JP4304400B2 - 車両のセンサフェイル検出装置 - Google Patents

車両のセンサフェイル検出装置 Download PDF

Info

Publication number
JP4304400B2
JP4304400B2 JP2000162782A JP2000162782A JP4304400B2 JP 4304400 B2 JP4304400 B2 JP 4304400B2 JP 2000162782 A JP2000162782 A JP 2000162782A JP 2000162782 A JP2000162782 A JP 2000162782A JP 4304400 B2 JP4304400 B2 JP 4304400B2
Authority
JP
Japan
Prior art keywords
vehicle
sensor
signal
vehicle speed
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000162782A
Other languages
English (en)
Other versions
JP2001341664A (ja
Inventor
修之 一丸
洋一 久米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000162782A priority Critical patent/JP4304400B2/ja
Publication of JP2001341664A publication Critical patent/JP2001341664A/ja
Application granted granted Critical
Publication of JP4304400B2 publication Critical patent/JP4304400B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などの車両に用いられる車両のセンサフェイル検出装置に関する。
【0002】
【従来の技術】
車両に使用する電子制御システムでは、安全性を高めるためにセンサ情報をモニタし、センサに異常があるかを判断する機能を持たせている。
【0003】
上記センサとして用いられるものの一例として車速センサがあるが、車速センサは、走行時オンオフのパルスを出力するセンサであり、制御上では、そのパルスから車速を算出することが一般的である。
また、上記センサの一例であるステアリングセンサについては、その信号の変化状況や、オンオフ時の電圧状態から異常状態が判断される。
また、上記センサの一例であるヨー速度センサについては、その信号の変化状況や、電圧状態から異常状態が判断される。
また、上記センサの一例である横加速度センサについては、その信号の変化状況や、電圧状態から異常状態が判断される。
【0004】
【発明が解決しようとする課題】
ところで、前記センサが車速センサである場合、その車速センサがフェイルしたときには、パルスが出力されないが、この状態は、車両の停車中と区別できないため、他のセンサ信号を元にフェイルを判断することが多い。フェイル判断の元にされる他のセンサ信号としては、例えばエンジンの回転数が一定値以上の状態が継続する時間、スロットルセンサ値が一定値以上の状態が継続する時間等がある。
【0005】
この場合、車速センサそのものがフェイルしているという直接的な情報ではなく、間接的な推測を行なっているため、誤判定を起こす虞がある。さらに、車速センサによる演算では、ある決められたタイヤ径を想定して演算を行なっているため、タイヤの摩耗及び異なったサイズのタイヤ装着により、車速の誤差を生じる。
【0006】
また、センサがステアリングセンサである場合、ステアリングセンサの異常を検出するために、(1)ある距離で(ある速度以上で一定時間走行中に)ステアリングセンサ信号が変わらないとき異常であるとする検出ロジックを使用したり、あるいは(2)ステアリングセンサ信号の電圧レベルが異常レベルであるときにフェイルと判断する検出ロジックを使用している。
【0007】
そして、上記従来技術では、前記(1)の検出ロジックを使用する場合、(イ)ある距離以上の直線はないと仮定し、その距離以上走行した際にステアリングセンサ信号が切り替わらないのは異常であるという考えから判定を行なう。この考えは、路面状況により左右され、誤判定を起こす虞があるとともに、判定に長時間を要するという問題を有する。
また、前記(2)の検出ロジックを使用する場合、(ロ)電圧レベルで判断するため、誤判定は少なくなるがコントローラにはアナログ入力が必要で、アナログ−ディジタル変換回路など用意することが必要となり、コストアップを招くことになる。
【0008】
センサがヨー速度センサである場合、従来技術では、ヨー速度センサの異常を検出するために、センサ信号の電圧レベルが異常レベルであるときにフェイルと判断するという検出ロジックを使用している。このように電圧レベルで判断するため、誤判定は少なくなるが電圧レベルが正常であるときのフェイルの検出は難しい。また、フェイル検出時にはシステムをダウンすることが多く、車両の挙動制御上の性能が低下する。
【0009】
また、センサが横加速度センサである場合、横加速度センサの異常を検出するために、(1)横加速度センサ信号の電圧レベルが異常レベルであるときにフェイルと判断する検出ロジックを使用したり、あるいは(2)横加速度センサ信号が一定時間、変わらないとき異常(フェイル)であると判断する検出ロジックを使用している。
【0010】
そして、上記従来技術では、前記(1)検出ロジックを使用する場合、(イ)電圧レベルで判断するため、誤判定は少なくなるが、電圧レベルが正常であるときのフェイルの検出は難しい。
また、前記(2)検出ロジックを使用する場合、誤判定の虞がある。そして、フェイル検出時にはシステムをダウンすることが多く、性能が低下する。
【0011】
本発明は、上記事情に鑑みてなされたもので、車両のセンサフェイルを安定して検出することができる車両のセンサフェイル検出装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に係る車両のセンサフェイル検出装置の発明は、外部の通信手段から自車の位置情報信号を受信する位置情報受信手段と、車両に設けられ自車の挙動を検出する自車状態検出手段と、前記位置情報受信手段からの受信信号を前記自車状態検出手段からの検出信号と比較可能に変換した変換受信信号と前記自車状態検出手段からの検出信号との大きさを比較する信号比較手段と、を備え、さらに、前記信号比較手段が、前記変換受信信号と前記検出信号との大きさが所定値以上異なると判断した場合に、前記自車状態検出手段はフェイル状態であると判断するフェイル状態判断手段を備え、前記フェイル状態判断手段が前記自車状態検出手段はフェイル状態であると判断し、かつ前記自車状態検出手段が検出信号を継続して出力している場合に、前記検出信号を前記変換受信信号に近づけるように補正する信号補正手段を備えたことを特徴とする。
【0013】
【発明の実施の形態】
次に、本発明の実施形態に係る車両のセンサフェイル検出装置を説明する。なお、本発明の実施形態の説明に先立って、便宜上、第1〜第3参考例の車両のセンサフェイル検出装置を説明する。まず、第1参考例を図1及び図2に基づいて説明する。
【0014】
図1に示すように、第1参考例の車両のセンサフェイル検出装置(センサフェイル検出装置)1は、図示しない車両(自車)に設けられたコントローラ(制御装置)2と、車両の車速(自車の挙動)を検出して車速信号(検出信号)として出力する車速センサ(自車状態検出手段)3と、図示しないGPS(全地球測位システム)〔外部の通信手段〕から自車の位置情報信号を受信して位置情報信号(受信信号)として出力するGPS受信機(位置情報受信手段)4と、後述するように車速センサ3がフェイル状態であると判断された場合にそのことを示す表示を行なうフェイル表示部5とから大略構成されている。コントローラ2には、車速センサ3、GPS受信機4及びフェイル表示部5が接続されている。
コントローラ2は、車速センサ3からの車速信号(検出信号)により車両の挙動を制御し、また、位置情報信号(受信信号) を車速信号(検出信号)と比較し得るように変換受信信号に変換するようにしている。
【0015】
コントローラ2は、図2の演算処理などを行なう演算部6と、フェイル情報及び補正情報(車速補正値)等を格納する非揮発性のメモリ7とを備えている。
このコントローラ2の演算処理内容を、図2に基づいて説明する。
コントローラ2に電源が接続されると、コントローラ2は制御ソフトウェアの実行を開始し、まず、当該コントローラ2の初期設定を行なう(ステップS1)。この際、EEPROM(メモリ7)に格納されていたフェイル情報をこのメモリ7から読み出す。
【0016】
その後、所定の制御周期が経過したか否かの判定をYES と判定するまで行う(ステップS2)。ステップS2でYES と判定すると、前記車速センサ3から車速信号を入力するとともに、GPS受信機4から位置情報信号(受信信号)を入力する(ステップS3)。
【0017】
続いて、ステップS3で入力した信号について車速を求める演算を行なう(ステップS4)。車速センサ3からの車速信号は、車両の走行速度が上昇するのにつれて、一定時間当りのパルス数が多くなるものであり、ステップS4で、パルス間の時間計測または一定時間内のパルス数をカウントすることにより車速(以下、検出車速という。この検出車速は、車速センサ3からの車速信号から得られるものであり、検出信号に相当する。)が求められる(信号変換手段)。
また、GPS受信機4からの位置情報信号(受信信号)に基づいて、ステップS4で、ある一定距離の移動に要した時間から平均車速(以下、受信車速という。変換受信信号)を求める。
【0018】
次に、車速センサ3が現在、フェイル状態であるか否か(前制御周期におけるステップS10の判定による)を判定する(ステップS5)。
ステップS5でYesと判定する(車速センサ3がフェイル状態であると判断する)と、このことを示すフェイル情報をメモリ7に書き込むとともに、フェイル表示部5に表示させ(ステップS7)、ステップS2に戻る。
【0019】
ステップS5でNoと判定する(車速センサ3がフェイル状態でないと判断する)と、検出車速の大きさ(車速センサ3による車速計算値)と受信車速の大きさ(GPSからの車速計算値)の差の大きさ(車速センサ3の誤差)がフェイル判定設定値(フェイル検出値)以上であるか否か〔|「車速センサ3による車速計算値」−「GPSからの車速計算値」|≧「フェイル判定設定値」?〕を判定する(ステップS10。信号比較手段。フェイル状態判断手段)。
【0020】
ステップS10でNoと判定すると、ステップS2に戻る。
また、ステップS10でYesと判定すると、車速センサ3がフェイル状態であることを設定し(ステップS12。フェイル状態判断手段)、車速センサ3がフェイル状態であることを示すフェイル情報をメモリ7に書き込むとともに、フェイル表示部5に表示させ(ステップS13)、ステップS2に戻る。
【0021】
この第1参考例によれば、上述したように、車速センサ3がフェイル状態にあるか否かの判定を、安定した情報源であるGPSからの情報〔位置情報信号(受信信号)〕に基づいて得られる受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して行なうので、車速センサ3のフェイル検出を精度高くかつ安定して果たすことができる。
【0022】
また、従来技術では、車速センサ3のフェイル検出を行う際、タイヤの摩耗やタイヤ交換により生じる誤差を含むことが起こり得たが、上述したように外部の通信手段(GPS)からの情報を用いることにより、上述した従来技術が惹起する問題点を回避することができ、検出精度の向上を図ることができる。
【0023】
なお、前記ステップS10でYesと判定する回数をカウントし、その回数が所定値に達した場合に、車速センサ3がフェイル状態であることを設定する(ステップS12。フェイル状態判断手段)ようにし、判定精度の向上を図るように構成してもよい。また、前記ステップS10でYesと判定する状態の継続時間を計測し、その継続時間が所定値に達した場合に、車速センサ3がフェイル状態であることを設定する(ステップS12。フェイル状態判断手段)ようにし、判定精度の向上を図るように構成してもよい。
【0024】
なお、上記第1参考例では、GPSの情報に基づいて得た車速(受信信号)を用いるようにしているが、これに代えて、図3に示すように路車間通信により得られる情報を元に判定を行なうように構成してもよい(第2参考例)し、図4に示すように車車間通信により得られる情報を元に判定を行なうように構成してもよい(第3参考例)。
【0025】
第2参考例のセンサフェイル検出装置1は、図3に示すように、例えば道路上に設置された光ビーコンや電波ビーコン等の路車間通信部10(外部の通信手段)を有している。路車間通信部10は、道路を走行している車両の位置情報(絶対位置情報)及びその走行状況を示す情報(走行状況情報)を車両に発信する外部通信部11(外部の通信手段)を備え、車両側には、前記第1参考例のGPS受信機4に代えて設けられ、前記絶対位置情報及び走行状況情報を受信する受信部12(位置情報受信手段)が設けられ、制御内容は、前記第1参考例(図2)に略沿うものになっている。
【0026】
そして、外部通信部11からの情報〔絶対位置情報等〕に基づいて、受信車速(変換受信信号)を得、前記第1参考例と同様にして、この受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して、車速センサ3がフェイル状態にあるか否かの判定を行なうようにしている。
この第2参考例では、車速センサ3がフェイル状態にあるか否かの判定を、道路上に設置された外部の通信手段である外部通信部11からの情報〔絶対位置情報等〕に基づいて得られる受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して行なうので、GPSによる第1参考例よりも車速センサ3のフェイル検出の精度向上を図ることができるとともに、及び車速センサ3のフェイル判定を安定して行なうことができるようになる。
【0027】
第3参考例のセンサフェイル検出装置1は、図4に示すように、自車を含め、その前方及び後方の各車両に車車間通信部20(外部の通信手段)を有している。車車間通信部20は各車両に備えられており、車間距離情報及び車速情報を他の車両に発信する通信部21(外部の通信手段)を備え(他車側)、自車側には、前記第1参考例のGPS受信機4に代えて設けられ、前記車間距離情報及び車速情報を他の車両から受信する受信部22(位置情報受信手段)が設けられ、制御内容は、前記第1参考例(図2)に略沿うものになっている。
【0028】
そして、通信部21からの情報〔絶対位置情報等〕に基づいて、受信車速(変換受信信号)を得、前記第1参考例と同様にして、この受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して、車速センサ3がフェイル状態にあるか否かの判定を行なうようにしている。
この第3参考例では、車速センサ3がフェイル状態にあるか否かの判定を、前方または後方を走行する他車の外部の通信手段である通信部21からの情報〔車速情報等〕に基づいて得られる受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して行なうので、GPSによる第1参考例よりも車速センサ3のフェイル検出の精度向上を図ることができるとともに、車速センサ3のフェイル判定を安定して行なうことができるようになる。
【0029】
ここで、本発明の第1実施形態を図5に基づき、前記第1参考例(図1及び図2)を参照して説明する。
この第1実施形態は、前記第1参考例(図1及び図2)に比して、ステップS9及びステップS11を設けたこと、ステップS1に代えてこれと異なる演算を行なうステップS1Aを設けたこと、ステップS4に代えてこれと異なる演算を行なうステップS4Aを設けたこと、並びにステップS10に代えてこれと異なる演算を行なうステップS10Aを設けたことが主に異なっている。
【0030】
コントローラ2に電源が接続されると、コントローラ2は制御ソフトウェアの実行を開始し、まず、当該コントローラ2の初期設定を行なう(ステップS1A)。EEPROM(メモリ7)に格納されていた車速補正値及びフェイル情報をこのメモリ7から読み出す。
【0031】
その後、所定の制御周期が経過したか否かの判定をYES と判定するまで行う(ステップS2)。ステップS2でYES と判定すると、前記車速センサ3から車速信号を入力するとともに、GPS受信機4から位置情報信号(受信信号)を入力する(ステップS3)。
【0032】
ステップS4Aでは、ステップS3で入力した信号について車速を求める演算を行なう。この際、パルス間の時間計測または一定時間内のパルス数をカウントすることにより車速が求められ、さらに、「車速」=「車速」×「車速補正値」(この場合、前制御周期で求められメモリ7に格納されている車速補正値が用いられる。なお、補正する必要がないとされている場合は、車速補正値は、「1」とされている。)の演算を行なって車速(以下、検出車速という。この検出車速は、車速センサ3からの車速信号から得られるものであり、検出信号に相当する。)を求める。
【0033】
また、GPS受信機4からの位置情報信号(受信信号)に基づいて、ステップS4Aで、ある一定距離の移動に要した時間から平均車速(以下、受信車速という。変換受信信号)を求める。
【0034】
ステップS9は、ステップS5でNoと判定した場合に、ステップS10Aの処理に先立て実行される。このステップS9では、車速センサ3の検出信号に基づく車速について補正の必要があるか否か(「車速補正値」が「1」以外の値である場合における前記「車速」=「車速」×「車速補正値」の演算の要否)を判定する。
ステップS9では、|「車速センサ3による車速計算値」−「GPSからの車速計算値」|≧「補正必要設定値」〔補正必要値〕の演算を行なって、前記補正の要否を判定する。
【0035】
ステップS9でNoと判定すると、「車速補正値」が「1」とされて、ステップS2に戻る。ステップS9でYesと判定すると、〔|「車速センサ3による車速計算値」−「GPSからの車速計算値」|≧「フェイル判定設定値」〕の比較演算を行ない、車速センサ3がフェイル状態であるか否かを判定する(ステップS10A。信号比較手段。フェイル状態判断手段)。ここで、「フェイル判定設定値」>「補正必要設定値」とされている。
【0036】
ステップS10AでNoと判定すると、車速センサ3による車速(検出信号)をGPS受信機4からの位置情報信号(受信信号)に基づいて得られる受信車速(変換受信信号)の大きさに近づけるように「車速補正値」(車速センサ補正値)を定め、この値になるようにメモリ7に格納されている「車速補正値」を書き換え(ステップS11)、ステップS2に戻る。
【0037】
なお、ステップS11でこのように「車速補正値」を書き換えておき、次の制御周期におけるステップS4Aの演算処理により、車速センサ3による車速(検出信号)を補正して、受信車速(変換受信信号)の大きさに近づけるようにしている。
また、ステップS10AでYesと判定すると、前記第1参考例(図2)と同様に、ステップS12及びステップS13を実行してステップS2に戻る。
【0038】
この第1実施形態によれば、上述した第1参考例と同様に、車速センサ3がフェイル状態にあるか否かの判定を、安定した情報源であるGPSからの情報〔位置情報信号(受信信号)〕に基づいて得られる受信車速(変換受信信号)と、車速センサ3が検出する検出車速とを比較して行なうので、車速センサ3のフェイル検出を精度高くかつ安定して果たすことができる。
【0039】
また、第1実施形態によれば、ステップS10AでNoと判定すると、ステップS11で「車速補正値」を書き換え、次の制御周期におけるステップS4Aの演算処理により、車速センサ3による車速(検出信号)を補正して、受信車速(変換受信信号)の大きさに近づけるようにしている。このため、例えば車速センサ3の出力がずれるような軽度のフェイル時には、車速センサ3の継続して出力される検出値を利用して車両の挙動の制御を継続して適正に制御できることになる。
なお、ステップS9でYesと判定した時点で車速センサ3はフェイル状態(上述のような軽度のフェイル)であって、このようなフェイル状態も本発明の請求項のフェイル状態に含まれるものである。この例において、ステップS4A、ステップS5、ステップS9、ステップS10A及びステップS11が信号補正手段を構成する。また、ステップS4Aは信号変換手段を構成する。
【0040】
この例によれば、車速センサ3がフェイル状態で、かつ車速センサ3が検出信号を継続して出力している場合に、車速センサ3による車速(検出信号)を補正して、受信車速(変換受信信号)の大きさに近づけるようにしているので、車速センサ3がフェイル状態で、車速センサ3が継続して検出信号を出力している場合に、車速センサ3の検出値を利用して車両の挙動の制御を継続して適正に制御できることになる。
【0041】
また、路車間通信により得られる情報を用いるように構成した装置(第2参考例)、及び車車間通信により得られる情報を用いるように構成した装置(第3参考例)について上述したが、これらと同様に、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第1実施形態(図5)に略沿うようにしてセンサフェイル検出装置を構成してもよい。
【0042】
次に、本発明の第2実施形態を図6に基づいて説明する。この第2実施形態は、第1実施形態(図5)に比して、ステップS7〔ステップS5でYes(車速センサ3がフェイル状態である)と判定後の処理〕に続いてステップS8(フェイル時信号切換手段)を実行すること、ステップS13〔ステップS10AのYes判定(車速センサ3がフェイル状態である)に続くステップS12(車速センサ3がフェイル状態であることを設定する処理)後の処理〕に続いてステップS14(フェイル時信号切換手段)を実行することが主に異なっている。
【0043】
ステップS8、ステップS14では、車速センサ3による車速(検出信号)に代えて、GPS受信機4からの位置情報信号(受信信号)に基づいて得られる受信車速(変換受信信号)を用いて、車両の挙動の制御を行う。
【0044】
この第2実施形態では、車速センサ3がフェイル状態であるとされた場合には、車速センサ3による車速(検出信号)に代えて、GPS受信機4からの位置情報信号(受信信号)に基づいて得られる受信車速(変換受信信号)を用いて、車両の挙動の制御を行う〔ステップS8、ステップS14〕ので、車速センサ3がフェイル状態になった場合にも、車両の挙動の制御を確実に行え、かつその制御を精度高いものにすることができる。
【0045】
なお、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第2実施形態(図6)に略沿うようにしてセンサフェイル検出装置を構成してもよい。
【0046】
次に、第4参考例を図7及び図8に基づいて説明する。
この第4参考例は、第1参考例(図1及び図2)に比して、自車状態検出手段として車速センサ3に代えてデジタル(2又は3のパルス出力)またはステアリング角度に応じた電圧を出力するアナログ方式のステアリングセンサ3Aを設けたこと、走行軌跡からステアリング角度を推定する処理(ステップS5B)を設けたことが主に異なっている。
なお、第4参考例のコントローラ2は、前記ステップS5Bの他に,図8に示すように、ステップS1B〜S4B、ステップS6B,S7B,S10B、ステップS12B,S13Bを実行するが、これらの処理は、ステアリングセンサ3Aからの信号等を対象にすることから、前記第1参考例と異なるものの、基本的な演算は前記ステップS1〜S4、ステップS6,S7,S10、ステップS12,S13と略同等であり、その説明は適宜、省略する。
【0047】
ステップS3Bでは、ステアリングセンサ3Aからステアリング角度信号を入力するとともに、GPS受信機4から位置情報信号(受信信号)を入力する。
【0048】
ステップS4Bでは、ステップS3Bで入力した信号についてステアリング角度を求める演算を行なう。ステアリングセンサ3Aがデジタル方式(2又は3のパルス出力)である場合、2相パルスからステアリング角度の変化量を求めるようにする。
次のステップS5Bで、GPS受信機4からの位置情報信号(受信信号)の履歴を重ねることにより走行軌跡を求める。そして、その走行軌跡から車両回転半径を求めることができ、その回転半径からステアリング角度(以下、受信ステアリング角度という。変換受信信号)を推定する。
【0049】
次に、ステアリングセンサ3Aが現在、フェイル状態であるか否か(前制御周期におけるステップS10Bの判定による)を判定する(ステップS6B)。
ステップS6BでYesと判定する(ステアリングセンサ3Aがフェイル状態であると判断する)と、このことを示すフェイル情報をメモリ7に書き込むとともに、フェイル表示部5(ランプ)に表示させ(ステップS7B)、ステップS2Bに戻る。
【0050】
ステップS6BでNoと判定する(ステアリングセンサ3Aがフェイル状態でないと判断する)と、検出ステアリング角度の大きさ(ステアリングセンサ3Aによるステアリング角度計算値)と受信ステアリング角度の大きさ(GPSからのステアリング角度計算値)の差の大きさ(ステアリングセンサ3Aの誤差)がフェイル判定設定値(フェイル検出値)以上であるか否か〔|「ステアリングセンサ3Aによるステアリング角度計算値」−「GPSからのステアリング角度計算値」|≧「フェイル判定設定値」?〕を判定する(ステップS10B。信号比較手段。フェイル状態判断手段)。
【0051】
ステップS10BでNoと判定すると、ステップS2Bに戻る。
また、ステップS10BでYesと判定すると、ステアリングセンサ3Aがフェイル状態であることを設定し(ステップS12B。フェイル状態判断手段)、ステアリングセンサ3Aがフェイル状態であるを示すフェイル情報をメモリ7に書き込むとともに、フェイル表示部5に表示させ(ステップS13B)、ステップS2Bに戻る。
【0052】
上述したように、ステアリングセンサ3Aがフェイル状態にあるか否かの判定を、安定した情報源であるGPSからの情報〔位置情報信号(受信信号)〕に基づいて得られる受信ステアリング角度(変換受信信号)と、ステアリングセンサ3Aが検出する検出ステアリング角度とを比較して行なうので、ステアリングセンサ3Aのフェイル検出を精度高くかつ安定して果たすことができる。
【0053】
また、従来技術では、ステアリングセンサ3Aのフェイル検出を行う際、タイヤの摩耗やタイヤ交換により生じる誤差を含むことが起こり得たが、上述したように外部の通信手段(GPS)からの情報を用いることに上述した従来技術が惹起する問題点を回避することができる。
【0054】
なお、前記ステップS10BでYesと判定する回数をカウントし、その回数が所定値に達した場合に、ステアリングセンサ3Aがフェイル状態であることを設定する(ステップS12B。フェイル状態判断手段)ようにし、判定精度の向上を図るように構成してもよい。また、前記ステップS10BでYesと判定する状態の継続時間を計測し、その継続時間が所定値に達した場合に、ステアリングセンサ3Aがフェイル状態であることを設定する(ステップS12B。フェイル状態判断手段)ようにし、判定精度の向上を図るように構成してもよい。
【0055】
また、路車間通信により得られる情報を用いるように構成した装置(第2参考例)、及び車車間通信により得られる情報を用いるように構成した装置(第3参考例)について上述したが、これらと同様に、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第4参考例(図8)に略沿うようにしてセンサフェイル検出装置〔第5参考例(図9)、第6参考例(図10)〕を構成してもよい。
【0056】
なお、舵角と車両の走行軌跡は、路面の抵抗係数μによっても変わってくるため、第5参考例(図9)又は第6参考例(図10)では、路車間通信、車車間通信から得られる路面の抵抗係数μを考慮してフェイル状態の判定を行なう(例えば、路面の抵抗係数μが低い場合は、フェイル判定しきい値を大きくする)ようにしてもよい。
【0057】
次に、第7参考例を図11に基づいて説明する。この第7参考例は、第4参考例(図8)に比して、ステップS5Bに代えてステップS5Cを設けたこと、ステップS7B〔ステップS6BでYes(ステアリングセンサ3Aがフェイル状態である)と判定後の処理〕に続いてステップS8Bを実行すること、ステップS13B〔ステップS10BのYes(ステアリングセンサ3Aがフェイル状態である)判定に続くステップS12B(ステアリングセンサ3Aがフェイル状態であることを設定する処理)後の処理〕に続いてステップS14Bを実行することが主に異なっている。
【0058】
ステップS5Cでは、GPS受信機4からの位置情報信号(受信信号)の履歴を重ねることにより走行軌跡を求めるが、さらに、コントローラ2に内蔵された地図データ(図示せず)を利用して今後走行する路面の状態(カーブ)の推定など行ない、走行軌跡ひいては受信ステアリング角度(変換受信信号)の精度を向上させるようにしている。
【0059】
ステップS8B及びステップS14Bでは、それぞれ、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、GPS受信機4からの位置情報信号(受信信号)とコントローラ2の地図データに基づいて得られる受信ステアリング角度(変換受信信号)を用いて、車両の挙動の制御を行う。
【0060】
この第7参考例(図11)では、ステアリングセンサ3Aがフェイル状態であるとされた場合には、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、GPS受信機4からの位置情報信号等に基づいて得られる受信ステアリング角度(変換受信信号)を用いて、車両の挙動の制御を行うので、ステアリングセンサ3Aがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、かつその制御を精度高いものにすることができる。
【0061】
なお、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第7参考例(図11)に略沿うようにしてセンサフェイル検出装置を構成してもよい。
【0062】
この第7参考例では、上述したようにコントローラ2に内蔵された地図データを利用して今後走行する路面の状態(カーブ)の推定し、フェイル判定を精度高く果たすことができ、挙動についての良好な制御性、及び安全性を確保することができる。
【0063】
また、路車間通信により得られる情報を用いるように構成した装置(第2参考例)、及び車車間通信により得られる情報を用いるように構成した装置(第3参考例)について上述したが、これらと同様に、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第7参考例(図11)に略沿うようにしてセンサフェイル検出装置を構成してもよい。この場合、舵角と車両の走行軌跡は、路面の抵抗係数μによっても変わってくるため、路車間通信、車車間通信から得られる路面の抵抗係数μを考慮してフェイル状態の判定を行なう(例えば、路面の抵抗係数μが低い場合は、フェイル判定しきい値を大きくする)ようにしてもよい。
なお、上述では、地図データをコントローラ2に内蔵したものを示したが、これに限らず、ナビゲーションシステムから配線を介して地図データをもらうようにしても良い。
【0064】
次に、第8参考例を図12及び図13に基づいて説明する。
この第8参考例は、第7参考例(図11)に比して、自車状態検出手段としてステアリングセンサ3Aに加えて横加速度センサ3Bを設けたこと、ステップS3B、ステップS5C、ステップS8B、ステップS14Bにそれぞれ代えてステップS3D、ステップS5B〔第4参考例(図8)参照〕、ステップS8D、ステップS14Dを設けたことが主に異なっている。
【0065】
ステップS3Dでは、ステアリングセンサ3Aからステアリング角度(検出信号)を入力し、また、横加速度センサ3Bから横加速度を入力する。
ステップS8D及びステップS14Dでは、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、横加速度センサ3Bからの横加速度に基づいて、次式(1)に示すようにステアリング角を求め、このステアリング角に基づいて車両の挙動の制御を行う(本第4参考例では、ステップS8D及びステップS14Dがそれぞれ近似信号演算手段を構成している。)。
【0066】
「ステアリング角」=「横加速度」×「ステアリングギヤ比」×「ホイルベース」/(「車速」×「車速」)… … (1)
ここで、車速はGPSからの位置情報信号から求めている。
【0067】
この第8参考例(図12及び図13)では、ステアリングセンサ3Aがフェイル状態であるとされた場合には、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、横加速度センサ3Bからの横加速度等に基づいて、車両の挙動の制御を行うので、ステアリングセンサ3Aがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0068】
また、図14及び図15に示すように、第8参考例の横加速度センサ3Bに代えてヨー速度センサ(ヨーレートセンサ)3Cを設け、ステップS3D、ステップS8D、ステップS14Dに代えて、ステップS3E、ステップS8E、ステップS14Eを設けるように構成してもよい(第9参考例)。
【0069】
ステップS3Eでは、ステアリングセンサ3Aからステアリング角度(検出信号)を入力し、また、ヨー速度センサ3Cからヨー速度を入力する。
ステップS8E及びステップS14Eでは、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、ヨー速度センサ3Cからのヨー速度に基づいて、次式(2)に示すようにステアリング角を求め、このステアリング角に基づいて車両の挙動の制御を行う。
【0070】
「ステアリング角」=「ヨー速度」×「ホイルベース」/「車速」 …(2)
ここで、車速はGPSからの位置情報信号から求めている。
【0071】
この第9参考例(図14及び図15)では、ステアリングセンサ3Aがフェイル状態であるとされた場合には、ステアリングセンサ3Aによるステアリング角度(検出信号)に代えて、ヨー速度センサ3Cからのヨー速度等に基づいて、車両の挙動の制御を行うので、ステアリングセンサ3Aがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0072】
次に、第10参考例を図16及び図17に基づいて説明する。
この第10参考例は、第4参考例(図7及び図8)に比して、自車状態検出手段としてステアリングセンサ3Aに代えてヨー速度センサ3Cを設けたことが主に異なっている。
なお、第10参考例のコントローラ2は、図17に示すように、ステップS1F〜S7F、ステップS10F、ステップS12F,S13Fを実行するが、これらの処理は、ヨー速度センサ3Cからの信号等を対象にすることから、第4参考例(図8)と異なるものの、基本的な演算は前記ステップS1B〜S7B、ステップS10B、ステップS12B,S13Bと略同等であり、その説明は適宜、省略する。
【0073】
ステップS3Fでは、ヨー速度センサ3Cからヨー速度信号を入力するとともに、GPS受信機4から位置情報信号及び地図情報(受信信号)を入力する。
【0074】
ステップS4F(信号変換手段)では、ステップS3Fで入力した信号(位置情報)とコントローラ2の地図データから車両の旋回半径を求め、GPSからの位置情報信号から車速を求める。
ステップS5Fでは、車両の旋回半径及び車速から次式(3)の演算を行なってヨー速度を求める。
【0075】
「ヨー速度」=「車速」/「旋回半径」 … … (3)
【0076】
この第10参考例(図16及び図17)によれば、ヨー速度センサ3Cがフェイル状態にあるか否かの判定を、安定した情報源であるGPSからの情報〔位置情報信号(受信信号)〕に基づいて得られるヨー速度(変換受信信号)と、ヨー速度センサ3Cが検出するヨー速度(検出信号)とを比較して行なうので、ヨー速度センサ3Cのフェイル検出を精度高くかつ安定して果たすことができる。
【0077】
また、図18に示すように、第10参考例のコントローラの制御内容にステップS8F及びステップS14Fを付加するように構成してもよい(第11参考例)。この第11参考例のコントローラ2は、図18に示すようにステップS1F〜S7F、ステップS8F、ステップS10F、ステップS12F,S13F,S14Fを実行し、これらの処理は、ヨー速度センサ3Cからの信号等を対象にすることから、第7参考例(図11。ステアリングセンサ3Aからの信号等を対象)と異なるものの、基本的な演算は第7参考例と略同等であり、その説明は適宜、省略する。
【0078】
ステップS8F及びステップS14Fでは、それぞれ、ヨー速度センサ3Cによるヨー速度(検出信号)に代えて、GPS受信機4からの位置情報(受信信号)及びコントローラ2の地図情報に基づいて得られるヨー速度(変換受信信号)を用いて、車両の挙動の制御を行う。
【0079】
この第11参考例(図18)では、ヨー速度センサ3Cがフェイル状態であるとされた場合には、ヨー速度センサ3Cによるヨー速度(検出信号)に代えて、GPS受信機4からの位置情報信号等に基づいて得られる受信ヨー速度(変換受信信号)を用いて、車両の挙動の制御を行うので、ヨー速度センサ3Cがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、かつその制御を精度高いものにすることができる。
【0080】
次に、第12参考例を図19及び図20に基づいて説明する。
この第12参考例は、第9参考例(図14及び図15)と同様に、ヨー速度センサ3C及びステアリングセンサ3Aを備えている。また、第12参考例は、第11参考例(図18)に比して、ステップS3Fに代えてステップS3E(前記第9参考例参照)を備え、ステップS8F及びステップS14Fに代えて、図20に示すようにステップS8G及びステップS14Gを設けたことが、主に異なっている。
【0081】
ステップS8G及びステップS14Gでは、それぞれ、ヨー速度センサ3Cによるヨー速度に代えて、ステアリングセンサ3Aからのステアリング角度(検出信号)に基づいて、次式(4)に示すようにヨー速度を求め、このヨー速度に基づいて車両の挙動の制御を行う。
【0082】
「ヨー速度」=「車速」×「切れ角」/「ホイルベース」 … (4)
ここで、車速はGPSからの位置情報信号から求めている。
【0083】
この第12参考例(図19及び図20)では、ヨー速度センサ3Cがフェイル状態であるとされた場合には、ヨー速度センサ3Cによるヨー速度(検出信号)に代えて、ステアリングセンサ3Aからのステアリング角度等に基づいて求めたヨー速度により、車両の挙動の制御を行うので、ヨー速度センサ3Cがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0084】
次に、第13参考例を図21及び図22に基づいて説明する。
この第13参考例は、第12参考例(図19及び図20)に比して、ステアリングセンサ3Aに代えて横加速度センサ3Bを設け、ステップS8G及びステップS14Gに代えてステップS8H及びステップS14Hを設けたことが異なっている。
【0085】
ステップS8H及びステップS14Hでは、それぞれ、ヨー速度センサ3Cによるヨー速度に代えて横加速度センサ3Bからの横加速度に基づいて、次式(5)に示すようにヨー速度を求め、このヨー速度に基づいて車両の挙動の制御を行う。
【0086】
「ヨー速度」=「横加速度」/「車速」 … (5)
ここで、車速はGPSからの位置情報信号から求めている。
【0087】
この第13参考例(図21及び図22)では、ヨー速度センサ3Cがフェイル状態であるとされた場合には、ヨー速度センサ3Cによるヨー速度(検出信号)に代えて、横加速度センサ3Bからの横加速度等に基づいて求めたヨー速度により、車両の挙動の制御を行うので、ヨー速度センサ3Cがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0088】
次に、第14参考例を図23及び図24に基づいて説明する。
この第14参考例は、第10参考例(図16及び図17)に比して、自車状態検出手段としてヨー速度センサ3Cに代えて横加速度センサ3Bを設けたことが主に異なっている。
なお、第14参考例のコントローラ2は、図24に示すように、ステップS1I〜S7I、ステップS10I、ステップS12I,S13Iを実行するが、これらの処理は、横加速度センサ3Bからの信号等を対象にすることから、第10参考例と異なるものの、基本的な演算は前記ステップS1F〜S7F、ステップS10F、ステップS12F,S13Fと略同等であり、その説明は適宜、省略する。
【0089】
ステップS3Iでは、横加速度センサ3Bから横加速度信号を入力するとともに、GPS受信機4から位置情報信号及び地図情報(受信信号)を入力する。
【0090】
ステップS4I(信号変換手段)では、ステップS3Iで入力した信号(位置情報)とコントローラ2の地図データから車両の旋回半径を求めGPSからの位置情報信号から車速を求める。
ステップS5Iでは、車両の旋回半径及び車速から次式(6)の演算を行なって横加速度を求める。
【0091】
「横加速度」=「車速」×「車速」/「旋回半径」 … … (6)
【0092】
この第14参考例(図23及び図24)によれば、横加速度センサ3Bがフェイル状態にあるか否かの判定を、安定した情報源であるGPSからの情報〔位置情報信号(受信信号)〕に基づいて得られる横加速度(変換受信信号)と、横加速度センサ3Bが検出する横加速度(検出信号)とを比較して行なうので、横加速度センサ3Bのフェイル検出を精度高くかつ安定して果たすことができる。
【0093】
また、図25に示すように、第14参考例のコントローラの制御内容にステップS8I及びステップS14Iを付加するように構成してもよい(第15参考例)。
【0094】
ステップS8I及びステップS14Iでは、それぞれ、横加速度センサ3Bによる横加速度(検出信号)に代えて、GPS受信機4からの位置情報(受信信号)及びコントローラ2の地図情報に基づいて得られる横加速度(変換受信信号)を用いて、車両の挙動の制御を行う。
【0095】
この第15参考例(図25)では、横加速度センサ3Bがフェイル状態であるとされた場合には、横加速度センサ3Bによる横加速度(検出信号)に代えて、GPS受信機4からの位置情報信号等に基づいて得られる受信横加速度(変換受信信号)を用いて、車両の挙動の制御を行うので、横加速度センサ3Bがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、かつその制御を精度高いものにすることができる。
【0096】
次に、第16参考例を図26及び図27に基づいて説明する。
この第16参考例は、第8参考例と同様に、横加速度センサ3B及びステアリングセンサ3Aを備えている。また、第16参考例は、第15参考例(図25)に比して、ステップS8I及びステップS14Iに代えてステップS8J及びステップS14Jを設けたことが、主に異なっている。
【0097】
ステップS8J及びステップS14Jでは、それぞれ、横加速度センサ3Bにより得られる横加速度に代えて、ステアリングセンサ3Aからのステアリング角度(検出信号)に基づいて、次式(7)に示すように横加速度を求め、この横加速度に基づいて車両の挙動の制御を行う。
【0098】
「横加速度」=「車速」×「車速」×「切れ角」/「ホイルベース」…(7)
ここで、車速はGPSからの位置情報信号から求めている。
ここで、「切れ角」=「ハンドル角」/「ステアリングギア比」であるので、演算時には、「ステアリング比」を考慮するようにしている。
【0099】
この第16参考例(図26及び図27)では、横加速度センサ3Bがフェイル状態であるとされた場合には、横加速度センサ3Bによる横加速度(検出信号)に代えて、ステアリングセンサ3Aからのステアリング角度等に基づいて求めた横加速度により、車両の挙動の制御を行うので、横加速度センサ3Bがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0100】
次に、第17参考例を図28及び図29に基づいて説明する。
この第17参考例は、第16参考例に比して、ステアリングセンサ3Aに代えてヨー速度センサ3Cを設け、ステップS8J及びステップS14Jに代えてステップS8K及びステップS14Kを設けたことが、主に異なっている。
【0101】
ステップS8K及びステップS14Kでは、それぞれ、横加速度センサ3Bにより得られる横加速度に代えて、ヨー速度センサ3Cからのヨー速度に基づいて、次式(8)に示すように横加速度を求め、この横加速度に基づいて車両の挙動の制御を行う。
【0102】
「横加速度」=「ヨー速度」×「車速」 … (8)
ここで、車速はGPSからの位置情報信号から求めている。
【0103】
この第17参考例(図28及び図29)では、横加速度センサ3Bがフェイル状態であるとされた場合には、横加速度センサ3Bによる横加速度(検出信号)に代えて、ヨー速度センサ3Cからのヨー速度等に基づいて求めた横加速度により、車両の挙動の制御を行うので、横加速度センサ3Bがフェイル状態になった場合にも、車両の挙動の制御を確実に行え、安全性を確保できる。
【0104】
また、路車間通信により得られる情報を用いるように構成した装置(第2参考例)、及び車車間通信により得られる情報を用いるように構成した装置(第3参考例)について上述したが、これらと同様に、路車間通信により得られる情報または車車間通信により得られる情報を用い、かつ制御内容を前記第4参考例(図8)に略沿うようにしてセンサフェイル検出装置〔第14参考例(図23、図24)、第15参考例(図25)、第16参考例(図26、図27)、第17参考例(図28、図29)〕を構成してもよい。
【0105】
なお、舵角と車両の走行軌跡は、路面の抵抗係数μによっても変わってくるため、第14参考例(図23、図24)、第15参考例(図25)、第16参考例(図26、図27)、第17参考例(図28、図29)では、路車間通信、車車間通信から得られる路面の抵抗係数μを考慮してフェイル状態の判定を行なう(例えば、路面の抵抗係数μが低い場合は、フェイル判定しきい値を大きくする)ようにしてもよい。
【0106】
前記実施の形態及び参考例において、外部の通信手段がGPS、路車間通信部、車車間通信部である場合を例にしたが、これに代えて、放送による通信手段、CS(通信衛星)、BS(放送衛星)などを用いるようにしてもよい。
また、本発明による自車状態検出手段からの検出信号は、検出された信号そのものを利用(比較)してもよいし、微分、積分定数の乗算等利用(比較)し易く加工してもかまわない。
【0107】
【発明の効果】
請求項1記載の発明によれば、外部の通信手段から自車の位置情報を位置情報受信手段が受信し、その受信信号に基づいて得られる変換受信信号及び検出信号について大きさが所定値以上異なると判断された場合に、フェイル状態判断手段は自車状態検出手段がフェイル状態であると判断する。フェイル状態の判定を自車状態検出手段でなく、外部の通信手段として例えばGPSのように比較的安定した情報源を用いることが可能であり、これにより自車状態検出手段のフェイル検出を精度高くかつ安定して果たすことができる。
【0108】
さらに、請求項1記載の発明によれば、フェイル状態判断手段が自車状態検出手段はフェイル状態であると判断し、かつ自車状態検出手段が検出信号を継続して出力している場合に、信号補正手段が検出信号を前記変換受信信号に近づけるように補正するので、自車状態検出手段がフェイル状態であっても、補正された検出信号により車両の挙動の制御が可能であり、挙動の制御を中断させることがない。
【図面の簡単な説明】
【図1】 第1参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図2】 図1のコントローラの制御内容を示すフローチャートである。
【図3】 第2参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図4】 第3参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図5】 本発明の第1実施形態に係るセンサフェイル検出装置のコントローラの制御内容を示すフローチャートである。
【図6】 本発明の第2実施形態に係るセンサフェイル検出装置のコントローラの制御内容を示すフローチャートである。
【図7】 第4参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図8】 図7のコントローラの制御内容を示すフローチャートである。
【図9】 第5参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図10】 第6参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図11】 第7参考例に係るセンサフェイル検出装置のコントローラの制御内容を示すフローチャートである。
【図12】 第8参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図13】 図12のコントローラの制御内容を示すフローチャートである。
【図14】 第9参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図15】 図14のコントローラの制御内容を示すフローチャートである。
【図16】 第10参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図17】 図16のコントローラの制御内容を示すフローチャートである。
【図18】 第11参考例に係るセンサフェイル検出装置のコントローラの制御内容を示すフローチャートである。
【図19】 第12参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図20】 図19のコントローラの制御内容を示すフローチャートである。
【図21】 第13参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図22】 図21のコントローラの制御内容を示すフローチャートである。
【図23】 第14参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図24】 図23のコントローラの制御内容を示すフローチャートである。
【図25】 第15参考例に係るセンサフェイル検出装置のコントローラの制御内容を示すフローチャートである。
【図26】 第16参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図27】 図26のコントローラの制御内容を示すフローチャートである。
【図28】 第17参考例に係るセンサフェイル検出装置を模式的に示す図である。
【図29】 図28のコントローラの制御内容を示すフローチャートである。
【符号の説明】
1 センサフェイル検出装置
2 コントローラ
3 車速センサ(自車状態検出手段)
4 GPS受信機(位置情報受信手段)

Claims (1)

  1. 外部の通信手段から自車の位置情報信号を受信する位置情報受信手段と、車両に設けられ自車の挙動を検出する自車状態検出手段と、前記位置情報受信手段からの受信信号を前記自車状態検出手段からの検出信号と比較可能に変換した変換受信信号と前記自車状態検出手段からの検出信号との大きさを比較する信号比較手段と、を備え、さらに、前記信号比較手段が、前記変換受信信号と前記検出信号との大きさが所定値以上異なると判断した場合に、前記自車状態検出手段はフェイル状態であると判断するフェイル状態判断手段を備え、前記フェイル状態判断手段が前記自車状態検出手段はフェイル状態であると判断し、かつ前記自車状態検出手段が検出信号を継続して出力している場合に、前記検出信号を前記変換受信信号に近づけるように補正する信号補正手段を備えたことを特徴とする車両のセンサフェイル検出装置。
JP2000162782A 2000-05-31 2000-05-31 車両のセンサフェイル検出装置 Expired - Fee Related JP4304400B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162782A JP4304400B2 (ja) 2000-05-31 2000-05-31 車両のセンサフェイル検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162782A JP4304400B2 (ja) 2000-05-31 2000-05-31 車両のセンサフェイル検出装置

Publications (2)

Publication Number Publication Date
JP2001341664A JP2001341664A (ja) 2001-12-11
JP4304400B2 true JP4304400B2 (ja) 2009-07-29

Family

ID=18666640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162782A Expired - Fee Related JP4304400B2 (ja) 2000-05-31 2000-05-31 車両のセンサフェイル検出装置

Country Status (1)

Country Link
JP (1) JP4304400B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL169408A (en) * 2004-06-28 2010-02-17 Northrop Grumman Corp System for navigation redundancy
JP4720166B2 (ja) * 2004-12-03 2011-07-13 トヨタ自動車株式会社 車両の速度検出装置
JP4848931B2 (ja) * 2006-11-13 2011-12-28 株式会社デンソー 角速度センサの信号補正装置
JP5270184B2 (ja) * 2008-02-13 2013-08-21 古野電気株式会社 衛星航法/推測航法統合測位装置
JP5552744B2 (ja) * 2009-02-10 2014-07-16 日本精工株式会社 電動パワーステアリング装置
SE537531C2 (sv) * 2011-01-04 2015-06-02 Scania Cv Ab Metod och system för hastighetsverifiering på ett fordon
KR102052525B1 (ko) * 2013-10-08 2019-12-05 현대모비스 주식회사 미러 제어 장치 및 그 동작 방법
JP5664754B2 (ja) * 2013-12-20 2015-02-04 日本精工株式会社 電動パワーステアリング装置
WO2017147677A1 (en) * 2016-04-19 2017-09-08 Magtec Products, Inc. Throttle control system and method
JP6952989B2 (ja) * 2017-06-20 2021-10-27 株式会社パインベース 運転者指導システム
JP7364438B2 (ja) * 2019-11-22 2023-10-18 矢崎エナジーシステム株式会社 速度データ取得装置、サービス提供システム及び速度データ取得方法

Also Published As

Publication number Publication date
JP2001341664A (ja) 2001-12-11

Similar Documents

Publication Publication Date Title
EP2019287B1 (en) Vehicle positioning information update device
EP1949032B1 (en) Mobile object position estimation apparatus and method
KR100626539B1 (ko) 네비게이션 시스템에서 이동체의 방위각 보정방법
EP1475250B1 (en) GPS (global positioning system) based method for determining a change of an inflation pressure of a tire and system therefor
US11334088B2 (en) Vehicle position detector, automatic steering controller, vehicle position detecting method, and automatic steering control method
JP4304400B2 (ja) 車両のセンサフェイル検出装置
JP2000097713A (ja) 車両用現在位置検出装置、車両用現在位置表示装置、ナビゲーション装置および記録媒体
CN102007417A (zh) 基于车载传感器的用于偏航率传感器标定的标定算法
CN111309001B (zh) 具有基于主方向的坐标校正的航位推算引导系统和方法
WO2010129111A2 (en) Position monitoring system for a mobile machine
US7860649B2 (en) Vehicle position detecting system and method
JP4931113B2 (ja) 自車位置決定装置
JP3402383B2 (ja) 車両の現在位置検出装置
JPH1194874A (ja) ヨーレートセンサの較正方法
JP6916705B2 (ja) 自動運転の自車位置検出装置
JP2004237947A (ja) タイヤ空気圧低下の検知装置
JP2014113904A (ja) 車速制御装置
JP3381397B2 (ja) 車両用ナビゲーション装置
US11899119B2 (en) Method for processing GPS route data of a vehicle
JPH10141969A (ja) ナビゲーションシステム
KR100260896B1 (ko) 분산형 칼만 필터를 채용한 자동차 항법 시스템 및 그의항법 기능 수행 방법
JP2006292625A (ja) 車速演算装置
KR20070048360A (ko) 타이어 감지장치 및 감지방법
JPH05282040A (ja) 自動走行ロボット
KR19980073340A (ko) 차량항법장치의 위치오차 보정 장치 및 그 제어방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees