JP4329572B2 - 新規な含フッ素重合体 - Google Patents

新規な含フッ素重合体 Download PDF

Info

Publication number
JP4329572B2
JP4329572B2 JP2004059313A JP2004059313A JP4329572B2 JP 4329572 B2 JP4329572 B2 JP 4329572B2 JP 2004059313 A JP2004059313 A JP 2004059313A JP 2004059313 A JP2004059313 A JP 2004059313A JP 4329572 B2 JP4329572 B2 JP 4329572B2
Authority
JP
Japan
Prior art keywords
polymer
compound
group
fluorine
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059313A
Other languages
English (en)
Other versions
JP2005187789A (ja
Inventor
郁生 松倉
雄一郎 石橋
弘賢 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004059313A priority Critical patent/JP4329572B2/ja
Publication of JP2005187789A publication Critical patent/JP2005187789A/ja
Application granted granted Critical
Publication of JP4329572B2 publication Critical patent/JP4329572B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Polyethers (AREA)

Description

本発明は、短波長光に対して優れた透明性と耐久性を有する新規な含フッ素重合体に関する。
半導体装置や液晶表示板の製造工程であるフォトリソグラフィ(露光処理)において、フォトマスクやレチクル(以下、これらをマスクパターン面という。)への異物付着を防止するために、ペリクルが用いられる。ペリクルとは、透明薄膜(以下、ペリクル膜という。)が接着剤を介して枠体に設置され、マスクパターンの面上に一定の距離をおいて装着される光学物品である。ペリクルには、露光処理に用いる光に対する透明性、耐久性、および機械的強度が求められる。
半導体装置や液晶表示板の製造では、配線や配線間隔の微細化が進行している。最小パターン寸法0.3μm以下の配線加工においては、露光処理の光源として発振波長が248nmのKrFエキシマレーザーが用いられる。露光処理におけるペリクルの材料として、主鎖に飽和環構造を含む含フッ素重合体が知られている(特許文献1および特許文献2参照。)。
近年では、最小パターン寸法が0.2μm以下の配線加工が求められており、露光処理の光源として、発振波長が200nm以下のエキシマレーザー(たとえば、発振波長が193nmのArFエキシマレーザー光や発振波長が157nmのFエキシマレーザー光等。)の使用が検討されている。特に、最小パターン寸法0.07μm以下の配線加工には、Fエキシマレーザー光が有力候補とされているが、前記含フッ素重合体は充分な透明性および耐久性を有していない。また、ペリクル膜と枠体を接着する接着剤においても、レーザー光の迷光や反射光による同様の問題があった。
また他のペリクル材料としては、(1)繰返し構造中の主鎖を形成する部分にエーテル結合を含み、かつ環状構造を含まない含フッ素樹脂(特許文献3参照。)、(2)炭素原子の連鎖を主鎖とする実質的に線状の含フッ素ポリマー(特許文献4参照。)が提案されている。
特開平3−39963号公報 特開平3−67262号公報 特開2001−255643号公報 特開2001−330943号公報
しかし、(1)に記載される含フッ素樹脂は、実際には油状またはグリース状であり、ペリクル膜として使用できる自立膜を形成させるのは困難である。また仮に自立膜となっても、ガラス転移点が25℃以下であるため、露光処理において発生する熱により膜がたるむ、破れる等の問題がある。また、(2)に記載される含フッ素ポリマーは、Fエキシマレーザー光に対して透明性を有するが、耐久性が充分でない問題がある。
本発明者らは、主鎖にエーテル性酸素原子を有し、かつ、主鎖の炭素原子を含むエーテル環構造を有する新規な含フッ素重合体(I)を見いだした。また含フッ素環状ケトン化合物(a)を重合して、該重合体(I)を製造する方法を見いだした。さらに重合体(I)を有機溶媒に溶解させた溶液組成物を見いだし、該溶液組成物が有用な被膜を形成することを見いだした。
すなわち、本発明は以下の発明を提供する。
<1>下式(A)で表される単位を含む重合体(I)。
Figure 0004329572
ただし、nは1、F1はフッ素原子またはトリフルオロメチル基、RF2はフッ素原子または炭素数1〜5のペルフルオロアルキル基、を示す。
<2>式(A)で表される単位の1種以上からなる、または、式(A)で表される単位の1種以上と式(A)で表される単位以外の単位の1種以上からなる<1>に記載の重合体。
<3>式(A)で表される単位以外の単位が、下式で表される単位のいずれかである<2>に記載の重合体。
−CHR−CR− (M1)
−CFR−CR− (M2)
Figure 0004329572
ただし、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子、または飽和の1価含フッ素有機基を示す。ただし、R、R、およびRから選ばれる少なくとも1つはフッ素原子または飽和の1価含フッ素有機基を示す。または、R、R、およびRから選ばれる2つの基が共同で2価含フッ素有機基を形成し、かつ残余の1つの基は水素原子、フッ素原子、または飽和の1価含フッ素有機基を示す。
、R、およびRは、それぞれ独立に、フッ素原子または飽和の1価含フッ素有機基を示す。または、R、R、およびRから選ばれる2つの基が共同で2価含フッ素有機基を形成し、かつ残余の1つの基はフッ素原子もしくは飽和の1価含フッ素有機基を示す。
、R、R、およびR10は、それぞれ独立に、水素原子、フッ素原子、または1価含フッ素有機基を示す。
は2価含フッ素有機基を示す。
<4>重合体(I)中の全単位に対する式(A)で表わされる単位以外の単位の割合が、5〜95モル%である<2>または<3>に記載の重合体。
<5>質量平均分子量が500〜1000000である<1>〜<4>のいずれかに記載の重合体。
<6>下式(a)で表される化合物を重合することを特徴とする式(A)で表される単位を含む重合体の製造方法。
Figure 0004329572
ただし、nは1、F1はフッ素原子またはトリフルオロメチル基、RF2はフッ素原子または炭素数1〜5のペルフルオロアルキル基、を示す。
<7><1>〜<5>のいずれかに記載の重合体(I)を有機溶媒に溶解させた溶液組成物。
本発明によれば、新規な含フッ素重合体(I)とその製造方法が提供される。本発明の含フッ素重合体(I)は、発振波長が200nm以下の光(以下、短波長光という。)に対して高い透明性と耐久性を有し、かつ優れた耐熱性と製膜性を有する膜を形成するため、ペリクル材料等として有用な化合物である。
本明細書において、式(a)で表される化合物を化合物(a)とも記す。他の式で表される化合物においても同様に記す。また、式(A)で表される単位を単位(A)と記す。重合体における単位とは、モノマーが重合することによって形成する該モノマーに由来するモノマー単位(繰返し単位ともいう)を意味するが、本発明における単位は重合反応によって直接形成する単位であっても、重合反応以外の化学変換によって形成する単位であってよい。
本明細書において、炭素原子に結合した水素原子の1以上がフッ素原子に置換された基は、基の名称の前に「ポリフルオロ」を付けて表記する。ポリフルオロの基中には、水素原子が存在しても存在しなくてもよい。炭素原子に結合した水素原子の実質的に全てがフッ素原子で置換された基は、基の名称の前に「ペルフルオロ」をつけて表記する。ペルフルオロの基中には、実質的に水素原子が存在しない。
本発明の重合体(I)は、下式(A)で表わされる単位を必須とする重合体であり、重合体主鎖にエーテル結合および飽和環構造を含む新規な重合体である。
Figure 0004329572
ただし、nは1で。RF1はフッ素原子またはトリフルオロメチル基であり、原料の入手容易さの観点から、フッ素原子が好ましい。RF2はフッ素原子または炭素数1〜5のペルフルオロアルキル基である。RF2がペルフルオロアルキル基である場合には、直鎖状であっても分岐状であってもよい。RF2はフッ素原子、トリフルオロメチル基、またはペンタフルオロエチル基が好ましく、フッ素原子が特に好ましい。
単位(A)の具体例としては、下式で表される単位が挙げられる。
Figure 0004329572
本発明の重合体(I)は単位(A)の1種以上を必須とする。重合体(I)は、単位(A)の1種以上とともに、単位(A)以外の単位(以下、他の単位という。)を含む重合体であってもよい。重合体(I)が2種以上の単位を含む場合、各単位の並び方としては、ブロック状、グラフト状、およびランダム状が挙げられる。このうち重合体(I)の有用性の観点から、各単位の並び方はランダム状であるのが好ましい。
重合体(I)としては、実質的に単位(A)の1種以上からなる重合体、または、単位(A)の1種以上と他の単位の1種以上からなる重合体が好ましい。前者の重合体(I)としては単位(A)の1種からなる重合体であるのが好ましい。後者の重合体(I)としては単位(A)の1種と他の単位の1種とからなる重合体であるのが好ましい。
重合体(I)の全単位に対する単位(A)の割合は、重合体(I)の用途に応じて適宜変更されうる。通常の場合、単位(A)の割合は、0.0001〜100モル%が好ましく、他の単位を含む場合には5〜95モル%が特に好ましい。他の単位の割合は、0〜99.999モル%が好ましく、5〜95モル%が特に好ましい。重合体(I)を後述するペリクルの膜または接着剤に用いる場合、重合体(I)中の単位(A)の割合は、0.01〜100モル%が好ましい。
また重合体(I)の質量平均分子量は、500〜1000000が好ましく、500〜500000が特に好ましく、500〜300000がとりわけ好ましい。
重合体(I)が他の単位を含む場合、他の単位としては、フッ素原子を必須とする単位が好ましく、下記単位が特に好ましい。ただしR〜R10およびQは、前記と同じ意味を示す。これらの基の好ましい態様は、後述する。
−CHR−CR− (M1)
−CFR−CR− (M2)
Figure 0004329572
本発明の重合体(I)の製造方法としては、モノマーの重合反応による方法(方法1)、モノマーの重合反応と重合反応以外の反応の組み合わせによる方法(方法2)、または重合反応以外の反応による方法(方法3)が好ましく、方法1または方法2によるのが好ましい。方法2による場合には、重合反応以外の化学変換により変換される構造を有するモノマーを入手し、該モノマーを重合した後に重合反応以外の化学変換を行う方法が挙げられる。また方法3による場合には、単位(A)に対応する炭素骨格と該炭素骨格の炭素原子に結合した水素原子を有する重合体をフッ素化して単位(A)を含む重合体を製造する方法が挙げられる。
重合体(I)が単位(A)のみの1種以上からなる重合体である場合の製造方法としては、方法1によるのが好ましく、下記化合物(a)(ただしn、RF1、およびRF2は、前記と同じ意味を示す。)の1種以上を重合させる方法が好ましい。化合物(a)の入手方法は後述する。
Figure 0004329572
また、重合体(I)が他の単位を含む場合の製造方法としては、方法1または方法2によるのが好ましい。これらの方法は、他の単位の構造に応じて適宜変更しうる。
すなわち重合体(I)の製造方法としては、化合物(a)を重合させる方法、化合物(a)と化合物(a)と共重合しうるモノマー(以下、該モノマーをコモノマーという。)を重合させる方法、または、化合物(a)とコモノマーを重合させて得た重合体をつぎに化学変換する方法、が好ましい。ここで、コモノマーとは化合物(a)と共重合する化合物(a)以外のモノマーである。
コモノマーとしては、フッ素原子を含む化合物であっても、フッ素原子を含まない化合物であってもよく、重合体(I)の有用性の観点と化合物(a)との重合性の観点から、フッ素原子を含む化合物であるのが好ましい。このうち、コモノマーとしては、前記単位(M1)〜(M5)を重合反応によって直接形成しうるコモノマーである下記化合物(m1)、下記化合物(m2)、または下記化合物(m3)が好ましい。
CHR=CR (m1)
CFR=CR (m2)
CR=CR−Q−CR10=CF (m3)
ただし、R〜R10およびQは、前記と同じ意味を示す。
〜R10がそれぞれ1価含フッ素有機基である場合の該基とは、フッ素原子を1個以上と炭素原子を1個以上とを有する1価の基をいい、飽和の基であっても不飽和の基であってもよく、飽和の1価含フッ素有機基が好ましい。R〜R10はそれぞれ直鎖構造であっても分岐構造であってもよい。飽和の1価含フッ素有機基としては、ポリフルオロアルキル基が好ましく、炭素数1〜6のポリフルオロアルキル基が特に好ましく、ポリフルオロメチル基およびペンタフルオロエチル基がとりわけ好ましい。
またR〜R10およびQが、それぞれ2価含フッ素有機基である場合の該基とは、フッ素原子の1個以上と、炭素原子の1個以上とを有する2価の基をいい、飽和の基であっても不飽和の基であってもよく、飽和の2価含フッ素有機基が好ましい。飽和の2価含フッ素有機基としては、エーテル性酸素原子を含むペルフルオロアルキレン基が好ましい。該2価含フッ素有機基は直鎖構造であっても分岐構造であってもよく、分岐構造である場合には分岐部分がトリフルオロメチル基、またはペンタフルオロエチル基であるのが好ましい。
前記化合物(m1)は、重合反応によって単位(M1)を形成するコモノマーである。化合物(m1)としては、炭素数が2または3である化合物(たとえば、フッ化ビニル、1,2−ジフルオロエチレン、フッ化ビニリデン、トリフルオロエチレン等。)が挙げられ、フッ化ビニリデン、フッ化ビニル、またはトリフルオロエチレンが好ましい。
前記化合物(m2)は、重合反応によって単位(M2)を形成するコモノマーである。
化合物(m2)の具体例としては、テトラフルオロエチレン、ヘキサフルオロプロピレン等のペルフルオロオレフィン類;ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)等のペルフルオロ(アルキルビニルエーテル)類;下記化合物(m2−1)、下記化合物(m2−2)、および下記化合物(m2−3)等の環状モノマー等;等が挙げられる。
Figure 0004329572
ただしR11〜R17は、それぞれ独立に、フッ素原子または飽和の1価含フッ素有機基を示す。またR11およびR12は、共同で2価含フッ素有機基(Q)を形成していてもよい。Qはエーテル性酸素原子またはジフルオロメチレン基を示す。
飽和の1価含フッ素有機基である場合のR11〜R17としては、それぞれ独立に、フッ素原子またはエーテル性酸素原子を有してもよいポリフルオロアルキル基が好ましく、フッ素原子、炭素数1〜2のペルフルオロアルキル基、または炭素数1〜2のペルフルオロアルコキシ基が特に好ましい。
式(m2−1)中のR11とR12が2価含フッ素有機基(Q)を形成する場合のQは、炭素−炭素結合間にヘテロ原子(エーテル性酸素原子が好ましい。)が挿入された構造を2個以上含む含フッ素アルキレン基が好ましい。該基は直鎖構造であってもペルフロオロアルキル基を分岐部分とする分岐構造の基であってもよい。
化合物(m2−1)としては、下記化合物が挙げられ、化合物(m2−10)、化合物(m2−11)、または化合物(m2−12)が好ましい。ただし、R17はフッ素原子または1価含フッ素有機基であり、n、RF1、RF2は、前記と同じ意味を示す。
Figure 0004329572
化合物(m2−1)の一態様である化合物(m2−10)の入手方法は後述する。一般式(m2−10)で表される化合物の具体例としては、下記化合物が挙げられる。
Figure 0004329572
化合物(m2−2)の具体例としては、下記化合物が挙げられる。
Figure 0004329572
化合物(m2−3)の具体例としては、下記化合物が挙げられ、化合物(m2−30)が好ましい。ただし、RF3は炭素数1〜7のペルフルオロアルキル基を示し、トリフルオロメチル基が好ましい。
Figure 0004329572
化合物(m2)としては、テトラフルオロエチレン、化合物(m2−1)、または化合物(m2−3)が好ましく、テトラフルオロエチレン、化合物(m2−10)、化合物(m2−11)、化合物(m2−12)、または化合物(m2−30)が特に好ましい。該好ましい化合物(m2)に由来するモノマー単位の具体例としては、−CFCF−、下記単位(M2−10)、下記単位(M2−11)、下記単位(M2−12)、および下記単位(M2−30)が挙げられる。
Figure 0004329572
前記化合物(m3)は、前述した単位(M3)、単位(M4)、または単位(M5)を、それぞれ重合反応によって形成しうるコモノマーである。単位(M3)〜単位(M5)中のR〜Rは、それぞれ独立に、水素原子またはフッ素原子が好ましい。さらにRおよびRの一方または両方がフッ素原子である場合のRは水素原子またはフッ素原子が好ましく、RおよびRが水素原子である場合のRは水素原子またはフッ素原子が好ましい。R10は、フッ素原子、トリフルオロメチル基、またはペンタフルオロエチル基が好ましく、フッ素原子が特に好ましい。
は、総炭素数1〜10のエーテル性酸素原子を含んでいてもよいペルフルオロアルキレン基が好ましい。特に、Rが結合した炭素原子と、R10が結合した炭素原子とを連結するQの原子間距離のうち最短の原子間距離が2〜4原子である場合のQが好ましい。またQは、直鎖構造または分岐を有する構造が好ましい。
さらにQとしては、R10が結合する炭素原子と結合する末端にエーテル性酸素原子を有する炭素数1〜3のペルフルオロアルキレン基、両末端にエーテル性酸素原子を有する炭素数1〜2のペルフルオロアルキレン基、または炭素数1〜4のペルフルオロアルキレン基が好ましい。これらの基が分岐を有する場合には、分岐部分が炭素数1〜3のペルフルオロアルキル基(トリフルオロメチル基が好ましい。)である該基が好ましい。
化合物(m3)の具体例としては、下記化合物(m3−1)、下記化合物(m3−2)および下記化合物(m3−3)が挙げられる。ただし、Q、Q、およびQは、それぞれ独立に、炭素数1〜3のペルフルオロアルキレン基を示す。R18、R19およびR20は、それぞれ独立に、フッ素原子または水素原子を示す。
CH=CR18−Q−O−CF=CF (m3−1)、
CF=CR19−Q−O−CF=CF (m3−2)、
CHF=CR20−Q−O−CF=CF (m3−3)。
化合物(m3−1)の具体例としては、下記化合物が挙げられる。
CH=CHCFCFOCF=CF
CH=CHCFCFCFOCF=CF
CH=CHCFOCF=CF
CH=CHCF(CF)CFOCF=CF
CH=CFCFCFOCF=CF
CH=CFCF(CF)CFOCF=CF
化合物(m3−2)の具体例としては、下記化合物が挙げられる。
CF=CFCFOCF=CF (m3−20)、
CF=CFCFCFOCF=CF (m3−21)、
CF=CHCF(CF)CFOCF=CF (m3−22)、
CF=CHCFCFOCF=CF (m3−23)。
化合物(m3−3)の具体例としては、下記化合物が挙げられる。
CHF=CHCFCFOCF=CF
CHF=CHCF(CF)CFOCF=CF
また化合物(m3−1)〜(m3−3)以外の化合物(m3)としてはCH=CHOC(CFOCF=CF等が挙げられる。
これらのうち化合物(m3)としては、化合物(m3−1)、または化合物(m3−2)が好ましく、化合物(m3−20)、化合物(m3−21)、または化合物(m3−22)が特に好ましい。これらのモノマーは環化重合反応により環状構造を必須とする単位を形成する。たとえば化合物(m3)に由来するモノマー単位(M3)の具体例としては、化合物(m3)が環化重合して形成する単位が挙げられる。たとえば化合物(m3−22)が環化重合した単位としては下記の3つの単位が挙げられる。
Figure 0004329572
前記化合物(a)は、下式で示す方法により入手するのが好ましい。ただし、nは1を示す。Rは水素原子、フッ素原子、またはメチル基を示す。Rは水素原子、フッ素原子、または炭素数1〜5のアルキル基を示す。

Figure 0004329572
すなわち、RCH(OH)CH(OH)(CHOHとRCHOとの付加物である混合物(通常は前記化合物(1a)および前記化合物(1b)からなる混合物である。)に、R−COF(Rは、エーテル性酸素原子を有してもよいペルフルオロアルキル基を示し、エーテル性酸素原子を有するペルフルオロアルキル基が好ましい。)で表される化合物をエステル化反応させ、つぎに液相中でフッ素化反応を行い前記化合物(3a)と前記化合物(3b)との混合物を得る。つぎに該混合物を熱分解することにより、前記化合物(a)と前記化合物(b)の混合物を得て、混合物から化合物(a)を分離する方法である。
化合物(a)と化合物(b)の混合物から化合物(b)を分離する方法としては、混合物に水を添加して、化合物(a)のケト基を−C(OH)−基に化合物(b)の−COF基を−COOH基に変換した後に、−C(OH)−基を脱水反応によってケト基に再変換し、つぎに蒸留等の方法で化合物(a)を分離する方法が好ましい。
また化合物(m2−10)のうちR17がフッ素原子である下記化合物(m2−10F)の入手方法としては、上記方法で得た化合物(a)を用いた、以下の製造ルートが挙げられる(ただし、n、RF1、RF2は前記と同じ意味を示す。)。
Figure 0004329572
すなわち化合物(a)に、エチレンオキシドを付加する方法、または、2−クロロエタノールを付加し、つぎに塩基の存在下で脱塩化水素することによって閉環する方法、により前記化合物(5a)を得る。つぎに、該化合物(5a)を光塩素化反応して前記化合物(6a)を得る。さらに、該化合物(6a)を選択的にフッ素化反応して前記化合物(7a)を得た後、該化合物(7a)を脱塩素化して化合物(m2−10F)を得る方法である。また化合物(m2−10)におけるR17が飽和の1価含フッ素有機基である化合物は、前記化合物(a)に付加させるエチレンオキシドを他の化合物に変更して同様の反応を行うことにより得られる。
本発明の重合体(I)としては、化合物(a)の1種のみからなる単独重合体または化合物(a)とコモノマーとの共重合体がとりわけ好ましい。共重合体である場合の好ましい例としては、化合物(a)とフッ化ビニリデンとの共重合体、化合物(a)とフッ化ビニルとの共重合体、化合物(a)とトリフルオロエチレンとの共重合体、化合物(a)とテトラフルオロエチレンとの共重合体、化合物(a)と化合物(m2−10)との共重合体、化合物(a)と化合物(m2−11)との共重合体、化合物(a)と化合物(m2−12)との共重合体、化合物(a)と化合物(m2−30)との共重合体、化合物(a)の単位と化合物(m3−20)が環化重合した単位からなる共重合体、化合物(a)の単位と化合物(m3−21)が環化重合した単位からなる共重合体、または化合物(a)の単位と化合物(m3−22)が環化重合した単位からなる共重合体、が挙げられる。
本発明の重合体(I)を化合物(a)の重合反応により得る方法は、新規な知見に基づく。すなわち、含フッ素非環状ケトン化合物であるCFCOCFとフッ化ビニリデンとがラジカル共重合する例は報告されていたが、含フッ素環状ケトン化合物である化合物(a)のケト基が重合することを、本発明者らは初めて見いだした。
本発明は化合物(a)を重合することを特徴とする式(A)で表される単位を含む重合体の製造方法も提供する。
本発明における重合反応は、アニオン重合やカチオン重合等のイオン重合やラジカル重合で行うことができ、ラジカル重合で行うのが好ましい。重合の方法は、塊状重合、懸濁重合、溶液重合等方法が挙げられる。
ラジカル重合は、重合開始剤を用いて行うのが好ましい。重合開始剤は、重合体の末端基等に重合開始剤に由来する−CH−連鎖が形成されるのを避ける観点から、ペルフルオロ化合物を用いるのが好ましく、ペルフルオロアルキル基部分の炭素数が短い(炭素数1〜3が好ましい。)ペルフルオロ化合物を用いる、または、ポリエーテル構造を有するペルフルオロ化合物を用いるのが特に好ましい。
重合開始剤としては、下記化合物が挙げられる。ただし、下式において炭素数が3以上のペルフルオロアルキル基部分の構造は、直鎖構造であっても分岐構造であってもよい。
(CCOO−)、(CCOO−)、(COCF(CF)CFCOO−)、(COCF(CF)CFOCF(CF)CFCOO−)、((CFCO−)、(CO−)、((CHCHOCOO−)
重合反応は、異常な重合や急激な発熱による化合物(a)の分解を抑える観点から、溶媒の存在下で行うのが好ましく、化合物(a)とプロトン性溶媒との反応性が高い観点から、非プロトン性有機溶媒の存在下で行うのが特に好ましい。非プロトン性有機溶媒としては、重合体(I)中に残存した溶媒中の塩素原子が重合体(I)の短波長光に対する耐久性を阻害する観点から、塩素原子を含まない非プロトン性有機溶媒が好ましい。
非プロトン性有機溶媒の例としては、ペルフルオロオクタン、ペルフルオロデカン、2H,3H−ペルフルオロペンタン、1H−ペルフルオロヘキサン等のポリフルオロアルカン類。メチルペルフルオロイソプロピルエーテル、メチルペルフルオロブチルエーテル、メチル(ペルフルオロヘキシルメチル)エーテル、メチルペルフルオロオクチルエーテル、エチルペルフルオロブチルエーテル等のポリフルオロエーテル類が挙げられる。
重合における反応温度は、−10℃〜+150℃が好ましく、0℃〜+120℃が特に好ましい。特に2種以上のモノマーを反応させる場合には、反応温度が高すぎるとモノマー単位の配列がブロック状になる傾向がある。一方、反応温度が低すぎると、重合体の収率が極端に低下する傾向がある。
重合における反応圧力は、減圧、加圧、および大気圧のいずれであってもよく、通常は、大気圧〜2MPa(ゲージ圧)が好ましく、大気圧〜1MPa(ゲージ圧)が特に好ましい。
本発明の重合体(I)には、官能基を導入してもよい。官能基としては、カルボキシル基、スルホン酸基、アルコキシカルボニル基、アシロキシ基、アルケニル基、加水分解性シリル基、水酸基、マレイミド基、アミノ基、シアノ基、およびイソシアネート基が挙げられる。重合体(I)をペリクル用の接着剤等として使用する場合には、重合体(I)中に官能基を導入するのが好ましい。該重合体(I)中の官能基の割合は、0.0001〜0.0010モル/gが好ましい。
重合体(I)に官能基を導入する方法としては、コモノマーとして官能基を含む化合物を重合させる方法(前記方法1による。)、または、コモノマーとして官能基を導入しうる基を有するモノマーを選択し、重合反応後に官能基を導入する方法(前記方法2による。)、が挙げられる。これらの方法は、公知の方法にならって実施できる(たとえば、特開平4−189880号公報、特開平4−226177号公報、特開平6−220232号公報等。)。
具体的にはつぎの方法が例示されうる。
(方法4)化合物(a)と官能基を含むコモノマーを共重合させる方法。
(方法5)重合開始剤および/または連鎖移動剤に由来する官能基、または該官能基から導きうる官能基を、目的とする官能基に変換する方法。
(方法6)化合物(a)と官能基に変換される基を含むコモノマーとを共重合させて、官能基に変換される基を化学変換する方法。
(方法7)重合体を、酸素ガス雰囲気下で高温処理して側鎖および/または末端基を部分的に酸化分解してカルボキシル基とする方法。
官能基を有する重合体の製造方法としては、反応操作が容易であることから、方法4〜7によるのが好ましく、特に方法5または方法7によるのが好ましい。官能基に変換しうる基としては、アルコキシカルボニル基が挙げられる。該基は加水分解反応等によりカルボキシル基に変換できる。
重合体(I)を重合反応により製造した場合には、つぎにフッ素ガスを接触させる処理を行って重合鎖の末端基を変換するのが好ましい。該処理を行う温度は、250℃以下が好ましく、240℃以下が特に好ましい。該処理は、固体状態の重合体(I)に対して行ってもよく、溶液状態の重合体(I)に対して行ってもよい。該処理により重合体(I)は、重合で生成しうる不適な重合鎖の末端部や不飽和結合部がフッ素原子により置換および/または付加された、より耐久性に優れた重合体となる。たとえば、重合体(I)の末端基が−CH=CH基を含む場合には、該処理により末端基を−CFCF基および/または−CFCFH基に変換できる。ただし、重合体(I)に官能基を導入する場合には、フッ素ガスによる処理は行わないのが好ましい。
本発明の重合体(I)は、単位(A)に基づく飽和環構造がかさ高いため、重合体主鎖の運動が制限され、ガラス転移温度が高くなる。また、本発明の重合体(I)は、全光線、特に短波長光、に対して高い透明性および耐久性を有する。また本発明の重合体(I)は、低屈折率性、低誘電率性、低吸水率性、低表面エネルギー性、耐熱性、および耐薬性に優れる。よって、重合体(I)はこれらの性質を要求される分野における機能性材料として有用に用いうる。
たとえば、重合体(I)から形成された被膜は、眼鏡レンズ、光学レンズ、光学セル、DVD用ディスク、フォトダイオード、ショーウインドウ、ショーケース、太陽電池、各種ディスプレイ(たとえば、PDP、LCD、FED、有機EL、プロジェクションTV。)等の表面保護膜、半導体素子の保護膜(たとえば、層間絶縁膜、バッファーコート膜、パッシベーション膜、α線遮蔽膜、素子封止材、高密度実装基板用層間絶縁膜、高周波素子用防湿膜(たとえば、RF回路素子、GaAs素子、InP素子等の防湿膜。)等として有用である。重合体(I)から成形された成形品は、光ファイバーのコア材またはクラッド材、光導波路のコア材またはクラッド材として用いうる。重合体(I)はフィルムとして、または重合体(I)と他の材料と組み合わせたフィルム(たとえば、ポリイミド等の熱可塑性樹脂と積層したフィルム)として有用である。また、重合体(I)は、撥水撥油剤、半導体接着剤(たとえば、LOC用、ダイボンド用等。)、光学接着剤としても有用である。
上記用途に用いる場合には、重合体(I)を有機溶剤に溶解させた溶液組成物として用いてもよい。有機溶媒としては含フッ素溶媒の1種以上を使用するのが好ましい。溶液組成物とする場合において、該組成物中の重合体(I)の量は、有機溶媒に対して0.1〜25質量%であるのが有機溶媒との相溶性の観点から好ましく、上記用途の被膜・フィルムにおける膜厚や溶液組成物の安定性の観点から、5〜15質量%であるのが特に好ましい。
溶液組成物を形成させる際に用いうる有機溶媒としては、特に限定されず、重合体(I)の溶解性の高い含フッ素有機溶媒が好ましい。該含フッ素有機溶媒としては、以下の例が挙げられる。
ペルフルオロベンゼン、ペンタフルオロベンゼン、1,3−ビス(トリフルオロメチル)ベンゼン等のポリフルオロ芳香族化合物。ペルフルオロ(トリブチルアミン)、ペルフルオロ(トリプロピルアミン)等のポリフルオロ(トリアルキルアミン)化合物。ペルフルオロデカリン、ペルフルオロシクロヘキサン等のポリフルオロシクロアルカン化合物。ペルフルオロ(2−ブチルテトラヒドロフラン)等のポリフルオロ環状エーテル化合物。
ペルフルオロオクタン、ペルフルオロデカン、2H,3H−ペルフルオロペンタン、1H−ペルフルオロヘキサン等のポリフルオロアルカン類。メチルペルフルオロイソプロピルエーテル、メチルペルフルオロブチルエーテル、メチル(ペルフルオロヘキシルメチル)エーテル、メチルペルフルオロオクチルエーテル、エチルペルフルオロブチルエーテル等のポリフルオロエーテル類。
本発明の溶液組成物は、基材表面に重合体(I)の性質を付与する表面処理剤としても有用である。溶液組成物を表面処理剤として用いる場合の処理方法としては、該溶液組成物を基材に塗布してつぎに乾燥する方法によるのが好ましい。
溶液組成物を基材に塗布する方法としては、公知の方法が採用でき、ロールコート法、キャスト法、ディップ法、スピンコート法、水上キャスト法、ダイコート法、およびラングミュア・ブロジェット法等の方法が挙げられる。
本発明の重合体(I)は、ペリクル用の材料としても有用に用いうる。ペリクル用材料としては、ペリクル膜が接着剤を介して枠体に接着されてなる露光処理用のペリクルにおいて、ペリクル膜および/または該接着剤、が挙げられる。
重合体(I)をペリクル膜に採用する場合には、短波長光に対する透明性および耐久性の観点から、官能基を含まない重合体(I)を用いるのが好ましい。
本発明の重合体(I)は、短波長光に対して高い透明性を有する。その理由は必ずしも明確ではないが、重合体(I)は主鎖にエーテル結合に基づく酸素原子と該酸素原子を含む飽和環構造を含み、主鎖に長い電子的な共役ができないためと考えられる。また本発明の重合体(I)は、短波長光に対して高い耐久性を有する。その理由は必ずしも明確ではないが、重合体(I)は主鎖にエーテル結合に基づく酸素原子を含み、主鎖の電子的な共役が分断される重合体であること、および重合体(I)は主鎖にゆがみの小さい該飽和環構造を含み主鎖が開裂しにくい重合体であること、によると考えられる。
以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。以下においては、Mを質量平均分子量、Mを数平均分子量、ガラス転移点をT、ゲルパーミエーションクロマトグラフ法をGPC法、CClFCClFをR−113、ジクロロペンタフルオロプロパンをR−225という。また圧力は、特に表記しない限り、絶対圧で示す。
およびMは、GPC法により測定した。測定方法は、特開2000−74892号に記載する方法に従った。具体的には、移動相としてCFClCFCFHClと(CFCHOHとの混合液(体積比99:1)を用い、分析カラムとしてポリマーラボラトリーズ社製のPLgel 5μm MIXED−C(内径7.5mm、長さ30cm)を2本直列に連結したカラムを用いた。分子量測定用標準試料として、分子量分布(M/M)が1.17未満である分子量が1000〜2000000の10種のポリメチルメタクリレート(ポリマーラボラトリー社製)を用いた。移動相流速は1.0ml/min、カラム温度は37℃とした。検出器には蒸発光散乱検出器を用いた。MおよびMはポリメチルメタクリレート換算分子量として示す。また、Tは示査走査熱量分析法により測定を行った。
[参考例1]化合物(2a−1)と化合物(2b−1)との混合物の合成例
オートクレーブ(内容積2L、ハステロイC製)にF(CFOCF(CF)CFOCF(CF)COF(2515g)とNaF粉末(240g)を入れた。充分に撹拌しながらオートクレーブを冷却して、大気圧でオートクレーブの内温が30℃以下に保たれるように、ゆっくりとグリセロール・ホルマール(401g)を導入した。反応により生じたHFはNaFにより、吸着除去した。グリセロール・ホルマール全量を投入後、さらに24時間撹拌した後に加圧ろ過によってNaF粉末を除去し、生成物を得た。生成物をNMRとGCを用いて分析した結果、下記化合物(2a−1)および下記化合物(2b−1)が、混合物として99.4%の純度で生成していることを確認した。未反応のグリセロール・ホルマールは検出されなかった。得られた混合物はそのまま、つぎの反応に使用した。
化合物(2a−1)のH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.93〜4.10(4H)、4.82(1H)、4.95(2H).
化合物(2a−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−79.0〜−80.7(4F)、−81.9〜−83.1(8F)、−84.6〜−85.6(1F)、−130.1(2F)、−132.0(1F)、−145.7(1F)。
化合物(2b−1)のH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.74(1H)、3.93〜4.10(1H)、4.27〜4.54(3H)、4.90(1H)、5.04(1H).
化合物(2b−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−79.0〜−80.7(4F)、−81.9〜−83.1(8F)、−84.6〜−85.6(1F)、−130.1(2F)、−132.0(1F)、−145.7(1F)。
Figure 0004329572
[参考例2]化合物(3a−1)と化合物(3b−1)との混合物の合成例
コンデンサーおよびポンプとそれにつながる循環ラインを装填したオートクレーブ(内容積3L、ステンレス製)にF(CFOCF(CF)CFOCF(CF)COF(4kg)を加え、ポンプにより内液を循環(流速300L/h)して循環液とした。ポンプの吐出側からオートクレーブの天板に渡る循環ラインの一部に熱交換器を設置して、循環液の温度を25℃に保った。循環ラインの途中にはイジェクタ(ステンレス製)を設置し循環液中にガスを吸引できるようにした。また、イジェクタとポンプの間に、原料供給管と抜き出し管を設置し、オートクレーブ中に原料である参考例1で得た混合物、および反応により生成する反応粗液を、随時出し入れできるようにした。
イジェクタを通してオートクレーブに窒素ガスを2.0時間吹き込んだ後、窒素ガスで50%に希釈したフッ素ガス(以下、50%希釈ガスと記す。)を、流速113.2L/hで1.5時間吹き込んだ。つぎに、50%希釈フッ素ガスを同じ流速で吹き込みながら、原料供給管から参考例1で得た混合物を希釈することなく、循環液中に連続供給(平均供給量約50g/h)し、合計で4800gの原料を仕込んだ。
一方、原料供給開始から約8時間毎に、抜き出し管より約270gの反応粗液を、合計で12回抜き出した。また、参考例1で得た混合物の供給を終了後、1時間、50%希釈フッ素ガスを供給してから、さらに窒素ガスを3.5時間吹き込んだ。つぎに、オートクレーブ中の内液を全量抜き出し、途中に抜き出した反応粗液とあわせて合計7261gの反応粗液を回収した。
反応粗液を19F−NMRで分析した結果、化合物(2a−1)からの下記化合物(3a−1)の収率は57.5%、化合物(2b−1)からの下記化合物(3b−1)の収率は81%であり、残りは循環液としてのF(CFOCF(CF)CFOCF(CF)COFが主成分であることを確認した。得られた反応粗液はそのまま、つぎの反応に使用した。
Figure 0004329572
化合物(3a−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−52.8(2F)、−78.5〜−80.5(4F)、−81.9(8F)、−83.0〜−89.1(5F)、−130.1(2F)、−132.0(1F)、−139.8(1F)、−145.5(1F)。
化合物(3b−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−54.5〜−58.3(2F)、−78.5〜−80.5(4F)、−81.9(8F)、−83.0〜−89.1(5F)、−127.9(1F)、−130.1(2F)、−132.0(1F)、−145.5(1F)。
[参考例3]化合物(a−1)の合成例
参考例2で得た反応粗液(3575.6g)をKF粉末(15.7g)とともに丸底フラスコ(内容積2L)に仕込んだ。丸底フラスコの上部には、順に20℃に温度調節した冷却器、および−78℃に冷却した丸底フラスコを直列に接続した。つぎに反応粗液を仕込んだ丸底フラスコを激しく撹拌しながら、オイルバス中で5時間、90℃に加熱して、留分を−78℃に冷却した丸底フラスコに回収した。反応粗液を仕込んだ丸底フラスコ内にガスの生成が見られなくなってから、オイルバスの温度を100℃にして、さらに1時間程度、加熱撹拌して熱分解終了とした。得られた留分はそのまま、つぎの反応に使用した。
また留分(463.2g)を、19F−NMRで分析した結果、下記化合物(a−1)と下記化合物(b−1)との混合物であることを確認した。
化合物(a−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−51.9(2F)、−80.6(4F)。
化合物(b−1)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):25.5(1F)、−53.6(1F)、−58.4(1F)、−77.5(1F)、−88.5(1F)、−119.2(1F)。
Figure 0004329572
つぎに、留分の入った丸底フラスコの内温を10℃以下に保持しながら、イオン交換水(95.5g)をゆっくり滴下した。イオン交換水を全量滴下してから、内温を25℃にして16時間撹拌を続けて反応液を得た。反応液を19F−NMRで分析した結果、化合物(a−1)が水和した下記化合物(a−10)、および化合物(b−1)がカルボン酸に変換した下記化合物(b−10)の混合物であることを確認した。また19F−NMRから求めた収率(内部標準:C)は、化合物(a−10)が化合物(a−1)基準で91%、化合物(b−10)が化合物(b−1)基準で75%であった。得られた反応液はそのまま、つぎの反応に使用した。
化合物(a−10)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−52.2(2F)、−87.9(4F)。
化合物(b−10)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−54.0(1F)、−59.2(1F)、−79.1(1F)、−90.2(1F)、−119.5(1F)。
Figure 0004329572
つぎに丸底フラスコ(内容積500mL)に濃硫酸(203.2g)を仕込み、激しく撹拌しながらオイルバス中で130℃に加熱した。丸底フラスコの上部には、順に20℃に温度調節した冷却器および−78℃に冷却した丸底フラスコを直列に接続した。つぎに反応液(304.4g)をゆっくり滴下して、得られる生成物を−78℃に冷却した丸底フラスコに回収した。反応液を全量滴下してから、145℃で約1時間、加熱撹拌して反応を終了させて生成物を得た。生成物を19F−NMRで分析した結果、化合物(a−1)がほぼ定量的に生成していることを確認した。
[参考例4]化合物(4a−F)の合成例
参考例3で得た生成物を回収した丸底フラスコを、−78℃に冷却し撹拌しながら、HOCHCHCl(40.5g)をゆっくり滴下した。HOCHCHClを全量滴下してから、撹拌したままフラスコを25℃まで昇温し、さらに16時間撹拌を続けて反応液を得た。つぎに反応液を単蒸留して、無色透明の液体(106.8g)を得た。該液体をNMRにより分析して下記化合物(4a−F)が生成していることを確認した。
Figure 0004329572
つぎに、還流冷却機、撹拌機、滴下ロートを備えた4つ口フラスコ(内容積500mL、ガラス製)を窒素ガスにて充分置換し、水浴中でフラスコを冷却しながら、メタノール(160.0g)と水酸化ナトリウム(17.6g)を仕込み、撹拌して完全に溶解させた。
つぎに、フラスコ内温を10℃以下に保ち撹拌を続けながら、化合物(4a−F)(99.8g)を滴下ロートから滴下した。そのまま、12時間、撹拌を続けて反応を完結させたフラスコ内容液を、イオン交換水(400mL)中に加えて水溶液を得た。水溶液をR−225(40g)で抽出して得た抽出液を得た。抽出液をロータリーエバポレーターで濃縮し、減圧下にR−225を留去した結果、無色透明の液体(82.0g)を得た。NMRにより該液体中に下記化合物(5a−F)が生成していることを確認した。
Figure 0004329572
[参考例5]化合物(6a−F)の合成例
中心部に高圧水銀灯を、側管にドライアイスコンデンサーおよび塩素ガス導入口、熱電対温度計を具備したフラスコ(内容積2L)内を窒素ガス置換した後、該フラスコに参考例4で得た無色透明の液体(76g)とR−113(540g)を仕込んだ。フラスコ内温を10℃に保持して水銀灯を点灯した。つぎにフラスコ内温を30℃にして、フラスコ内にゆっくりと塩素ガスの導入を開始した。続いてフラスコを加熱して、45〜50℃内で一定に保った。未反応の塩素ガスはドライアイスコンデンサーによりフラスコ内に還流させて反応を行った。塩素の消費がなくなった時点で反応を終了とし、フラスコに仕込んだ塩素は合計90.5gであった。
つぎに、窒素ガスにてフラスコ内の残存塩素を除去してから、フラスコの内容物を回収した。該内容物をエバポレーターで濃縮すると無色透明な液体(120g)を得た。NMRにより該液体中に下記化合物(6a−F)が生成していることを確認した。さらに、減圧蒸留して、2kPa/(40〜41℃)の留分(116g)として化合物(6a−F)を得た。
Figure 0004329572
[参考例6]化合物(7a−F)の合成例
還流冷却機、撹拌機、滴下ロート、および熱電対温度計を備えた、乾燥した4つ口フラスコ装填し、3フッ化アンチモン(61.6g)を仕込み、25℃で真空ポンプを用いて約12時間減圧乾燥した。その後、参考例5で得た留分(100.0g)および5塩化アンチモン(18.0g)を滴下ロートより滴下し、フラスコを撹拌しながら加熱還流した。つぎに、還流冷却機を単蒸留装置に付け変えて減圧蒸留を行って留分として無色透明の液体(87.6g)を得た。該液体の19F−NMRを分析した結果、下記化合物(7a−F)であることを確認した。
Figure 0004329572
[参考例7]脱塩素反応による化合物(m2−10F)の合成例
メカニカルスターラー、滴下ロート、熱電対温度計、蒸留塔を備えた4つ口フラスコ(内容積500mL、ガラス製)に、亜鉛粉末(42.1g)、およびジメチルホルムアミド(120g)を入れ、水浴中で40℃に加熱した。その後、1,2−ジブロモエタン(16.1g)を系内に滴下した。激しい発熱が終了してから、フラスコ内温を55℃に保持し、フラスコに参考例6で得た無色透明の液体(77.0g)をゆっくり滴下した。
反応の進行に伴い蒸留塔の塔頂より留出する留分の量と化合物(7a−F)の滴下量のバランスをとりながら、化合物(7a−F)を全量滴下した。留出する無色透明の液体である留分(32.1g)を19F−NMRにより分析した結果、下記化合物(m2−10F)であることを確認した。ガスクロマトグラフィで定量した収率は52%であった。また、留分のマススペクトル(CI法)を測定した結果、m/z=288に分子イオンピークが認められた。
化合物(m2−10F)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−53.1(2F)、−87.7(4F)、−156.1(2F)。
Figure 0004329572
[実施例1]化合物(a−1)と化合物(m3−22)との共重合反応による重合体(A1)の製造例
オートクレーブ(内容積100mL、ステンレス製)に、ペルフルオロ(2−ブチルテトラヒドロフラン)(6g)、CF=CHCF(CF)CFOCF=CF(化合物(m3−22)、10g)、および重合開始剤として((CFCO−)(70mg)を投入してからオートクレーブ内を窒素ガス置換した。つぎに、オートクレーブをドライアイス・エタノール浴で−78℃に冷却してから、参考例3で得た化合物(a―1)を含む生成物(8.0g)を仕込んだ。つぎにオートクレーブを窒素ガスで0.2MPa(ゲージ圧)まで加圧してから、100℃に加熱して66時間重合を行い、さらに120℃に加熱して24時間重合を行った。その結果、重合体(以下、重合体(A1)という。)(7.1g)を得た。
重合体(A1)をH−NMRおよび19F−NMRにより解析した結果、重合体(A1)における不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、かつ6員環構造は保持されていることから、下記単位(A−1)および下記単位(M3−22)等を含む重合体の生成を確認した。また、重合体(A1)の全単位に対する単位(A−1)の割合は12モル%であり、化合物(m3−22)が環化重合した化合物(m3−22)に由来する単位(M3−22)等の割合は88モル%であった。また、重合体(A1)のMは20000、Tは76℃であった。重合体(A1)は、25℃においてタフで透明なガラス状の重合体であった。
Figure 0004329572
[実施例2]化合物(a−1)と化合物(m2−10F)との共重合反応による重合体(A2)の製造例
オートクレーブ(内容積100mL、ステンレス製)に、ペルフルオロ(2−ブチルテトラヒドロフラン)(40g)、参考例7で得た化合物(m2−10F)(6.5g)、および重合開始剤として(CCOO)を3質量%含むR−225溶液(1.2g)を仕込んでからオートクレーブを窒素ガス置換した。つぎに、オートクレーブをドライアイス・エタノール浴で−78℃に冷却してから、参考例3で得た化合物(a−1)を含む生成物(4.0g)を仕込んだ。つぎにオートクレーブを窒素ガスで0.3MPa(ゲージ圧)まで加圧してから、25℃に加熱して56時間重合を行った結果、重合体(以下、重合体(A2)という。)(6.4g)を得た。
重合体(A2)を19F−NMRにより解析した結果、重合体(A2)における不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、かつ6員環構造は保持されていることから、下記単位(A−1)および下記単位(M2−10F)を含む重合体の生成を確認した。また重合体(A2)の全単位に対する単位(A−1)の割合は13モル%であり、単位(M2−10F)の割合は87モル%であった。また、重合体(A2)の固有粘度は30℃のペルフルオロ(メチルデカリン)中で3.4dl/gであり、Tは230℃であった。重合体(A2)は25℃においてタフで透明なガラス状の重合体であった。
Figure 0004329572
[実施例3]化合物(a−1)と化合物(m3−22)との共重合反応による重合体(A3)の製造例
オートクレーブ(ステンレス製、内容積100mL)に、ペルフルオロ(2−ブチルテトラヒドロフラン)(10g)、化合物(m3−22)(10g)、および重合開始剤((CFCO−)、100mg)を投入してから、オートクレーブを窒素ガス置換した。つぎに、オートクレーブをドライアイス・エタノール浴で−78℃に冷却してから、参考例3で得た化合物(a−1)を含む生成物(12.0g)を仕込んだ。つぎにオートクレーブ内を窒素ガスにて0.2MPa(ゲージ圧)まで加圧してから、110℃に加熱して15時間重合し、さらに130℃に加熱して10時間重合を行った。その結果、重合体(以下、重合体(A3)という。)(4.3g)を得た。
重合体(A3)を19F−NMRにより解析した結果、重合体(A3)における不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、かつ6員環構造は保持されていることから、下記単位(A−1)および下記単位(M3−22)等を含む重合体の生成を確認した。また、重合体(A3)の全単位に対する単位(A−1)の割合は56モル%であり、化合物(m3−22)が環化重合した化合物(m3−22)に由来する単位(M3−22)等の割合は44モル%であった。また、重合体(A3)のMは7500、Tは57℃であった。重合体(A3)は、25℃においてタフで透明なガラス状の重合体であった。
Figure 0004329572
[実施例4]重合体(A2)にカルボキシル基を導入してなる重合体(A4)の製造例
実施例2の方法で得た重合体(A2)を熱風オーブン中に仕込み、酸素ガス雰囲気下、300℃で2時間処理をした後に、純水中に100℃で24時間浸漬した。さらに100℃で24時間真空乾燥して重合体(以下、重合体(A4)という。)を得た。重合体(A4)のIRスペクトルを測定した結果、カルボキシル基に相当するピークが存在することを確認した。
[実施例5]重合体(A3)にカルボキシル基を導入してなる重合体(A5)の製造例
実施例3の方法で得た重合体(A3)を用い真空乾燥の温度を80℃とする以外は、例4の方法と同様の操作で重合体(A5)を得た。重合体(A5)のIRスペクトルを測定した結果、重合体(A5)中のカルボキシル基の割合は0.0005mol/gであることを確認した。
[実施例6]重合体(A1)〜(A3)を用いた基材(A1)〜(A3)の製造例
実施例1で得た重合体(A1)(2g)とペルフルオロ(トリブチルアミン)(18g)をフラスコ(ガラス製)に仕込んで、40℃で24時間加熱撹拌して無色透明な溶液を得た。研磨した石英基材上に、該溶液をスピン速度500rpmで10秒間スピンコートし、さらに700rpmで20秒間スピンコートして、石英基材の表面に重合体(I)が塗布された処理基材を得た。該処理基材を80℃で1時間加熱し、さらに180℃にて1時間加熱して乾燥し、重合体(A1)の均一透明な被膜が表面に形成した基材(以下、基材(A1)という。)を得た。
同様の方法で、実施例2で得た重合体(A2)を用いて重合体(A2)の均一透明な被膜が表面に形成した基材(以下、基材(A2)という。)、および実施例3で得た重合体(A3)を用いて重合体(A3)の均一透明な被膜が表面に形成した基材(以下、基材(A3)という。)を得た。
[実施例7]接着剤として重合体(A5)を用い、ペリクル膜として重合体(A1)〜(A3)を用いたペリクルの製造例および評価例
実施例5で得た重合体(A5)(2g)とパーフルオロ(2−ブチルテトラヒドロフラン)(38g)をフラスコ(ガラス製)に投入して、40℃で24時間加熱撹拌して得た無色透明な溶液を接着剤として用いた。枠体(アルミニウム製)のペリクル膜が接着する面に、該溶液を塗布してから、25℃で2時間乾燥した。さらに120℃のホットプレートに、接着剤を塗布した面が上側を向くように枠体をホットプレートに載せた。つぎに120℃で10分間加熱した。
つぎに、実施例1で得た基材(A1)の被膜面と枠体の接着面を接触させて圧着し、120℃で10分間加熱して、枠体と該被膜面の接着を完結させた。続いて、基材(A1)から石英基材を剥離した。その結果、枠体に重合体(A5)を介して、重合体(A1)の均一な薄膜(膜厚1μm)が自立膜として接着されたペリクル(A1)を得た。
同様な方法で、重合体(A2)の均一な薄膜(膜厚1μm)が自立膜として重合体(A5)を介して、枠体に接着されたペリクル(A2)を得た。同様に重合体(A3)の均一な薄膜(膜厚1μm)が自立膜として重合体(A5)を介して、枠体に接着されたペリクル(A3)を得た。
波長157nmであるFエキシマレーザーの透過率は、ペリクル(A1)が80%以上、ペリクル(A2)が85%以上、およびペリクル(A3)が85%以上であった。
つぎに、0.05mJ/パルスの強度を有するFエキシマレーザーを用いて、ペリクル(A1)、ペリクル(A2)、およびペリクル(A3)の200Hzサイクルにおける照射試験を行う。ペリクル(A1)、ペリクル(A2)、およびペリクル(A3)は、60万パルス以上で膜の透過率がほとんど低下せず、良好な耐久性を示す。また、それぞれのペリクル膜と枠体は重合体(A5)を介して、強固に接着されている。
[実施例8]化合物(a−1)、化合物(m2−11)の共重合反応による重合体(A4)の製造例
オートクレーブ(内容積100mL、ステンレス製)に、ペルフルオロ(2−ブチルテトラヒドロフラン)(50g)、下記化合物(m2−11)(5g)、および重合開始剤として(CCOO)を3質量%含むR−225溶液(2g)を仕込んでからオートクレーブを窒素ガス置換した。つぎに、オートクレーブをドライアイス・エタノール浴で−78℃に冷却してから、参考例3で得た化合物(a−1)を含む留分(a−1)(10.0g)を仕込んだ。つぎにオートクレーブを窒素ガスで0.3MPa(ゲージ圧)まで加圧してから、25℃に加熱して56時間重合を行った結果、重合体(以下、重合体(A4)という。)(4.7g)を得た。
重合体(A4)を19F−NMRにより解析した結果、重合体(A4)における不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、かつ6員環構造は保持されていることから、下記単位(A−1)および下記単位(M2−10)を含む重合体の生成を確認した。また重合体(A4)中の全単位に対する単位(A−1)の割合は2モル%であり、単位(M2−11)の割合は98モル%であった。
重合体(A4)の固有粘度は30℃のペルフルオロ(メチルデカリン)中で0.6dl/gであり、Tは316℃であった。重合体(A4)は25℃においてタフで透明なガラス状の重合体であった。
Figure 0004329572
[比較例1]重合体(B)の製造例
オートクレーブ(内容積200mL、耐圧ガラス製)に、CH=CHCFCFOCF=CF(20g)、1H−ペルフルオロヘキサン(40g)、および重合開始剤として(CCOO−)(20mg)を投入してから、オートクレーブを窒素ガス置換した。つぎにオートクレーブを、40℃に加熱して10時間重合を行った。その結果、重合体(以下、重合体(B)という。)(15g)を得た。重合体(B)の固有粘度は30℃の1,3−ビス(トリフルオロメチル)ベンゼン中で0.96dl/gであり、Tは90℃であった。25℃において、重合体(B)はタフで透明なガラス状の重合体であった。重合体(B)の屈折率は1.36であった。
[比較例2]重合体(C)の製造例
比較例1で得た重合体(B)を空気中で、320℃で3時間処理をした。つぎに該処理をした重合体Fを純水中に浸漬して変性した重合体(C)を得た。重合体(C)のIRスペクトルを測定した結果、カルボキシル基の相当するピークが確認された。重合体(C)中のカルボキシル基の割合は0.00004mol/gであった。
[比較例3]ペリクル膜の製造例(その2)
比較例1で得た重合体(B)を、実施例6と同様の方法で処理して均一透明な被膜が表面に形成した基材(以下、基材(B)という。)、を得た。
[比較例4]ペリクル(B)の製造および評価例
比較例2で得た重合体(C)(7g)と1,3−ビス(トリフルオロメチル)ベンゼン(93g)をフラスコ(ガラス製)中に投入して、40℃で24時間加熱撹拌して、無色透明な溶液を得る。該溶液と比較例3で得た基材(B)を用いて、実施例7の方法と同様の操作を行ってペリクル(B)を作成する。ペリクル(B)の、波長157nmであるFエキシマレーザーの透過率は、50%以上である。また、0.05mJ/パルスの強度を有する発振波長157nmであるFエキシマレーザーを用いて、ペリクル(F)の200Hzサイクルにおける照射試験を行う。その結果、ペリクル(B)は、4万パルス以上で膜の透過率が低下する。またペリクル膜が枠体からの剥離してしまう。
本発明によれば、新規な含フッ素重合体(I)とその製造方法が提供される。本発明の含フッ素重合体(I)は、短波長光(特に、Fエキシマレーザー。)に対する透明性と耐久性に優れる新規な重合体である。該新規な重合体(I)は、ペリクル膜および接着剤等として有用である。また本発明の重合体(I)と有機溶剤とを含む溶液組成物は表面処理剤として有用である。

Claims (7)

  1. 下式(A)で表される単位を含む重合体(I)。
    Figure 0004329572
    ただし、nは1、F1はフッ素原子またはトリフルオロメチル基、RF2はフッ素原子または炭素数1〜5のペルフルオロアルキル基、を示す。
  2. 式(A)で表される単位の1種以上からなる、または、式(A)で表される単位の1種以上と式(A)で表される単位以外の単位の1種以上からなる請求項1に記載の重合体。
  3. 式(A)で表される単位以外の単位が、下式で表される単位のいずれかである請求項2に記載の重合体。
    −CHR−CR− (M1)
    −CFR−CR− (M2)
    Figure 0004329572
    ただし、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子、または1価含フッ素飽和有機基を示す。ただし、R、R、およびRから選ばれる少なくとも1つはフッ素原子または飽和の1価含フッ素有機基を示す。または、R、R、およびRから選ばれる2つの基が共同で2価含フッ素有機基を形成し、かつ残余の1つの基は水素原子、フッ素原子、または飽和の1価含フッ素有機基を示す。
    、R、およびRは、それぞれ独立に、フッ素原子または飽和の1価含フッ素有機基を示す。または、R、R、およびRから選ばれる2つの基が共同で2価含フッ素有機基を形成し、かつ残余の1つの基はフッ素原子もしくは飽和の1価含フッ素有機基を示す。
    、R、R、およびR10は、それぞれ独立に、水素原子、フッ素原子、または1価含フッ素有機基を示す。
    は2価含フッ素有機基を示す。
  4. 重合体(I)中の全単位に対する式(A)で表される単位以外の単位の割合が、5〜95モル%である請求項2または3に記載の重合体。
  5. 質量平均分子量が500〜1000000である請求項1〜4のいずれかに記載の重合体。
  6. 下式(a)で表される化合物を重合することを特徴とする下式(A)で表される単位を含む重合体(I)の製造方法。
    Figure 0004329572
    ただし、nは1、F1はフッ素原子またはトリフルオロメチル基、RF2はフッ素原子または炭素数1〜5のペルフルオロアルキル基、を示す。
  7. 請求項1〜5のいずれかに記載の重合体(I)を有機溶媒に溶解させた溶液組成物。
JP2004059313A 2003-12-03 2004-03-03 新規な含フッ素重合体 Expired - Fee Related JP4329572B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059313A JP4329572B2 (ja) 2003-12-03 2004-03-03 新規な含フッ素重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003404403 2003-12-03
JP2004059313A JP4329572B2 (ja) 2003-12-03 2004-03-03 新規な含フッ素重合体

Publications (2)

Publication Number Publication Date
JP2005187789A JP2005187789A (ja) 2005-07-14
JP4329572B2 true JP4329572B2 (ja) 2009-09-09

Family

ID=34797540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059313A Expired - Fee Related JP4329572B2 (ja) 2003-12-03 2004-03-03 新規な含フッ素重合体

Country Status (1)

Country Link
JP (1) JP4329572B2 (ja)

Also Published As

Publication number Publication date
JP2005187789A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
US7790811B2 (en) Pellicle and novel fluoropolymer
US7442815B2 (en) Ultraviolet transmitting fluoropolymer and pellicle comprising said polymer
JP4935763B2 (ja) ヒドロキシル基またはフルオロアルキルカルボニル基含有含フッ素エチレン性単量体
US20040142286A1 (en) Use of partially fluotinated polymers in applications requiring transparency in the ultraviolet and vacuum ultraviolet
JP2006241302A (ja) 新規な、ペルフルオロ(2−ビニル−1,3−ジオキソラン)構造を有する化合物および含フッ素重合体
JP4329572B2 (ja) 新規な含フッ素重合体
JP4396525B2 (ja) 含フッ素化合物および含フッ素重合体
JP4696914B2 (ja) 新規な含フッ素ジオキソラン化合物、および新規な含フッ素重合体
JPWO2005095471A1 (ja) 新規な含フッ素重合体、およびその製造方法
JP2006290779A (ja) 新規な、含フッ素化合物および含フッ素重合体
JP2001330943A (ja) ペリクル
JP5812049B2 (ja) 含フッ素アルコールおよび含フッ素単量体
JP2006233140A (ja) 精製された含フッ素重合体の製造方法、ペリクルおよび露光処理方法
JP2005314482A (ja) 新規な含フッ素の5員環化合物、およびその重合体
JP2004102269A (ja) 紫外光透過性含フッ素重合体および該重合体からなるペリクル
JP4604726B2 (ja) 新規な含フッ素エポキシ化合物、およびその重合体
JP4352666B2 (ja) ペリクル及びこれを用いる露光処理方法
JP2006039408A (ja) ペリクル
JP2003156835A (ja) ペリクルおよび露光処理方法
JP2004099607A (ja) 2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランおよび該モノマーを含む重合体
JP2006028364A (ja) ジフルオロメチレンオキシ単位を含む重合体の製造方法、および新規な該重合体、およびその用途

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R151 Written notification of patent or utility model registration

Ref document number: 4329572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees