020-07-21 Regal Beloit America, Inc. Systems and methods for controlling an electric motor
JP7190333B2 (ja) * 2018-11-07 2022-12-15 ミネベアミツミ株式会社 モータ駆動制御装置、電子機器及びモータの制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851971B2 (ja) * 1998-02-24 2006-11-29 株式会社デンソー Co2用圧縮機
JP3707242B2 (ja) * 1998-05-15 2005-10-19 株式会社デンソー 可変容量型圧縮機
JP2000224886A (ja) * 1999-01-29 2000-08-11 Zexel Corp 直流ブラシレスモータの起動方法及びモータ起動制御装置
JP4511682B2 (ja) * 2000-04-12 2010-07-28 三菱重工業株式会社 圧縮機用モータの制御装置
JP2001304703A (ja) * 2000-04-18 2001-10-31 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP3470089B2 (ja) * 2000-07-21 2003-11-25 シャープ株式会社 圧縮機モータのトルク制御装置

Also Published As

Publication number Publication date
JP2009027923A (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
US10637377B2 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
US20070101735A1 (en) Heat pump apparatus using expander
US7427841B2 (en) Driving method and driver of brushless DC motor
WO2004084401A1 (ja) 電動圧縮機
JP4957223B2 (ja) モータの起動装置
JP2008099483A (ja) モータ駆動装置およびこれを具備する冷蔵庫
WO2016006613A1 (ja) モータ制御装置及び冷凍・空調装置
JP4804521B2 (ja) モータ制御装置
JP3476067B2 (ja) モータの制御装置
JP4475867B2 (ja) モータ制御装置および方法
JP3833918B2 (ja) モータ制御装置
JP2010226842A (ja) ブラシレスdcモータの制御方法およびブラシレスdcモータの制御装置
JP4274800B2 (ja) モータの制御装置、その制御装置を用いた空気調和機および冷蔵庫
JP2012186876A (ja) 圧縮機の駆動装置およびこれを用いた冷蔵庫
JP7361933B2 (ja) 電動機駆動装置および冷凍サイクル適用機器
JP5385557B2 (ja) モータ制御装置、圧縮機駆動装置、及び冷凍・空調装置
JP2008005639A (ja) ブラシレスdcモータの駆動方法およびその装置
KR101203408B1 (ko) 가속도계를 구비한 냉장고용 압축기의 bldc 모터
JP4173724B2 (ja) モータのトルク制御装置
JP2002044985A (ja) 圧縮機モータのトルク制御装置
JP4357176B2 (ja) モータの制御装置、その制御装置を用いた空気調和機および冷蔵庫
JP2006223014A (ja) モータ駆動装置
JP2007040281A (ja) レシプロ式圧縮機の制御装置
JP2006304444A (ja) モータ駆動装置と冷蔵庫
JP6970871B2 (ja) モータ駆動装置および、これを用いた冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees