JP4272868B2 - 炭化水素接触分解用触媒組成物の製造方法 - Google Patents

炭化水素接触分解用触媒組成物の製造方法 Download PDF

Info

Publication number
JP4272868B2
JP4272868B2 JP2002295448A JP2002295448A JP4272868B2 JP 4272868 B2 JP4272868 B2 JP 4272868B2 JP 2002295448 A JP2002295448 A JP 2002295448A JP 2002295448 A JP2002295448 A JP 2002295448A JP 4272868 B2 JP4272868 B2 JP 4272868B2
Authority
JP
Japan
Prior art keywords
alumina hydrate
catalyst
catalyst composition
acid
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002295448A
Other languages
English (en)
Other versions
JP2004130169A (ja
Inventor
広 松本
雅英 矢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2002295448A priority Critical patent/JP4272868B2/ja
Publication of JP2004130169A publication Critical patent/JP2004130169A/ja
Application granted granted Critical
Publication of JP4272868B2 publication Critical patent/JP4272868B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素接触分解用触媒組成物の製造方法に関し、さらに詳しくは炭化水素、特にニッケルやバナジウムなどを含む重質炭化水素の流動接触分解に使用して耐ニッケル性に優れ、分解活性が高くしかも水素およびコーク生成が少ない優れた効果を示す、結晶性アルミノシリケートゼオライトとアルミナおよびシリカを含有する炭化水素接触分解用触媒組成物の製造方法に関する。
【0002】
【従来技術】
炭化水素の接触分解は本来ガソリンの製造を目的としておリ、これに使用される触媒は当然高い分解活性と高いガソリン選択性を備えていなければならない。さらに、製油所によっては、灯軽油留分(ライトサイクルオイル)の収率も高いことが要望されている。近年の石油事情の悪化は低品位の原油を常圧蒸留装置(トッパー)にかけなけれぱならない事態を生じさせ、トッパーから生じた通常沸点が343.3℃(650°F)以上の残渣油の割合を増大させる結果となっている。近年ではニッケルやバナジウムなどを含む残渣油を接触分解の原料に用いざるをえないため、接触分解用触媒組成物は耐メタル性を有し重質留分を分解する性能がますます要求されている。
【0003】
このような接触分解用触媒組成物として、例えば、特許文献1に、(i)マトリックス、(ii)結晶質ゼオライト系アルミノけい酸塩の5〜50重量%、および(iii)1〜100時間の間、25〜110℃の範囲の温度でアルミナ水和物を、ギ酸、酢酸およびプロビオン酸の群から選ばれた酸の水性溶液と接触させること、最終pHが4以下であること、および固体反応生成物を単離することを含む方法によリ調製された変性アルミナの2〜80重量%、とを含有する流動クラッキング触媒が記載されている。
【0004】
また、本出願人は先に、(1)結晶性アルミノシリケートゼオライトと、(2)結晶子径が45〜105Åの範囲の擬べーマイト形アルミナ水和物に酸を添加してpH1.0〜4.5の範囲に調製したアルミナ水和物ゾルと、(3)水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液とを混合し、得られた混合物を噴霧乾燥することを特徴とする炭化水素接触分解用触媒組成物の製造方法を提案している(特許文献2参照。)。特許文献2には、触媒に付着したニッケルと擬べーマイト形アルミナ水和物の結晶子径との反応性については何の言及もされていない。
しかしながら、これら従来の接触分解用触媒組成物では、触媒組成物に多量のニッケルが沈着した場合には、ニッケルが脱水素反応を促進するため、水素、コークの生成量が増加する問題があり、更に改良された触媒が望まれていた。
【0005】
【特許文献1】
特開平6−191834号公報
【特許文献2】
特開平9−164338号公報
【0006】
【発明が解決しようとする課題】
流動接触分解装置(FCC装置)において、反応塔で使用した触媒を再生塔で再生するために触媒に付着したコークを燃焼させているが、触媒に付着したコーク量が多くなると再生温度が高くなり触媒の活性劣化が生じる。また、再生された触媒の温度も高いため、反応塔の反応温度も高くなるので過分解が起こり水素、ガス留分が多くなる。そのため、実装値の運転では、触媒の使用量を少なくして反応塔の温度を調節することから触媒/油の比を小さくすることが必要になる。触媒/油の比が小さくなると分解率が低下する問題が生じる。また、触媒/油の比を一定にし分解率を一定に保つためには油処理量を少なくしなければならないという問題があった。製油所では、FCC装置の装置上の問題からコークの生成量が制限される所もある。
本発明の目的は、前述の問題点に鑑み炭化水素、特にニッケルやバナジウムなどの金属汚染物質を含有する原油、減圧軽油、水素化処理油、常圧残渣油、減圧残渣油などの重質炭化水素の流動接触分解に使用して、触媒組成物にニッケルが多量に沈着しても、水素、コークの生成量が少なく、優れた残油(ボトム)分解能を有し、ガソリンや灯軽油留分の収率を高めることができる炭化水素接触分解用触媒組成物の製造方法を提供する点にある。
【0007】
【課題を解決するための手段】
本発明者らは、ニッケルとアルミナとの反応性について検討した結果、結晶子径の大きい擬ベーマイト形アルミナ水和物から得られたアルミナがニッケルとの反応性が高いとの知見から、触媒組成物に沈着したニッケルは該アルミナとアルミネート(NiAl)を容易に生成し、脱水素反応が抑制されることを見出し、本発明を完成するに至った。即ち、
本発明は、(1)結晶性アルミノシリケートゼオライトと、(2)結晶子径が105Åより大きい擬ベーマイト形アルミナ水和物に酸を添加してpH1.0〜6.0の範囲に調製したアルミナ水和物と、(3)水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液とを混合し、得られた混合物を噴霧乾燥して炭化水素接触分解用触媒組成物を製造する方法において、前記結晶子径が105Åより大きい擬ベーマイト形アルミナ水和物は、硫酸アルミニウム水溶液とアルミン酸ソーダ水溶液とを連続的に供給し、pH6〜9、室温〜95℃、接触滞留時間1分〜60分の条件下、両者を混合してアルミナ水和物含有水性スラリーを生成させ、洗浄後、苛性ソーダを添加して該水性スラリーのpHを10〜12の範囲のアルカリ性に調製して、60〜100℃の温度で1〜50時間加熱熟成することにより調整することを特徴とする炭化水素接触分解用触媒組成物の製造方法に関する。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態を詳述する。
本発明での触媒組成物は、(イ)結晶性アルミノシリケートゼオライト(以下ゼオライトという)を5〜50重量%、好ましくは5〜40重量%、(ロ)結晶子径が105Åより大きい擬べーマイト形アルミナ水和物に由来するアルミナを0.5〜30重量%、好ましくは1〜20重量%、(ハ)水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液に由来するシリカを5〜50重量%、好ましくは10〜40重量%の範囲で含有することが望ましい。また、本発明での触媒組成物では、前述の成分の他に通常炭化水素接触分解用触媒組成物に使用されるカオリンなどの粘土やメタル捕捉剤などの成分などを含有してもよい。
【0009】
本発明で、使用するゼオライトには、通常、炭化水素の接触分解触媒組成物に使用されるゼオライトが使用可能であリ、X型ゼオライト、Y型ゼオライト、モルデナイト、ZSM型ゼオライトなどの合成ゼオライトまたは天然ゼオライトなどを使用することができ、ゼオライトは通常の接触分解用触媒組成物の場合と同様水素、アンモニウムおよび多価金属よリなる群から選ばれ少なくとも1種のカチオンでイオン交換された形で使用される。Y型ゼオライト、特に超安定性Y型ゼオライトは耐水熱性に優れているので好適である。
【0010】
〔擬ベーマイト形アルミナ水和物〕
本発明の製造方法で使用される擬べーマイト形アルミナ水和物は、擬べーマイトの結晶子径が105Åより大きいことが必要である。結晶子径が105Å以下の擬べ一マイト形アルミナ水和物から得られるアルミナでは、ニッケルとの反応性が低いため、触媒組成物に沈着したニッケルはニッケルアルミネート(NiAl)の生成割合が少なく、酸化ニッケル(NiO)として多く存在するため脱水素反応が抑制されず、水素、コークの生成量が多くなるので好ましくない。前記擬べーマイトの結晶子径は、好ましくは110〜200Åの範囲にあることが望ましい。
なお、触媒組成物に沈着したニッケルの脱水素反応活性を示す酸化ニッケル(NiO)と脱水素反応活性を示さないニッケルアルミネート(NiAl)やニッケルシリケート(NiSiO)などのニッケル化合物(NiM)の生成割合は、X線光電子分光(X−ray photoelectron spectroscopy:XPS)分析により測定することができる。NiM/NiOの生成割合は脱水素反応を抑制する上で1.5以上であることが望ましい。
【0011】
本発明でのアルミナ水和物の擬べーマイト結晶子径は、次式で示されるデバイ・シェーラー式によリ2θ=13°において求めた値である。
【数1】
L=K・λ/βcosθ
L:結晶子径(Å)
λ:測定X線波長(Å)
K:シェーラー定数
β:回折線の拡がリ(半価幅)
θ:回折線のブラッグ角(deg)
【0012】
前記結晶子径が105Åより大きい擬べーマイト形アルミナ水和物は、好ましくは、硫酸アルミニウム水溶液とアルミン酸ソーダ水溶液とを連続的に供給し、pH6〜9、室温〜95℃、接触滞留時間1分〜60分の条件下、両者を混合してアルミナ水和物含有水性スラリーを生成させ、該アルミナ水和物含有水性スラリーを濾過洗浄して副生塩を除去した後、これに苛性ソーダを添加して該水性スラリーのpHを10〜12の範囲に調整して60〜100℃の温度で1〜50時間熟成することにより調製される。
【0013】
本発明では、前述の結晶子径が105Åより大きい擬べーマイト形アルミナ水和物に酸を添加してpH1.0〜6.0の範囲に調製したアルミナ水和物を用いる。該アルミナ水和物のpHが1.0よリも低い場合には、ゼオライトと混合した際に、ゼオライトの結晶構造が破壊されることがあるので好ましくない。また、pHが6.0よリも高い場合は、ケイ酸液と混合した際にケイ酸液が重合してゲル化するので結合力が弱くなるので好ましくない。該アルミナ水和物のpHは、好ましくは、1.5〜4.0の範囲が望ましい。なお、該アルミナ水和物のアルミナ濃度は任意に調整することが可能であるがA1として15重量%以下にすることが望ましい。本発明で使用される酸には、塩酸、硝酸、硫酸、リン酸などの鉱酸、ギ酸、酢酸、蓚酸などの有機酸が挙げられるが、特に、硫酸は好ましい。
【0014】
〔ケイ酸液について〕
本発明の製造方法では、水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液(シリカゾル)が使用される。該pHが1.0より低い場合には、ゼオライトと混合した際に、ゼオライトの結晶構造が破壊されることがあるので好ましくない。また該pHが2.5よりも高い場合には、ケイ素の縮合割合が少なく、非常に反応性の高いケイ酸液となるため、アルミナ水和物と反応してシリカ−アルミナの生成が多くなるため、得られる触媒組成物は、所望の効果が得られない。該pHは、好ましくは1.4〜2.0の範囲で調製することが望ましい。水硝子に添加される酸としては、前述の酸が使用可能で、また、水硝子は3号水硝子など通常の水硝子が使用可能である。
【0015】
本発明の方法では、(1)結晶性アルミノシリケートゼオライトと、(2)前記のアルミナ水和物と、(3)前記ケイ酸液とを前述の所望の組成範囲となるように混合し、得られた混合物を噴霧乾燥して、微小球状粒子の触媒組成物を得る。得られた微小球状粒子は、必要に応じて、通常の方法で洗浄してアルカリ分を除去し、乾燥、焼成される。また、所望により、該微小球状粒子に希土類成分を導入することも可能である。
【0016】
本発明の方法で製造された触媒組成物は、炭化水素、特にニッケルを1ppm以上、特に、3〜30ppm含有し、沸点が343.3℃(650°F)以上の炭化水素を含む残渣油の接触分解に使用して、水素、コークの生成量が少なく、しかも残油分解能が高く、ガソリンや灯軽油留分の収率が高いという特徴を有する。なお、該触媒組成物の使用に際しては、通常の接触分解の反応条件が採用される。
【0017】
【実施例】
以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら限定されるものではない。
【0018】
実施例1
Al濃度として22重量%のアルミン酸ソーダ溶液45.4kgと純水159.6kgとを混合して、5重量%Al濃度のアルミン酸ソーダ溶液を調製し、60℃に保持した。一方、Al濃度として7.04重量%の硫酸アルミニウム溶液71.0kgと純水129.0kgとを混合して、2.5重量%Al濃度の硫酸アルミニウム溶液を調製し、60℃に保持した。ポンプで毎分1.7kgの流量で5重量%Al濃度のアルミン酸ソーダ溶液を容積30リッターの攪拌機付きタンク(A)に供給し、供給してから5分後に、攪拌しながらポンプで毎分5kgの流量で2.5重量%Al濃度の硫酸アルミニウム溶液を容積30リッターの攪拌機付きタンク(A)に供給し、pHを7.2まで下げた。次いで、容積30リッターの攪拌機付きタンク(A)のアルミナ水和物スラリーpHを7.2±0.2に保ちながら、5重量%Al濃度のアルミン酸ソーダ溶液と2.5重量%Al濃度の硫酸アルミニウム溶液を各々毎分1.7kgの流量で90分間、攪拌しながら流し続け、タンク(A)から溢れ出たアルミナ水和物スラリーを下部に設けた容積400リッターのタンク(B)に受け入れ、60℃に保ちながら1時間攪拌してアルミナ水和物スラリーを調製した。次いで、該アルミナ水和物スラリー56kgをフィルターで脱水捕集し、0.3重量%のアンモニア水70リッターで洗浄した。この洗浄したアルミナ水和物のケーキを乾燥基準で1250gサンプリングし、純水を加えて12.5重量%Al濃度のアルミナ水和物スラリーとした。このアルミナ水和物スラリーを攪拌しながら48%濃度の水酸化ナトリウム溶液を加えてpHを11.0に調製した後、密閉式の熟成タンクに移し、95℃で24時間攪拌熟成を行った。この攪拌熟成したアルミナ水和物スラリーの1部をサンプリングし、130℃で12時間乾燥した後、X線回折の測定を行ったところ擬ベーマイト形アルミナ水和物であることを確認した。また、このアルミナ水和物の擬ベーマイト結晶子径は122Åであった。
【0019】
前述の擬ベーマイト結晶子径が122Åである擬べ一マイト形アルミナ水和物スラリーをAl基準で250g計り取り、攪拌しながらこれに25重量%の硫酸溶液を加えてpHを3.1に調製した。
別途、25重量%の硫酸溶液4.0kgを激しく攪拌しながら15重量%SiO濃度のJIS3号水硝子溶液を8.2kg加え、pH1.6のケイ酸液を調製した。このケイ酸液をSiO基準で1000g計り取り、前述の硫酸溶液でpH調製したアルミナ水和物スラリーと混合し、さらにカオリンクレーを乾燥基準で2000g、30重量%の超安定性アンモニウムY型ゼオライトスラリーを乾燥基準で1500gを混合し、よく攪拌した。次いで、このスラリーをコロイドミルに1回通した後、噴霧乾燥機に供給して噴霧乾燥を行い、乾燥基準で4800gの球状微小粒子を得た。この球状微小粒子を60℃の純水24リッターに加えて懸濁した後、硫酸アンモニウムを1kg加えて20分間攪拌し、次いで、この懸濁液をブフナロートで固液分離し、60℃の純水24リッターで洗浄を行う。この操作を3回繰り返して洗浄した。この洗浄した球状微小粒子の一部を130℃で16時間乾燥して触媒A−1とした。また、この洗浄した球状微小粒子を60℃の純水に加えて懸濁した後、REとして20重量%の塩化レアアースを384g加えて20分間攪拌した。このスラリーをブフナロートで固液分離し、60℃の純水24リッターで洗浄を行った。得られた球状微小粒子を130℃で16時間乾燥し触媒A−2を得た。触媒A−2の性状を表1に示す。
【0020】
実施例2
実施例1のアルミナ水和物の調製に於いて、アルミナ水和物スラリーを攪拌しながら48%濃度の水酸化ナトリウム溶液を加えてpHを11.0に調製した後、密閉式の熟成タンクに移し、95℃で48時間攪拌熟成した以外は、実施例1と同様にして擬ベーマイト結晶子径が150Åのアルミナ水和物を調製した。
該擬ベーマイト結晶子径が150Åであるアルミナ水和物スラリーを使用して、実施例1と同様にして触媒B−1およびB−2を調製した。触媒B−2の性状を表1に示す。
【0021】
比較例1
実施例1のアルミナ水和物の調製に於いて、アルミナ水和物スラリーを攪拌しながら15%濃度のアンモニア水を加えてpHを10.5に調製した後、密閉式の熟成タンクに移し、95℃で8時間攪拌熟成した以外は、実施例1と同様にして擬ベーマイト結晶子径が35Åのアルミナ水和物を調製した。
該擬ベーマイト結晶子径が35Åであるアルミナ水和物スラリーを使用して、実施例1と同様にして触媒C−1およびC−2を調製した。触媒C−2の性状を表1に示す。
【0022】
比較例2
Al濃度として22重量%のアルミン酸ソーダ溶液11.4kgと純水38.6kgとを混合して、5重量%Al濃度のアルミン酸ソーダ溶液を調製し、60℃に保持した。一方、Al濃度として7.04重量%の硫酸アルミニウム溶液17.8kgと純水32.2kgとを混合して、2.5重量%Al濃度の硫酸アルミニウム溶液を調製し、60℃に保持した。5重量%Al濃度のアルミン酸ソーダ溶液を容積100リッターの攪拌機付きタンクに移し、攪拌しながら2.5重量%Al濃度の硫酸アルミニウム溶液を5分間で加えてpHを7.2に調製し、60℃に保ちながら1時間攪拌してアルミナ水和物スラリーを調製した。該アルミナ水和物スラリー56kgをフィルターで脱水捕集し、0.3重量%のアンモニア水を70リッターかけて洗浄した。この洗浄したアルミナ水和物のケーキを乾燥基準で1250gサンプリングし、純水を加えて12.5重量%Al濃度のアルミナ水和物スラリーとした。このアルミナ水和物スラリーを攪拌しながら15重量%のアンモニア水を加えてpHを10.5に調製した後、密閉式の熟成タンクに移し、95℃で10時間攪拌熟成を行った。この攪拌熟成したアルミナ水和物スラリーの1部をサンプリングし、130℃で12時間乾燥した後、X線回折の測定を行ったところアルミナ水和物は擬ベーマイト形であり、擬ベーマイト結晶子径は80Åであった。
該擬ベーマイト結晶子径が80Åであるアルミナ水和物スラリーを使用して、実施例1と同様にして触媒D−1およびD−2を調製した。触媒D−2の性状を表1に示す。
【0023】
比較例3
比較例2のアルミナ水和物の調製に於いて、アルミナ水和物スラリーを攪拌しながら15重量%のアンモニア水を加えてpHを10.5に調製した後、密閉式の熟成タンクに移し、95℃で24時間攪拌熟成した以外は、比較例2と同様にして擬ベーマイト結晶子径が100Åのアルミナ水和物を調製した。
該擬ベーマイト結晶子径が100Åであるアルミナ水和物スラリーを使用して、実施例1と同様にして触媒E−1およびE−2を調製した。触媒E−2の性状を表1に示す。
【0024】
実施例3
(XPS測定)
実施例1、2の触媒A−1、B−1および比較例1、2、3の触媒C−1、D−1、E−1の各触媒は、750℃で13時間、100%スチーム雰囲気中で処理した後、反応−再生を連続的にメタルを沈着させるCMD(Cyclic Metal Deposition)法にてNiとして触媒上に4000ppmになるように担持して擬似平衡化した触媒をXPS測定用試料とした〔XPS測定では、希土類金属のランタン(La)のピークとNiMxOyのピークとが重なり合うため希土類金属を含まない触媒をXPS測定用試料とした。〕。
XPS測定は、VGシステム社 ESCALAB 220i XLを用いて、次の方法で測定を行った。
測定条件;
真空度 :10−9 Pascal
光源 :Al Kα X線ビーム
電力 :10kV
測定エリア :800μm
スキャンレンジ:850eV〜870eV
スキャン回数 :10回
データ処理方法;
得られたNi化合物の各ピークをコンピューターによる波形処理を行い856.5eVのNiMxOy(M=SiまたはAl)および854.5eVのNiOについて其々、ピーク面積からNi原子比として求めた。
表2にXPS測定結果を示す。また図1に擬ベーマイトの結晶子径とNiMxOy/NiOの原子比の関係を示す。
図1から擬ベーマイトの結晶子径が105Åより大きいアルミナ水和物から得られたアルミナを含有する触媒は、NiMxOy/NiOの原子比が1.5以上と大きいことが分かる。
【0025】
実施例4
(活性試験)
実施例1、2の触媒A−2、B−2及び比較例の触媒C−2、D−2、E−2を使用して触媒の性能評価をした。各触媒は、750℃で13時間、100%スチーム雰囲気中で処理した後、反応−再生を連続的にメタルを沈着させるCMD(Cyclic Metal Deposition)法にてNiを触媒上に4000ppmになるように担持した。
擬似平衡化した各触媒について、ZAYTEL社のACE−MATにて、次の反応条件で触媒活性を測定した。
反応条件;
原料油 :水素化脱硫常圧蒸留残渣油(DSAR)40容量%と水素化脱硫常圧蒸留軽油(DSVGO)60容量%との混合油
反応温度 :510℃、
WHSV :40hr―1
触媒/油重量比が3、4、5となるように3点変えて測定した。
触媒活性の測定結果を表3に示す。各触媒活性の比較は分解率75%で行った。
表2に示すように、本発明の実施例1及び2の擬ベーマイト形アルミナ水和物の結晶子径が105Åよりも大なる触媒は、従来技術の特許文献2に相当する比較例2及び3の触媒に比較して接触分解反応で不要な水素、ドライガス及びコークが少なく有用なガソリンが多く得られた。
【0026】
【表1】
Figure 0004272868
【0027】
【表2】
Figure 0004272868
【0028】
【表3】
Figure 0004272868
【0029】
【発明の効果】
本発明の製造方法により、XPS法による測定結果から分かる様にニッケルとの反応性が高く、ニッケルアルミネートの形成によりニッケルによる脱水素反応が抑制されるので、ニッケルを多く含む重質炭化水素の接触分解に使用して、水素、ドライガス、コークの生成が少なく、ガソリン収率の高い接触分解用触媒組成物が得られた。
【図面の簡単な説明】
【図1】擬ベーマイトの結晶子径とNiMxOy/NiOの原子比の関係を示すグラフである。

Claims (1)

  1. (1)結晶性アルミノシリケートゼオライトと、(2)結晶子径が105Åより大きい擬ベーマイト形アルミナ水和物に酸を添加してpH1.0〜6.0の範囲に調製したアルミナ水和物と、(3)水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液とを混合し、得られた混合物を噴霧乾燥して炭化水素接触分解用触媒組成物を製造する方法において、前記結晶子径が105Åより大きい擬ベーマイト形アルミナ水和物は、硫酸アルミニウム水溶液とアルミン酸ソーダ水溶液とを連続的に供給し、pH6〜9、室温〜95℃、接触滞留時間1分〜60分の条件下、両者を混合してアルミナ水和物含有水性スラリーを生成させ、洗浄後、苛性ソーダを添加して該水性スラリーのpHを10〜12の範囲のアルカリ性に調製して、60〜100℃の温度で1〜50時間加熱熟成することにより調整することを特徴とする炭化水素接触分解用触媒組成物の製造方法。
JP2002295448A 2002-10-08 2002-10-08 炭化水素接触分解用触媒組成物の製造方法 Expired - Lifetime JP4272868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295448A JP4272868B2 (ja) 2002-10-08 2002-10-08 炭化水素接触分解用触媒組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295448A JP4272868B2 (ja) 2002-10-08 2002-10-08 炭化水素接触分解用触媒組成物の製造方法

Publications (2)

Publication Number Publication Date
JP2004130169A JP2004130169A (ja) 2004-04-30
JP4272868B2 true JP4272868B2 (ja) 2009-06-03

Family

ID=32285705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295448A Expired - Lifetime JP4272868B2 (ja) 2002-10-08 2002-10-08 炭化水素接触分解用触媒組成物の製造方法

Country Status (1)

Country Link
JP (1) JP4272868B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007332957B2 (en) * 2006-12-07 2013-07-04 W. R. Grace & Co. - Conn. Catalytic cracking catalyst compositions having improved bottoms conversion
JP4891934B2 (ja) * 2008-02-07 2012-03-07 Jx日鉱日石エネルギー株式会社 再生水素化処理用触媒の製造方法及び石油製品の製造方法
EP3737500B1 (en) * 2018-01-12 2024-08-28 Ketjen Limited Liability Company Process for making an fcc catalyst with enhanced mesoporosity
CN108722473B (zh) * 2018-06-04 2020-10-02 中国中化股份有限公司 一种加氢裂化催化剂的制备方法

Also Published As

Publication number Publication date
JP2004130169A (ja) 2004-04-30

Similar Documents

Publication Publication Date Title
JP6710006B2 (ja) 流動接触分解の方法
JP5161065B2 (ja) クラッキング触媒及びその製造方法
US3542670A (en) Catalyst comprising silica-alumina,separate phase alumina and crystalline alumino silicate
JP4282059B2 (ja) 希土類ゼオライトyの調製方法
MX2011006062A (es) Zeolita ultra estable novedosa y metodo para fabricarla.
JP2022527909A (ja) 接触分解触媒およびその調製方法
EP1377375B1 (en) Bayerite alumina coated zeolite and cracking catalysts containing same
JP4689472B2 (ja) 炭化水素油の接触分解触媒及び炭化水素油の接触分解方法
AU2002258677A1 (en) Bayerite alumina coated zeolite and cracking catalysts containing same
JP4463556B2 (ja) ニッケルとバナジウムを含有する供給材料用のfcc触媒
JP3737155B2 (ja) 炭化水素接触分解用触媒組成物
JP4272868B2 (ja) 炭化水素接触分解用触媒組成物の製造方法
CN1501841A (zh) 具有超高动力学转化活性的基于沸石的催化剂
CN114425421B (zh) 一种催化裂化催化剂及其制备方法与应用
JP2750371B2 (ja) 接触分解用触媒組成物およびそれを使用した重質炭化水素油の接触分解方法
JPH11156197A (ja) 炭化水素油の分解触媒
JP2023523468A (ja) 改質βゼオライト、接触分解触媒ならびにそれらの製造方法および使用
JP3363010B2 (ja) 炭化水素接触分解用触媒組成物の製造方法
JPH1133406A (ja) 炭化水素油の分解用触媒
JP2933708B2 (ja) 改質y型ゼオライト・その製法およびそれを使用した炭化水素接触分解用触媒組成物
JP6059944B2 (ja) 改質ゼオライトの製造方法、および炭化水素接触分解用触媒の製造方法
CN114130425B (zh) 一种加氢vgo裂化生产低碳烯烃和重油燃料的催化剂及其制备方法与应用
CN115532305B (zh) 一种重油催化裂化生产汽油和低碳烯烃的催化剂及其制备方法与应用
CN114433215B (zh) 一种加氢渣油催化裂解催化剂及其制备方法和应用
JP3335518B2 (ja) アンモニウムイオン交換ゼオライトyの焼成方法および焼成ゼオライトyを含む炭化水素油接触分解触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4272868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term