JP4271128B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4271128B2
JP4271128B2 JP2004331966A JP2004331966A JP4271128B2 JP 4271128 B2 JP4271128 B2 JP 4271128B2 JP 2004331966 A JP2004331966 A JP 2004331966A JP 2004331966 A JP2004331966 A JP 2004331966A JP 4271128 B2 JP4271128 B2 JP 4271128B2
Authority
JP
Japan
Prior art keywords
image forming
forming apparatus
photosensitive member
titanyl phthalocyanine
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004331966A
Other languages
English (en)
Other versions
JP2005189830A (ja
Inventor
達也 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004331966A priority Critical patent/JP4271128B2/ja
Publication of JP2005189830A publication Critical patent/JP2005189830A/ja
Application granted granted Critical
Publication of JP4271128B2 publication Critical patent/JP4271128B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、感光体表面に添加剤を供給する機構を設けた画像形成装置に関する。詳しくは、画像形成装置中の感光体の繰り返し使用において、感光体表面に外部より添加剤を供給する機構を設けた画像形成装置であり、該画像形成装置に用いられる電子写真感光体が、少なくとも特定結晶型および特定の粒子サイズを有するチタニルフタロシアニン結晶を含有する電荷発生層と電荷輸送層を順に積層してなる電子写真感光体である画像形成装置に関する。
近年、電子写真方式を用いた情報処理システム機の発展は目覚ましいものがある。特に情報をデジタル信号に変換して光によって情報記録を行う光プリンタは、そのプリント品質、信頼性において向上が著しい。このデジタル記録技術はプリンタのみならず通常の複写機にも応用され、所謂デジタル複写機が開発されている。また、従来からあるアナログ複写にこのデジタル記録技術を搭載した複写機は、種々様々な情報処理機能が付加されるため今後その需要性が益々高まっていくと予想される。さらに、パーソナルコンピュータの普及、および性能の向上にともない、画像およびドキュメントのカラー出力を行なうためのデジタルカラープリンタの進歩も急激に進んでいる。
近年、上記プリンタや複写機はカラー化を含め装置の高速化・高耐久化・高安定化が要望されている。一般に高速画像形成装置を使用する場合には、そのプリント使用量が大きく、また同じプリントを多数枚出力したが、一枚一枚が異なる原稿を多数枚出力する場合もあり、その出力形態は様々である。従って、高速画像形成装置においては、システムの高耐久化のみならず、繰り返し使用におけるシステムの安定性も非常に重要なことである。
画像形成装置の高速化・高耐久化・高安定化を実現するために、画像形成装置のハード面では様々な工夫がなされてきたが、これに適合する感光体の開発も同時に行われてきた。
高速化の課題に対しては、高感度・高速応答性を有する感光体の使用が行われている。通常、780nmLDや760nm近傍のLEDが高速デジタル画像形成装置の光源として用いられ、これに対応した感光体(電荷発生材料)としては、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶を用いることが知られている。(特許文献1を参照。)この特定結晶型は、非常に高いキャリア発生機能を有しており、高速画像形成装置用感光体の電荷発生材料として有効に使用できる。しかしながら、この結晶型は、結晶としての安定性が低く、分散等の機械的ストレス、熱的なストレスに対して結晶転移し易いという問題を抱えており、結晶転移後の結晶型はこの結晶型に比べて非常に低感度であり、結晶の一部が結晶転移した場合には充分な光キャリア発生機能を発現することができない。
高耐久化・高安定化に関しては、幾つかの技術が開発されてきた。
高耐久化技術としては、感光体摩耗量の低減と静電疲労による感光体特性変化の低減が大きな2つの課題となる。前者に関しては、耐摩耗性を有する表面層の開発があり、高硬度な保護層や表面エネルギーを低下させた表面層(保護層や電荷輸送層)の開発が行われている。後者に関しては、静電疲労に強い主材料(電荷発生物質や電荷輸送物質)の開発、静電劣化を防止する副材料(酸化防止剤、紫外線吸収剤、可塑剤等の各種添加剤)の開発が行われている。
高安定化技術としては、前述と同様に如何に静電疲労を押さえ込むかということがポイントなっている。このように感光体を比較的短い周期で交換せずに、非常に長い期間使用するようなプロセスにおいては、感光体寿命が律速となり、画像形成装置の安定性を決定する原因となっている。
しかしながら、有機系材料から構成される感光体を機械寿命と同等に取り扱うためには、如何に感光体特性を初期状態と同等に維持するかということに集約され、言い換えれば画像形成装置の中で、電子写真感光体を如何に保護しながら使用するかという点がポイントとなる。
このような状況の中で、感光体表面に外部より各種添加剤を供給するという考え方が出てきた(例えば、特許文献1を参照。)。非常に長期間、画像形成装置の中で感光体を使用する場合、感光体表面の劣化(表面の摩耗、表面エネルギーの上昇など)や感光体バルクの劣化(静電特性の劣化など)を、感光体内部に添加された添加剤だけで制御することは、量的な観点から不可能であり、繰り返し使用の中で感光体表面に供給しながら使用するという考え方である。
このような技術により、感光体表面の劣化には非常に大きな効果が獲得され、例えば摩耗量の低減が著しく促進されたり、感光体表面エネルギーを低い状態で維持できるようになったりした。このように感光体表面の劣化に関しては、外部からの添加剤の感光体表面への供給により、画像形成装置内で制御が可能になり、その結果、ここまでの感光体寿命の律速となっていた「感光体表面の摩耗」から「静電疲労」が寿命を決定する要因に変化してきた。特に、現在の画像形成装置の主流であるデジタル方式の画像形成装置では、ネガ・ポジ現像がそのほとんどを占め、「地汚れ」と呼ばれる画像欠陥が大きな課題として浮き彫りになってきた。
このように、高速、高耐久、高安定な画像形成装置を設計するために発生するプロセス上の制約(要望)に対して、感光体の開発が十分とはいえない状況であり、安定した高速画像形成を実現するための感光体開発が十分でないのが実情であった。
特開2000−352832号公報 特開2001−19871号公報 特開平6−293769号公報 特開平8−110649号公報 特開昭52−36016号公報 特開平3−109406号公報 特開2000−206723号公報 特開2001−34001号公報 特開平5−94049号公報 特開平5−113688号公報 特開平1−299874号(特許第2512081号)公報 特開平3−269064号(特許第2584682号)公報 特開平2−8256号(特公平7−91486号)公報 特開昭64−17066号(特公平7−97221号)公報 特開平11−5919号(特許第3003664号)公報 特開平3−255456号(特許第3005052号)公報 特開昭61−239248号公報 Japan Hardcopy 1989論文集 p.103 1989年 Moser等、「Phthalocyanine Compounds」(1963年) Moser等、「The Phthalocyanines」(1983年)
本発明者らは、感光体表面の保護を目的として各種添加剤を感光体表面に供給することが可能な機構を設けた画像形成装置において、繰り返し使用時においても異常画像の少ない画像形成を行うため数々の検討を行なったところ、感光体の寿命律速が静電疲労(特に地汚れ現象)に依存することを突き止め、前記画像形成装置に使用する電子写真感光体が導電性支持体上に少なくとも電荷発生層と電荷輸送層を順に積層してなる電子写真感光体であり、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、1次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含むことによって、上記問題点を解決できることを見出した。
上述の高速画像形成における異常画像(地汚れ)の問題は、感光体における電荷リーク現象によるものと理解された。
その効果の詳細な理由は不明であるが、地汚れに関しては、ここまでに知られている27.2゜に最大回折ピークを他のチタニルフタロシアニン結晶に比べ、本発明に用いられるチタニルフタロシアニン結晶の化学的な安定性が高いこと、更に十分な微粒子化が施してあるため、地汚れの発生を低減化できることに起因しているものと推定される。
このように、プロセスを制御する有効な手段が開発されていながら、その特長を生かす有効な感光体が開発されてこなかったため、高画質化のために高い電界強度を印加することができずに、感光体上への書き込みドットに忠実な静電潜像の形成、静電潜像に忠実なトナー現像ができないといった問題点が残存しているのが現状であったが、本発明はこの問題を解決に導く。
したがって、本発明は上述の問題に鑑みてなされたものであり、高速で繰り返し使用した際に、異常画像の発生がなく、安定した状態で画像を出力する画像形成装置を提供することを目的とする。
より具体的には、感光体表面の保護を目的として各種添加剤を感光体表面に供給することが可能な機構を設けた画像形成装置において、特定結晶型のチタニルフタロシアニン結晶を含有する感光体を使用することにより、チタニルフタロシアニン固有の高感度を維持し、高速で繰り返し使用した際に、異常画像の発生がなく、高耐久で、かつ安定した状態で高速画像出力が可能な画像形成装置を提供することにある。
即ち、上記目的は、請求項1に記載されるが如く、少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体を具備してなり、該電子写真感光体表面に外部より添加剤を供給する手段を有する画像形成装置において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層と電荷輸送層を順に積層してなる電子写真感光体であり、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、かつ一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、該チタニルフタロシアニン結晶は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0乃至7.5゜に最大回折ピークを有し、該回折ピークの半値巾が1゜以上であり、一次粒子の平均粒子サイズが0.1μm以下である不定形チタニルフタロシアニン又は低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒を用いて結晶変換を行い、該結晶変換後のチタニルフタロシアニンの一次粒子の平均粒子サイズが0.25μmより大きく成長する前に濾過することにより該有機溶媒と分別されたものであり、前記添加剤は、ワックス類又は滑剤であることを特徴とする画像形成装置により達成される。
請求項1に記載の発明によれば、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3゜にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を電荷発生物質として電子写真感光体に使用することによって、電荷発生層における粒子サイズが均一化されて、それによって、地汚れ現象が改善されて、高感度を失うことなく繰り返し使用によっても帯電性の低下を生じない安定な電子写真感光体を得ることができ、その結果、該電子写真感光体を備える画像形成装置を提供することができる。
また、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0乃至7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンまたは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒と共に混合攪拌することによる結晶変換を行い、該結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に該結晶変換を停止し、前記結晶変換後のチタニルフタロシアニンを分別、濾過することにより調製されることによって、均一な粒子サイズのチタニルフタロシアニン結晶を電子写真感光体に提供することができ、その結果、該電子写真感光体を備え、高感度を維持し、高耐久で高速画像出力が可能な画像形成装置を提供することができる。
さらに、前記添加剤が少なくともワックス類および滑剤の中から選ばれる1種であることによって、感光体表面の劣化を確実に防止することが出来る。
請求項に記載の発明は、請求項1に記載の発明において、前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする。
請求項に記載の発明によれば、前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものを使用することによって、帯電性が安定し、良好な画像を出力する画像形成装置を提供することが出来る。
請求項に記載の発明は、請求項1又は2に記載の発明において、前記不定形チタニルフタロシアニンがアシッドペースト法により作製され、イオン交換水で洗浄されたものであり、該洗浄後のイオン交換水は、pHが6〜8の間及び/又は比伝導度が8μS/cm以下の物性値を有することを特徴とする。
請求項に記載の発明によれば、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンがアシッドペースト法により作製され、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8μS/cm以下であるものを用いることによって、硫酸の残存を回避でき、感光体電位が安定し、画質の安定した画像形成装置を提供することが出来る。
請求項に記載の発明は、請求項乃至の何れかに記載の発明において、前記有機溶媒の使用量が重量比で不定形チタニルフタロシアニンの30倍以上であることを特徴とする。
請求項に記載の発明によれば、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンの30倍(重量比)以上であることによって、感光体電位が安定し、画質の安定した画像形成装置を提供することが出来る。
請求項にかかる発明は、請求項1乃至のいずれかに記載の発明において、前記電荷輸送層は、少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする。
請求項に記載の発明によれば、少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを前記電荷輸送層に含有することにより、耐磨耗性に優れ、高速で繰り返し使用した際に、異常画像の発生がなく、安定した状態で画像を出力する画像形成装置を提供できる。
請求項6にかかる発明は、請求項1乃至の何れかに記載の発明において、前記電子写真感光体は、前記電荷輸送層上に保護層を有することを特徴とする。
請求項に記載の発明によれば、前記電荷輸送層上に保護層を設けることによって、耐久性が向上し、高感度で異常欠損のない感光体を有用に用いることができる。
請求項にかかる発明は、請求項に記載の発明において、前記保護層は、比抵抗1010Ω・cm以上である金属酸化物を含有することを特徴とする。
請求項に記載の発明によれば、比抵抗1010Ω・cm以上である金属酸化物を前記保護層に含有することによって、高い絶縁性を提供し、熱安定性が高い上に、耐磨耗性が高く、画像ボケの抑制や耐磨耗性の向上に特に有用である。
請求項にかかる発明は、請求項6又は7に記載の発明において、前記保護層は、高分子電荷輸送物質を含有することを特徴とする。
請求項に記載の発明によれば、高分子電荷輸送物質を前記保護層に含有することによって、感光体の耐久性を有用に高めることができる。
請求項にかかる発明は、請求項乃至の何れかに記載の発明において、前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする。
請求項に記載の発明によれば、架橋構造を有する前記保護層のバインダー樹脂は、三次元構造の網目構造を形成し、この網目構造が耐摩耗性を向上でき、高速電荷輸送の効果を得ることができる。
請求項10にかかる発明は、請求項に記載の発明において、前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする。
請求項10に記載の発明によれば、前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することで、感光体の耐摩耗性を高めることができ、保護層としての機能を十分に発現することが可能となる。
請求項11にかかる発明は、請求項1乃至10の何れかに記載の発明において、前記導電性支持体は、表面が陽極酸化皮膜処理されたものであることを特徴とする。
請求項11に記載の発明によれば、前記電子写真感光体の導電性支持体表面を陽極酸化皮膜処理することによって、反転現象(ネガ・ポジ現象)に用いた際に発生する点欠陥(黒ポチ、地汚れ)を防止することができる。
請求項12にかかる発明は、請求項1乃至11の何れかに記載の発明において、前記添加剤を供給する手段は、前記電子写真感光体に当接する部材であることを特徴とする。
請求項12に記載の発明によれば、前記添加剤の供給が、感光体に当接する部材より行われることによって、感光体表面への添加剤の供給を確実なものとし、添加剤供給の効果を確実なものとすることが出来る。
請求項13にかかる発明は、請求項1乃至12の何れかに記載の発明において、前記添加剤供給する手段が、ブラシ状構造部材であることを特徴とする。
請求項13に記載の発明によれば、前記添加剤の供給部材をブラシ状構造部材にすることによって、添加剤の供給を感光体表面へまんべんなく行わせることが出来る。
請求項14にかかる発明は、請求項1乃至12の何れかに記載の発明において、前記添加剤供給する手段が、前記現像手段であることを特徴とする。
請求項14に記載の発明によれば、前記添加剤の供給部材を画像形成用現像部材にすることによって、画像形成装置への添加剤の供給をスムーズにすることが出来る。また、装置のコンパクト化が可能になる。
請求項15にかかる発明は、請求項13又は14に記載の発明において、前記添加剤を供給する手段と、ブレード状部材を併用することを特徴とする。
請求項15に記載の発明によれば、前記ブラシ状構造部材あるいは現像部材と、ブレード状部材のいずれか二以上を併用することによって、感光体表面に供給された添加剤を感光体表面に均一に延伸させ、付着させることが出来る。
請求項16にかかる発明は、請求項1乃至12の何れかに記載の発明において、前記添加剤供給する手段が、ブラシ状構造部材及び前記現像手段であることを特徴とする。
請求項16に記載の発明によれば、前記添加剤の供給を、ブラシ状構造部材からの供給と現像部材からの供給を併用することによって、プロセス条件、出力画像に依らず、添加剤の供給を安定させることが出来る。
請求項17にかかる発明は、請求項1乃至16の何れかに記載の発明において、前記添加剤供給する手段に接触・離間機構を設け、前記帯電手段から前記電子写真感光体に帯電を施さない場合には前記添加剤を供給する手段を前記電子写真感光体から離間させ、帯電を施す場合にのみ前記添加剤を供給する手段を前記電子写真感光体に接触させることを特徴とする。
請求項17に記載の発明によれば、前記添加剤の供給部材に接触・離間機構を設け、帯電部材から感光体に帯電を施さない場合には感光体から離間させ、帯電を施す場合にのみ接触させることによって、添加剤の供給過多を防ぎ、また供給部材、感光体表面の劣化を防ぐことが出来る。
請求項18にかかる発明は、請求項1乃至17の何れかに記載の発明において、前記添加剤がステアリン酸亜鉛であることを特徴とする。
請求項18に記載の発明によれば、前記添加剤がステアリン酸亜鉛であることによって、感光体表面の劣化を確実に防止することが出来、その効果が顕著に発現される。
請求項19にかかる発明は、請求項1乃至18の何れかに記載の発明において、少なくとも前記帯電手段前記電子写真感光体との間に形成される帯電ニップが覆われる形状のシールドを有し、帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする。
請求項19に記載の発明によれば、画像形成装置の置かれた環境が高湿環境下であっても、画像ボケを防止することが出来る。
請求項20にかかる発明は、請求項19に記載の発明において、前記シールド内に相対湿度が50%RH以下のガスを導入して、前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする。
請求項20に記載の発明によれば、画像ボケの効果を確実なものとすることが出来る。
請求項21にかかる発明は、請求項19又は20に記載の発明において、前記シールド内に室温よりも高い温度のガスを導入して、前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする。
請求項21に記載の発明によれば、画像ボケの効果を確実なものとすることが出来る。
請求項22にかかる発明は、請求項19乃至21の何れかに記載の発明において、前記電子写真感光体内部にドラムヒーターを設置し前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする。
請求項22に記載の発明によれば、画像形成装置の置かれた環境が高湿環境下であっても、画像ボケを防止することが出来る。
請求項23に記載の発明は、請求項1乃至22の何れかに記載の発明において、前記転写手段が、前記電子写真感光体上に形成されたトナー像を直接被転写体に転写する直接転写方式であることを特徴とする。
請求項23に記載に発明によれば、転写部材が、感光体上に形成されたトナー像を直接被転写体に転写する直接転写方式にすることにより、良好な転写バイアスの印加が可能になり、良好な転写を行うことが出来るようになる。
請求項24に記載の発明は、請求項23に記載の発明において、書き込み部における前記転写後の電子写真感光体表面電位絶対値100V以下であることを特徴とする。
請求項24に記載の発明によれば、非書き込み部における転写後の感光体表面電位が、絶対値として、100V以下であることにより、繰り返し使用における感光体の通過電荷量が低減出来、繰り返し使用における感光体の残留電位上昇を低減することが出来る。
請求項25に記載の発明は、請求項23又は24に記載の発明において、非書き込み部における前記転写後の電子写真感光体表面電位の極性が、前記帯電手段により前記電子写真感光体が帯電された極性の逆極性であることを特徴とする。
請求項25に記載の発明によれば、非書き込み部における転写後の感光体表面電位が、主帯電器により帯電された極性の逆極性であることにより、繰り返し使用における感光体の通過電荷量が低減出来、繰り返し使用における感光体の残留電位上昇を低減することが出来る。
請求項26にかかる発明は、請求項1乃至25の何れかに記載の発明において、光除電機構を用いないことを特徴とする。
請求項26に記載の発明によれば、光除電機構を用いないことによって、繰り返し使用における感光体の残留電位上昇を低減することが出来る。
請求項27にかかる発明は、請求項1乃至26のいずれかに記載の発明において、少なくとも前記帯電手段、前記露光手段、前記現像手段、前記転写手段、前記添加剤を供給する手段及び前記電子写真感光体からなる画像形成要素を複数配列したことを特徴とする。
請求項27に記載の発明によれば、少なくとも帯電手段、露光手段、現像手段、転写手段、添加剤を供給する手段及び電子写真感光体からなる画像形成要素を複数配列した画像形成装置を提供することができる。
請求項28にかかる発明は、請求項1乃至27のいずれかに記載の発明において、前記帯電手段前記電子写真感光体に交流重畳電圧印加することを特徴とすることを特徴とする。
請求項28に記載の発明によれば、前記電子写真感光体に、交流重畳電圧印加を行う画像形成装置を提供することができる。
請求項29にかかる発明は、請求項1乃至28のいずれかに記載の発明において、前記電子写真感光体と少なくとも前記帯電手段、前記露光手段、前記現像手段、前記添加剤を供給する手段及びクリーニング手段から選ばれる1つの手段とが一体となった、画像形成装置本体と着脱自在なプロセスカートリッジを搭載していることを特徴とする。
請求項29に記載の発明によれば、感光体と少なくとも帯電手段、露光手段、現像手段、添加剤を供給する手段及びクリーニング手段から選ばれる1つの手段とが一体となった装置本体と着脱自在なプロセスカートリッジを搭載している画像形成装置を提供することができる。
本発明によれば、非常に高速な画像出力を行う画像形成装置であり、高速で繰り返し使用した際に、異常画像の発生がなく、安定で解像度の高い画像を出力する画像形成装置が提供できる。
具体的には、高速画像形成を高安定で行うために感光体表面に添加剤を供給する機構を有する画像形成装置において、これに用いる感光体として、特定結晶型で特定粒子サイズのチタニルフタロシアニン結晶を含有する感光体を使用することにより、チタニルフタロシアニン固有の高感度を維持し、高耐久で高速画像出力が可能な画像形成装置が提供できる。
初めに図面を用いて本発明の画像形成装置を詳しく説明する。
図1は、本発明の画像形成装置を説明するための概略図であり、下記に示すような変形例も本発明の範疇に属するものである。
図1において、感光体(1)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
図1に示される装置には、感光体表面に各種添加剤を供給する機構を有してなる。添加剤を供給する機構は、画像形成装置のどの位置に配置されていてもかまわないが、1周の間の画像形成を考慮すると、トナー像を乱す可能性のない領域(感光体表面が転写部材を通過した後の位置)に配置されることが望ましい。また、固体状態の物質を供給する場合には、感光体表面に均一に供給するために、クリーニング部材の前に配置されることにより、クリーニング部材により感光体表面で均一化され、感光体表面にまんべんなく供給され望ましい使用方法であるといえる。更に、クリーニング部材と供給部材が供用になっているような機構も装置のコンパクト化のためには有効な方法である。
添加剤を外部より感光体表面に供給する機構としては、図2に示すように、固形化した添加剤(42)を直接感光体(40)表面に押しつけるような方法でも構わないが、感光体(40)に当接する部材から感光体(40)表面に添加剤を移行させる方法が望ましい。例えば、ブラシ状構造部材(41;弾性体が望ましい)、ブレード状構造部材(43)、ローラー状部材(弾性体が望ましい)のような部材を介して、感光体表面に供給する方法が挙げられる。中でも、感光体(40)表面への機械的ストレスを考慮すると、ブラシ状構造部材(41)が良好に用いられる。例えば、ブラシ状構造部材(41)に固形化した添加剤(42)を当接させ、ブラシ状構造部材(41)を回転させることにより、添加剤(42)を少しずつ掻き取り、これを感光体(40)表面に擦りつけるものである。この際、添加剤(42)は感光体(40)表面に付着するが、添加剤(42)の種類によっては粉末のような状態で感光体(40)表面に付着している場合があり、このような場合にはブラシ状構造部材(41)での付着の後に、ブレード状構造部材(43)を併用することにより、延伸化させることが望ましく、より効果が期待できる(図12)。図2に示すように、少なくともブラシ状構造部材(41)は、帯電部材(45)の上流側に位置することが好ましい。また、ブラシ状構造部材(41)およびブレード状構造部材(43)は、転写残トナーをクリーニングするクリーニング部材との併用も可能である。
また、現像部材(44)を利用して添加剤を供給することも有効な手段である。この場合、現像剤に添加剤を混合するか、現像剤に含まれるトナーに含有するかの何れかの方法が用いられる。この場合にも、添加剤の種類によっては粉末のような状態で感光体表面に付着している場合があり、ブレード状構造部材を併用することにより、延伸化させることが望ましく、より効果が期待できる。
ブラシ状構造部材(41)での供給、現像部材(44)による供給のいずれにも長所・短所は存在する。ブラシ状構造部材(41)を使用する場合には、添加剤(42)を感光体(40)表面に均一に付着させるという機能は比較的容易に達成できるが、添加剤(42)の使用量が多い場合には、画像形成装置の繰り返し使用に伴い、どこかで添加剤(42)の補給をしなければならないというデメリットがある。一方、現像部材(44)による供給の場合、現像剤やトナー補給を行う方法で添加剤を補給することが可能であり、補給に関しては問題にならないが、出力画像の画像濃度が極端に低い場合、あるいは非常に印字部が偏った原稿の場合に、感光体全面に均一に供給しにくいという短所がある。
このような両者の長所を生かし、短所を補完する意味で、両方の機構の併用は非常に効果を上げるものである。
また、添加剤を供給する機構は、感光体表面に対して接離機構を有しても良い。このような機構を有することにより、感光体表面に常時当接している必要はなく、感光体表面への添加剤供給過多や、供給部材あるいは感光体表面の劣化を防ぐことができる。
本発明で用いられる添加剤としては、感光体(40)に供給され、表面に均一に付着するような物質であり、繰り返し使用において感光体の機能を向上する、感光体表面を保護する等の機能を有するものであれば使用できるものである。添加剤は、少なくとも感光体表面に付加機能を有するだけの働きをすればよいのであって、感光体1周分においてその機能を発揮させるだけでも良い。従って、例えばクリーニング部材などで1周ごとに表面から除去されても一向に構わない。このことから、添加剤は極めて薄く感光体表面に付着すれば良く、この点から延伸性のある材料は良好に使用できる。例えば、ワックス類や滑剤の類の材料は良好に使用できる。
本発明に用いられるワックス類としては、エステル系もしくはオレフィン系が望ましい。エステル系ワックスとは、エステル結合を有するものであり、例えば、カルナウバワックス、キャンデリラワックス、ライスワックス等の天然ワックス、およびモンタンワックス等が挙げられる。オレフィンワックスとしては、ポリエチレンワックス、ポリプロピレンワックス等の合成ワックスが挙げられる。
また、滑剤としては、PTFE、PFA、PVDF等の各種フッ素含有樹脂、シリコーン樹脂、ポリオレフィン系樹脂、ステアリン酸亜鉛、ラウリル酸亜鉛、ミリスチン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム等の脂肪酸金属塩などが挙げられる。中でも、ステアリン酸亜鉛が最も好ましい。
また、感光体表面からの酸化性ガスや有害な光などから守るため、酸化防止剤や紫外線吸収剤を添加剤として使用することもできる。これらは、市販の材料を任意に使用できるものである。酸化防止剤等は、感光体中に多量に添加すると残留電位の上昇など副作用を生じるものであり、その添加量が制限されるものであるが、本発明のように感光体表面に外部添加する場合には、不必要な量はすべてブレード等により除去されるため、悪影響を与えることがない。
帯電部材(3)には、感光体にスコロトロン方式の帯電部材が良好に使用される。この帯電部材により、感光体には30V/μm以上の電界強度が印加される。感光体に印加される電界強度は高いほどドット再現性が良好になるものの、感光体の絶縁破壊や現像時のキャリア付着の問題を生み出す可能性があり、上限値は概ね60V/μm以下、より好ましくは50V/μm以下である。
また、画像露光部(5)には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度が確保でき、600dpi以上の解像度で書き込むことの出来る光源が使用される。光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。従って、書き込み光源が1つの場合には1200 dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「1200dpi×書き込み光源個数」が上限となる。ここで言う書き込み光源とは、LD素子1つ、あるいはLED素子1つを示すものであり、例えばアレイ状に配置されたLED等は、複数の光源として取り扱うものである。
これらの光源のうち、発光ダイオード、および半導体レーザーは照射エネルギーが高く、また600乃至800nmの長波長光を有するため、本発明で用いられる電荷発生材料である特定結晶型のフタロシアニン顔料が高感度を示すことから良好に使用される。
現像ユニット(6)は、使用するトナーの帯電極性により、正規現像にも反転現像にも対応可能である。感光体の帯電極性と逆極性のトナーを使用した場合には正規現像が使用され、同極性のトナーを用いた場合には反転現像によって、静電潜像が現像される。先の画像露光部に使用する光源によっても異なるが、近年使用するデジタル光源の場合には、一般的に画像面積率が低いことに対応して、書込部分にトナー現像を行なう反転現像方式が光源の寿命等を考慮すると有利である。また、トナーのみで現像を行なう1成分方式と、トナーおよびキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
また、転写チャージャー(10)は転写ベルト、転写ローラを用いることも可能であるが、オゾン発生量の少ない転写ベルトや転写ローラ等の接触型を用いることが望ましい。特に、感光体表面に形成されたトナー像を被転写体に直接転写する直接転写方式が良好に用いられるなお、転写時の電圧/電流印加方式としては、定電圧方式、定電流方式のいずれの方式も用いることが可能であるが、転写電荷量を一定に保つことができ、安定性に優れた定電流方式がより望ましい。
また、感光体上の形成されたトナー像は、転写紙に転写されることで転写紙上の画像となるものであるが、この際、2つの方法がある。1つは図1に示すような感光体表面に現像されたトナー像を転写紙に直接転写する方法と、もう1つはいったん感光体から中間転写体にトナー像が転写され、これを転写紙に転写する方法である。いずれの場合にも本発明において用いることができる。特に、感光体表面に形成されたトナー像を被転写体(出力する紙など)に直接転写する直接転写方式が良好に用いられる。
このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。
この際、転写後の感光体表面電位が繰り返し使用における感光体の静電疲労に大きな影響を及ぼす。即ち、感光体の静電疲労は感光体の通過電荷量により大きく左右される。この通過電荷量とは、感光体の膜厚方向を流れる電荷量に相当する。感光体の画像形成装置中の動作として、メイン帯電器により所望の帯電電位に帯電され(ほとんどの場合負帯電される)、原稿に応じた入力信号に基づき光書き込みが行われる。この際、書き込みが行われた部分は光キャリアが発生し、表面電荷を中和する(電位減衰する)。この時、光キャリア発生量に依存した電荷量が感光体膜厚方向に流れる。
一方、光書き込みが行われない領域(非書き込み部)は、現像工程・転写工程を経て、除電工程に進む(必要に応じて、その前にクリーニング工程が施される)。ここで、感光体の表面電位がメイン帯電により施された電位に近い状態(暗減衰分は除く)であると、光書き込みが行われた領域とほぼ同じ量の電荷量が感光体膜厚方向に流れることになる。一般的に、現在の原稿は書き込み率が低いため、この方式であると、繰り返し使用における感光体の通過電荷量は除電工程で流れる電流がほとんどと言うことになる(書き込み率が10%であるとすると、除電工程で流れる電流は、全体の9割を占めることになる)。
この通過電荷は、感光体を構成する材料の劣化を引き起こす等、感光体静電特性に大きく影響を及ぼす。その結果、通過電荷量に依存して、特に感光体の残留電位を上昇させる。感光体の残留電位が上昇すると、本発明で使用されるネガ・ポジ現像では、画像濃度が低下することになり、大きな問題となる。従って、画像形成装置内での感光体の長寿命化(高耐久化)を狙うためには、如何に感光体の通過電荷量を小さくするかという課題が存在する。
これに対して、光除電を行わないという考え方もあるが、メイン帯電器の帯電器能力が大きくないと、帯電の安定化が図れず、残像のような問題を生じる場合がある。
感光体の通過電荷は、感光体表面に帯電された電位(これにより生じた電界)により、光照射が行われることにより、発生した光キャリアが移動することにより生じる。従って、感光体表面電位を光以外の手段で減衰させることが出来れば、感光体1回転(画像形成1サイクル)あたりの通過電荷量を低減することが出来る。
このためには、転写工程において転写バイアスを調整することにより、感光体通過電荷量を調整することが有効である。即ち、メイン帯電により帯電され、書き込みが行われない非書き込み部は、暗減衰量を除き、帯電された電位に近い状態で転写工程に突入する。この際、メイン帯電器により帯電された極性側の絶対値として100V以下まで低減することにより、引き続く除電工程に突入しても光キャリア発生がほとんど行われず、通過電荷が生じない。この値は、0Vにより近いほど望ましい。
更には、転写バイアスの調整により、メイン帯電により施される帯電極性とは逆極性に感光体表面電位が帯電するように転写バイアスを印加させることにより、光キャリアが絶対に発生しないため、より望ましい。但し、逆極性にまで帯電するような転写条件では、場合により転写チリを多く発生させたり、次の画像形成プロセス(サイクル)のメイン帯電が追いつかない場合が出てくる。その場合には、残像のような不具合が発生する場合があるため、逆極性の絶対値として100V以下であることが望ましい。
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(7)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)およびブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
除電ランプ(2)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
かかる光源等は、図1に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
先の帯電方式においてAC成分を重畳して使用する場合や、感光体の残留電位が小さい場合等は、この除電機構を省略することもできる。また、光学的な除電ではなく静電的な除電機構(例えば、逆バイアスを印加したあるいはアース接地した除電ブラシなど)を用いることもできる。前述のように書き込み率の小さな原稿では、光除電の影響は大きく、次の画像形成サイクルにおいて残像などの影響がない限り、光除電を用いない方が好ましい。
図中、8はレジストローラ、11は分離チャージャー、12は分離爪である。
上述のように感光体(40)表面に添加剤(42)を供給する機構を設けて画像形成を行う場合、画像形成装置の置かれた環境があまりにも高湿である場合、画像ボケ等の副作用が生じる場合がまれにある。これを回避する最も効果的な方法は、帯電ニップにおける雰囲気の湿度を低下させることである。具体的には50%RH以下にすれば、効果的に回避できる。これを簡便に可能にする方法を以下に2つ述べる。
1つは、前記画像形成装置において、その帯電部材(45)に、帯電部材(45)と感光体(40)との間に形成される帯電ニップが覆われる形状のシールドを有し、帯電ニップの雰囲気を50%RH以下に保持するようにすればよい。このような状態を達成できる帯電部材の構成の一例を図3に示す。
感光体(46)に近接した帯電ローラー(47)を覆うようにシールド(48)が配置され、シールド上部にはガスを導入する部位(49)が付いている。シールド(48)は感光体(46)に接触していても接触していなくても低湿度状態が維持できれば、どちらでも構わない。接触する場合には、シールド(48)が感光体(46)表面を摩耗しないように、少なくとも感光体(46)との接触部をゴムやスポンジといった弾性体で構成されることが望ましい。接触しない場合には、低湿度状態が維持できるように極力シールド(48)と感光体(46)間の隙間を狭め、導入するガスの流量を大きめに設定する必要がある。このようなシールド(48)は図3に示すように、帯電部材(47)および帯電ニップ部を最低限覆う必要があるが、電子写真要素(少なくとも感光体(46)、帯電部材(47)、現像部材を有する1つのユニット)全体を覆う状態でも構わない。ただし、その場合には導入するガス量が大きくなるので、可能な範囲でコンパクト化する必要がある。このような状態において、相対湿度50%RH以下のガスを導入するか、室温よりも高い温度のガスを導入することにより、帯電ニップでの雰囲気湿度を50%RH以下にするものである。
もう1つの方法は、感光体(46)内部にドラムヒーターを設置し、雰囲気湿度が50%RHよりも高くなるような場合に、ドラムヒーターを稼働させ、帯電ニップにおける雰囲気の相対湿度を低下させるものである。この場合、帯電ニップは開放形でも効果を発現するが、シールドで覆われているような構造の方が、より顕著に効果を発現し、またドラムヒーターの温度もそれほど上昇させずに済むことから、画像形成への悪影響も小さく、ドラムヒーターでの消費電力も小さくなるため、有効な手段である。
図4は、本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。図4の画像形成装置には、感光体表面に添加剤を供給する機構が設けてなる。
図4において、符号(16Y)、(16M)、(16C)、(16K)はドラム状の感光体であり、感光体(1)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。
図4における画像形成装置において、各画像形成要素(25Y)、(25M)、(25C)、(25K)に含まれる感光体(16Y)、(16M)、(16C)、(16K)それぞれの周りには、感光体表面に各種添加剤を供給することにできる機構(27Y)、(27M)、(27C)、(27K)が配置されてなる。
この感光体(16Y)、(16M)、(16C)、(16K)は図中の矢印方向に回転し、その周りに少なくとも回転順にスコロトロン方式の帯電部材(17Y)、(17M)、(17C)、(17K)、現像部材(19Y)、(19M)、(19C)、(19K)、クリーニング部材(20Y)、(20M)、(20C)、(20K)が配置されている。帯電部材(17Y)、(17M)、(17C)、(17K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。この帯電部材(17Y)、(17M)、(17C)、(17K)と現像部材(19Y)、(19M)、(19C)、(19K)の間の感光体表面側より、図示しない露光部材からのレーザー光(18Y)、(18M)、(18C)、(18K)が照射され、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。そして、このような感光体(16Y)、(16M)、(16C)、(16K)を中心とした4つの画像形成要素(25Y)、(25M)、(25C)、(25K)が、転写材搬送手段である転写搬送ベルト(22)に沿って並置されている。転写搬送ベルト(22)は各画像形成ユニット(25Y)、(25M)、(25C)、(25K)の現像部材(19Y)、(19M)、(19C)、(19K)とクリーニング部材(20Y)、(20M)、(20C)、(20K)の間で感光体(16Y)、(16M)、(16C)、(16K)に当接しており、転写搬送ベルト(22)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(21Y)、(21M)、(21C)、(21K)が配置されている。各画像形成要素(25Y)、(25M)、(25C)、(25K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図4に示す構成のフルカラー画像形成装置において、画像形成動作は次のようにして行なわれる。まず、各画像形成要素(25Y)、(25M)、(25C)、(25K)において、感光体(16Y)、(16M)、(16C)、(16K)に静電潜像が形成されるようになっている。そして、このような感光体(16Y)、(16M)、(16C)、(16K)が回転し、帯電部材(17Y)、(17M)、(17C)、(17K)により帯電が施される。
次に感光体の外側に配置された露光部(図示しない)でレーザー光(18Y)、(18M)、(18C)、(18K)により、600dpi以上(好ましくは1200dpi以上)の解像度で書き込みが行われ、作成する各色の画像に対応した静電潜像が形成される。この場合にも書き込み光源1つに対して1200dpiの書き込みが概ね上限となる。
次に現像部材(19Y)、(19M)、(19C)、(19K)により潜像を現像してトナー像が形成される。現像部材(19Y)、(19M)、(19C)、(19K)は、それぞれY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)のトナーで現像を行なう現像部材で、4つの感光体(16Y)、(16M)、(16C)、(16K)上で作られた各色のトナー像は転写紙上で重ねられる。転写紙(26)は給紙コロ(図示せず)によりトレイから送り出され、一対のレジストローラ(23)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(22)に送られる。転写搬送ベルト(22)上に保持された転写紙(26)は搬送されて、各感光体(16Y)、(16M)、(16C)、(16K)との当接位置(転写部)で各色トナー像の転写が行なわれる。
感光体上のトナー像は、転写ブラシ(21Y)、(21M)、(21C)、(21K)に印加された転写バイアスと感光体(16Y)、(16M)、(16C)、(16K)との電位差から形成される電界により、転写紙(26)上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(26)は定着装置(24)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。
また、転写部で転写されずに各感光体(16Y)、(16M)、(16C)、(16K)上に残った残留トナーは、クリーニング装置(20Y)、(20M)、(20C)、(20K)で回収される。
続いて、除電部材(27Y)、(27M)、(27C)、(27K)により、感光体上の余分な残留電荷が除去される。この後再び、帯電部材で均一に帯電が施されて、次の画像形成が行われる。
なお、図4の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素((25Y)、(25M)、(25C))が停止するような機構を設けることは本発明に特に有効に利用できる。
この場合にも、先に述べたように転写後の感光体表面電位が、メイン帯電極性側100V以下、好ましくは逆極性、更に好ましくは逆極性側100V以下に制御することにより、感光体の繰り返し使用における残留電位の上昇を低減化することが可能で、且つ、有効である。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図5に示すものが挙げられる。図5に示されるプロセスカートリッジにおいて、感光体の周囲のいずれかの位置に、感光体表面に各種添加剤を供給が可能な機構(109)を有してなる。
感光体(101)は導電性支持体上に少なくとも電荷発生層、電荷輸送層を含む感光層が設けられてなり、電荷発生層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有してなる。
画像露光部(103)には、前述のように600dpi以上(好ましくは1200dpi以上)の解像度で書き込みが行うことの出来る光源が用いられ、図5中、104は現像手段、105は転写体、106は転写手段、107はクリ−ニング手段、108は除電手段である。
以下、本発明の画像形成装置に用いられる電子写真感光体について詳しく説明する。本発明に用いられる電子写真感光体は、導電性支持体上に少なくとも電荷発生層と電荷輸送層を形成してなる電子写真感光体であって、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、 9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、かつ一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有するものである。
この結晶型は、特許文献2に記載されているものであるが、このチタニルフタロシアニン結晶を用いることで、高感度を失うことなく繰り返し使用によっても帯電性の低下を生じない安定な電子写真感光体を得ることができる。
特許文献2には、本発明で使用される電荷発生物質およびこれを用いた感光体、電子写真装置などが開示されている。しかしながら、感光体の周囲に各種添加剤を感光体表面に供給される機構を有するような、感光体の非常に長い寿命、高安定化を要求されるようなシステムで使用される場合には、感光体の摩耗よりも静電疲労が律速となってきた。このような画像形成装置においては、地汚れというネガ・ポジ現像特有の問題を解決できないでいる。
本発明者らは、地汚れ現象に関して電荷発生層における不均一性が大きな原因となっていることを見いだした。これを解決するためには、電荷発生層における粒子サイズのコントロールが必須であり、粒子サイズを小さい方向でそろえることが重要であることも理解された。この結果、後述のように合成時に粒子サイズを小さく合成するか、分散後の濾過時に粗大粒子を取り除いてしまうことにより、粒子サイズをコントロールすることに成功し、上述のような画像形成装置に対応できる感光体の技術を開発することができた。
また、特許文献2には粒子サイズに関する記載およびそれをコントロールする技術の記載が無く、粒子サイズの適正化がなされていないものであった。本発明においては、粒子サイズをコントロールした特定結晶型のチタニルフタロシアニンを含有した感光体を用い、画像形成装置のプロセス条件を適正化することで、より最適な画像形成装置を構築するものである。
また、チタニルフタロシアニン結晶の合成方法として、特許文献3に記載されているように、ハロゲン化チタンを原料に用いない方法が良好に用いられるものである。この方法の最大のメリットは、合成されたチタニルフタロシアニン結晶がハロゲン化フリーであることである。チタニルフタロシアニン結晶は不純物としてのハロゲン化チタニルフタロシアニン結晶を含むと、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(非特許文献1を参照。)。本発明においても、特許文献2に記載されているようなハロゲン化フリーチタニルフタロシアニン結晶をメインに対象にしているものであり、これらの材料が有効に使用される。
ハロゲン化フリーのチタニルフタロシアニンを合成するためには、チタニルフタロシアニン合成の際の原材料に、ハロゲン化された材料を使用しないことである。具体的には、後述の方法が用いられる。
ここでまず、本発明で用いられる特定の結晶型を有するチタニルフタロシアニン結晶の合成方法について述べる。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。フタロシアニン類の合成方法は古くから知られており、非特許文献2、非特許文献3、特許文献3等に記載されている。
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属および尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては極めて有効に使用される。
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。この方法は、フタロシアニン類を硫酸に溶解した後、水で希釈し、再析出させる方法であり、アシッド・ペースト法あるいはアシッド・スラリー法と呼ばれるものが使用できる。
具体的な方法としては、上記の合成粗品を10乃至50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10乃至50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行ない、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行ない、固形分濃度で5乃至15wt%程度の水ペーストを得る。
この際、イオン交換水で十分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表せば、洗浄後のイオン交換水のpHや比伝導度で表すことが出来る。pHで表す場合には、pHが6〜8の範囲であることが望ましい。この範囲であることにより、感光体特性に影響を与えない硫酸残存量であると判断出来る。このpH値は市販のpHメーターで簡便的に測定することが出来る。また比伝導度で表せば、8μS/cm以下であることが望ましい(好ましくは5μS/cm以下、更に好ましくは3μS/cm以下である)。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断出来る。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用するイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化したりするので望ましくない。
このように作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0乃至7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。
次に、結晶変換方法について述べる。
結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下の元で有機溶媒と共に混合・撹拌することにより、前記結晶型を得るものである。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニンの重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニンに含まれる不純物を十分に取り除く効果が発現されるからである。尚、ここで使用する不定形チタニルフタロシアニンは、アシッド・ペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことが出来ない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特許文献4(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることが出来るが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。なお、この理由は、先に述べたとおりである。
以上の結晶変換方法は特許文献2に準じた結晶変換方法である。一方、本発明の電子写真装置に用いる感光体に含有される電荷発生物質においては、チタニルフタロシアニン結晶の粒子サイズをより細かく(0.25μm以下)することにより、その効果が達成されるものである。以下には、チタニルフタロシアニン粒子サイズを合成段階より小さく合成する手法について記載する。
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01乃至0.05μm程度)であるが(図6参照)、結晶変換の際に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行なわれた後に、濾過を行ない、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3乃至0.5μm)を得ているものである(図7参照)。
図中のスケール・バーは、いずれも0.2μmである。
図7に示されるように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下)にするため、強いシェアを与えることで分散を行ない、更には必要に応じて一次粒子を粉砕する強いエネルギーを与えて分散を行なっている。この結果、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移してしまう可能性を有しているものである。
この点に関して、合成段階からチタニルフタロシアニン結晶の一次粒子サイズをコントロールすることにより、小さいサイズの結晶を得ることにより、この問題を解決する方法が可能であり、本発明には有効に使用される。具体的には、結晶変換に際して結晶成長がほとんど起こらない範囲(図7に観察される不定形チタニルフタロシアニン粒子のサイズが、結晶変換後において遜色ない小ささ、概ね0.25μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることで、可能な限り一次粒子サイズの小さなチタニルフタロシアニン結晶を得ようというものである。結晶変換後の粒子サイズは、結晶変換時間に比例して大きくなる。このため前述のように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントが挙げられる。
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めること。もう1つは、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料:不定形チタニルフタロシアニン)を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法により、短時間での結晶変換を実現させるものである。これらの条件により、原料が残存することなく、結晶変換が充分に行なわれ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。この場合にも、結晶変換に使用する有機溶媒量の適正化が有効な手段である。具体的には、不定形チタニルフタロシアニンの固形分に対して、10倍以上、好ましくは30倍以上の有機溶媒を使用することが望ましい。これにより、短時間での結晶変換を確実なものとすると共に、不定形チタニルフタロシアニン中に含まれる不純物を確実に取り除くことができる。
また、上述のように結晶粒子サイズと結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行なった後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。
このようにして作製される一次粒子サイズは、細かいほど感光体の課題に対しては良好な結果を示すものであるが、顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用がでる場合がある。即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が細かすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなる。したがって、適切な顔料粒子の粒子サイズは、およそ0.05μm乃至0.2μm程度の範囲である。
図8には、短時間で結晶変換を行った場合のチタニルフタロシアニン結晶のTEM像を示す。図中のスケール・バーは、0.2μmである。図7の場合とは異なり、粒子サイズが小さくほぼ均一であり、図7に観察されるような粗大粒子は全く認められない。
図8に示されるように1次粒子が小さい状態で作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下、より好ましくは0.2μm以下)にするためには、1次粒子が凝集(集合)して集まって形成する2次粒子をほぐすだけのシェアを与えることで分散が可能である。この結果、必要以上のエネルギーを与えないため、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移し易い結果は生み出さずに、粒度分布の細かい分散液を容易に作製することが可能である。
ここでいう粒子サイズとは、体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。しかしながら、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいは分散液を直接、電子顕微鏡にて観察し、その大きさを求めることが重要である。
分散液の更なる観察により、微小欠陥に関して検討した結果、上記現象は次のように理解された。通常、平均粒子サイズを測定するような方法においては、極端に大きな粒子が数%以上も存在するような場合には、その存在が検出できるものであるが、全体の1%以下程度のような微量になってくると、その測定は検出限界以下になってしまうものである。その結果として、平均粒子サイズの測定だけでは粗大粒子の存在が検出されずに、上述のような微小欠陥に関する解釈を困難にしていた。
図9および図10に、分散条件を固定して分散時間だけを変更した2種類の分散液の状態を観察した写真を示す。同一条件における分散時間の短い分散液の写真を図9に示すが、分散時間の長い図10と比較して、粗大粒子が残っている様子が観測される。図9中の黒い粒が粗大粒子である。
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)により測定した。その結果を図11に示す。図11における「A」が図9に示す分散液に対応し、「B」が図10に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、両者に全くの差異が認められない。
したがって、公知の平均粒径(粒子サイズ)の規定だけでは、微量な粗大粒子の残存を検出できずに、昨今の高解像度のネガ・ポジ現像には対応できていないことが理解される。この微量な粗大粒子の存在は、塗工液を顕微鏡レベルで観察することにより、初めて認識できたものである。
このような事実に対して、結晶変換時に作製される一次粒子をできる限り小さいものを作製することは有効な手段である。このために、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法は有効であることがわかる。
このような結晶変換方法を採用することにより、一次粒子サイズの小さな(0.25μm以下、より好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。特許文献2に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明において重要な手段である。
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行なわれる。この際、減圧濾過を用いることが最も適当である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行なう場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
このように得られた特定の結晶型を有するチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。しかしながら、先述のように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有しているものであった。しかしながら、本発明のように一次粒子を限りなく小さなものに合成することにより、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することができるものである。
次に分散液の作製方法について述べる。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などにより選択すればよい。
既に述べたように、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、熱エネルギー・機械的シェア等のストレスにより他の結晶型に容易に結晶転移をすることが知られている。本発明で用いるチタニルフタロシアニン結晶もこの傾向は変わらない。すなわち、微細な粒子を含む分散液を作製するためには、分散方法の工夫も必要であるが、結晶型の安定性と微粒子化はトレード・オフの関係になりがちである。分散条件を最適化することによりこれを回避する方法はあるが、いずれも製造条件を極めて狭くしてしまうものであり、より簡便な方法が望まれている。この問題を解決するために、以下のような方法も有効な手段である。
すなわち、結晶転移が起こらない範囲で、できる限り粒子を微細にした分散液を作製後、適当なフィルターで濾過してしまう方法である。この方法では、残存する目視では観察できない(あるいは粒径測定では検出できない)微量な粗大粒子をも取り除くことができ、また粒度分布を揃えるという点からも非常に有効な手段である。具体的には、上述のように作製した分散液を有効孔径が3μm以下のフィルター、より好ましくは1μm以下のフィルターにて濾過する操作を行ない、分散液を完成させるというものである。この方法によっても、粒子サイズの小さな(0.25μm以下、より好ましくは0.2μm以下)チタニルフタロシアニン結晶のみを含む分散液を作製することができ、これを用いた感光体を画像形成装置に搭載使用することにより、本願の効果をより一層顕著にするものである。
分散液を濾過するフィルターに関しては、除去したい粗大粒子のサイズによって異なるものであるが、本発明者等の検討によれば、600dpi程度の解像度を必要とする電子写真装置で使用される感光体としては、最低でも3μmより大きい粗大粒子の存在は画像に対して影響を及ぼす。したがって、有効孔径が3μm以下のフィルターを使用すべきである。より好ましくは1μm以下の有効孔径を有するフィルターを使用することである。このようなフィルタリング処理を行うことにより、有効孔径よりも細かい粗大粒子も取り除くことが可能であり、粒度分布が狭く、かつ粗大粒子の含まない分散液を作製することが可能になる。
この有効孔径に関しては、細かいほど粗大粒子の除去に効果があるものであるが、あまり細かすぎると、必要な顔料粒子そのものも濾過されてしまうため、適切なサイズが存在する。また、細かすぎた場合には、濾過に時間がかかる、フィルターが目詰まりを起こす、ポンプ等を使用して送液する場合には負荷がかかりすぎる等の問題を生じる。なお、ここで使用されるフィルターの材質は、当然のことながら濾過する分散液に使用される溶媒に対して耐性のあるものが使用される。
濾過に際しては、濾過される分散液中の粗大粒子量があまりにも多い場合、取り除かれる顔料が多くなり、濾過後の分散液の固形分濃度が変化したりして好ましくない。従って、濾過を行う際には適切な粒度分布(粒子サイズ、標準偏差)が存在する。本発明のように、濾過による顔料のロス、フィルターの目詰まり等がなく、効率よく濾過を行うためには、濾過前の分散液の体積平均粒径が0.25μm以下で、その標準偏差が0.2μm以下に分散しておくことが望ましい。
このような分散液の濾過操作を加えることによっても、粗大粒子を取り除くことが可能になり、ひいては分散液を使用した感光体で発生する地汚れを低減化することが出来る。上述のように、より細かいフィルターを使用するほど、その効果は大きなもの(確実なもの)になるが、顔料粒子そのものが濾過されてしまう場合が存在してしまう。このような場合には、先に述べたチタニルフタロシアニン一次粒子を微細化合成する技術と併用することは、非常に大きな効果を発するものである。
即ち、(i)微細化チタニルフタロシアニンを合成し、これを使用することにより、分散時間の短縮化・分散ストレスの低減化が図れ、分散における結晶転移の可能性が小さくなる。(ii)分散によって残存する粗大粒子サイズが、微細化しない場合よりも小さいため、より小さなフィルターを使用することが可能になり、粗大粒子の除去効果がより確実なものとなる。また、除去されるチタニルフタロシアニン粒子量が低減し、濾過前後における分散液組成の変化が少なく、安定した製造が可能になる。(iii)その結果、製造される感光体は安定して地汚れ耐性の高い感光体が製造されることになる。
続いて、本発明に用いられる電子写真感光体について、図面を用いて詳しく説明する。
図12は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体(31)上に、前記特定粒子サイズで特定結晶型を有するチタニルフタロシアニン結晶(電荷発生材料)を主成分とする電荷発生層(35)と、電荷輸送材料を主成分とする電荷輸送層(37)とが、積層された構成をとっている。
また、図13は、本発明に用いられる電子写真感光体の別の構成例を示す断面図であり、導電性支持体(31)上に、前記特定粒子サイズで特定結晶型を有するチタニルフタロシアニン結晶(電荷発生材料)を主成分とする電荷発生層(35)と、電荷輸送材料を主成分とする電荷輸送層(37)とが積層され、更に電荷輸送層上に、保護層(39)を設けた構成をとっている。
導電性支持体(31)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、特許文献6に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体(31)として用いることができる。また、これらの中でも陽極酸化皮膜処理を簡便に行なうことのできるアルミニウムからなる円筒状支持体が最も良好に使用できる。ここでいうアルミニウムとは、純アルミ系あるいはアルミニウム合金のいずれをも含むものである。具体的には、JIS1000番台、3000番台、6000番台のアルミニウムあるいはアルミニウム合金が最も適している。陽極酸化皮膜は各種金属、各種合金を電解質溶液中において陽極酸化処理したものであるが、中でもアルミニウムもしくはアルミニウム合金を電解質溶液中で陽極酸化処理を行なったアルマイトと呼ばれる被膜が本発明に用いる感光体には最も適している。特に、反転現像(ネガ・ポジ現像)に用いた際に発生する点欠陥(黒ポチ、地汚れ)を防止する点で優れている。
陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行なわれる。このうち、硫酸浴による処理が最も適している。一例を挙げると、硫酸濃度:10乃至20%、浴温:5乃至25℃、電流密度:1乃至4A/dm、電解電圧:5乃至30V、処理時間:5乃至60分程度の範囲で処理が行なわれるが、これに限定するものではない。このように作製される陽極酸化皮膜は、多孔質であり、また絶縁性が高いため、表面が非常に不安定な状況である。このため、作製後の経時変化が存在し、陽極酸化皮膜の物性値が変化しやすい。これを回避するため、陽極酸化皮膜を更に封孔処理することが望ましい。封孔処理には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。このうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最も好ましい。封孔処理に引き続き、陽極酸化皮膜の洗浄処理が行なわれる。これは、封孔処理により付着した金属塩等の過剰なものを除去することが主な目的である。これが支持体(陽極酸化皮膜)表面に過剰に残存すると、この上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまうため、逆に地汚れの発生原因にもなってしまう。洗浄は純水1回の洗浄でも構わないが、通常は他段階の洗浄を行なう。この際、最終の洗浄液が可能な限りきれい(脱イオンされた)ものであることが好ましい。また、他段階の洗浄工程のうち1工程に接触部材による物理的なこすり洗浄を施すことが望ましい。以上のようにして形成される陽極酸化皮膜の膜厚は、5乃至15μm程度が望ましい。これより薄すぎる場合には陽極酸化皮膜としてのバリア性の効果が充分でなく、これより厚すぎる場合には電極としての時定数が大きくなりすぎて、残留電位の発生や感光体のレスポンスが低下する場合がある。
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体(31)として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
更に、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体(31)として良好に用いることができる。
次に、感光層について説明する。感光層は前述のように、電荷発生層(35)と電荷輸送層(37)で構成される積層型が感度、耐久性において優れた特性を示し、良好に使用される。
電荷発生層(35)は、電荷発生物質として、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3゜にピークを有さず、結晶合成時もしくは分散濾過処理により、一次粒子の平均粒子サイズが0.25μm以下(好ましくは0.2μm以下)のチタニルフタロシアニン結晶を主成分とする層である。
電荷発生層(35)は、前記顔料を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層(35)に用いられる結着樹脂としては、必要に応じて電荷発生層(35)に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。結着樹脂の量は、電荷発生物質100重量部に対し0乃至500重量部、好ましくは10乃至300重量部が適当である。
ここで用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。電荷発生層35の膜厚は、0.01乃至5μm程度が適当であり、好ましくは0.1乃至2μmである。
電荷輸送層(37)は、電荷輸送物質および結着樹脂を適当な溶剤に溶解または分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
結着樹脂としてはポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20乃至300重量部、好ましくは40乃至150重量部が適当である。また、電荷輸送層の膜厚は5乃至100μm程度とすることが好ましい。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、およびそれらの誘導体が良好に用いられる。
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、式(I)乃至(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
(I)式
式中、R、R、Rはそれぞれ独立して置換もしくは無置換のアルキル基またはハロゲン原子、Rは水素原子または置換もしくは無置換のアルキル基、R、Rは置換もしくは無置換のアリール基、o、p、qはそれぞれ独立して0乃至4の整数、k、jは組成を表し、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表し5乃至5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表される2価基を表す。尚、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
101、R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表す。l、mは0乃至4の整数、Yは単結合、炭素原子数1乃至12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO2−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表す。)または、
(aは1乃至20の整数、bは1乃至2000の整数、R103、R104は置換または無置換のアルキル基またはアリール基を表す)を表す。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。)
(II)式中、R、Rは置換もしくは無置換のアリール基、Ar, Ar, Arは同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(III)式
式中、R, R10は置換もしくは無置換のアリール基、Ar,Ar,Arは同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(IV)式
式中、R11, R12 は置換もしくは無置換のアリール基、Ar, Ar, Arは同一または異なるアリレン基、pは1乃至5の整数を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(V)式
式中、R13,R14は置換もしくは無置換のアリール基、Ar10,Ar11,Ar12は同一または異なるアリレン基、X,X は置換もしくは無置換のエチレン基、または置換もしくは無置換のビニレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VI)式
式中、R15,R16,R17,R18は置換もしくは無置換のアリール基、Ar13,Ar14,Ar15,Ar16は同一または異なるアリレン基、Y,Y,Yは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表し同一であっても異なってもよい。X,k,jおよびnは、(V)式の場合と同じである。尚、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VII)式
式中、R19,R20 は水素原子、置換もしくは無置換のアリール基を表し,R19とR20は環を形成していてもよい。Ar17,Ar18,Ar19 は同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VIII)式
式中、R21は置換もしくは無置換のアリール基、Ar20,Ar21,Ar22,Ar23 は同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(IX)式
式中、R22,R23,R24,R25は置換もしくは無置換のアリール基、Ar24,Ar25,Ar26,Ar27,Ar28は同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(X)式
式中、R26,R27は置換もしくは無置換のアリール基、Ar29,Ar30,Ar31は同一または異なるアリレン基を表す。X,k,jおよびnは、(I)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
また、電荷輸送層に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むものである。
これら電子供与性基を有する重合体から構成される電荷輸送層、または架橋構造を有する重合体は耐摩耗性に優れたものである。通常、電子写真プロセスにおいては、帯電電位(未露光部電位)は一定であるため、繰り返し使用により感光体の表面層が摩耗すると、その分だけ感光体にかかる電界強度が高くなってしまう。この電界強度の上昇に伴い、地汚れの発生頻度が高くなるため、感光体の耐摩耗性が高いことは、地汚れに対して有利である。これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特許文献6、特許文献7、特許文献8等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。
本発明において電荷輸送層(37)中に可塑剤やレベリング剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0乃至30重量%程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0乃至1重量%が適当である。
本発明の電子写真感光体には、導電性支持体(31)と感光層との間に中間層を設けることができる。中間層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶媒で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、中間層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
これらの中間層は前述の感光層の如く適当な溶媒、塗工法を用いて形成することができる。更に本発明の中間層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の中間層には、Alを陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO、SnO、TiO、ITO、CeO等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。中間層の膜厚は0乃至5μmが適当である。
本発明の電子写真感光体には、感光層保護の目的で、保護層が感光層の上に設けられることもある。近年、日常的にコンピュータの使用が行なわれるようになり、プリンタによる高速出力とともに、装置の小型も望まれている。したがって、保護層を設け、耐久性を向上させることによって、本発明の高感度で異常欠陥のない感光体を有用に用いることができる。
本発明の感光体においては、感光層保護の目的で、保護層(39)が感光層の上に設けられることもある。保護層(39)に使用される材料としてはABS樹脂、ACS樹脂、オレフィン−ビニルモノマー共重合体、塩素化ポリエーテル、アリール樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。中でも、ポリカーボネートもしくはポリアリレートが最も良好に使用できる。
保護層にはその他、耐摩耗性を向上する目的でポリテトラフルオロエチレンのような弗素樹脂、シリコーン樹脂、およびこれらの樹脂に酸化チタン、酸化錫、チタン酸カリウム、シリカ等の無機フィラー(無機顔料)、また有機フィラー(有機顔料)を分散したもの等を添加することができる。
また、感光体の保護層に用いられるフィラー材料のうち有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、a−カーボン粉末等が挙げられ、無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に、シリカ、酸化チタン、アルミナが有効に使用できる。
保護層中のフィラー濃度は使用するフィラー種により、また感光体を使用する電子写真プロセス条件によっても異なるが、保護層の最表層側において全固形分に対するフィラーの比で5重量%以上、好ましくは10重量%以上、50重量%以下、好ましくは30重量%以下程度が良好である。
また、使用するフィラーの体積平均粒径は、0.1μm乃至2μmの範囲が良好に使用され、好ましくは0.3μm乃至1μmの範囲である。この場合、平均粒径が小さすぎると耐摩耗性が充分に発揮されず、大きすぎると塗膜の表面性が悪くなったり、塗膜そのものが形成できなかったりするからである。
なお、本発明におけるフィラーの平均粒径とは、特別な記載のない限り体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。また、同時に測定される各々の粒子の標準偏差が1μm以下であることが重要である。これ以上の標準偏差の値である場合には、粒度分布が広すぎて、本発明の効果が顕著に得られなくなってしまう場合がある。
また、本発明で使用するフィラーのpHも解像度やフィラーの分散性に大きく影響する。その理由の一つとしては、フィラー、特に金属酸化物は製造時に塩酸等が残存することが考えられる。その残存量が多い場合には、画像ボケの発生は避けられず、またそれは残存量によってはフィラーの分散性にも影響を及ぼす場合がある。
もう一つの理由としては、フィラー、特に金属酸化物の表面における帯電性の違いによるものである。通常、液体中に分散している粒子はプラスあるいはマイナスに帯電しており、それを電気的に中性に保とうとして反対の電荷を持つイオンが集まり、そこで電気二重層が形成されることによって粒子の分散状態は安定化している。粒子から遠ざかるに従いその電位(ゼータ電位)は徐々に低くなり、粒子から充分に離れて電気的に中性である領域の電位はゼロとなる。したがって、ゼータ電位の絶対値の増加によって粒子の反発力が高くなることによって安定性は高くなり、ゼロに近づくに従い凝集しやすく不安定になる。一方、系のpH値によってゼータ電位は大きく変動し、あるpH値において電位はゼロとなり等電点を持つことになる。したがって、系の等電点からできるだけ遠ざけて、ゼータ電位の絶対値を高めることによって分散系の安定化が図られることになる。
本発明の構成においては、フィラーとしては前述の等電点におけるpHが、少なくとも5以上を示すものが画像ボケ抑制の点から好ましく、より塩基性を示すフィラーであるほどその効果が高くなる傾向があることが確認された。等電点におけるpHが高い塩基性を示すフィラーは、系が酸性であったほうがゼータ電位はより高くなることにより、分散性およびその安定性は向上することになる。
ここで、本発明におけるフィラーのpHは、ゼータ電位から等電点におけるpH値を記載した。この際、ゼータ電位の測定は、大塚電子(株)製レーザーゼータ電位計にて測定した。
更に、画像ボケが発生しにくいフィラーとしては、電気絶縁性が高いフィラー(比抵抗が1010Ω・cm以上)が好ましく、フィラーのpHが5以上を示すものやフィラーの誘電率が5以上を示すものが特に有効に使用できる。また、pHが5以上のフィラーあるいは誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種類以上混合したりして用いることも可能である。また、これらのフィラーの中でも高い絶縁性を有し、熱安定性が高い上に、耐摩耗性が高い六方細密構造であるα型アルミナは、画像ボケの抑制や耐摩耗性の向上の点から特に有用である。
本発明において使用するフィラーの比抵抗は以下のように定義される。フィラーのような粉体は、充填率によりその比抵抗値が異なるので、一定の条件下で測定する必要がある。本発明においては、特許文献9(図1)、特許文献10(図1)に示された測定装置と同様の構成の装置を用いて、フィラーの比抵抗値を測定し、この値を用いた。測定装置において、電極面積は4.0cmである。測定前に片側の電極に4kgの荷重を1分間かけ、電極間距離が4mmになるように試料量を調節する。測定の際は、上部電極の重量(1kg)の荷重状態で測定を行ない、印加電圧は100Vにて測定する。10Ω・cm以上の領域は、HIGH RESISTANCE METER(横河ヒューレットパッカード)、それ以下の領域についてはデジタルマルチメーター(フルーク)により測定した。これにより得られた比抵抗値を本発明でいうところの比抵抗値と定義するものである。
フィラーの誘電率は以下のように測定した。上述のような比抵抗の測定と同様なセルを用い、荷重をかけた後に、静電容量を測定し、これより誘電率を求めた。静電容量の測定は、誘電体損測定器(安藤電気)を使用した。
更に、これらのフィラーは少なくとも一種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラーの分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の発生、さらには耐摩耗性の低下をも引き起こすため、高耐久化あるいは高画質化を妨げる大きな問題に発展する可能性がある。表面処理剤としては、従来用いられている表面処理剤すべてを使用することができるが、フィラーの絶縁性を維持できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、あるいはこれらとシランカップリング剤との混合処理や、Al、TiO、ZrO、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合処理がフィラーの分散性および画像ボケの点からより好ましい。シランカップリング剤による処理は、画像ボケの影響が強くなるが、上記の表面処理剤とシランカップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3乃至30wt%が適しており、5乃至20wt%がより好ましい。表面処理量がこれよりも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい上昇を引き起こす。これらフィラー材料は単独もしくは2種類以上混合して用いられる。フィラーの表面処理量に関しては、上述のようにフィラー量に対する使用する表面処理剤の重量比で定義される。
これらフィラー材料は、適当な分散機を用いることにより分散できる。また、保護層の透過率の点から使用するフィラーは1次粒子レベルまで分散され、凝集体が少ないほうが好ましい。
また、保護層(39)には残留電位低減、応答性改良のため、電荷輸送物質を含有しても良い。電荷輸送物質は、電荷輸送層の説明のところに記載した材料を用いることができる。電荷輸送物質として、低分子電荷輸送物質を用いる場合には、保護層中における濃度傾斜を設けても構わない。耐摩耗性向上のため、表面側を低濃度にすることは有効な手段である。ここでいう濃度とは、保護層を構成する全材料の総重量に対する低分子電荷輸送物質の重量の比を表わし、濃度傾斜とは上記重量比において表面側において濃度が低くなるような傾斜を設けることを示す。また、高分子電荷輸送物質を用いることは、感光体の耐久性を高める点で非常に有利である。
保護層の形成法としては通常の塗布法が採用される。なお保護層の厚さは0.1乃至10μm程度が適当である。また、以上のほかに真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層として用いることができる。
この他、保護層のバインダー樹脂としては電荷輸送層の項で説明した高分子電荷輸送物質も用いることが出来る。これを用いた場合の効果としては、電荷輸送層の項に記載したことと同様に、耐摩耗性の向上、高速電荷輸送の効果を得ることが出来る。また、保護層のバインダー構成として、架橋構造からなる保護層も有効に使用される。架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、保護層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。
このような網目構造を有する電荷輸送層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、保護層を積層構造として、下層(感光層側)には低分子分散ポリマーの保護層を使用し、上層(表面側)に架橋構造を有する保護層を形成しても良い。
上述したように、感光層(電荷輸送層)に高分子電荷輸送物質を使用したり、あるいは感光体の表面に保護層を設けることは、各々の感光体の耐久性(耐摩耗性)を高めるだけでなく、後述のようなタンデム型フルカラー画像形成装置中で使用される場合には、モノクロ画像形成装置にはない新たな効果をも生み出すものである。
フルカラーの画像の場合、様々な形態の画像が入力されるが、逆に定型的な画像も入力される場合がある。例えば、日本語の文書等における検印の存在などである。検印のようなものは通常、画像領域の端のほうに位置され、また使用される色も限定される。ランダムな画像が常に書き込まれているような状態においては、画像形成要素中の感光体には、平均的に画像書き込み、現像、転写が行なわれることになるが、上述のように特定の部分に数多くの画像形成が繰り返されたり、特定の画像形成要素ばかり使用された場合には、その耐久性のバランスを欠くことにつながる。このような状態で表面の耐久性(物理的・化学的・機械的)の小さな感光体が使用された場合には、この差が顕著になり、画像上の問題になりやすい。一方、感光体を高耐久化した場合には、このような局所的な変化量が小さく、結果的に画像上の欠陥として現われにくくなるため、高耐久化を実現すると共に、出力画像の安定性をも増すことになり、非常に有効である。
以下、本発明を実施例にて挙げて説明するが、本発明が実施例により制約を受けるものではない。なお、部はすべて重量部である。
まず、電荷発生材料(チタニルフタロシアニン結晶)の合成例について述べる。
(比較合成例1)
引用文献2に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまでイオン交換水(pH:7.0、比伝導度:1.0μS/cm)による水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8、比伝導度は2.6μS/cmであった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)40gをテトラヒドロフラン200gに投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た(顔料1とする)。
上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。尚、比較合成例1の原材料には、ハロゲン化物を使用していない。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、 Cu−Kα線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角 7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン粉末を得られた。その結果を図14に示す。
また、比較合成例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)で、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。水ペーストの乾燥粉末のX線回折スペクトルを図15に示す。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°乃至40°
時定数:2秒
(比較合成例2)
特許文献11、実施例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをポリエチレングリコール50gに加え、100gのガラスビーズと共に、サンドミルを行なった。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た(顔料2とする)。比較合成例2の原材料には、ハロゲン化物を使用していない。
(比較合成例3)
特許文献12、製造例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをイオン交換水10gとモノクロルベンゼン1gの混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た(顔料3とする)。比較合成例3の原材料には、ハロゲン化物を使用していない。
(比較合成例4)
特許文献13の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8gと1−クロロナフタレン75mlを撹拌混合し、窒素気流下で四塩化チタン2.2mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃乃至220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時濾過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た(顔料4とする)。比較合成例4の原材料には、ハロゲン化物を使用している。
(比較合成例5)
特許文献14、合成例1に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc5部を食塩10gおよびアセトフェノン5gと共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た(顔料5とする)。比較合成例5の原材料には、ハロゲン化物を使用している。
(比較合成例6)
特許文献15、実施例1に記載の方法に準じて、顔料を作製した。すなわち、O−フタロジニトリル20.4部、四塩化チタン7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩酸、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウェットケーキを得る。そのケーキをTHF100部中で約5時間攪拌を行ない、濾過、THFによる洗浄を行ない乾燥後、顔料を得た(顔料6とする)。比較合成例6の原材料には、ハロゲン化物を使用している。
(比較合成例7)
特許文献16、合成例2に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た(顔料7とする)。比較合成例7の原材料には、ハロゲン化物を使用していない。
(比較合成例8)
特許文献4のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン58g、テトラブトキシチタン51gをα−クロロナフタレン300mL中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50gのチタニルフタロシアニンを得た。チタニルフタロシアニン4gを0℃に冷却した濃硫酸400g中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800mL/トルエン800mL混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン混晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン混晶体を濾別し、乾燥して、2.9gのチタニルフタロシアニン混晶体を得た。比較合成例8の原材料には、ハロゲン化物を使用していない。
(合成例1)
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行ない、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン400部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5部を得た(顔料9とする)。合成例1の原材料には、ハロゲン化物を使用していない。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は44倍である。
比較合成例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水でおよそ1重量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行なった。平均粒子サイズとして、以下のように求めた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
また、比較合成例1及び合成例1における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランでおよそ1重量%になるように希釈し、上の方法と同様に観察を行なった。上記のようにして求めた平均粒子サイズを表1に示す。なお、比較合成例1及び合成例1で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)。このため、結晶の最も大きな対角線の長さを長径として、計算を行なった。
以上の比較合成例2乃至8で作製した顔料2乃至8は、先程と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。また、合成例1で作製した顔料9のX線回折スペクトルは、比較合成例1で作製した顔料1のスペクトルと一致した。表2にそれぞれのX線回折スペクトルと比較合成例1で得られた顔料のX線回折スペクトルのピーク位置の特徴を示す。
(分散液作製例1)
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した(分散液1とする)。
分散液作製例1で使用した顔料1に変えて、それぞれ比較合成例2乃至8および合成例1で作製した顔料2乃至9を使用して、分散液作製例1と同じ条件にて、分散液作製例2乃至9として分散液を作製した(顔料番号に対応して、それぞれ分散液2乃至9とする。)。
(分散液作製例10)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった(分散液10とする)。
(分散液作製例11)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行ない分散液を作製した(分散液11とする。)。
(分散液作製例12)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行ない、分散液を作製した(分散液12とする。)。
(分散液作製例13)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液13とする)。
ローター回転数:1000r.p.m.にて20分間分散を行った。
(分散液作製例14)
分散液作製例13で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった。濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することが出来なかった。このため以下の評価は未実施。
以上のように作製した分散液中の顔料粒子の粒度分布を、堀場製作所:CAPA−700にて測定した。結果を表3に示す。
(感光体作製例1)
直径100mmのアルミニウムシリンダー(JIS1050)に、下記組成の下引き層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、3.5μmの下引き層、電荷発生層、28μmの電荷輸送層を形成し、積層感光体を作製した(感光体1とする)。なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が20%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、比較対照を電荷発生層が塗工されていないポリエチレンテレフタレートフィルムとし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
下引き層塗工液
酸化チタン(CR−EL:石原産業社製) 70部
アルキッド樹脂 15部
(ベッコライトM6401−50−S(固形分50%)、 大日本インキ化学工業製)
メラミン樹脂 10部
(スーパーベッカミンL−121−60(固形分60%)、 大日本インキ化学工業製)
2−ブタノン 100部
電荷発生層塗工液
先に作製した分散液1を用いた。
電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
塩化メチレン 80部
感光体作製例1で使用した電荷発生層塗工液(分散液1)をそれぞれ、分散液2乃至13に変更した以外は、感光体作製例1と同様にして感光体2乃至13を作製した。なお、電荷発生層の膜厚は、感光体作製例1と同様に、すべての塗工液を用いた場合に780nmの透過率が20%になるように調整した。
(感光体作製例2)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液2に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例3)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液3に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例4)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液4に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例5)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液5に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例6)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液6に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例7)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液7に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例8)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液8に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例9)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液9に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例10)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液10に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例11)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液11に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例12)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液12に変更した以外は、感光体作製例1と同様にして感光体を作製した。
(感光体作製例13)
感光体作製例1で使用した電荷発生層塗工液(分散液1)を、分散液13に変更した以外は、感光体作製例1と同様にして感光体を作製した。
<黒色トナー現像剤K−1の作製>
(黒色トナー)
ポリエステル樹脂 95部
カーボンブラック 10部
サリチル酸誘導体亜鉛塩 2部
上記組成の混合物を、溶融混練し、その後粉砕、分級し、平均粒径8.0μmのトナーを得た。
また、湿式法により作製したマグネタイト100重量部に対してポリビニルアルコール2重量部、水60重量部をボールミルに入れ12時間混合してマグネタイトのスラリーを調整した。このスラリーをスプレードライヤーにて噴霧造粒し、球形粒子とした。この粒子を窒素雰囲気中で1000℃の温度で3時間焼成後冷却し、核体粒子1を得た。
シリコーン樹脂溶液 100部
トルエン 100部
γ−アミノプロピルトリメトキシシラン 15部
カーボンブラック 20部
上記混合物をホモミキサーで20分間分散し、被覆層形成液1を調整した。この被覆層形成液1を、流動床型コーティング装置を用いて核体粒子1を1000部の表面にコーティングして、シリコーン樹脂被覆キャリア(磁性キャリア)を得た。
上記トナーに酸化チタン微粒子0.9wt%、シリカ微粒子0.9wt%(いずれもトナーに対して)を外添した。
上記磁性キャリアを97.5部に対し、トナー2.5部の割合で混合し、黒色トナー二成分現像剤(K−1)を作製した。
以上のように作製した感光体作製例1乃至13の電子写真感光体を、それぞれ図1に示す画像形成装置に搭載し、スコロトロン方式の帯電部材を用いて感光体表面が−900Vになるように帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、現像は先に作製した黒色トナー現像剤(K−1)を用いて2成分現像を行い、転写部材として転写ベルト(転写紙にトナー像を直接転写する)を用い、除電光には780nmのLEDを用い、感光体全面に光照射を行い、除電を行うようにした。書き込み率6%のチャートを用い、連続10万枚印刷を実施例1、参考例1、2および比較例1乃至10として行った(試験環境は、22℃−55%RHである)。
感光体表面には、図2に示すような機構にて、画像出力100枚ごとにステアリン酸亜鉛を感光体3回転分だけ供給した。この際、ステアリン酸亜鉛をブラシ状構造部材に当接させる機構として、接離機構を用いて、必要な場合のみ固形化したステアリン酸亜鉛をブラシ状構造部材に当接させた。
なお、画像評価は10万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
ハーフトーン画像(直径60μmの1ドット画像)を形成し、ドット形成状態を観察した(ドットの散り具合やドット再現性)。
何れの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表4に示す。
実施例1、参考例1、2および比較例1乃至10において、それぞれ、ステアリン酸亜鉛の供給を行わなかった以外は、比較例11乃至23として実施例1、参考例1、2および比較例1乃至10と同様に評価を行った。結果を表4に示す。
比較例11乃至23の画像は、実施例1、参考例1、2および比較例1乃至10の画像に比べ転写率が低いため、画像濃度が低めであった。また、ドットを形成するトナーの集中度合いに関して、比較例11乃至23の場合には、多少抜けているところが存在した。
感光体作製例1乃至13に使用したアルミシリンダーを直径60mmのものに変更した以外は、感光体作製例14乃至26として感光体作製例1乃至13と同様に感光体を作製した。
以上のように作製した感光体作製例14乃至26の電子写真感光体を、それぞれ図1に示す画像形成装置に搭載し、接触方式の帯電部材(直径18mmの帯電ローラー)を用いて下記帯電条件にて感光体表面が−900Vになるように帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、先に作製した黒色トナー現像剤(K−1)を用いて2成分現像を行い、転写部材として転写ベルト(転写紙にトナー像を直接転写する)を用い、除電光には780nmのLEDを用い、感光体全面に光照射を行い、除電を行うようにした。書き込み率6%のチャートを用い、実施例4、参考例3、4および比較例24乃至33として連続5万枚印刷を行った(試験環境は、22℃−55%RHである)。
また、感光体表面には、図2に示すような機構にて、画像出力100枚ごとにステアリン酸亜鉛を感光体3回転分だけ供給した。この際、ステアリン酸亜鉛をブラシ状構造部材に当接させる機構として、接離機構を用いて、必要な場合のみ固形化したステアリン酸亜鉛をブラシ状構造部材に当接させた。
帯電条件:
DCバイアス:−1600V
なお、画像評価は5万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価:
ハーフトーン画像(直径60μmの1ドット画像)を形成し、ドット形成状態を観察した(ドットの散り具合やドット再現性)。
いずれの評価においても4段階のランク評価にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表5に示す。
実施例4、参考例3、4および比較例24乃至33において、ステアリン酸亜鉛の供給を行わなかった以外は、比較例34乃至46として、実施例4、参考例3、4および比較例24乃至33と同様に評価を行った。結果を表5に示す。
<黒色トナー現像剤K−2の作製>
(黒色トナー)
ポリエステル樹脂 100部
カーボンブラック 10部
サリチル酸誘導体亜鉛塩 2部
上記組成の混合物を、溶融混練し、その後粉砕、分級し、平均粒径7.5μmのトナーを得た。
上記トナーに酸化チタン微粒子0.9wt%、シリカ微粒子0.9wt%、ステアリン酸亜鉛0.2wt%(いずれもトナーに対して)を外添した。このトナー2.5部を、先の磁性キャリアを97.5部と混合して、黒色トナー二成分現像剤(K−2)を作製した。
(実施例7)
比較例19において、使用した現像剤として、黒色トナー二成分現像剤(K−2)に変更した以外は、比較例19と同様に評価を行った。結果を表6に示す。
(実施例8)
実施例1において、試験に使用したチャートを、図16に示すものに変更した以外は、実施例1と同様に評価を行った。結果を表6に示す。
(実施例9)
実施例7において、試験に使用したチャートを、図16に示すものに変更した以外は、実施例7と同様に評価を行った。結果を表6に示す。
(実施例10)
実施例8において、使用した現像剤として、黒色トナー二成分現像剤(K−2)に変更した以外は、実施例8と同様に評価を行った。結果を表6に示す。
(実施例11)
実施例4において、評価の環境(画像装置の設置される環境)を、28℃−80%RHに変更した以外は、実施例4と同様に評価を行った。結果を表7に示す。
(実施例12)
実施例11において、帯電部材周辺を図3に示すようなシールドを有する構造のものに変更し、画像形成装置の動作中は、シールド内に23℃−40%RHの空気を0.2L/minで流し、シールド内の湿度を50%RH以下(40〜45%RHに維持)になるようにして評価を行った。結果を表7に示す。
(実施例13)
実施例11において、帯電部材周辺を図3に示すようなシールドを有する構造のものに変更し、画像形成装置の動作中は、シールド内に40℃−30%RHの空気を0.2L/minで流し、シールド内の湿度を50%RH以下(35〜38℃、40〜45%RHに維持)になるようにして評価を行った。結果を表7に示す。
(実施例14)
実施例11において、感光体内部にドラムヒーターを設置し、感光体表面温度が40℃±1℃になるように制御(感光体近傍の相対湿度は42%RH程度)した以外は、実施例11と同様に評価を行った。結果を表7に示す。
(実施例15)
実施例1において、通紙試験に使用したチャートを書き込み率1%のチャートに変更し、連続5万枚の印刷を行った。この際、図3に示す画像形成装置の現像部位における感光体表面電位と、転写直後の感光体表面電位を計測するため、表面電位計をセット出来るように改造を行った。
通紙試験前と通紙試験後において、現像部位における感光体露光部の電位を測定した。この際、露光部の表面電位を計測するために、光書き込みは感光体全面のベタ書き込みを行った。
実施例15における通紙試験に際しては転写バイアスを調整することにより、転写後の感光体非書き込み部の電位が−150Vになるように調整した。この測定の際には、光書き込みを行わず、感光体の転写後の電位を測定した。結果を表8に示す。
(実施例16)
実施例15において、転写後の感光体非書き込み部の電位が−80Vになるように調整した以外は、実施例15と同様に試験を行った。結果を表8に示す。
(実施例17)
実施例15において、転写後の感光体非書き込み部の電位が0Vになるように調整した以外は、実施例15と同様に試験を行った。結果を表8に示す。
(実施例18)
実施例15において、転写後の感光体非書き込み部の電位が+70Vになるように調整した以外は、実施例15と同様に試験を行った。結果を表8に示す。
(実施例19)
実施例15において、転写後の感光体非書き込み部の電位が+150Vになるように調整した以外は、実施例15と同様に試験を行った。結果を表8に示す。
(感光体作製例27)
感光体作製例9における電荷輸送層塗工液を以下の組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した。電荷輸送層塗工液
下記組成の高分子電荷輸送物質 10部
(重量平均分子量:約135000)
下記構造の添加剤 0.5部
塩化メチレン 100部
(感光体作製例28)
感光体作製例9における電荷輸送層の膜厚を22μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は感光体作製例9と同様に感光体を作製した。
保護層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
アルミナ微粒子 4部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(感光体作製例29)
感光体作製例28における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例28と同様に感光体を作製した。
酸化チタン微粒子 4部
(比抵抗:1.5×1010Ω・cm、平均一次粒径:0.5μm)
(感光体作製例30)
感光体作製例28における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例28と同様に感光体を作製した。
酸化錫−酸化アンチモン粉末 4部
(比抵抗:10Ω・cm、平均1次粒径0.4μm)
(感光体作製例31)
感光体作製例28における保護層塗工液を下記組成のものに変更した以外は、感光体作製例28と同様に電子写真感光体を作製した。
保護層塗工液
下記構造式の高分子電荷輸送物質 17部
(重量平均分子量:約135000)
アルミナ微粒子 4部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(感光体作製例32)
感光体作製例28における保護層塗工液を下記組成のものに変更した以外は、感光体作製例28と同様に電子写真感光体を作製した。
保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
酸化防止剤(サノール LS2626:三共化学社製) 1部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
(感光体作製例33)
感光体作製例28における保護層塗工液を下記組成のものに変更した以外は、感光体作製例28と同様に電子写真感光体を作製した。
保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
α−アルミナ粒子(スミコランダム AA−03:住友化学工業製) 15部
酸化防止剤(サノール LS2626:三共化学社製) 1部
ポリカルボン酸化合物 BYK P104:ビックケミー社製 0.4部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
(感光体作製例34)
感光体作製例9におけるアルミニウムシリンダー(JIS1050)を以下の陽極酸化皮膜処理を行ない、次いで下引き層を設けずに、感光体作製例1と同様に電荷発生層、電荷輸送層を設け、感光体を作製した。
陽極酸化皮膜処理
支持体表面の鏡面研磨仕上げを行ない、脱脂洗浄、水洗浄を行なった後、液温20℃、硫酸15vol%の電解浴に浸し、電解電圧15Vにて30分間陽極酸化皮膜処理を行なった。更に、水洗浄を行なった後、7%の酢酸ニッケル水溶液(50℃)にて封孔処理を行なった。その後純水による洗浄を経て、7μmの陽極酸化皮膜が形成された支持体を得た。
以上のように感光体作製例27乃至34で作製した電子写真感光体を、それぞれ図1に示す画像形成装置に搭載し、スコロトロン方式の帯電部材を用いて感光体表面が−900Vになるように帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、現像は先に作製した黒色トナー現像剤(K−1)を用いて2成分現像を行い、転写部材として転写ベルトを用い、除電光には780nmのLEDを用い、感光体全面に光照射し、除電を行うようにした。書き込み率6%のチャートを用い、連続10万枚印刷を、実施例20乃至27として行った(試験環境は、22℃−55%RHである)。
感光体表面には、図2に示すような機構にて、画像出力100枚ごとにステアリン酸亜鉛を感光体3回転分だけ供給した。
なお、画像評価は10万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価:
ハーフトーン画像(直径60μmの1ドット画像)を形成し、ドット形成状態を観察した(ドットの散り具合やドット再現性)
何れの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。また、10万枚印刷後の感光層の摩耗量(保護層を有する場合は保護層の摩耗量)を測定した。以上の結果、実施例1の場合と併せて表9に示す。
(感光体作製例35)
感光体作製例1のアルミシリンダーを直径60mmのものに変え、感光体作製例1と同じ組成の感光体を作製した。
(感光体作製例36)
感光体作製例4のアルミシリンダーを直径60mmのものに変え、感光体作製例4と同じ組成の感光体を作製した。
(感光体作製例37)
感光体作製例5のアルミシリンダーを直径60mmのものに変え、感光体作製例5と同じ組成の感光体を作製した。
(感光体作製例38)
感光体作製例8のアルミシリンダーを直径60mmのものに変え、感光体作製例8と同じ組成の感光体を作製した。
(感光体作製例39)
感光体作製例9のアルミシリンダーを直径60mmのものに変え、感光体作製例9と同じ組成の感光体を作製した。
(感光体作製例40)
感光体作製例10のアルミシリンダーを直径60mmのものに変え、感光体作製例10と同じ組成の感光体を作製した。
<イエロートナー現像剤Y−1の作製>
(イエロートナー)
ポリエステル樹脂 95部
C.I.ピグメントイエロー180 5部
サリチル酸誘導体亜鉛塩 2部
上記組成の混合物、溶融混練し、その後粉砕、分級し、平均粒径8.0μmのトナーを得た。上記トナーに酸化チタン微粒子0.9wt%、シリカ微粒子0.9wt%(いずれもトナーに対して)を外添した。このトナー2.5部を、先の磁性キャリア97.5部と混合してイエロートナー二成分現像剤(Y−1)を作製した。
<マゼンタトナー現像剤M−1の作製>
(マゼンタトナー)
ポリエステル樹脂 95部
C.I.ピグメントレッド57:1 5部
サリチル酸誘導体亜鉛塩 2部
上記組成の混合物を、溶融混練し、その後粉砕、分級し、平均粒径8.0μmのトナーを得た。上記トナーに酸化チタン微粒子0.9wt%、シリカ微粒子0.9wt%(いずれもトナーに対して)を外添した。このトナー2.5部を、先の磁性キャリア97.5部と混合してマゼンタトナー二成分現像剤(M−1)を作製した。
<シアントナー現像剤C−1の作製>
(シアントナー)
ポリエステル樹脂 95部
C.I.ピグメントブルー15:3 5部
サリチル酸誘導体亜鉛塩 2部
上記組成の混合物を、溶融混練し、その後粉砕、分級し、平均粒径8.0μmのトナーを得た。上記トナーに酸化チタン微粒子0.9wt%、シリカ微粒子0.9wt%(いずれもトナーに対して)を外添した。このトナー2.5部を、先の磁性キャリア97.5部と混合してシアントナー二成分現像剤 (C−1)を作製した。
以上のように作製した感光体作製例35乃至40の感光体を、それぞれ、帯電部材(スコロトロン帯電)と共に、図5に示すような1つの画像形成装置用プロセスカートリッジに装着し、更に図4に示すフルカラー画像形成装置に搭載した。4つの画像形成要素では、帯電部材としてスコロトロン方式の帯電部材により感光体表面電位が−900Vになるように帯電を行い、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、現像はそれぞれ、先に作製した黒色トナー現像剤(K−1)、イエロートナー現像剤(Y−1)、マゼンタトナー現像剤(M−1)、シアントナー現像剤(C−1)を用いて2成分現像を行い、転写部材として転写ベルトを用い、書き込み率6%のチャートを用い、連続5万枚印刷を実施例28乃至29および比較例47乃至50として行った(試験環境は、22℃−55%RHである)。
また、感光体表面には、図2に示すような機構にて、画像出力100枚ごとにステアリン酸亜鉛を感光体3回転分だけ供給した。
なお、画像評価は5万枚印刷後に、下記3つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
ハーフトーン画像(直径60μmの1ドット画像)を形成し、ドット形成状態を観察した(ドットの散り具合やドット再現性)。
(iii)色再現性の評価
感光体初期状態と5万枚ランニング後に、同じフルカラー画像を出力し、色再現性の評価を試みた。
いずれの評価においても4段階のランク評価にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表8に示す。
実施例28、参考例5および比較例47乃至50において、それぞれステアリン酸亜鉛を供給しない以外は、比較例51乃至56として、実施例28、参考例5および比較例47乃至50と同様に評価を行った。結果を表10に示す。
最後に、本発明で使用するチタニルフタロシアニン結晶の特徴であるブラッグ角θの最低角ピークである7.3°について、公知材料の最低角7.5°と同一であるか否かについて検証する。
(比較合成例9)
比較合成例1における結晶変換溶媒を塩化メチレンから2−ブタノンに変更した以外は、比較合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。
比較合成例1の場合と同様に、比較合成例9で作製したチタニルフタロシアニン結晶のXDスペクトルを測定した。これを図17に示す。図17より、比較合成例9で作製されたチタニルフタロシアニン結晶のXDスペクトルにおける最低角は、比較合成例1で作製されたチタニルフタロシアニンの最低角(7.3°)とは異なり、7.5°に存在することが判る。
(測定例1)
比較合成例1で得られた顔料(最低角7.3°)に特許文献17に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図18に示す。
(測定例2)
比較合成例9で得られた顔料(最低角7.5°)に特許文献17に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図19に示す。
図19のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。一方、図18のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図19のスペクトルとは明らかに異なっている。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
本発明の電子写真プロセスおよび画像形成装置を説明するための概略図である。 添加剤を感光体表面に供給する機構の一例を表した図である。 帯電ニップを覆うシールドを有する帯電部材の一例を示した図である。 本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図である。 本発明の画像形成装置用プロセスカートリッジを説明するための図である。 不定形チタニルフタロシアニンのTEM像である。 結晶変換後のチタニルフタロシアニンのTEM像である。 短時間で結晶変換を行なったチタニルフタロシアニン結晶のTEM像である。 分散時間が短い場合の分散液の状態を示す図である。 分散時間が長い場合の分散液の状態を示す図である。 図9、10の分散液について、平均粒径および粒度分布を示す図である。 本発明に用いられる電子写真感光体の層構成を表わした図である。 本発明に用いられる別の電子写真感光体の層構成を表わした図である。 比較合成例1で合成されたチタニルフタロシアニンのXDスペクトルを表わした図である。 水ペーストの乾燥粉末のXDスペクトルを表わした図である。 実施例8〜10に使用したテストチャートを示す。 比較合成例9で合成されたチタニルフタロシアニンのXDスペクトルを表わした図である。 測定例1で用いたチタニルフタロシアニンのXDスペクトルを表わした図である。 測定例2で用いたチタニルフタロシアニンのXDスペクトルを表わした図である
符号の説明
1 感光体
2 除電ランプ
3 帯電チャージャー
5 画像露光部
6 現像ユニット
8 レジストローラ
9 転写紙
10 転写チャージャー
11 分離チャージャー
12 分離爪
13 添加剤供給部材
14 ファーブラシ
15 クリーニングブレード
16Y、16M、16C、16K 感光体
17Y、17M、17C、17K 帯電部材
18Y、18M、18C、18K レーザー光
19Y、19M、19C、19K 現像部材
20Y、20M、20C、20K クリーニング部材
21Y、21M、21C、21K 転写ブラシ
22 転写搬送ベルト
23 レジストローラ
24 定着装置
25Y、25M、25C、25K 画像形成要素
26 転写紙
27Y、27M、27C、27K 添加剤供給部材
31 導電性支持体
35 電荷発生層
37 電荷輸送層
39 保護層
40 感光体
41 ブラシ状構造部材
42 固形化した添加剤
43 ブレード状構造部材
44 現像部材
45 帯電部材
46 感光体
47 帯電部材
48 シールド
49 ガス導入部
101 感光体
102 帯電手段
103 露光
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
108 除電手段
109 添加剤供給部材

Claims (29)

  1. 少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体を具備してなり、該電子写真感光体表面に外部より添加剤を供給する手段を有する画像形成装置において、
    該電子写真感光体が導電性支持体上に少なくとも電荷発生層と電荷輸送層を順に積層してなる電子写真感光体であり、
    該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、かつ一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、
    該チタニルフタロシアニン結晶は、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0乃至7.5゜に最大回折ピークを有し、該回折ピークの半値巾が1゜以上であり、一次粒子の平均粒子サイズが0.1μm以下である不定形チタニルフタロシアニン又は低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒を用いて結晶変換を行い、該結晶変換後のチタニルフタロシアニンの一次粒子の平均粒子サイズが0.25μmより大きく成長する前に濾過することにより該有機溶媒と分別されたものであり、
    前記添加剤は、ワックス類又は滑剤であることを特徴とする画像形成装置。
  2. 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする請求項1に記載の画像形成装置。
  3. 前記不定形チタニルフタロシアニンがアシッドペースト法により作製され、イオン交換水で洗浄されたものであり、
    該洗浄後のイオン交換水は、pHが6〜8の間及び/又は比伝導度が8μS/cm以下の物性値を有することを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記有機溶媒の使用量が重量比で不定形チタニルフタロシアニンの30倍以上であることを特徴とする請求項乃至の何れかに記載の画像形成装置。
  5. 前記電荷輸送層は、少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする請求項1乃至の何れかに記載の画像形成装置。
  6. 前記電子写真感光体は、前記電荷輸送層上に保護層を有することを特徴とする請求項1乃至の何れかに記載の画像形成装置。
  7. 前記保護層は、比抵抗1010Ω・cm以上である金属酸化物を含有することを特徴とする請求項に記載の画像形成装置。
  8. 前記保護層は、高分子電荷輸送物質を含有することを特徴とする請求項6又は7に記載の画像形成装置。
  9. 前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする請求項乃至の何れかに記載の画像形成装置。
  10. 前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする請求項に記載の画像形成装置。
  11. 記導電性支持体は、表面が陽極酸化皮膜処理されたものであることを特徴とする請求項1乃至10の何れかに記載の画像形成装置。
  12. 前記添加剤を供給する手段は、前記電子写真感光体に当接する部材であることを特徴とする請求項1乃至11の何れかに記載の画像形成装置。
  13. 前記添加剤供給する手段が、ブラシ状構造部材であることを特徴とする請求項1乃至12の何れかに記載の画像形成装置。
  14. 前記添加剤供給する手段が、前記現像手段であることを特徴とする請求項1乃至12の何れかに記載の画像形成装置。
  15. 前記添加剤を供給する手段と、ブレード状部材を併用することを特徴とする請求項13又は14に記載の画像形成装置。
  16. 前記添加剤供給する手段が、ブラシ状構造部材及び前記現像手段であることを特徴とする請求項1乃至12の何れかに記載の画像形成装置。
  17. 前記添加剤供給する手段に接触・離間機構を設け、
    前記帯電手段から前記電子写真感光体に帯電を施さない場合には前記添加剤を供給する手段を前記電子写真感光体から離間させ、帯電を施す場合にのみ前記添加剤を供給する手段を前記電子写真感光体に接触させることを特徴とする請求項1乃至16の何れかに記載の画像形成装置。
  18. 前記添加剤が、ステアリン酸亜鉛であることを特徴とする請求項1乃至17の何れかに記載の画像形成装置。
  19. なくとも前記帯電手段前記電子写真感光体との間に形成される帯電ニップが覆われる形状のシールドを有し、
    帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする請求項1乃至18の何れかに記載の画像形成装置。
  20. 前記シールド内に相対湿度が50%RH以下のガスを導入して、前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする請求項19に記載の画像形成装置。
  21. 前記シールド内に室温よりも高い温度のガスを導入して、前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする請求項19又は20に記載の画像形成装置。
  22. 前記電子写真感光体内部にドラムヒーターを設置し前記帯電ニップにおける雰囲気の相対湿度を50%RH以下に維持することを特徴とする請求項19乃至21の何れかに記載の画像形成装置。
  23. 前記転写手段が、前記電子写真感光体上に形成されたトナー像を直接被転写体に転写する直接転写方式であることを特徴とする請求項1乃至22に記載の画像形成装置。
  24. 書き込み部における前記転写後の電子写真感光体表面電位絶対値100V以下であることを特徴とする請求項23に記載の画像形成装置。
  25. 書き込み部における前記転写後の電子写真感光体表面電位の極性が、前記帯電手段により前記電子写真感光体が帯電された極性の逆極性であることを特徴とする請求項23又は24に記載の画像形成装置。
  26. 除電機構を用いないことを特徴とする請求項1乃至25の何れかに記載の画像形成装置。
  27. 少なくとも前記帯電手段、前記露光手段、前記現像手段、前記転写手段、前記添加剤を供給する手段及び前記電子写真感光体からなる画像形成要素を複数配列したことを特徴とする請求項1乃至26の何れかに記載の画像形成装置。
  28. 記帯電手段前記電子写真感光体に交流重畳電圧印加することを特徴とする請求項1乃至27の何れかに記載の画像形成装置。
  29. 前記電子写真感光体と少なくとも前記帯電手段、前記露光手段、前記現像手段、前記添加剤を供給する手段及びクリーニング手段から選ばれる1つの手段とが一体となった、画像形成装置本体と着脱自在なプロセスカートリッジを搭載していることを特徴とする請求項1乃至28の何れかに記載の画像形成装置。
JP2004331966A 2003-12-01 2004-11-16 画像形成装置 Expired - Fee Related JP4271128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331966A JP4271128B2 (ja) 2003-12-01 2004-11-16 画像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003401655 2003-12-01
JP2004331966A JP4271128B2 (ja) 2003-12-01 2004-11-16 画像形成装置

Publications (2)

Publication Number Publication Date
JP2005189830A JP2005189830A (ja) 2005-07-14
JP4271128B2 true JP4271128B2 (ja) 2009-06-03

Family

ID=34797461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331966A Expired - Fee Related JP4271128B2 (ja) 2003-12-01 2004-11-16 画像形成装置

Country Status (1)

Country Link
JP (1) JP4271128B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668121B2 (ja) * 2006-05-12 2011-04-13 株式会社リコー 画像形成装置
JP4641991B2 (ja) * 2006-09-08 2011-03-02 株式会社リコー 画像形成装置
JP6004266B2 (ja) * 2012-11-05 2016-10-05 株式会社リコー 画像形成装置および複数の作像ユニット

Also Published As

Publication number Publication date
JP2005189830A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4300279B2 (ja) チタニルフタロシアニン結晶、チタニルフタロシアニン結晶の製造方法、電子写真感光体、電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジ
JP3891485B2 (ja) 電子写真装置
JP3946654B2 (ja) 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジ
JP4283213B2 (ja) 画像形成装置及び画像形成方法
JP4271128B2 (ja) 画像形成装置
JP4274889B2 (ja) 電子写真装置
JP4201753B2 (ja) 画像形成装置
JP3919191B2 (ja) 電子写真装置
JP3917087B2 (ja) 分散液の作製方法、電子写真感光体、画像形成装置および画像形成装置用プロセスカートリッジ
JP4377315B2 (ja) 画像形成装置
JP4237607B2 (ja) 画像形成装置
JP4207210B2 (ja) 画像形成装置及び画像形成方法
JP4230895B2 (ja) 画像形成装置
JP4209759B2 (ja) 画像形成装置
JP3867121B2 (ja) 電子写真装置
JP4208147B2 (ja) 画像形成装置及び画像形成方法
JP4230340B2 (ja) 画像形成装置
JP3917082B2 (ja) 分散液の作製方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP3834003B2 (ja) 分散液の作製方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4207211B2 (ja) 画像形成装置及び画像形成方法
JP4208148B2 (ja) 画像形成装置及び画像形成方法
JP4257854B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4520284B2 (ja) 画像形成装置
JP2005165027A (ja) 画像形成装置
JP4209313B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees