JP4325095B2 - SiC素子の製造方法 - Google Patents
SiC素子の製造方法 Download PDFInfo
- Publication number
- JP4325095B2 JP4325095B2 JP2000273584A JP2000273584A JP4325095B2 JP 4325095 B2 JP4325095 B2 JP 4325095B2 JP 2000273584 A JP2000273584 A JP 2000273584A JP 2000273584 A JP2000273584 A JP 2000273584A JP 4325095 B2 JP4325095 B2 JP 4325095B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- layer
- sic substrate
- oxygen
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 52
- 239000010410 layer Substances 0.000 claims description 33
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 17
- 229910001882 dioxygen Inorganic materials 0.000 claims description 17
- 238000004140 cleaning Methods 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 69
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000097 high energy electron diffraction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/049—Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【発明の属する技術分野】
本発明は、SiC基板の清浄表面を得てSiC素子を製造する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、SiC基板の清浄表面を得る方法として、例えばWO97/39478号公報に示すように、Siプロセスのエッチング処置をそのまま使う方法がある。具体的には、フッ酸とフッ化アンモニウム40vol,wt%を含む水溶液との混合液(例えばフッ酸:フッ化アンモニウム40vol,wt%を含む水溶液比=1:6)で溶かすバッファードフッ酸処理などがある。
【0003】
しかしながら、この方法では試料の搬送中に大気中のC(カーボン)等が試料表面に付着するという問題が生じる。実際にこの手法で得られた表面の組成をXPSで分析してみると、Cクラスターの存在が確認された。
【0004】
本発明は上記点に鑑みて、SiC基板の清浄表面を大気中のC等で汚染されないようにし、良好なSiC素子が製造できるようにすることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、SiC基板の表面を清浄化し、この清浄化した表面を用いてSiC素子を製造するSiC素子の製造方法において、SiC基板の表面にSi層を成膜する工程と、酸素ガスを供給すると共に、と共に、該酸素ガス供給時における温度が500〜1100℃となり、かつ、酸素ガス供給時における真空度が1×10 -2 〜1×10 -6 PaとなるようにすることによりSiC基板からSi層を除去する工程と、を備えていることを特徴としている。
【0006】
このように、Si層を成膜したのち、高温、減圧下において酸素ガスを供給することで、SiC基板からSi層を除去することができ、大気中のC等で汚染されていないSiC基板の清浄表面を得ることができる。具体的には、請求項2に示すようにSi層の表面構造を3×3構造とし、この3×3構造を除去すれば、SiC基板の清浄表面を得ることができる。
【0007】
好ましくは請求項3に示すように1000℃が適用できる。
【0008】
また、請求項4に示すように、Si層を除去する工程のSiC基板の表面への酸素の暴露量としては、1〜102Pa・sとなるように、好ましくは請求項5に示すように10Pa・sとなるようにすればよい。
【0009】
また、請求項6に示すように、好ましくは1×10-2Paとなるようにすればよい。
【0010】
なお、SiC基板としては、請求項7に示すように表面がSi面であるものや、請求項8に示すようにオフ角を有していないものを用いることができる。また、オフ角を有しているものを用いても良い。
【0011】
また、請求項9に示すように、SiC表面にSi層を形成することなく、温度を500〜1100℃、かつ、真空度を1×10 -2 〜1×10 -6 PaとしてSiC表面を酸素暴露するようにしても良い。これにより、Si層を形成する工程を省くことができる。なお、本請求項でいう表面層とは、自然酸化膜等の汚染層のことを示している。
【0012】
また、請求項10に示すように、SiC表面を減圧下にて酸素暴露する前に、SiC表面にSi層を形成すると、SiC表面のSi原子がC原子よりも蒸発してしまうことを防止できる。つまり、Siの方がCよりも飽和蒸気圧が高く、C原子に比べSi原子が蒸発し易いため、Si層を供給しておくことでSiのSiC表面からの蒸発を防止できる。
【0013】
また、請求項11に示すように、酸素を供給する前に、表面に形成したSi層を部分的に除去してもよい。
【0014】
【発明の実施の形態】
(第1実施形態)
本発明の一実施形態を適用したSiC素子の製造方法について説明する。図1に、SiC素子の製造に先立って行うSiC基板1の清浄工程を示し、この図に従ってSiC基板1の清浄工程を説明する。
【0015】
まず、(0001)Si面を有するSiC基板1を用意する。なお、このSiC基板1は、全てがSiCで構成された基板でなくてもよく、下地が他の材質で表面付近がSiCで構成されたものであればよい。このSiC基板1としては、結晶構造が6H、4H、3Cもしくは15Rのいずれで構成されていてもよい。また、SiC基板1はオフ角を有していてもいなくても良いが、オフ角を有している場合には、オフ角が0°より大きく8°よりも小さいものが好ましい。
【0016】
次に、このSiC基板1の表面に前処理として、アセトンによる超音波洗浄、49%HF処理、流水洗浄を施し有機物や酸化膜等の異物を除去した後、SiC基板1を超高真空チャンバ内に収容する。そして、超高真空チャンバ内の雰囲気圧力を1×10-2〜1×10-6Pa(10-4〜10-8Torr)程度、好ましくは1×10-2(10-4Torr)として、図1(a)に示すように、SiC基板1の表面にSi層2を約5nmの厚さで蒸着等により成膜する。
【0017】
続いて、超高真空チャンバ内を500〜1100℃、好ましくは1000℃に高温化させる。これにより、SiC基板1上に形成されたSi層2のうちの大部分のSiが蒸発し、SiC基板1上にはSiが2〜3原子層残り、基板表面のRHEED(反射高速電子線回折)図形が3×3構造(3倍周期構造)、つまり周期的に並んだSi−C結合の3倍の周期でSiが結合した構造となる。この時、一度室温程度に冷却してRHEED図形を観察すると、3×3構造が形成されていることを確実に確認することができる。
【0018】
さらに、上記温度としたまま、雰囲気圧力を1×10-2Pa(10-4Torr)とし、超高真空チャンバ内に酸素ガスを供給する。このとき、SiC基板1の表面への酸素の暴露量が10〜102Pa・s程度、好ましくは10Pa・sとなるように酸素を吸着させる。なお、このとき超高真空チャンバ内の温度が低温になるとSiC基板1の表面上にシリコン酸化膜(図中に点線で示す)が形成されないように、上記温度設定のままとしている。
【0019】
これにより、図1(b)に示すように、3×3構造を構成しているSiやSiC基板1中のSi及びCが酸素ガス中のO(酸素)と反応し、SiO、CO、CO2となって除去され、Si及びC原子のみが周期的に並んだ1×1構造となる。このようにして、図1(c)に示すような大気中のC等で汚染されていないSiC基板1の清浄表面を得ることができる。
【0020】
本実施形態のように減圧して高真空とした状態で酸素ガスを導入することにより、酸化膜としての蒸気圧が高まり、500℃を超える辺りからSiC表面に酸化膜が堆積せず、飽和蒸気圧を満たすように蒸発する。これにより、SiC表面には酸素と反応した物質が堆積せず、SiC表面が清浄化される。
【0021】
そして、上述のように1000℃まで高温とすることにより、飽和蒸気圧をより高めることができ、SiC表面に反応した物質、具体的には酸化物が残らないように、酸化物の蒸発を確実にすることができる。
【0022】
このように清浄化されたSiC基板1の表面を用いて、MOSFET等のデバイスを形成することによりSiC素子を製造することができ、良好なデバイス特性、例えばMOSFETに備えられるゲート酸化膜の膜質等が良好なSiC素子とすることが可能である。
【0023】
【実施例】
(実施例1)
試料として、(0001)Si面を有するオフ角なしの6H−SiC基板1を用意した。次に、試料表面の前処理として、アセトンによる超音波洗浄を5分間、49%HF処理を5分間、流水洗浄処理を10分間行った後、超高真空チャンバ内にSiC基板1を収容した。そして、超高真空チャンバ内の雰囲気圧力を1×10-8Pa(10-10Torr)として、SiC基板1の表面のSi面にSi層2を約5nm蒸着した。
【0024】
続いて、超高真空チャンバ内を1000℃に加熱した。これにより、超高真空チャンバ内を高温化させる。その後1000℃まで加熱すると、SiC基板1上に形成されたSi層2のうちの大部分のSiが蒸発し、SiC基板1上にはSiが2〜3原子層残った。このSiC基板1の表面についてRHEED図形を観察したところ、図2に示すようにメインスポットの間にサブスポットが確認される3×3構造を示した。なお、RHEEDロッキング曲線を用いて推定した3×3構造の断面構成は図3のように表される。
【0025】
さらに、この温度(1000℃)で、酸素の暴露量が10Pa・sとなるように酸素ガスの供給量を調整して圧力を1×10-2Pa(10-4Torr)にしたところ、図4に示すように、メインスポットのみが確認されサブスポットが確認されない鮮明な1×1構造のRHEED図形が観察された。これは表面に形成されていた3×3構造が酸素ガスによって除去されたことを示している。なお、図4中に示した点線部分は、図1のうちサブスポットのみが確認された部分であり、今回はこの部分に何も確認されなかったことを参考的に記載したものである。
【0026】
本実験により形成された清浄表面の組成をXPSで分析した結果を図5に示す。また、比較のため、バッファードフッ酸で処理した後に清浄表面を大気中に暴露した場合のXPSスペクトルを図6に示す。図6では281eV程度のスペクトルを見ると分かるように、大気中のCに起因すると思われるC−C結合のピークが観察されるが、図5ではC−C結合のピークがほとんどなく、ほぼ284eV程度のスペクトルで表されるSi−C結合のピークのみが表れている。
【0027】
このように、SiC基板1上のSi原子を高温、減圧下で酸素分子あるいは酸素原子と反応させ、酸化膜が形成されることなくSiC基板1上から除去されることを利用することで、大気中のC等で汚染されていないSiC基板1の清浄表面を得ることができる。
【0028】
(他の実施形態)
上記実施形態では蒸着によってSi層2の成膜を行っているが、その他の方法でもよい。また、超高真空チャンバを用いてSiの成膜やSi層2の除去を行っているが、その他の装置を用いて同様のことを行っても良い。
【0029】
なお、チャンバ内に供給する酸素ガスは酸素ラジカルであってもよいし、100%酸素ガスではなく、希ガスなどの他のガスを含んでいても良い。要は、高温かつ超高真空チャンバ内にてSiC表面に堆積物を生成しないガスであればよい。
【0030】
また、SiCの表面は、C面であってもよい。また、Siを蒸発させてSiC表面に残る構造としては3×3構造以外の構造、例えば31/2×31/2構造、6×6構造等の周期構造としても良い。このような周期構造を形成する手法として、SiC上に成膜されたSi層を蒸発させる方法の他にSiC表面近傍をSiフラックス等でSiリッチ雰囲気にした上で加熱しても良い。
【0031】
また、酸素暴露前に、このような周期構造を作らずに直接Si層表面を酸素に曝すようにしても良い。
【0032】
さらには、SiC表面にSi層を形成せずに、直接SiC表面を酸素暴露しても良いが、Siの蒸気圧の点から、Siを形成するようにした方が好ましい。
【図面の簡単な説明】
【図1】本発明の第1実施形態におけるSiC基板1の清浄表面形成工程を示す図である。
【図2】基板上にSi層が形成されたSiC基板1の表面についてRHEED図形を観察した結果(3×3構造)を示す図である。
【図3】RHEEDロッキング曲線を用いて推定した3×3構造の断面構成を示す図である。
【図4】基板上のSi層が除去されたSiC基板1表面についてRHEED図形を観察した結果(1×1構造)を示す図である。
【図5】SiC基板1の清浄表面の組成をXPSで分析した結果を示す図である。
【図6】バッファードフッ酸で処理した後に清浄表面を大気中に暴露した場合のXPSスペクトルを示した図である。
【符号の説明】
1…SiC基板、2…Si層。
Claims (11)
- SiC基板の表面を清浄化し、この清浄化した表面を用いてSiC素子を製造するSiC素子の製造方法において、
前記SiC基板の表面にSi層を成膜する工程と、
酸素ガスを供給すると共に、該酸素ガス供給時における温度が500〜1100℃となり、かつ、該酸素ガス供給時における真空度が1×10 -2 〜1×10 -6 Paとなるようにすることにより前記SiC基板から前記Si層を除去する工程と、を備えていることを特徴とするSiC素子の製造方法。 - 前記Si層を成膜する工程では、前記Si層の表面構造が3×3構造となるようにすることを特徴とする請求項1に記載のSiC素子の製造方法。
- 前記酸素ガス供給時における温度が1000℃となるようにすることを特徴とする請求項1または2に記載のSiC素子の製造方法。
- 前記Si層を除去する工程では、前記SiC基板の表面への酸素の暴露量が1〜102Pa・sとなるように、前記酸素ガスの供給量を調整することを特徴とする請求項1乃至3のいずれか1つに記載のSiC素子の製造方法。
- 前記酸素の暴露量が10Pa・sとなるようにすることを特徴とする請求項4に記載のSiC素子の製造方法。
- 前記酸素ガス供給時における真空度が1×10-2Paとなるようにすることを特徴とする請求項1乃至5のいずれか1つに記載のSiC素子の製造方法。
- 前記SiC基板として、表面がSi面であるものを用いることを特徴とする請求項1乃至6のいずれか1つに記載のSiC素子の製造方法。
- 前記SiC基板として、表面がオフ角を有していないものを用いていることを特徴とする請求項1乃至6のいずれか1つに記載のSiC素子の製造方法。
- 温度を500〜1100℃、かつ、真空度を1×10 -2 〜1×10 -6 Paとして酸素を供給し、SiC基板の表面に形成されている表面層を前記酸素により除去することを特徴とするSiC表面の清浄化方法。
- 前記酸素を供給する工程の前に、前記SiC表面にSi層を成膜する工程を備えることを特徴とする請求項9に記載のSiC表面の清浄化方法。
- 前記酸素を供給する工程の前に、前記SiC表面に形成した前記Si層を部分的に蒸発させる工程を備えることを特徴とする請求項10に記載のSiC表面の清浄化方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000273584A JP4325095B2 (ja) | 2000-09-08 | 2000-09-08 | SiC素子の製造方法 |
US09/946,140 US6589337B2 (en) | 2000-09-08 | 2001-09-05 | Method of producing silicon carbide device by cleaning silicon carbide substrate with oxygen gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000273584A JP4325095B2 (ja) | 2000-09-08 | 2000-09-08 | SiC素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002083771A JP2002083771A (ja) | 2002-03-22 |
JP4325095B2 true JP4325095B2 (ja) | 2009-09-02 |
Family
ID=18759496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000273584A Expired - Fee Related JP4325095B2 (ja) | 2000-09-08 | 2000-09-08 | SiC素子の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6589337B2 (ja) |
JP (1) | JP4325095B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034344B2 (en) | 2008-05-13 | 2011-10-11 | Novimmune S.A. | Anti-IL-6/IL-6R antibodies and methods of use thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3578116B2 (ja) * | 2001-06-25 | 2004-10-20 | Tdk株式会社 | スピンバルブ巨大磁気抵抗効果センサの製造方法及び薄膜磁気ヘッドの製造方法 |
JP4029595B2 (ja) * | 2001-10-15 | 2008-01-09 | 株式会社デンソー | SiC半導体装置の製造方法 |
DE602004025798D1 (de) * | 2004-06-30 | 2010-04-15 | Xycarb Ceramics Bv | Verfahren zur Oberflächenbehandlung eines Metallcarbid-Substrates zur Verwendung in Halbleiterherstech |
US7723155B2 (en) * | 2004-06-30 | 2010-05-25 | Xycarb Ceramics B.V. | Method for the treatment of a surface of a metal-carbide substrate for use in semiconductor manufacturing processes as well as such a metal-carbide substrate |
JP5540919B2 (ja) * | 2010-06-16 | 2014-07-02 | 住友電気工業株式会社 | 炭化珪素半導体の洗浄方法 |
GB2483702A (en) * | 2010-09-17 | 2012-03-21 | Ge Aviat Systems Ltd | Method for the manufacture of a Silicon Carbide, Silicon Oxide interface having reduced interfacial carbon gettering |
US20220149038A1 (en) * | 2020-11-11 | 2022-05-12 | Infineon Technologies Austria Ag | Multi-Device Semiconductor Chip with Electrical Access to Devices at Either Side |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997039476A1 (fr) | 1996-04-18 | 1997-10-23 | Matsushita Electric Industrial Co., Ltd. | ELEMENT EN SiC ET SON PROCEDE DE PRODUCTION |
JP3733792B2 (ja) | 1999-07-22 | 2006-01-11 | 富士電機ホールディングス株式会社 | 炭化珪素半導体素子の製造方法 |
-
2000
- 2000-09-08 JP JP2000273584A patent/JP4325095B2/ja not_active Expired - Fee Related
-
2001
- 2001-09-05 US US09/946,140 patent/US6589337B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034344B2 (en) | 2008-05-13 | 2011-10-11 | Novimmune S.A. | Anti-IL-6/IL-6R antibodies and methods of use thereof |
US8337849B2 (en) | 2008-05-13 | 2012-12-25 | Novimmune S.A. | Anti-IL6/IL-6R antibodies |
US9828430B2 (en) | 2008-05-13 | 2017-11-28 | Novimmune S.A. | Anti-IL-6/IL-6R antibodies |
US10759862B2 (en) | 2008-05-13 | 2020-09-01 | Novimmune, S.A. | Anti-IL-6/IL-6R antibodies and methods of use thereof |
US11613582B2 (en) | 2008-05-13 | 2023-03-28 | Novimmune S.A. | Anti-IL-6/IL-6R antibodies and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
US6589337B2 (en) | 2003-07-08 |
US20020033130A1 (en) | 2002-03-21 |
JP2002083771A (ja) | 2002-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4927080B2 (ja) | 厚い絶縁層の粗さを減少させるための方法 | |
JP4486753B2 (ja) | 単結晶シリコン基板上に単結晶ゲルマニウム層を得る方法およびそれにより得られた生成物 | |
JP5867718B2 (ja) | SiC表面へのグラフェンの低温形成方法 | |
JP4325095B2 (ja) | SiC素子の製造方法 | |
US9117653B2 (en) | Method for in-situ dry cleaning, passivation and functionalization of Ge semiconductor surfaces | |
JPS61270830A (ja) | 表面清浄化方法 | |
RU2323503C2 (ru) | Способ обработки поверхности монокристаллической пластины кремния | |
US20110053342A1 (en) | Semiconductor substrate surface preparation method | |
JPH03116727A (ja) | 半導体装置の製造方法 | |
Losurdo et al. | Study of the temperature-dependent interaction of 4H–SiC and 6H–SiC surfaces with atomic hydrogen | |
Fournel et al. | Low temperature wafer bonding | |
WO2017096626A1 (zh) | 一种在石墨烯表面形成栅介质层及制备晶体管的方法 | |
JP3823801B2 (ja) | 炭化珪素半導体基板の製造方法 | |
JP2595935B2 (ja) | 表面清浄化方法 | |
JP2022506677A (ja) | 金属シリサイドの選択的堆積及び酸化物の選択的除去 | |
JPS60147123A (ja) | 半導体装置の製造方法 | |
Hofstra et al. | Desorption of ultraviolet‐ozone oxides from InP under phosphorus and arsenic overpressures | |
JPS6221756B2 (ja) | ||
JPS635531A (ja) | Si表面清浄化・平坦化方法及びその装置 | |
JPH1197406A (ja) | 半導体基板の洗浄方法及びそれを用いた半導体装置の製造方法 | |
JPH0469933A (ja) | 半導体基板のエッチング方法 | |
JP3315770B2 (ja) | 半導体装置の製造方法 | |
JPS60152021A (ja) | ニツケルシリサイド表面の汚染防止法 | |
JP2637950B2 (ja) | 表面清浄化方法 | |
JPS63228620A (ja) | 表面クリ−ニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090601 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140619 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |