JP4266901B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP4266901B2
JP4266901B2 JP2004259357A JP2004259357A JP4266901B2 JP 4266901 B2 JP4266901 B2 JP 4266901B2 JP 2004259357 A JP2004259357 A JP 2004259357A JP 2004259357 A JP2004259357 A JP 2004259357A JP 4266901 B2 JP4266901 B2 JP 4266901B2
Authority
JP
Japan
Prior art keywords
insulating film
film
interlayer insulating
semiconductor device
barrier metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004259357A
Other languages
English (en)
Other versions
JP2005129902A (ja
Inventor
陽子 成瀬
直輝 松原
和範 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004259357A priority Critical patent/JP4266901B2/ja
Priority to US10/950,689 priority patent/US7273810B2/en
Priority to CNB2004100834796A priority patent/CN100356562C/zh
Publication of JP2005129902A publication Critical patent/JP2005129902A/ja
Application granted granted Critical
Publication of JP4266901B2 publication Critical patent/JP4266901B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

この発明は、半導体装置およびその製造方法に関し、特に、銅からなる導体膜を埋め込み配線とする半導体装置およびその製造方法に関する。
周知のように、近年、半導体集積回路のデザインルールの縮小に伴い、同半導体集積回路としての配線遅延の影響がますます顕著になってきている。こうした配線遅延はRC遅延ともよばれ、配線抵抗(R)と配線間容量(C)との積を小さくすることでその遅延の度合いも抑制される。
そこで従来は、こうした遅延の抑制を図るため、例えば特許文献1に記載のように、配線の材料としてアルミニウム(Al)よりも抵抗の低い銅(Cu)を、また層間絶縁膜の材料として酸化シリコン(比誘電率≒4)よりも誘電率の低い低誘電率材料(Low−k材料)を用いた半導体装置なども提案されている。なお通常、このような半導体装置は、周知のシングルダマシン法あるいはデュアルダマシン法によって形成される。
以下、図14を参照して、こうした半導体装置の構造の一例について簡単に説明する。
このような半導体装置は、同図14に示されるように、例えばシリコン等からなる基板(図示略)の上に形成された絶縁膜21と、例えば窒化シリコン(SiN)等からなる第1の層間絶縁膜22と、例えばMSQ(メチルシルセスキオキサン)等の低誘電率材料からなる第2の層間絶縁膜23とが順次積層されて形成されている。なお、上記絶縁膜21には、接続孔21aが形成されており、この接続孔21a内には例えば銅等からなる接続孔配線21bが設けられている。
ここで、上記第1の層間絶縁膜22および第2の層間絶縁膜23には、例えばフォトリソグラフィにより所望のパターンを形成した後、ドライエッチング等を行うことによって、上記接続孔配線21bに達するようなトレンチ溝23aが形成されている。また、このトレンチ溝23aの内壁面には、例えばスパッタリングにより、例えばタンタル(Ta)等からなるバリアメタル膜24が形成されている。また、上記トレンチ溝23aの内部には、銅からなるシード層(図示略)を形成した後、めっき法を用いて、銅膜25が埋設されている。そして、上記第2の層間絶縁膜23および銅膜25の表面はCMP(化学的機械的研磨)によって平坦化されている。
また、この半導体装置を多層配線化する場合は、下層から上層への銅の拡散を抑制するため、上記第2の層間絶縁膜23および銅膜25の上に、例えばプラズマCVD(化学気相成長)により窒化シリコン膜等からなる第3の層間絶縁膜をさらに成膜する。そしてさらに、この第3の層間絶縁膜の上に、上層の層間絶縁膜として、例えばMSQ等の低誘電率材料からなる第4の層間絶縁膜を成膜する。そしてこの第4の層間絶縁膜上に、例えばフォトリソグラフィにより所望のパターンを形成した後、ドライエッチング等を行い、下層配線と上層配線との接続を行うための接続孔を形成する。そしてこの接続孔の内部に、銅やタングステン(W)等の金属を埋設して、下層配線と上層配線とを電気的に接続するための層間接続プラグを形成する。
実開2002−246391号公報
ところで、上述のような配線材料として銅を用いた半導体装置では、TDDB(時間依存性絶縁破壊)寿命がアルミニウム(Al)やタングステン(W)等に比べて著しく短いという問題がある。また一般に、誘電率の低い絶縁材料は絶縁耐圧も低い。そのため、酸化シリコンに代えて低誘電率材料を用いた場合、互いに隣接する配線間に絶縁破壊が生じ易くなり、ひいては上記TDDB寿命の短くなる確率が高まることとなる。
このようなTDDB寿命の低下を抑制するため、例えば特許文献1に記載の半導体装置では、その製造に際して、上記CMPによる平坦化処理の後の処理として、上記銅膜25の表面に洗浄処理を施した後、原料ガスに窒素およびアンモニアを用いたプラズマ処理を行っている。より具体的には、こうしたプラズマ処理を行うことにより、上記銅膜25の表面には窒化銅(CuN)層が形成される。そして、上記第2の層間絶縁膜23および銅膜25の上に、上記第3の層間絶縁膜として、窒化シリコン等のシリコンを含む絶縁膜を成膜した場合、上記CuN層がこの絶縁膜から上記銅膜25へのシリコンの拡散を抑制することとなる。またこの際、銅膜25の表面は上記洗浄処理により清浄化されているため、該銅膜25の表面近傍に、薄い銅シリサイド層が均一な厚みで均質に形成されることとなる。このように、シリコンの拡散を適度に抑制するCuN層を形成して、銅膜25の表面近傍に銅シリサイド層を薄く均一な厚みで且つ均質に形成することで、上述のTDDB寿命の低下を改善するようにしている。
しかし、こうした製造方法によると、例えば前述した半導体装置の多層配線化を行う場合において、上記第4の層間絶縁膜上にパターンを形成する際に上記原料ガスに窒素およびアンモニアを用いたプラズマ処理に起因したレジストの失活が発生することが発明者らによって確認されている。
以下、図15を参照して、このレジストの失活について詳述する。なお、この図15は、先の図14に示した半導体装置を多層配線化するプロセスの一例を模式的に示す一部拡大断面図である。より具体的には、上記第2の層間絶縁膜23の上に、上記第3の層間絶縁膜32と、上記第4の層間絶縁膜33とを順次堆積形成した後、さらにこの上にレジストReを塗布してフォトリソグラフィによって上記第4の層間絶縁膜33上に所望のパターンを形成するプロセスの一例を示している。
同図15に示すように、窒素原子を含むガス雰囲気中でプラズマ処理を施すことによって、上記第2の層間絶縁膜23の表面に窒素原子NDを含有するダメージ層DLが形成される。そして洗浄後においても、こうしたダメージ層DLは残存することとなる。また、上記ダメージ層DLに含有される窒素原子NDは、不安定で結合の弱い状態あるいは結合していない状態で含有されている。そのため、たとえその量が微量であっても、露光前のレジストの加熱処理(プリベーク)等の際に上記ダメージ層DLから離脱し、この離脱した窒素原子NDがレジストReの内部に入り込むことで、該レジストReを失活させることとなる。そして、こうしたレジストの失活が発生すると、上記第3の層間絶縁膜33のパターン形成に際して良好なパターンが得られず、ひいては断線等の原因ともなる。
このように、上記従来の半導体装置においても、結局は配線としての信頼性の低下は避けられないものとなっている。
この発明は、こうした実情に鑑みてなされたものであり、配線層を形成する導体膜として例えば銅あるいは銅合金を用いて多層配線化する場合であれ、それら配線としての信頼性をより高めることのできる半導体装置およびその製造方法を提供することを目的とする。
以下、上記目的を達成するための手段およびその作用効果について記載する。
まず、請求項1に記載の発明では、トレンチ溝を有する絶縁膜と、前記トレンチ溝の内壁面に形成されたバリアメタル膜と、該バリアメタル膜を介して前記トレンチ溝に埋設されて形成されてなる導体膜とを有する半導体装置として、前記導体膜は、その上面が、少なくとも前記バリアメタル膜との接触部において該バリアメタル膜の上端よりも下方に位置する態様で形成されてなる構造としている。
通常、埋め込み配線と、同配線の拡散を抑制するためのバリアメタル膜と、各配線間を絶縁するための絶縁膜とを有する半導体装置では、配線に電圧を印加した際に、その電界が配線の上面に集中する。そのため、配線の上面にて配線材料は拡散され、互いに隣接する配線間には、上記バリアメタル膜および絶縁膜の表面を通じて電流の流れ易い経路(リークパス)が形成されることとなる。そして、前述した互いに隣接する配線間での絶縁破壊は、こうしたリークパスの形成が主要因となっている。この点、上記構造よれば、上記埋め込み配線に相当する導体膜の上面と上記バリアメタル膜の上面とが遠ざけられ、上記リークパスの実質的な経路を長くとることができるようになる。これにより、上記導体膜の拡散に起因するリークパスの形成を抑制あるいは防止することができるようになり、ひいては隣接する配線間での絶縁破壊についてもこれを好適に抑制することができるようになる。
また、請求項2に記載の発明では、上記請求項1に記載の半導体装置において、前記導体膜は、その上面が、少なくとも前記バリアメタル膜との接触部において、前記絶縁膜の上面よりも下方に位置する態様で形成されてなる構造としている。
半導体装置としての上記構造によれば、導体膜(配線)の上面と絶縁膜の上面とが遠ざけられるため、上記導体膜がバリアメタル膜を突き抜けて拡散する場合であれ、上述の導体膜の拡散に起因するリークパスの形成を抑制あるいは防止することができるようになる。すなわちこの場合も、隣接する配線間での絶縁破壊を好適に抑制することができるようになる。
また、請求項3に記載の発明では、上記請求項1または2に記載の半導体装置において、前記絶縁膜は、その上面が、少なくとも前記バリアメタル膜との接触部において該バリアメタル膜の上端よりも下方に位置する態様で形成されてなる構造としている。
半導体装置としての上記構造によれば、バリアメタル膜の上面と絶縁膜の上面とが遠ざけられるため、上記リークパスの実質的な経路をさらに長くとることができ、前述した隣接する配線間での絶縁破壊についてもこれをより好適に抑制することができるようになる。
また、請求項4に記載の発明では、上記請求項1〜3のいずれか一項に記載の半導体装置において、前記導体膜は、その上面が、前記バリアメタル膜との接触部に近づくほど低下する略円弧形状の断面をもって形成されてなる構造としている。
前述した電界の集中は特に導体膜(配線)上面の角部(バリアメタル膜との接触部)にて起こるため、導体膜の上面を上記のような略円弧形状の断面をもつように形成することで、こうした電界の集中は緩和されるようになる。このため、上記構造によれば、隣接する配線間での絶縁破壊に対する耐性のさらなる強化を図ることができるようになる。
また、請求項5に記載の発明では、上記請求項1〜4のいずれか一項に記載の半導体装置において、前記絶縁膜の上層部には、その組成が変化した層が存在してなる構造として
いる。
エッチングに対する耐性の高い絶縁膜であっても、組成を変化させることにより結合力を弱めて、該エッチングに対する耐性をより低くすることができるようになる。そのため、上記構造によれば、絶縁膜の上層部に存在する組成が変化した層をエッチングすることで、その上に堆積していた導体膜(配線)の材料やバリアメタル膜の材料等からなる汚染物質をより好適に除去することができるようになる。そしてこれにより、隣接する配線間での絶縁破壊を好適に抑制することができるようにもなる。
また、請求項6に記載の発明では、上記請求項1〜5のいずれか一項に記載の半導体装置において、絶縁膜が、酸化シリコン(比誘電率≒4)より誘電率が低い低誘電率材料である。これによれば、隣接する配線間での絶縁破壊を抑制しつつ、配線遅延を抑制することができる。低誘電率材料としては、メチル基を含有する酸化シリコン、ベンゾシクロブテン(BCB)、フッ素化酸化シリコン(SiOF)、ベンゾシクロブテン(BCB)、HSQ(ハイドロゲンシルセスキオキサン)、MSQ(メチルシルセスキオキサン)、HMSQ(ハイドライド−メチルシルセスキオキサン)、ポリイミド系ポリマー、アリレンエーテル系ポリマー、シクロブテン系ポリマー、パーフロロシクロブテン(PFCB)が好適である。また、低誘電率材料の比誘電率が2.7〜3であってもよい。このような低誘電率材料を用いた場合であっても、TDDB寿命の低下が抑制される。
一方、請求項9に記載の発明は、半導体装置を製造する方法として、
(a)絶縁膜を成膜する。
(b)前記絶縁膜にトレンチ溝を形成する。
(c)前記トレンチ溝の内壁面にバリアメタル膜を成膜する。
(d)前記トレンチ溝を埋め込むかたちで、導体膜を前記バリアメタル膜に積層形成する。
(e)前記導体膜を研磨により除去して、前記絶縁膜を露出させる。
(f)非窒化性雰囲気で、前記露出させた絶縁膜の上層部および前記導体膜の上層部にダメージ層を形成する。
(g)前記ダメージ層の少なくとも一部をエッチングにより除去する。
といった各工程を備える。
このような製造方法によれば、非窒化性雰囲気でダメージ層を形成するようにしているため、上記絶縁膜および導体膜の上層部に窒素原子を含有しないダメージ層が形成されることとなる。そのため、上層配線としての配線パターンを形成すべく、上記ダメージ層の上にレジストを成膜して露光前に該レジストの加熱処理(プリベーク)等を行った場合であれ、上記レジスト中に窒素原子が取り込まれる可能性は低くなる。このため、半導体装置の製造方法として上記製造方法を採用することで、前述したレジストの失活をより好適に抑制することができるようになる。また一方、上記絶縁膜および導体膜の上層部に形成されたダメージ層を除去することで、上記絶縁膜の上に堆積している汚染物質等を好適に除去したり、また上記導体膜の上面を選択的にエッチング除去してその高さを上記バリアメタル膜の上端よりも下方に形成し、前述した隣接する配線間の絶縁破壊を好適に抑制したりすることができるようにもなる。
また、請求項10に記載の発明では、上記請求項8に記載の半導体装置の製造方法において、前記絶縁膜として、酸化シリコンより誘電率が低い低誘電率材料を用いることをその要旨とする。
また、請求項11に記載の発明では、上記請求項9に記載の半導体装置の製造方法において、低誘電率材料が、メチル基を含有する酸化シリコン、ベンゾシクロブテン(BCB)、フッ素化酸化シリコン(SiOF)、ベンゾシクロブテン(BCB)、HSQ(ハイドロゲンシルセスキオキサン)、MSQ(メチルシルセスキオキサン)、HMSQ(ハイドライド−メチルシルセスキオキサン)、ポリイミド系ポリマー、アリレンエーテル系ポリマー、シクロブテン系ポリマー、パーフロロシクロブテン(PFCB)からなる群から選ばれることをその要旨とする。
上記低誘電率材料の中で、メチル基を含有する酸化シリコンは、一般に、ダメージを与えることによりメチル基が分解されて酸化シリコンに変化する傾向を持っている。そのため、上記絶縁膜中に形成したダメージ層の選択的なエッチングをより好適に行うことができるようになる。
なお、この発明は、以下のような技術的思想も含む。
(1)前記トレンチ溝が、接続孔と、該接続孔よりも大きい断面幅を有して同接続孔の上方に形成された溝とを有して形成されてなる請求項1〜7のいずれか一項に記載の半導体装置。
このように、前記導体膜が、配線に相当する部分と、この配線に相当する部分と下層配線とを電気的に接続するための層間接続プラグに相当する部分とを有して形成された構造についても、上記請求項1〜8のいずれか一項に記載の発明は適用できる。
(2)前記導体膜が、銅および銅合金のいずれかからなる請求項1〜8のいずれか一項、または前記(1)に記載の半導体装置。
上述した配線材料の拡散は、前記導体膜(配線)が銅および銅合金のいずれかからなる場合に特に顕著となる。すなわち、上記請求項1〜8のいずれか一項、または前記(1)に記載の発明は、上記構造を有する半導体装置に適用して特に有効である。
(3)前記ダメージ層の形成を、希ガスによるプラズマ処理によって行う請求項9〜11のいずれか一項に記載の半導体装置の製造方法。
(4)前記ダメージ層の形成を、電子線照射および紫外線照射のいずれかによって行う請求項9に記載の半導体装置の製造方法。
請求項9〜11のいずれか一項に記載の発明において、前記ダメージ層の形成を、希ガスによるプラズマ処理あるいは電子線照射あるいは紫外線照射によって行うようにすれば、非窒化性雰囲気においても好適にダメージ層を形成することができるようになる。
(5)前記ダメージ層のエッチングを、フッ酸(HF)によって行う請求項9に記載の半導体装置の製造方法。
請求項9〜11のいずれか一項に記載の発明において、前記ダメージ層のエッチングを、フッ酸(HF)によって行うことが特に有効である。
(6)前記トレンチ溝を形成する工程が、接続孔を形成する工程と、前記接続孔の上方に該接続孔よりも大きい断面幅を有する溝を形成する工程とを含む請求項9〜11のいずれか一項、または前記(3)〜(5)に記載の半導体装置の製造方法。
このように、前記トレンチ溝を形成する工程として、配線を成形するための溝を形成する工程と、上層配線と下層配線とを接続するための接続孔を形成する工程とを含む、一般にデュアルダマシン法と呼ばれる製造方法についても、上記請求項9〜11のいずれか一項、または前記(3)〜(5)に記載の発明は適用できる。
(7)前記導体膜として、銅および銅合金のいずれかを用いる請求項9〜11のいずれか一項、または前記(3)〜(6)に記載の半導体装置の製造方法。
また、上記請求項9〜11のいずれか一項、または前記(3)〜(6)に記載の半導体装置の製造方法は、前記導体膜として銅および銅合金のいずれかを用いる場合に特に有効となる。
(8)前記バリアメタル膜として、チタン(Ti)および窒化チタン(TiN)およびタンタル(Ta)および窒化タンタル(TaN)のいずれかを用いる前記(7)に記載の半導体装置の製造方法。
上記(7)に記載の半導体装置の製造方法においては、前記バリアメタル膜として、チタン(Ti)および窒化チタン(TiN)およびタンタル(Ta)および窒化タンタル(TaN)のいずれかを用いることで、前記導体膜とバリアメタル膜との選択的なエッチングをより容易に行うことができるようになる。
本発明によれば、半導体装置の配線の信頼性をより高めることができる。
(第1の実施の形態)
図1に、本発明にかかる半導体装置についてその第1の実施の形態を示す。
この実施の形態にかかる半導体装置も、前述した従来の半導体装置と同様、隣接する配線間に生じる絶縁破壊を抑制してTDDB寿命を改善することを意図している。ただし、この半導体装置では、図1に示すような構造とすることで、前述したレジストの失活についてもその好適な抑制を図るようにしている。
以下、同図1を参照して、この実施の形態にかかる半導体装置の構造について説明する。なお、図1はこの半導体装置の断面構造を模式的に示す断面図である。
図1に示すように、この半導体装置は、例えば酸化シリコンからなる絶縁膜1と、例えばSiCN等の銅に対する拡散防止効果の高い絶縁膜からなる第1の層間絶縁膜2と、例えばCVD法を用いて形成された、メチル基を含むSiOC(比誘電率k=2.0〜3.0)等の低誘電率材料(Low−k材料)からなる第2の層間絶縁膜3とが順次積層されて形成されている。なお、上記絶縁膜1は、例えばトランジスタ等の素子が形成されているシリコン等からなる基板(図示略)の上に形成されている。また、同絶縁膜1には、接続孔1aが形成されており、この接続孔1a内には例えば銅等からなる接続孔配線1bが設けられている。
ここで、上記第1の層間絶縁膜2および第2の層間絶縁膜3には、上記接続孔配線1bに達するようなトレンチ溝3aが形成されている。そして、該トレンチ溝3aの内壁面(側壁面および底面)には、例えば窒化タンタル(TaN)等からなるバリアメタル膜4が形成されている。さらに、例えば銅からなる導体膜5が、上記トレンチ溝3aに埋め込まれるかたちで上記バリアメタル膜4に積層されて形成されている。なお、上記導体膜5は、上記接続孔配線1bおよびバリアメタル膜4を介して上記基板に形成されたトランジスタのコンタクト電極等と電気的に接続されている。また、上記バリアメタル膜4は、上記導体膜5と層間絶縁膜との密着性を高めたり、あるいは上記導体膜5の拡散を抑制したりする機能を有している。またここで、上記第2の層間絶縁膜3は例えば「2500Å〜10000Å」、上記バリアメタル膜4は例えば「250Å」の膜厚をもって形成されている。一方、上記導体膜5は、例えば膜厚「3000Å」、幅「0.18μm」で形成されている。
また、上記導体膜5は、その上面が、上記バリアメタル膜4との接触部において、上記第2の層間絶縁膜3の上面よりも下方に位置する態様で形成されている。こうした構造によれば、上記埋め込み配線に相当する導体膜5の上面と上記バリアメタル膜4の上面とが遠ざけられ、電流の流れ易い経路(リークパス)の実質的な経路を長くとることができるようになる。これにより、上記導体膜5の拡散に起因するリークパスの形成を抑制あるいは防止することができるようになり、ひいては隣接する配線間での絶縁破壊についてもこれを抑制することができるようになる。また、上記導体膜5の上面は、上記第2の層間絶縁膜3の上面とも遠ざけられるようになるため、上記導体膜5がバリアメタル膜4を突き抜けて拡散する場合であれ、上記導体膜5の拡散に起因するリークパスの形成を抑制あるいは防止することができるようになる。
さらにこの導体膜5は、その上面の両端部(バリアメタル膜4との接触部)の角が取られて、その上面がバリアメタル膜4との接触部に近づくほど低下する略円弧形状の断面形状をもつ態様で形成されている。これにより、配線となる上記導体膜5に電圧を印加した際の該導体膜5への電界の集中は緩和されるようになり、隣接する配線間での絶縁破壊についてもこれをより好適に抑制することができるようになっている。
また一方、上記第2の層間絶縁膜3は、その上面が、バリアメタル膜4の上端よりも下方に位置する態様で形成されている。そしてこれにより、上記リークパスの実質的な経路をさらに長くとることができるようになり、隣接する配線間での絶縁破壊に対する耐性のさらなる強化が図られる。また、上記第2の層間絶縁膜3の上層部には、ダメージ層DLが形成されている。ここでいうダメージ層とは、上記第2の層間絶縁膜3の組成が変化した状態のことである。なお、ダメージ層DLを含む上記第2の層間絶縁膜3とバリアメタル膜4との段差は、例えば「数nm〜100nm」程度、上記バリアメタル膜4と導体膜5との段差は例えば「数nm〜50nm」程度となっている。このようなダメージ層DLが存在することによって、このダメージ層DLの上に堆積される絶縁膜との密着性が向上するようになる。
次に、図2および図3を参照して、この実施の形態にかかる半導体装置の製造方法について説明する。なお、これら各図において、先の図1に示した要素と同一の要素には各々同一の符号を付して示しており、それら要素についての重複する説明は割愛する。
この製造に際しては、まず、図2(a)に示すように、上記絶縁膜1の上に、例えばプラズマCVD法等により、上記第1の層間絶縁膜2を成膜する。なおこの際、プラズマCVD法による成膜条件を、例えば処理圧力を「3.0Torr(399Pa)」、高周波
(RF)電力を「470W」、基板温度を「350℃」、処理ガス種をTMS(トリメチルシラン)、HeおよびNHとする。
さらにその上に、例えばプラズマCVD(化学気相成長)法により、上記第2の層間絶縁膜3を成膜する。なおこの際、上記プラズマCVD法による成膜条件を、例えば処理圧力を「4.0Torr(532Pa)」、高周波(RF)電力を「600W」、基板温度
を「350℃」、処理ガス種をTMS(トリメチルシラン)およびOとする。
その後、上記第2の層間絶縁膜3の上面にレジストを塗布した上で、例えばフォトリソグラフィにより、トレンチ溝を形成すべく所望のパターンの開口部を形成する。次に、このレジストをマスクとして、例えばドライエッチング等による異方性エッチングを行い、図2(b)に示されるような、上記第1の層間絶縁膜2および第2の層間絶縁膜3を貫通して絶縁膜1に達するようなトレンチ溝3aを形成する。このトレンチ溝3aは、上記接続孔配線1bに達するように形成する。この際、上記第1の層間絶縁膜2をエッチストッパとして用いることによって、トレンチ溝3aの形成に際して、その深さ精度を向上させることができるようになる。なお、上記エッチングの条件は、例えば処理圧力を「50mTorr(6.65Pa)」、高周波(RF)電力を「1300W」、基板温度を「20℃」、処理ガス種をCFおよびCHおよびArおよびNとする。
次に、図2(c)に示すように、このトレンチ溝3aの内壁面(側壁面および底面)を含めた基板表面に、例えばスパッタリングにより、上記バリアメタル膜4を成膜する。次いで、図2(d)に示すように、上記バリアメタル膜4の表面に、例えばスパッタリングにより、銅等からなるシード層(図示略)を成膜した後、例えば電界メッキ法あるいは無電界メッキ法により、上記導体膜5を成膜する。その後、例えば温度「150℃」の窒素雰囲気中において、例えば30分間の熱処理(アニール)を施す。これにより、上記導体膜5の埋込み性を向上させるようにしている。
次に、図3(a)に示すように、例えばCMP(化学的機械的研磨)等による研磨処理を施し、基板表面を平坦化するとともに、上記第2の層間絶縁膜3を露出させる。次いで、例えばアンモニア水溶液等によるアルカリ洗浄処理を施す。これにより、上記研磨処理の際に用いた研磨液(スラリ)を除去するようにしている。しかし、このアルカリ洗浄処理後においても、図3(b)に示されるように、上記第2の層間絶縁膜3の表面には、例えば酸化銅あるいは銅あるいはタンタル等からなる汚染物質Coが残存することとなる。
次に、非窒化性雰囲気(窒素原子を含まない雰囲気)にてプラズマ処理を施す。なおこのプラズマ処理の条件は、例えば処理圧力を「6.0Torr(798Pa)」、高周波(RF)電力を「250W」、基板温度を「350℃」、処理ガス種をアルゴン(Ar)、処理ガス(Ar)の流量を「100sccm(cm/分)」、処理時間を「90秒」とする。そしてこのプラズマ処理によって、図3(c)に示すように、上記第2の層間絶縁膜3の上層部にはダメージ層DLが形成されることとなる。またこの実施の形態では、上記第2の層間絶縁膜3の材料としてSiOCを採用しているため、上記プラズマ処理によってSiOCの含有するメチル基は分解されて、上記ダメージ層DLはフッ酸に可溶な酸化シリコンをより多く含有するかたちで形成されることとなる。またこの際、上記導体膜5の上面にもダメージ層(図示略)が形成されることとなる。
続いて、例えばシュウ酸等により、例えば常温で15秒間の有機酸洗浄処理を施した後、例えばフッ酸(水:フッ酸=100:1)等により、例えば常温で15秒間の酸洗浄処理を施す。これにより、図3(d)に示すように、上記ダメージ層DLの一部が選択的にエッチング除去されるとともに、上記第2の層間絶縁膜3の表面に残存していた汚染物質Coも除去されることとなる。なお、上記条件でプラズマ処理と洗浄を行った場合、上記ダメージ層DLの「4nm」がエッチング除去される。これは上記プラズマ処理と洗浄処理条件次第で、「数nm〜100nm」がエッチング除去される。またこの際、前述したように上記ダメージ層DLがフッ酸に可溶な酸化シリコンをより多く含有するかたちで形成されていることによって、上記選択的なエッチングをより好適に行うことができるようになる。またここで、上記導体膜5の上面にも、上記プラズマ処理によりダメージ層が形成されている。そしてこのダメージ層が形成された部分では、銅原子同士の結合力が弱まっているため、エッチングに対する耐性が低下するようになる。また特に、この上面において応力の集中し易い角部(バリアメタル膜4との接触部)のエッチングに対する耐性が低下するようになるため、この部分に対するエッチングが特に促進されることとなる。そのため、上記導体膜5の上面の断面形状は、バリアメタル膜4との接触部に近づくほど低下する略円弧の形状になり、また上記導体膜5の上面が、上記バリアメタル膜4との接触部において上記第2の層間絶縁膜3の上面よりも下方に位置する態様で形成される。なお、上記フッ酸による酸洗浄処理に際しては、ブラシスクラブ洗浄を行わないものとする。これにより、上記ブラシスクラブ洗浄の最中にブラシに付いた汚染物質が上記第2の層間絶縁膜3の表面に再付着するおそれもなくなり、第2の層間絶縁膜3の表面の清浄度についてもこれをより高めることができるようになる。
このように、上記製造方法によれば、上記第2の層間絶縁膜3の上層部に形成されたダメージ層DLを除去することで、上記第2の層間絶縁膜3の上に堆積している汚染物質Co等を好適に除去することができるようになる。また、上記導体膜5の上層部に形成されたダメージ層を除去することで、導体膜5の上面を選択的にエッチング除去してその高さを第2の層間絶縁膜3の上面よりも下方に形成し、前述したような、隣接する配線間の絶縁破壊を好適に抑制することのできる半導体装置を製造することができるようにもなる。
図4は、導体膜5を成膜した後の各種の洗浄方法についてそれぞれ、第2の層間絶縁膜3上に汚染物質として残存する銅の量を検出した結果を示したものである。なお、同図4中のデータCは、アンモニア水溶液によるアルカリ洗浄処理のみを行った場合に残存する銅の量を、またデータBは、このアルカリ洗浄処理に加えてさらに、有機酸洗浄処理とフッ酸による酸洗浄処理とを行うようにした場合に残存する銅の量をそれぞれ示している。また、データAは、本実施の形態で用いた洗浄方法、すなわち、データBの各種洗浄処理に加えて、上記有機酸洗浄処理とフッ酸による酸洗浄処理に先立ちさらにプラズマ処理を行うようにした場合に残存する銅の量を示している。
さて、この図4中の各データによれば、アンモニア水溶液によるアルカリ洗浄処理(データA)に加えてさらに、有機酸洗浄処理と、フッ酸による酸洗浄処理とを行うことで、第2の層間絶縁膜3上に残存する銅の量は10分の1程度まで低減することができる(データB)。しかし、この洗浄方法においてもまだ、上記銅の完全なる除去はなされておらず、少量の銅とバリアメタルに用いた物質(共に汚染物質)が第2の層間絶縁膜3上に残存することとなる。この点、本実施の形態の洗浄方法として前述したような、上記データBの洗浄方法に加えてさらにプラズマ処理を行うような洗浄方法を用いることとすれば、データAに示すように、第2の層間絶縁膜3上に付着した銅をほぼ完全に除去することができるようになる。
以下、図5〜図8を参照して、この実施の形態にかかる半導体装置のTDDB(時間依存性絶縁破壊)特性について詳述する。
まず、図5および図6に、上記TDDB特性を測定する際の測定態様を示す。なお、図5(a)は上記測定に用いる試料の平面構造を模式的に示す平面図、図5(b)は図5(a)のA−A線に沿った断面図、図6は上記測定を行う際の測定態様を模式的に示す側面図である。
図5(a)に示すように、この測定に用いられる試料TEは、対向配置された櫛形形状の配線TE1およびTE2により構成されている。そして、上記試料TEを構成するこれら櫛形形状の配線TE1と配線TE2との間に所定の電圧(電界)を印加するようにしている。より具体的には、図5(b)に示すように、上記配線TE1およびTE2は、先の図1に示した半導体装置(導体膜5)と同様の構造をもって形成されている。そして、これら配線TE1およびTE2の上に、例えばSiCN等からなる絶縁膜20と、例えばSiOC等からなる絶縁膜30とを順次積層形成することで、上記試料TEが形成されるようになる。なおここでは、上記配線TE1およびTE2は、厚さ「3000Å」、幅「0.5μm」、配線対向長「3cm」、配線間隔「0.18μm」をもって形成されている。
そして図6に示すように、同一ウェハ内に28個ある上記試料TEを、電気的に接地されたヒータ付きのステージに乗せる。そして、上記試料TEを加熱した状態で、ウェハ上にある28点の測定ポイント(28個の試料TE)について、プローバ(探針)により電圧を印加しながら電流値を検出して絶縁破壊が起こっているか否かを判定するようにしている。なお、この測定に際しては、配線TE1と配線TE2との間に印加する電圧を「1V〜100V」、試料温度を「125℃」としている。
次に、図7および図8を参照して、上述したような測定方法で測定したこの実施の形態にかかる半導体装置のTDDB特性について詳述する。なおここでは、各測定ポイントのデータを、これら各データによる確率密度関数(正規分布曲線として表される関数)を積分して求められる数値、いわゆる累積度数(%表示)によって表している。例えば、全28点の測定データのメディアン値は累積度数「50%」、全28点の測定データ中で2番目にTDDB寿命の短かったデータは累積度数「6%」として示されている。
図7に、各種の洗浄方法を用いて製作された試料について、配線TE1とTE2との間に印加する電圧(電界)とTDDB寿命との関係をグラフとして示す。なお、同図7中のデータD2およびD4は先の図4に示したデータAと同様の洗浄方法を用いて製作された試料、またデータD1およびD3は先の図4に示したデータBと同様の洗浄方法を用いて製作された試料、またデータD5は先の図4に示したデータCと同様の洗浄方法を用いて製作された試料についてそれぞれ測定したデータである。またここで、データD1およびD2は累積度数「6%」のデータについて上記電界とTDDB寿命との関係を、またデータD3〜D5は累積度数「50%」のデータについて上記電界とTDDB寿命との関係をそれぞれ表している。
このグラフによれば、本実施の形態のように、酸洗浄処理に先立ちプラズマ処理を行うようにした洗浄方法を用いて製作された試料(D2およびD4)の方が、上記プラズマ処理を行わない洗浄方法を用いて製作された試料(D1およびD3)よりもTDDB寿命が長くなっている。また、こうしたプラズマ処理を行うことによるTDDB寿命の改善は、累積度数「6%」のデータD1およびD2において特に顕著となっている。
図8に、各種の洗浄方法を用いて製作された試料について、累積度数と破壊時間(絶縁破壊するまでの時間)との関係をグラフとして示す。なお、同図8中のデータD10は先の図4に示したデータBと同様の洗浄方法を用いて製作された試料、またデータD20は先の図4に示したデータAと同様の洗浄方法を用いて製作された試料についてそれぞれ測定したデータである。
このグラフによれば、データD20は、全てのデータが略一直線上に乗るようになっており、上記各測定ポイントについてその破壊時間のばらつきは小さくなっている。一方、データD10では、累積度数が20%を下回るデータにおいて破壊時間が急に短くなり、全測定ポイント(28点)中に、特に破壊時間の短いポイントがより多く存在するようになっている。そして、このように1つの試料中において破壊時間の大幅に短い(絶縁破壊に対する耐性が低い)箇所が多く存在することは、歩留まりの低下を招く一因となっている。このように、この実施の形態にかかる半導体装置の製造方法によれば、1つの試料中における破壊時間、すなわち絶縁破壊に対する耐性のばらつきを抑えることができる。そしてこれにより、歩留まりの向上が図られるようになる。
また、上記製造方法によれば、非窒化性雰囲気でダメージ層DLを形成するようにしているため、上記第2の層間絶縁膜3および導体膜5の上層部には窒素原子を含有しないダメージ層が形成されることとなる。そのため、上層配線としての配線パターンを形成すべく、該ダメージ層の上にレジストを成膜して露光前にこのレジストの加熱処理(プリベーク)等を行った場合であれ、該レジスト中に窒素原子が取り込まれる可能性は低くなる。このため、前述したレジストの失活についてもこれを抑制することができるようになる。
以上説明したように、この実施の形態にかかる半導体装置によれば、以下のような優れた効果が得られるようになる。
(1)埋め込み配線となる導体膜5の上面が、上記バリアメタル膜4との接触部において該バリアメタル膜4の上面よりも下方に位置する態様で形成された構造とした。このような構造としたことで、図7および図8の測定結果からも明らかなように、隣接する配線間での絶縁破壊についてもこれを好適に抑制することができるようになる。
(2)上記導体膜5の上面が、上記バリアメタル膜4との接触部において、上記第2の層間絶縁膜3の上面よりも下方に位置する態様で形成された構造とした。このような構造としたことで、上記導体膜5がバリアメタル膜4を突き抜けて拡散する場合であれ、上記導体膜5に起因するリークパスの形成を抑制あるいは防止することができるようになる。
(3)上記第2の層間絶縁膜3の上面が、上記バリアメタル膜4との接触部において該バリアメタル膜4の上端よりも下方に位置する態様で形成された構造とした。こうした構造によれば、隣接する配線間での絶縁破壊についてもこれをより好適に抑制することができるようになる。
(4)上記導体膜5を、その上面が、上記バリアメタル膜4との接触部に近づくほど低下する略円弧形状の断面をもつ態様で形成された構造とした。このような構造としたことで、隣接する配線間での絶縁破壊に対する耐性のさらなる強化を図ることができるようになる。
(5)上記第2の層間絶縁膜3の上層部にダメージ層DLがさらに形成される構造とした。このような構造によれば、図4のグラフからも明らかなように、上記ダメージ層DLをエッチングすることで、その上に堆積していた汚染物質Coをより好適に除去することができるようになる。そしてこれにより、隣接する配線間での絶縁破壊を好適に抑制することができるようにもなる。
(6)また、その製造に際しては、まず、絶縁膜1の上に第1の層間絶縁膜2および第2の層間絶縁膜3を成膜し、これら層間絶縁膜2および3に上記絶縁膜1にまで達するトレンチ溝3aを形成する。その後、上記トレンチ溝3aの内壁面(側壁面および底面)にバリアメタル膜4を成膜する。次いで、上記トレンチ溝3aを埋め込むかたちで、導体膜5を上記バリアメタル膜4に積層形成した後、上記導体膜5をCMPにより除去して上記第2の層間絶縁膜3を露出させた。そしてさらに、非窒化性雰囲気で、上記露出させた第2の層間絶縁膜3の上層部および導体膜5の上層部にダメージ層DLを形成した後、上記ダメージ層DLの一部をエッチングにより除去するようにした。このような製造方法により、上層配線としての配線パターンを形成すべく、上記ダメージ層DLの上にレジストを成膜して露光前に該レジストの加熱処理(プリベーク)等を行った場合であれ、前述したレジストの失活をより好適に抑制することができるようになる。また一方、上記第2の層間絶縁膜3および導体膜5の上層部に形成されたダメージ層DLを除去することで、上記第2の層間絶縁膜3の上に堆積している汚染物質Co等を好適に除去することもできるようになる。
(7)また、上記ダメージ層DLの形成を、アルゴン(Ar)によるプラズマ処理によって行うようにしている。こうした製造方法を用いることで、非窒化性雰囲気においても好適にダメージ層を形成することができるようになる。
(8)また、上記第2の層間絶縁膜3としてSiOCを採用して、上記ダメージ層DLのエッチングをフッ酸(HF)によって行った。これにより、上記第2の層間絶縁膜3中に形成したダメージ層DLの選択的なエッチングをより好適に行うことができるようになる。
(第2の実施の形態)
図9に、本発明にかかる半導体装置についてその第2の実施の形態を示す。
この実施の形態にかかる半導体装置も、先の図1に示した半導体装置と同様、図9に示すような構造とすることで、前述したレジストの失活を抑制しつつ、隣接する配線間に生じる絶縁破壊を抑制してTDDB寿命の改善を図るようにしている。ただし、この半導体装置では、例えば銅等からなる埋め込み配線が形成されている基板の上に、さらに配線層を積層させることで、多層配線構造としている。
以下、同図9を参照して、この実施の形態にかかる半導体装置の構造について説明する。なお、図9はこの半導体装置の断面構造を模式的に示す断面図である。
図9に示すように、この半導体装置は、例えば先の図1に示したような銅等からなる埋め込み配線が形成されている基板11と、例えばSiCN等の銅に対する拡散防止効果の高い絶縁膜からなる第3の層間絶縁膜12と、例えばSiOC等の低誘電率材料(Low−k材料)からなる第4の層間絶縁膜13とが順次積層されて形成されている。
ここで、上記第3の層間絶縁膜12および第4の層間絶縁膜13には、例えば基板11に形成された導体膜5に達するように形成された接続孔13aと、該接続孔よりも大きい断面幅を有して同接続孔の上方に形成された溝13bとが形成されている。そして、これら接続孔13aおよび溝13bから構成されるトレンチ溝の内壁面(側壁面および底面)には、例えば窒化タンタル(TaN)等からなるバリアメタル膜14が形成されている。さらに、例えば銅からなる導体膜15が、上記接続孔13aおよび溝13bに埋め込まれるかたちで上記バリアメタル膜14に積層されて形成されている。そしてこの導体膜15は、配線に相当する部分15bと、この配線に相当する部分15bと下層配線(導体膜5)とを電気的に接続するための層間接続プラグに相当する部分15aとを有して形成されている。なお、上記バリアメタル膜14は、上記導体膜15と層間絶縁膜との密着性を高めたり、あるいは上記導体膜15の拡散を抑制したりする機能を有している。またここで、上記第3の層間絶縁膜12は例えば「500Å〜1000Å」、上記第4の層間絶縁膜13は例えば「2500Å〜10000Å」、上記バリアメタル膜14は例えば「250Å」の膜厚をもって形成されている。一方、上記導体膜15は、配線に相当する部分15bにおいて例えば膜厚「4000Å」、幅「0.18μm」で形成されており、層間接続プラグに相当する部分15aにおいて例えば膜厚「3000Å」、幅「0.16μm」で形成されている。
また、上記導体膜15は、その上面が、上記バリアメタル膜14との接触部において、上記第4の層間絶縁膜13の上面よりも下方に位置する態様で形成されている。こうした構造によって、上記導体膜15の拡散に起因するリークパスの形成を抑制あるいは防止することができるようになり、ひいては隣接する配線間での絶縁破壊についてもこれを抑制することができるようになることは前述した通りである。
さらにこの導体膜15は、その上面の両端部(バリアメタル膜14との接触部)の角が取られて、その上面がバリアメタル膜14との接触部に近づくほど低下する略円弧形状の断面形状をもつ態様で形成されている。一方、上記第4の層間絶縁膜13は、その上面が、バリアメタル膜14の上端よりも下方に位置する態様で形成されている。そしてこうした構造により、隣接する配線間での絶縁破壊に対する耐性のさらなる強化が図られることも前述した通りである。
また、上記第4の層間絶縁膜13の上層部には、ダメージ層DLが形成されている。ここでいうダメージ層とは、上記第4の層間絶縁膜13の組成が変化した状態のことである。なお、ダメージ層DLを含む上記第4の層間絶縁膜13とバリアメタル膜14との段差は例えば「数nm〜100nm」程度、上記バリアメタル膜14と導体膜15との段差は例えば「数nm〜50nm」程度となっている。このようなダメージ層DLが存在することによって、このダメージ層DLの上に堆積される絶縁膜との密着性が向上するようになる。
次に、図10および図11を参照して、この実施の形態にかかる半導体装置の製造方法について説明する。なお、これら各図において、先の図9に示した要素と同一の要素には各々同一の符号を付して示しており、それら要素についての重複する説明は割愛する。またここでは、先の図1に示した半導体装置を上記基板11(図9)として用いている。
この製造に際しては、まず、図10(a)に示すように、上記基板11の上に、例えばプラズマCVD法等により、上記第3の層間絶縁膜12を成膜する。なお、この第3の層間絶縁膜12の成膜条件は、例えば第1の実施の形態に示した第1の層間絶縁膜2の成膜条件と同様とする。
さらにその上に、図10(b)に示すように、例えばプラズマCVD(化学気相成長)法により、上記第4の層間絶縁膜13を成膜する。なお、この第4の層間絶縁膜13の成膜条件は、例えば第1の実施の形態に示した第2の層間絶縁膜3の成膜条件と同様とする。
その後、上記第4の層間絶縁膜13の上面にレジストを塗布した上で、例えばフォトリソグラフィにより、接続孔を形成すべく所望のパターンの開口部を形成する。次に、このレジストをマスクとして、例えばドライエッチング等による異方性エッチングを行い、図10(c)に示されるような、上記第3の層間絶縁膜12および第4の層間絶縁膜13を貫通して基板11に達する接続孔13aを形成する。この接続孔13aは、例えば基板11に形成された導体膜5に達するように形成する。なおこの際、上記第3の層間絶縁膜12をエッチストッパとして用いることによって、上記接続孔13aの形成に際して、その深さ精度を向上させることができるようになる。次に、また同様に、例えばドライエッチング等による異方性エッチングを行い、上記接続孔13aの上方に図10(d)に示されるような溝13bを形成する。なおここで、上記接続孔13aおよび溝13bのエッチング条件は、例えば第1の実施の形態に示したトレンチ溝3aのエッチング条件と同様とする。
次に、図11(a)に示すように、上記接続孔13aおよび溝13bから構成されるトレンチ溝の内壁面(側壁面および底面)を含めた基板表面に、例えばスパッタリングにより、上記バリアメタル膜14を成膜する。次いで、図11(b)に示すように、上記バリアメタル膜14の表面に、例えばスパッタリングにより、銅等からなるシード層(図示略)を成膜した後、例えば電界メッキ法あるいは無電界メッキ法により、上記導体膜15を成膜する。その後、例えば温度「150℃」の窒素雰囲気中において、例えば30分間の熱処理(アニール)を施す。これにより、上記導体膜15の埋込み性を向上させるようにしている。
次に、図11(c)に示すように、例えばCMP(化学的機械的研磨)等による研磨処理を施し、基板表面を平坦化するとともに、上記第4の層間絶縁膜13を露出させる。次いで、例えばアンモニア水溶液等によるアルカリ洗浄処理を施す。これにより、上記研磨処理の際に用いた研磨液(スラリ)を除去するようにしている。しかし、このアルカリ洗浄処理後においても、図11(d)に示されるように、上記第4の層間絶縁膜13の表面には、例えば酸化銅あるいは銅あるいはタンタル等からなる汚染物質Coが残存することとなる。
次に、非窒化性雰囲気(窒素原子を含まない雰囲気)にてプラズマ処理を施す。なおこのプラズマ処理の条件は、例えば第1の実施の形態に示したプラズマ処理の条件と同様とする。そしてこのプラズマ処理によって、図11(e)に示すように、上記第4の層間絶縁膜13の上層部にはダメージ層DLが形成されることとなる。またこの実施の形態では、上記第4の層間絶縁膜13の材料としてSiOCを採用しているため、上記プラズマ処理によってSiOCの含有するメチル基は分解されて、上記ダメージ層DLはフッ酸に可溶な酸化シリコンをより多く含有するかたちで形成されることとなる。またこの際、上記導体膜15の上面にもダメージ層(図示略)が形成されることとなる。
続いて、例えばシュウ酸等により、例えば常温で15秒間の有機酸洗浄処理を施した後、例えばフッ酸(水:フッ酸=100:1)等により、例えば常温で15秒間の酸洗浄処理を施す。これにより、図11(f)に示すように、上記ダメージ層DLの一部が選択的にエッチング除去されるとともに、上記第4の層間絶縁膜13の表面に残存していた汚染物質Coも共に除去されるようになる。また、この際も前述のように、上記導体膜15の上面の断面形状は、バリアメタル膜14との接触部に近づくほど低下する略円弧の形状になり、また上記導体膜15の上面も、上記バリアメタル膜14との接触部において上記第4の層間絶縁膜13の上面よりも下方に位置する態様で形成されるようになる。なお、上記フッ酸による酸洗浄処理に際しては、ブラシスクラブ洗浄を行わないものとする。そのため、上記ブラシスクラブ洗浄の最中にブラシに付いた汚染物質が上記第4の層間絶縁膜13の表面に再付着するおそれもなくなり、第4の層間絶縁膜13の表面の清浄度についてもこれをより高めることができるようになる。
こうした製造方法によっても、前述のように、上記第4の層間絶縁膜13の上層部に形成されたダメージ層DLを除去することによって、この第4の層間絶縁膜13の上に堆積している汚染物質Co等を除去することができるようになる。また、導体膜15の上面を選択的にエッチング除去してその高さが第4の層間絶縁膜13の上面よりも下方に位置するようにしたことで、隣接する配線間の絶縁破壊を抑制することのできる半導体装置を製造することができるようにもなることも前述した通りである。
また、上記製造方法によれば、上層配線としての配線パターンを形成すべく、基板表面にレジストを成膜して露光前にこのレジストの加熱処理(プリベーク)等を行った場合であれ、レジストの失活を抑制することができるようになることも前述した。
また、こうした構造を有する半導体装置をさらに積層させて、例えばSiCN等からなるキャップ膜100aと、例えばTEOS(テトラエチルオルソシリケート)膜等の保護膜100とを順次堆積させれば、図12に示されるような多層配線構造を有する半導体装置を形成することもできる。
以上説明したように、この第2の実施の形態にかかる半導体装置によっても、先の第1の実施の形態の前記(1)〜(8)の効果と同様の効果もしくはそれに準じた効果を得ることができる。
(他の実施の形態)
なお、上記各実施の形態は、以下の形態をもって実施することもできる。
・上記第2の実施の形態では、接続孔13aおよび溝13bの形成に際して、溝13bの形成に先立って接続孔13aを形成するようにしたが、溝13bを接続孔13aよりも先に形成するようにしてもよい。
・上記各実施の形態では、隣接する配線(導体膜)間に形成される層間絶縁膜を第1の層間絶縁膜2および第2の層間絶縁膜3、あるいは第3の層間絶縁膜12および第4の層間絶縁膜13により構成される2層構造とした。しかし、層間絶縁膜の構造はこうした2層構造には限られず、単層構造であっても、また3層以上で構成される構造であってもよい。
・上記各実施の形態では、第2の層間絶縁膜3あるいは第4の層間絶縁膜13の材料としてSiOCを採用した。しかし、これら層間絶縁膜の材料としてMSQ(メチルシルセスキオキサン)等のメチル基を含有する酸化シリコンを採用することとしても、前記(8)の効果と同様もしくはそれに準じた効果が得られる。また、これら層間絶縁膜の材料としては、例えばSiOF等の酸化シリコン(比誘電率k≒4)よりも誘電率の低い低誘電率材料(Low−k材料)や酸化シリコン等も適宜採用することができる。
Low−k材料としては、SiOCの他に、CVD法を用いて形成されたSiOF(k=3.5〜3.8)、ベンゾシクロブテン(BCB)(比誘電率k=2.5〜2.7)や、SOD(Spin-on Dielectrics)法によって形成されたHSQ(ハイドロゲンシルセスキオキサン)(比誘電率k=2.3〜3.1)、MSQ(メチルシルセスキオキサン)(比誘電率k=1.9〜2.5)、HMSQ(ハイドライド−メチルシルセスキオキサン)(比誘電率k≦2.2〜2.5)、ポリイミド系ポリマー(比誘電率k=2.6〜2.8)、アリレンエーテル系ポリマー(比誘電率k=2.2〜2.8)、シクロブテン系ポリマー(たとえば、ジビニルシロキサン・ベンゾシクロブテン(VDS−BCB)(比誘電率k=2.2〜2.6))、パーフロロシクロブテン(PFCB)(比誘電率k=2.2)などが挙げられる。
図1に示した本発明の第1の実施の形態の断面構造を有する半導体装置と、図14に示した従来構造の半導体装置について、第2の層間絶縁膜3に用いられる材料の比誘電率kを変えたときのTDDB寿命をシミュレーションにより算出した。配線5および配線25の寸法は、厚さ「3000Å」、幅「0.5μm」、配線対向長「3cm」、配線間隔「0.18μm」とした。隣接する配線に印加する電圧は、「3.6V」とし、試料温度を「125℃」とした。
表1に第1の実施の形態の断面構造の半導体装置および従来構造の半導体装置について得られたTDDB寿命を示す。表1において、TDDB寿命の単位はlog(sec)であり、この単位では信頼性試験合格の目安となる10年は8.5(log(sec))である。
Figure 0004266901
従来構造では、TDDB寿命が10年に達しなかった比誘電率k=2.7〜3.0の範囲が、第1の実施の形態の構造に改良することにより、TDDB寿命が10年以上に延長されることが確認された。比誘電率kが2.7〜3.0の範囲の材料としては、BCB、HSQ、ポリイミド系ポリマー、アリレンエーテル系ポリマーが挙げられる。
・上記各実施の形態では、第1の層間絶縁膜2あるいは第3の層間絶縁膜12の材料としてSiCNを採用した。しかし、これら層間絶縁膜の材料は任意であり、例えばSiNやSiC等も適宜採用することができる。また、上記絶縁膜1および基板11の材料も任意である。また、上記バリアメタル膜4およびバリアメタル膜14の材料も任意であり、例えばTiあるいはTiNあるいはTa等も適宜採用することができる。また、上記導体膜5および導体膜15の材料も任意の導体材料を採用することができる。例えば銅合金あるいはアルミニウム等も適宜採用することができる。
・上記各実施の形態では、上記第2の層間絶縁膜3あるいは第4の層間絶縁膜13の上層部にダメージ層DLが形成された構造とした。また、これら層間絶縁膜を、その上面が、バリアメタル膜との接触部において該バリアメタル膜の上端よりも下方に位置する態様で形成された構造とした。また、上記導体膜5あるいは導体膜15を、その上面が、バリアメタル膜との接触部において、上記第2の層間絶縁膜3あるいは第4の層間絶縁膜13の上面よりも下方に位置する態様で形成された構造とした。また、これら導体膜を、その上面が、バリアメタル膜との接触部に近づくほど低下する略円弧形状の断面をもつ態様で形成された構造とした。しかし、必ずしもこうした構造にする必要はない。要は、上記導体膜5あるいは導体膜15を、その上面が、少なくともバリアメタル膜との接触部において該バリアメタル膜の上端よりも下方に位置する態様で形成された構造とすることで足り、例えば図13(a)および(b)に例示する構造等も適宜採用することができる。なお、図13(a)は図1に対応する断面図、図13(b)は図9に対応する断面図である。なお、図13(a)に示す半導体装置は、導体膜5を、その上面が、全面にわたってバリアメタル膜4の上端よりも下方に位置する態様で形成された構造としたものである。また一方、図13(b)に示す半導体装置は、上記溝13bの下方に、該溝13bを形成する際にエッチストッパ(中間エッチストッパ)として機能する層間絶縁膜12aが設けられたものである。また、この半導体装置の製造に際しては、例えば、上記第3の層間絶縁膜12の上に、例えばSiOC等からなる層間絶縁膜13cと、例えばSiCN等からなる層間絶縁膜12aと、上記第4の層間絶縁膜13とを順次積層させた後、接続孔13aおよび溝13bを形成するようにする。またこの他に、エッチストッパを2層構造にしたもの(ダブルエッチストッパ)等も適宜採用することができる。
・上記各実施の形態では、上記導体膜5あるいは導体膜15の成膜をメッキ法によって行ったが、これら導体膜の成膜方法は任意であり、例えばスパッタリングあるいはCVD法によって成膜するようにしてもよい。また、これら導体膜の成膜後の熱処理(アニール)は真空中で行うようにしてもよい。
・上記各実施の形態では、上記ダメージ層のエッチングをフッ酸によって行ったが、このエッチング方法は任意である。例えばフッ素系のガスを用いたドライエッチング等によって上記エッチングを行うようにしてもよい。また、このエッチングに際しては、ダメージ層の一部のみではなく、ダメージ層全てをエッチング除去するようにしてもよい。
・上記各実施の形態では、上記ダメージ層の形成をアルゴン(Ar)によるプラズマ処理によって行ったが、上記ダメージ層の形成方法は、非窒化性雰囲気で行われる範囲で任意である。例えばアルゴン(Ar)以外の希ガスを用いたプラズマ処理や電子線あるいは紫外線による照射等によって行うこともできる。
・上記各実施の形態では、層間絶縁膜に形成されたトレンチ溝に対してバリアメタル膜と導体膜とが設けられた構造について言及したが、必ずしも層間絶縁膜にトレンチ溝が形成された構造には限られない。要は、トレンチ溝を有する絶縁膜と、上記トレンチ溝の内壁面に形成されたバリアメタル膜と、該バリアメタル膜を介して上記トレンチ溝に埋設されて形成されてなる導体膜とを有する半導体装置であれば、本発明を適用することはできる。
この発明にかかる半導体装置の第1の実施の形態について、その断面構造を模式的に示す断面図。 (a)〜(d)は、同実施の形態にかかる半導体装置の製造方法についてその製造プロセスを模式的に示す断面図。 (a)〜(d)は、同実施の形態にかかる半導体装置の製造方法についてその製造プロセスを模式的に示す断面図。 同実施の形態にかかる半導体装置の製造方法と従来の半導体装置の製造方法とについて層間絶縁膜上に残存する銅の量を対比させて示すグラフ。 (a)はTDDB特性を測定する際に用いる試料の平面構造を模式的に示す平面図、(b)はA−A線に沿った断面図。 上記測定を行う際の測定態様を模式的に示す側面図。 上記第1の実施の形態にかかる半導体装置と従来の半導体装置とのTDDB特性を対比して示すグラフ。 同実施の形態にかかる半導体装置と従来の半導体装置とのTDDB特性を対比して示すグラフ。 この発明にかかる半導体装置の第2の実施の形態について、その断面構造を模式的に示す断面図。 (a)〜(d)は、同実施の形態にかかる半導体装置の製造方法についてその製造プロセスを模式的に示す断面図。 (a)〜(f)は、同実施の形態にかかる半導体装置の製造方法についてその製造プロセスを模式的に示す断面図。 同実施の形態にかかる半導体装置を多層配線化した場合の断面構造を模式的に示す断面図。 (a)および(b)は、上記各実施の形態にかかる半導体装置の変形例について、その断面構造を模式的に示す断面図。 従来の半導体装置の一例についてその断面構造を模式的に示す断面図。 従来の半導体装置の製造方法についてその製造プロセス例を模式的に示す断面図。
符号の説明
1…絶縁膜、2…第1の層間絶縁膜、3…第2の層間絶縁膜、3a…トレンチ溝、11…基板、12…第3の層間絶縁膜、12a、13c…層間絶縁膜、13…第4の層間絶縁膜、13a…接続孔、13b…溝、4、14…バリアメタル膜、5、15…導体膜、DL…ダメージ層。

Claims (3)

  1. 絶縁膜を成膜する工程と、
    前記絶縁膜にトレンチ溝を形成する工程と、
    前記トレンチ溝の内壁面にバリアメタル膜を成膜する工程と、
    前記トレンチ溝を埋め込むかたちで、導体膜を前記バリアメタル膜に積層形成する工程と、
    前記導体膜を研磨により除去して、前記絶縁膜を露出させる工程と、
    非窒化性雰囲気で、前記露出させた絶縁膜の上層部および前記導体膜の上層部にダメージ層を形成する工程と、
    前記ダメージ層の少なくとも一部をエッチングにより除去する工程と、
    を備えることを特徴とする半導体装置の製造方法。
  2. 前記絶縁膜として、酸化シリコンより誘電率が低い低誘電率材料を用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記低誘電率材料が、メチル基を含有する酸化シリコン、ベンゾシクロブテン(BCB)、フッ素化酸化シリコン(SiOF)、ベンゾシクロブテン(BCB)、HSQ(ハイドロゲンシルセスキオキサン)、MSQ(メチルシルセスキオキサン)、HMSQ(ハイドライド−メチルシルセスキオキサン)、ポリイミド系ポリマー、アリレンエーテル系ポリマー、シクロブテン系ポリマー、パーフロロシクロブテン(PFCB)からなる群から選ばれることを特徴とする請求項2に記載の半導体装置の製造方法。
JP2004259357A 2003-09-30 2004-09-07 半導体装置およびその製造方法 Expired - Fee Related JP4266901B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004259357A JP4266901B2 (ja) 2003-09-30 2004-09-07 半導体装置およびその製造方法
US10/950,689 US7273810B2 (en) 2003-09-30 2004-09-28 Semiconductor apparatus and method of fabricating the same
CNB2004100834796A CN100356562C (zh) 2003-09-30 2004-09-30 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003341597 2003-09-30
JP2004259357A JP4266901B2 (ja) 2003-09-30 2004-09-07 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005129902A JP2005129902A (ja) 2005-05-19
JP4266901B2 true JP4266901B2 (ja) 2009-05-27

Family

ID=34554702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259357A Expired - Fee Related JP4266901B2 (ja) 2003-09-30 2004-09-07 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US7273810B2 (ja)
JP (1) JP4266901B2 (ja)
CN (1) CN100356562C (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126536A1 (ja) * 2005-05-25 2006-11-30 Nec Corporation 半導体装置及びその製造方法
US20070072412A1 (en) * 2005-09-27 2007-03-29 International Business Machines Corporation Preventing damage to interlevel dielectric
JP2007250965A (ja) 2006-03-17 2007-09-27 Nec Electronics Corp 半導体集積回路装置
US7531384B2 (en) * 2006-10-11 2009-05-12 International Business Machines Corporation Enhanced interconnect structure
US8102097B2 (en) * 2006-10-30 2012-01-24 Sanyo Electric Co., Ltd. Electrostatic acting device including an electret film
KR101113327B1 (ko) * 2009-12-29 2012-03-13 주식회사 하이닉스반도체 관통전극을 갖는 반도체소자 및 그 제조방법
US8525339B2 (en) 2011-07-27 2013-09-03 International Business Machines Corporation Hybrid copper interconnect structure and method of fabricating same
KR101994237B1 (ko) * 2012-08-28 2019-06-28 삼성전자 주식회사 반도체 장치 및 그 제조 방법
US9312203B2 (en) 2013-01-02 2016-04-12 Globalfoundries Inc. Dual damascene structure with liner
JP2015053444A (ja) * 2013-09-09 2015-03-19 パナソニックIpマネジメント株式会社 フレキシブル半導体装置およびその製造方法ならびに画像表示装置
US9370854B2 (en) * 2013-11-13 2016-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of fabricating a semiconductor device, and chemical mechanical polish tool
US10522754B2 (en) * 2016-06-15 2019-12-31 Crossbar, Inc. Liner layer for dielectric block layer
US10749110B1 (en) 2016-07-15 2020-08-18 Crossbar, Inc. Memory stack liner comprising dielectric block layer material
US11456242B2 (en) * 2020-07-21 2022-09-27 Nanya Technology Corporation Semiconductor device with stress-relieving structures and method for fabricating the same
US11961893B2 (en) 2021-04-28 2024-04-16 Taiwan Semiconductor Manufacturing Co., Ltd. Contacts for semiconductor devices and methods of forming the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297220B2 (ja) * 1993-10-29 2002-07-02 株式会社東芝 半導体装置の製造方法および半導体装置
US5730835A (en) * 1996-01-31 1998-03-24 Micron Technology, Inc. Facet etch for improved step coverage of integrated circuit contacts
TW478101B (en) * 2000-03-23 2002-03-01 Ibm Structure for protecting copper interconnects in low dielectric constant materials from oxidation
JP4535629B2 (ja) 2001-02-21 2010-09-01 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR100531419B1 (ko) * 2001-06-12 2005-11-28 주식회사 하이닉스반도체 반도체소자 및 그의 제조방법
US7071515B2 (en) * 2003-07-14 2006-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Narrow width effect improvement with photoresist plug process and STI corner ion implantation
US6972253B2 (en) * 2003-09-09 2005-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming dielectric barrier layer in damascene structure

Also Published As

Publication number Publication date
US7273810B2 (en) 2007-09-25
JP2005129902A (ja) 2005-05-19
US20050093156A1 (en) 2005-05-05
CN1612336A (zh) 2005-05-04
CN100356562C (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
US6432811B1 (en) Method of forming structural reinforcement of highly porous low k dielectric films by Cu diffusion barrier structures
US7348672B2 (en) Interconnects with improved reliability
JP4266901B2 (ja) 半導体装置およびその製造方法
US7514354B2 (en) Methods for forming damascene wiring structures having line and plug conductors formed from different materials
US7994046B2 (en) Method for forming a dielectric layer with an air gap, and a structure including the dielectric layer with the air gap
US20060151887A1 (en) Interconnection structure having double diffusion barrier layer and method of fabricating the same
US8129269B1 (en) Method of improving mechanical properties of semiconductor interconnects with nanoparticles
US7781335B2 (en) Method for fabricating semiconductor device
TWI413212B (zh) 半導體裝置及其製造方法
WO2007091574A1 (ja) 多層配線構造および多層配線の製造方法
JP4527948B2 (ja) 半導体装置およびその製造方法
JP2005032875A (ja) 半導体装置及びその製造方法
CN113113350A (zh) 半导体装置的形成方法
JP2004014828A (ja) 半導体装置の製造方法
US6825561B1 (en) Structure and method for eliminating time dependent dielectric breakdown failure of low-k material
CN115148662A (zh) 半导体结构
KR100709161B1 (ko) 반도체 장치의 제조 방법
JP4525534B2 (ja) 半導体装置の製造方法
JP2007194566A (ja) 半導体装置およびその製造方法
KR100640947B1 (ko) 반도체 소자의 배선 형성방법
JP2004179424A (ja) 半導体集積回路装置の製造方法
KR20070033175A (ko) 반도체 장치의 금속 배선 형성 방법
JP2004296620A (ja) 半導体装置の製造方法
JP4967207B2 (ja) 半導体装置の製造方法
JP2005019585A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees