JP4265608B2 - 可変動弁機構の制御装置 - Google Patents

可変動弁機構の制御装置 Download PDF

Info

Publication number
JP4265608B2
JP4265608B2 JP2006009008A JP2006009008A JP4265608B2 JP 4265608 B2 JP4265608 B2 JP 4265608B2 JP 2006009008 A JP2006009008 A JP 2006009008A JP 2006009008 A JP2006009008 A JP 2006009008A JP 4265608 B2 JP4265608 B2 JP 4265608B2
Authority
JP
Japan
Prior art keywords
actuator
control device
valve mechanism
drive element
variable valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006009008A
Other languages
English (en)
Other versions
JP2007192057A (ja
Inventor
直秀 不破
貴史 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006009008A priority Critical patent/JP4265608B2/ja
Priority to US11/646,272 priority patent/US7685978B2/en
Priority to DE102007000016.4A priority patent/DE102007000016B4/de
Publication of JP2007192057A publication Critical patent/JP2007192057A/ja
Application granted granted Critical
Publication of JP4265608B2 publication Critical patent/JP4265608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、可変動弁機構の制御装置に関し、特に内燃機関に設けられた吸気弁および排気弁のうちの少なくともいずれか一方の弁の動作特性を変化させる可変動弁機構の制御装置に関する。
従来の可変動弁機構付内燃機関の制御装置に関し、たとえば、特開2004−183591号公報(特許文献1)は、内燃機関の可変動弁機構駆動用アクチュエータが過熱したときは、弁の最大リフト量を最大値に固定し吸気量をスロットルのみの制御とすることでアクチュエータを駆動させないようにして過剰な発熱を抑制する技術について開示されている。そして、アクチュエータが過熱状態ではなくなると通常制御に再び移行する。
特開2004−183591号公報 特開2001−263015号公報
しかしながら、過熱状態と判断されたときにいきなり、最大リフト量を最大値に固定すると、吸気量が急増し運転者がエンジントルクの変動に伴う振動(トルクショック)を感じることが考えられる。また、通常制御に戻す際にも最大リフト量を最大値に固定する制御から最適値に変更する制御にいきなり移行すると、やはり運転者がトルクショックを感じることが考えられる。
特開2004−183591号公報(特許文献1)には、トルクショック回避のための制御については開示されていない。
この発明の目的は、アクチュエータの過熱を避けつつ、車両の運転に与える影響を少なくした可変動弁機構の制御装置を提供することである。
この発明は、要約すると、内燃機関に設けられた吸気弁および排気弁のうちの少なくともいずれか一方の弁の動作特性を変化させる可変動弁機構の制御装置であって、可変動弁機構は、駆動要素を動かすことによって吸気弁および排気弁のうちの少なくともいずれか一方の弁の最大リフト量を決定するアクチュエータと、アクチュエータの過熱状態を検知するためのセンサとを含み、制御装置は、アクチュエータが過熱状態に至る恐れがあると判断した後、アクチュエータによって決定された最大リフト値が第1の所定値以上になったときに駆動要素の位置を停止させる。
好ましくは、アクチュエータは、電動式であって、非通電状態において駆動要素の位置を固定可能に構成される。制御装置は、駆動要素の位置を停止させると共にアクチュエータを非通電状態とする。
より好ましくは、可変動弁機構は、駆動要素の位置変化を検出するセンサをさらに含む。制御装置は、センサの出力を受け、アクチュエータを非通電状態にした後に駆動要素の位置が目標位置よりも第2の所定値以上離れたときにはアクチュエータへの通電を再開する。
より好ましくは、制御装置は、可変動弁機構が動作再開条件を満たす場合にアクチュエータへの通電を再開させる。動作再開条件は、アクチュエータの温度が停止要求温度以下の停止再開温度まで下がったことを含む。
より好ましくは、制御装置は、アクチュエータへの通電を再開させた直後は、駆動要素の位置を固定状態に制御する。
さらに好ましくは、制御装置は、アクチュエータへの通電を再開させた後に駆動要素の位置を固定状態に制御し、内燃機関への動作要求が所定の移行条件を満たしたときにアクチュエータによる駆動要素の位置の可変制御に移行する。
さらに好ましくは、所定の移行条件は、運転者からの加速要求があることを含む。
さらに好ましくは、所定の移行条件は、可変制御後の駆動要素の位置と固定状態における駆動要素位置との差が所定量以下となったことを含む。
好ましくは、可変動弁機構は、駆動要素を動かすことによって最大リフト量の増加とともにクランク角度を単位とする開弁範囲を示す作用角も増加させる。
本発明によれば、アクチュエータの過熱を避けつつ、車両の運転に与える影響を少なくした可変動弁機構の制御装置を実現することができる。
以下、本発明の実施の形態について図面を参照して詳しく説明する。なお図中同一または相当部分には同一の符号を付してその説明は繰返さない。
図1は、本発明の実施の形態に係るエンジン100の構成を示す図である。
図1を参照して、本実施の形態に係る可変動弁機構の制御装置は、図1における制御装置200が実行するプログラムにより実現される。
エンジン100には、エアクリーナ102から空気が吸入される。吸入空気量は、スロットルバルブ104により調整される。スロットルバルブ104はスロットルモータ312により駆動される電機制御式スロットルバルブである。
空気は、シリンダ106(燃焼室)において燃料と混合される。シリンダ106には、インジェクタ108から燃料が直接噴射される。すなわち、インジェクタ108の噴射孔はシリンダ106内に設けられている。燃料は、シリンダ106の吸気側(空気が導入される側)から噴射される。
燃料は吸気行程において噴射される。なお、燃料が噴射される時期は、吸気行程に限らない。また、本実施の形態においては、インジェクタ108の噴射孔がシリンダ106内に設けられた直噴エンジンとしてエンジン100を説明するが、直噴用のインジェクタ108に加えて、ポート噴射用のインジェクタを設けてもよい。さらに、ポート噴射用のインジェクタのみを設けるようにしてもよい。
シリンダ106内の混合気は、点火プラグ110により着火され、燃焼する。燃焼後の混合気、すなわち排気ガスは、三元触媒112により浄化された後、車外に排出される。混合気の燃焼によりピストン114が押し下げられ、クランクシャフト116が回転する。
シリンダ106の頭頂部には、吸気バルブ118および排気バルブ120が設けられる。シリンダ106に導入される空気の量および時期は、吸気バルブ118により制御される。シリンダ106から排出される排気ガスの量および時期は、排気バルブ120により制御される。吸気バルブ118はカム122により駆動される。排気バルブ120はカム124により駆動される。
吸気バルブ118は、VVTL(Variable Valve Timing and Lift)機構126により、開閉タイミング、リフト量および作用角が制御される。排気バルブ120の開閉タイミングは、VVT(Variable Valve Timing)機構129により制御される。なお排気バルブ120についても、リフト量および作用角を制御するようにしてもよい。
ここで、VVTL機構126とは、開閉タイミングを制御するVVT(Variable Valve Timing)機構に、リフト量と作用角とを制御するVVL(Variable Valve Lift)機構を組み合わせたものである。なお、リフト量および作用角のいずれか一方を制御するようにしてもよい。
本実施の形態においては、カム122がVVT機構により回転されることにより、吸気バルブ118の開閉タイミングが制御される。なお、開閉タイミングを制御する方法はこれに限らない。また、VVT機構には、周知の一般的な技術を利用すればよいため、ここではその詳細な説明は繰り返さない。VVL機構については後述する。
制御装置200は、エンジン100が所望の運転状態になるように、スロットル開度θth、点火時期、燃料噴射時期、燃料噴射量、吸気バルブの動作状態(開閉タイミング、リフト量、作用角等)を制御する。制御装置200には、カム角センサ300、クランク角センサ302、ノックセンサ304、スロットル開度センサ306、イグニッションスイッチ308、アクセル開度センサ314から信号が入力される。
カム角センサ300は、カムの位置を表す信号を出力する。クランク角センサ302は、クランクシャフト116の回転数(エンジン回転数)およびクランクシャフト116の回転角度を表す信号を出力する。ノックセンサ304は、エンジン100の振動の強度を表す信号を出力する。スロットル開度センサ306は、スロットル開度θthを表す信号を出力する。イグニッションスイッチ308は、運転者の操作によりオンにされた場合、イグニッションスイッチ308がオンであることを表す信号を出力する。アクセル開度センサ314は、運転者の操作するアクセルペダルの踏み込み量に応じたアクセル開度Accを出力する。
制御装置200は、これらのセンサから入力された信号、メモリ(図示せず)に記憶されたマップおよびプログラムに基づいて、エンジン100を制御する。
図2は、可変動弁機構において実現されるバルブリフトとクランク角の関係を示す図である。
図2を参照して、排気行程において排気弁が開いて閉じ、吸気行程において吸気弁が開いて閉じる。排気弁のバルブリフトが波形EX1,EX2に示されており、これに対して吸気弁のバルブリフトが波形IN1〜IN3,IN2Aに示されている。排気弁側に設けられている可変バルブタイミングシステム(以下VVTも称する)によって排気弁の開閉タイミングは、EX1〜EX2の間で変化する。最進角側のタイミング波形をEX1とすると、これを基準に排気弁VVTの遅角量が矢印RRで示される。
これに対して吸気弁の開閉タイミングは、VVTによって波形IN1〜IN3の間で変化し、最遅角側のタイミング波形をIN3とすると、これを基準に進角量が矢印FRで示されるように定義される。
TDCはピストン上死点、BDCはピストン下死点を示す。ピストン上死点(TDC)付近で排気弁と吸気弁が共に開いている期間をバルブオーバーラップという。VVTではこのオーバーラップ期間を調節することができる。オーバーラップを大きくすれば高速回転時は新気を多く吸入して出力向上となるが、低速回転時は、排気ガスがシリンダ内に引き戻されて燃焼が不安定になる。
さらに吸気弁に関してはバルブリフト量とともに作用角を一定の範囲内で変更することが可能である。
すなわちバルブリフトの最大量は波形IN2で最大リフトとなり、波形IN2Aで最小リフトとなる。また吸気弁が開いてから閉じるまでのクランク角度を作用角と呼ぶ。波形IN2においては作用角は最大となり、波形IN2Aにおいては作用角は最小となっている。
図3は、吸気バルブのリフト量と作用角とを制御するVVL機構400の正面図である。
図3を参照して、VVL機構400は、一方向に延びる駆動軸410と、駆動軸410の外周面を覆う支持パイプ420と、支持パイプ420の外周面上で駆動軸410の軸方向に並んで配置された入力アーム430および揺動カム440とを備える。駆動軸410の先端には、駆動軸410を直線運動させるアクチュエータが接続される。
VVL機構400には、各気筒に設けられた1つのカム122に対応して、1つの入力アーム430が設けられる。入力アーム430の両側には、各気筒に設けられた一対の吸気バルブ118のそれぞれに対応して、2つの揺動カム440が設けられる。
支持パイプ420は、中空円筒状に形成されており、カムシャフト130に対して平行に配置される。支持パイプ420は、軸方向へ移動したり、回転したりしないようにシリンダヘッドに固定される。
支持パイプ420の内部には、その軸方向に摺動可能なように駆動軸410が挿入される。支持パイプ420の外周面上には、駆動軸410の軸芯を中心として揺動可能で、かつ、その軸方向には移動しないように、入力アーム430および2つの揺動カム440が設けられる。
入力アーム430は、支持パイプ420の外周面から離れる方向に突出するアーム部432と、アーム部432の先端に回転可能に接続されたローラ部434とを有する。入力アーム430は、ローラ部434がカム122に当接可能な位置に配置されるように設けられる。
揺動カム440は、支持パイプ420の外周面から離れる方向に突出する略三角形状のノーズ部442を有する。ノーズ部442の一辺には、凹状に湾曲したカム面444が形成される。吸気バルブ118に設けられたバルブスプリングの付勢力により、ロッカアーム128に回転可能に取り付けられたローラがカム面444に押し付けられる。
入力アーム430および揺動カム440は、一体となって駆動軸410の軸芯を中心として揺動する。このため、カムシャフト130が回転すると、カム122に当接された入力アーム430が揺動し、この入力アーム430の動きに連動して揺動カム440も揺動する。この揺動カム440の動きが、ロッカアーム128を介して吸気バルブ118に伝わり、吸気バルブ118が開閉される。
VVL機構400は、さらに、支持パイプ420の軸芯周りにおいて、入力アーム430と揺動カム440との相対位相差を変更する機構を備える。相対位相差を変更する機構によって、吸気バルブ118のリフト量および作用角が適宜変更される。
つまり、両者の相対位相差を拡大すれば、入力アーム430および揺動カム440の揺動角に対するロッカアーム128の揺動角が拡大され、吸気バルブ118のリフト量および作用角が増大される。
また、両者の相対位相差を縮小すれば、入力アーム430および揺動カム440の揺動角に対するロッカアーム128の揺動角が縮小され、吸気バルブ118のリフト量および作用角が小さくされる。
図4は、VVL機構を部分的に示した斜視図である。図4中では、内部構造が明確に把握できるように一部が破断されて表わされる。
図4を参照して、入力アーム430および2つの揺動カム440と、支持パイプ420の外周面との間に規定された空間には、支持パイプ420に対して、回転可能で、かつ軸方向に摺動可能に支持されたスライダギヤ450が収容される。スライダギヤ450は、支持パイプ420上を軸方向に摺動可能に設けられる。
スライダギヤ450には、その軸方向の中央部に位置して、右ねじ螺旋状のヘリカルスプラインが形成されたヘリカルギヤ452が設けられる。また、スライダギヤ450には、ヘリカルギヤ452の両側に位置し、ヘリカルギヤ452とは逆に左ねじ螺旋状のヘリカルスプラインが形成されたヘリカルギヤ454が各々に設けられる。
一方、スライダギヤ450を収容する空間を規定する入力アーム430および2つの揺動カム440の内周面には、ヘリカルギヤ452および454に対応したヘリカルスプラインがそれぞれ形成される。つまり、入力アーム430には、右ねじ螺旋状のヘリカルスプラインが形成されており、そのヘリカルスプラインがヘリカルギヤ452に噛み合っている。また、揺動カム440には、左ねじ螺旋状のヘリカルスプラインが形成されており、そのヘリカルスプラインがヘリカルギヤ454に噛み合っている。
スライダギヤ450には、一方のヘリカルギヤ454とヘリカルギヤ452との間に位置して、周方向に延びる長穴456が形成される。また、図示しないが、支持パイプ420には、長穴456の一部と重なるように、軸方向に延びる長穴が形成される。支持パイプ420の内部に挿通された駆動軸410には、これら長穴456および図示しない長穴の重なった部分を通じて突出する係止ピン412が一体に設けられる。
駆動軸410がその軸方向に移動すると、スライダギヤ450が係止ピン412により押され、ヘリカルギヤ452および454が同時に駆動軸410の軸方向に移動する。このようなヘリカルギヤ452および454の移動に対して、これらにスプライン係合された入力アーム430および揺動カム440は、軸方向に移動しない。そのため、入力アーム430と揺動カム440は、ヘリカルスプラインの噛み合いを通じて駆動軸410の軸芯周りに回動する。
このとき、入力アーム430と揺動カム440とでは、形成されたヘリカルスプラインの向きが逆である。そのため、入力アーム430と揺動カム440の回動方向は互いに逆方向となる。これにより、入力アーム430と揺動カム440との相対位相差が変化し、既に説明したように吸気バルブ118のリフト量および作用角が変更される。なお、VVL機構は、このような形式のものに限られない。
図5は、VVL機構400の駆動軸410を軸方向に直線移動させるアクチュエータ500を示す断面図である。
図5を参照して、アクチュエータ500は、空間512を規定するハウジング510と、空間512に配置され、回転運動を直線運動に変換する差動ローラギヤ600と、差動ローラギヤ600に対して回転運動を入力するモータ700とを備える。ハウジング510には、VVL機構400が設けられたシリンダヘッドに向かって開口する開口部514が形成される。
差動ローラギヤ600は、軸800上に延びるサンシャフト610と、サンシャフト610の外周面612上で軸800と平行に延び、軸800を中心とした周方向に並んで配設された複数のプラネタリシャフト620と、複数のプラネタリシャフト620を取り囲むように設けられ、軸800を中心に筒状に延びるナット630とを含む。
サンシャフト610は、軸800上で駆動軸410と並ぶように配置される。サンシャフト610は、空間512から開口部514を通じてハウジング510の外側に突出するように設けられる。サンシャフト610は、図示しないカップリング等により駆動軸410と接続される。
サンシャフト610は、スプラインが形成されたスプライン部614と、雄ねじが形成されたねじ部616とを有する。空間512内におけるサンシャフト610の端部には、リング状のサンギヤ640が嵌め合わされる。サンギヤ640の外周面には、軸800を中心とした周方向に歯が並ぶ平歯ギヤが形成される。
スプライン部614を取り囲む位置には、周り止めカラー516が固定される。周り止めカラー516の内周面には、スプラインが形成される。周り止めカラー516とスプライン部614とが係合することにより、軸800を中心とするサンシャフト610の回転運動が規制される。
プラネタリシャフト620の両側には、軸800を中心に環状に延びるリテーナ900および910がそれぞれ配設される。プラネタリシャフト620の両端は、リテーナ900および910によって回転自在に支持される。リテーナ900とリテーナ910とは、軸800を中心とした周方向に所定の間隔を空けて設けられ、プラネタリシャフト620と平行に延びる支柱によって互いに結合される。
モータ700は、ロータ720とステータ730とから構成される。ロータ720は、焼嵌め、圧入または接着剤等の手段を用いて、ナット630の外周面に固定される。ハウジング510には、コイル740が巻回されたステータ730が同様の手段により固定される。
ステータ730は、ロータ720の周りを取り囲むように、軸800を中心に環状に延びて形成される。ロータ720は、軸800を中心とした周方向に沿って、ステータ730との間に所定の大きさの隙間を設けるように位置決めされる。ロータ720のステータ730に向い合う位置には、軸800を中心として所定の角度ごとに並ぶ永久磁石750が配設される。コイル740に通電することにより、ロータ720とステータ730との間に磁界が発生する。これにより、ロータ720がナット630とともに軸800を中心に回転する。
プラネタリシャフト620は、ねじ部622と、ねじ部622の両側にそれぞれ形成されたギヤ部624および626とを有する。
図6は、図5に示したアクチュエータ500のVI部について拡大して詳細を示した図である。
図5、図6を参照してプラネタリシャフト620のねじ部622には、サンシャフト610のねじ部616に形成された雄ねじと、ナット630の内周面に形成された雌ねじとに螺合する雄ねじが形成される。プラネタリシャフト620のねじ部622に形成される雄ねじは、サンシャフト610のねじ部616に形成された雄ねじとは逆向きであり、ナット630の内周面に形成された雌ねじとは同じ向きである。
プラネタリシャフト620のギヤ部624には、サンギヤ640の外周面に形成された平歯ギヤと、リングギヤ650の内周面に形成された平歯ギヤとに噛み合う平歯ギヤが形成される。この平歯ギヤは、たとえば雄ねじが全体に形成されたプラネタリシャフト620の端部を転造または切削加工することにより形成することができる。同様に、プラネタリシャフト620のギヤ部626には、リングギヤ650の内周面に形成された平歯ギヤと噛み合う平歯ギヤが形成される。
ナット630は、ハウジング510に固定されたベアリングによって、軸800を中心に回転自在に支持される。ナット630の内周面には、サンシャフト610のねじ部616に形成された雄ねじとは逆向きの雌ねじが形成される。
ナット630には、雌ねじが形成された内周面の両側に位置して、リングギヤ650が固定される。リングギヤ650の内周面には、軸800を中心とした周方向に歯が並ぶ平歯ギヤが形成される。
サンシャフト610のねじ部616に形成された雄ねじ、プラネタリシャフト620のねじ部622に形成された雄ねじおよびナット630の内周面に形成された雌ねじは、いずれも同一のピッチを有する多条ねじである。サンシャフト610の雄ねじ、プラネタリシャフト620の雄ねじおよびナット630の雌ねじのピッチ円直径を、それぞれ、Ds、DpおよびDnとし、各ねじの条数を、それぞれ、Ns、NpおよびNnとする。本実施の形態では、サンシャフト610を軸800方向にストロークさせるため、たとえば、Ns:Np:Nn=(Ds+1):Dp:Dnの関係を満たすように各ねじの条数が決定される。なお、各ねじのピッチ円直径と条数とは、これ以外の関係も採り得る。
ナット630が回転すると、その回転運動は、ナット630およびプラネタリシャフト620に形成されたねじの噛み合いにより、プラネタリシャフト620に伝わる。このとき、プラネタリシャフト620のギヤ部624に形成された平歯ギヤと、サンギヤ640の外周面およびリングギヤ650の内周面に形成された平歯ギヤとが噛み合っている。また、プラネタリシャフト620のギヤ部626に形成された平歯ギヤと、リングギヤ650の内周面に形成された平歯ギヤとが噛み合っている。
そのため、プラネタリシャフト620は、軸800に沿う方向には静止したまま、自転しながら軸800を中心に公転する。また同時に、プラネタリシャフト620は、これら平歯ギヤの噛み合いにより、軸800と平行な姿勢に保持される。
プラネタリシャフト620の回転運動は、プラネタリシャフト620およびサンシャフト610に形成されたねじの噛み合いにより、サンシャフト610に伝わる。サンシャフト610の回転運動は周り止めカラー516により規制されているので、サンシャフト610は、軸800に沿う方向のみに移動する。これにより、駆動軸410が直線移動され、上述したように吸気バルブ118のリフト量および作用角が変更される。
モータ700(ロータ720)の動作量(回転数もしくは回転角度)はセンサ1000により検知される。検知結果を表す信号は、制御装置200に送信される。本実施の形態において、制御装置200は、モータ700の動作量と吸気バルブ118のリフト量や作用角とを関連付けたマップを用いて、モータ700の動作量から吸気バルブ118のリフト量や作用角を間接的に検知する。
アクチュエータであるモータ700は、制御装置200からの制御信号のデューティを変化させることにより駆動要素である駆動軸410を中立状態に保ったり駆動軸410の位置を最大側変位端に向けて増加させたり、逆に最小側変位端に向けて減少させたりすることができる。
逆に、駆動軸410側から軸800に沿う方向に力が加えられても、モータ700が回転するには至らない。これは、サンシャフト610のねじ部616がプラネタリシャフト620のねじ部と噛み合い、さらにプラネタリシャフトのねじ部はサンシャフトと反対側ではナット630の雌ねじのねじ部622と噛み合っており、このナット630は軸800に沿う方向には動かないように拘束されているからである。
そして、駆動軸410側から軸800に沿う方向に加わる力は、サンシャフト610のねじ山からプラネタリシャフト620のねじ山に伝わる際に、略垂直にプラネタリシャフトのねじ山側面で受け止められる。したがって、プラネタリシャフト620を回転させる力はほとんど生じない。このため、モータ700を通電させて強制的にプラネタリシャフト620をギヤ部626の平歯車で回転させる場合には、サンシャフト610が軸800に沿う方向に移動するが、たとえば、モータ700の電源をオフした状態でも、内部摩擦によってプラネタリシャフト620の位置が固定されているのでサンシャフト610は動かず、現在の駆動軸410の位置が維持されることになる。
センサ1000は、たとえば、ロータリーエンコーダなどのパルスを出力するセンサを用いることができる。このパルスをカウントすることにより、イグニッションキーがオンされた直後に駆動軸410の最大側および最小側変位端位置が基準として学習され、この基準値にパルスのカウント値を加算して現在の駆動軸410の変位量に対応する作用角センサ値VCが制御装置200に認識される。
図7は、アクチュエータ500の過熱を避ける動作について説明するための動作波形図である。
図8は、制御装置200で実行されるアクチュエータの制御について説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定期間経過毎または、所定の条件が成立するごとに呼び出されて実行される。
図7、図8を参照して、時刻t0〜t1においては、アクセル開度やエンジン回転数などに基づいて最大リフト量および作用角をアクチュエータ500を用いて可変とする最適作用角モードで車両が動作している。時刻t0〜t1においてはステップS1でアクチュエータ温度Tがしきい値T1に到達していないと判断されるので、ステップS7に処理が進み、ステップS7において前回このルーチンを通過したときにアクチュエータ過熱フェイル状態でなかったと判断が行なわれるので、さらにステップS14に処理が進み制御はメインルーチンに移される。
なお、ステップS1におけるアクチュエータ500の温度は、アクチュエータ付近に設けたサーミスタなどの温度センサで観測しても良いし、アクチュエータの連続動作時間や消費電力から推定して過熱の恐れがあることを判断しても良い。
時刻t1において、ステップS1で過熱の恐れがあると判断された場合には、ステップS2に処理が進み、過熱フェイルフラグがオンに制御され、合わせて省電力要求フラグFPもオフ状態からオン状態に変更される。しかし、時刻t1においては作用角センサ値VCは、エンジンが安定的に動作可能な大作用角モードでの固定値よりも小さく、動作モードを大作用角モードにいきなり移行させると、運転者がトルクショックを感じることが考えられる。
アクチュエータ500の過熱が発生する状況とは、たとえば峠のカーブの多い山道などで、アクセル操作を頻繁に行なって急加速や減速を繰返すような場合が想定される。このような状況では、可変動弁機構が作用角を大きくしたり小さくしたりを繰返すことになるので、作用角が現在小さくてもすぐに作用角が大きくなることが期待できる。
そこで、ステップS3に処理が進み、制御装置200は、作用角センサ値VCが大作用角モードでの固定する目標値以上になったか否かの判断を行なう。時刻t1〜t2の間は、センサ値VC≧目標値VC1が成立しないので、ステップS3の監視が続行される。
そして、時刻t2において、センサ値VC≧目標値VC1が成立しステップS4に処理が進み、アクチュエータ500が通電状態のまましばらく作用角が固定される。
その後ステップS5において作用角とセンサ値の差が所定値K以内であるか否かの判断が行なわれる。
図7の例では、時刻t3において波形W1に示すように固定された大作用角状態が維持されているので処理はステップS6に進みモータ電源遮断許可がなされてセンサ値が保持されたままアクチュエータの通電がカットされる。
時刻t3〜t4では、アクチュエータ500の通電がカットされた状態で波形W1に示すように作用角が固定されたままスロットルバルブで吸気量を調整する大作用角モードでエンジン制御が行なわれる。
アクチュエータの通電がカットされても、図5、図6を用いて説明したように、駆動軸410の位置がアクチュエータ500の内部摩擦によって保持される。このときセンサ1000には通電状態が維持されて駆動軸位置を示すセンサ値VCはそのまま演算により求められている。
もし、何らかの理由によって、アクチュエータ500の電源が遮断された状態において、センサ値VCの位置が固定目標値とずれて、|センサ値−目標値|<しきい値Kが成立しなくなった場合にはステップS5からステップS7に処理が進み、ステップS7においてアクチュエータ500に再び通電がなされて、制御装置200は、作用角を固定目標値に合わせるようにアクチュエータ500の制御を行なう。
ステップS6またはステップS7の処理が終了すると、ステップS14に処理が進み制御はメインルーチンに戻される。
その後時間の経過により時刻t4においてアクチュエータ温度が低下すると、ステップS1においてアクチュエータ温度T>T1が成立しなくなる。するとステップS8に処理が進む。このときは、以前にステップS2でフェイルの記憶がなされているので、ステップS8からステップS9に処理が進む。
ステップS9では、アクチュエータ500に通電がなされ、そしてステップS10に処理が進み、アクチュエータ500で作用角を固定する制御を行なう大作用角モードに動作モードが移行する。図7の時刻t4〜t5の間は、この動作モードでエンジン制御が行なわれる。ここで、時刻t4において作用角可変の最適作用角モードに切換えないのは、運転者が吸気量の急変によりトルクショックを感じる場合があるからである。
時刻t4〜t5の間は、ステップS11において運転者から加速要求があるか否かが判断されている。加速要求が無い場合は、ステップS10,S11の処理が繰り返し実行されている。時刻t5においてアクセルペダルが踏込まれ加速要求があったことに応じて、ステップS11からステップS12に処理が進む。
ステップS12では、作用角可変とする最適作用角モードに動作モードが移行される。アクセルペダルの踏込み等の加速要求に合わせて動作モードを変更することで、運転者が違和感を覚えることなく最適作用角モードへの動作復帰がなされる。そしてステップS13において、ステップS2で記憶されていたアクチュエータ過熱フェイル情報がクリアされる。ステップS13の処理が終了すると、ステップS14に処理が進み制御はメインルーチンに戻される。
図9は、図8のフローチャートの制御の変形例を示したフローチャートである。
図8のフローチャートでは、ステップS11の大作用角固定モードから最適作用角モードへの移行判断を、アクセルペダルの操作等による加速要求の有無の判断で行なっていた。図9のフローチャートは、図8のステップS11に変えてステップS11Aを含む。他の部分については、図9のフローチャートは既に説明した図8のフローチャートと同様であるので説明は繰返さない。
この変形例では、図7の時刻t2〜t4の間、作用角が固定される大作用角モードでエンジン制御が行なわれている間においても、最適作用角モードで動作制御をした場合の作用角の目標制御値に関しては波形W2に示すように演算が行なわれている。
そしてステップS11Aでは、演算により求めた最適作用角目標値が固定値に一致したか否かが判断される。一致しなくても、あるしきい値以内に近づいたことを判断しても良い。
図9のフローチャートに基づく制御が行なわれた場合には、時刻t5〜t6の間も作用角センサ値VCおよび動作モードにおいて破線で示したように大作用角固定モードでエンジン制御が行なわれる。そして、時刻t6において、ステップS11AからステップS12に処理が進み大作用角モードから最適作用角モードへの動作モードの変更が行なわれる。この変形例の場合は、大作用角モードから最適作用角モードに動作モードを移行する際に、作用角が急変することが無いので、運転者が違和感を覚えることなく最適作用角モードへの動作復帰がなされる。
再び、図1及び図5を参照して本実施の形態について総括する。VVTL機構126は、駆動軸410を動かすことによって吸気バルブ118の最大リフト量を決定するアクチュエータ500と、アクチュエータ500の過熱状態を検知するための温度センサまたは電流センサ、電圧センサ等のセンサとを含む。制御装置200は、アクチュエータ500が過熱状態に至る恐れがあると判断した後、アクチュエータ500によって決定された最大リフト値が図7の第1の所定値VC1以上になったときに駆動軸410の位置を停止させる。
好ましくは、アクチュエータ500は、電動式であって、非通電状態において駆動軸410の位置を固定可能に構成される。制御装置200は、駆動軸410の位置を停止させると共にアクチュエータ500を非通電状態とする。
より好ましくは、VVTL機構126は、駆動軸410の位置変化を検出するセンサ1000をさらに含む。制御装置200は、センサ1000の出力を受け、アクチュエータ500を非通電状態にした後に駆動軸410の位置が目標位置よりも第2の所定値以上離れたときにはアクチュエータ500への通電を再開する。
より好ましくは、制御装置200は、VVTL機構126が動作再開条件を満たす場合にアクチュエータ500への通電を再開させる。動作再開条件は、アクチュエータ500の温度が停止要求温度以下の停止再開温度まで下がったことを含む。
より好ましくは、制御装置200は、アクチュエータ500への通電を再開させた直後は、駆動軸410の位置を固定状態に制御する。
さらに好ましくは、制御装置200は、アクチュエータ500への通電を再開させた後に駆動軸410の位置を固定状態に制御し、内燃機関への動作要求が所定の移行条件を満たしたときにアクチュエータ500による駆動軸410の位置の可変制御に移行する。
さらに好ましくは、所定の移行条件は、運転者からの加速要求があることを含む。
さらに好ましくは、所定の移行条件は、可変制御後の駆動軸410の位置と固定状態における駆動軸410の位置との差が一致するかまたは所定量以下となったことを含む。
好ましくは、VVTL機構126は、駆動軸410を動かすことによって最大リフト量の増加とともにクランク角度を単位とする開弁範囲を示す作用角も増加させる。
以上説明したように、本実施の形態においては、アクチュエータが過熱状態になったら直ちに大作用角モードで動作させるのではなく、最適作用角モードをしばらく続行して作用角が大作用角になってから作用角を固定するので、過熱回避制御移行時のトルクショックを回避できる。
また、アクチュエータへの通電をカットすることで消費電力をゼロとしてアクチュエータ温度を速やかに低下させることができる。
さらに、過熱回避制御から通常制御への移行を運転者が違和感を感じるトルクショックを抑えつつ完了させることが可能となる。また、トルクショックの発生に対する影響が少ない、最適作用角モードに移行しても大作用角となる条件で動作モードを大作用角モードから最適作用各モードに戻すことでトルクショックを抑えつつ完了させることが可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係るエンジン100の構成を示す図である。 可変動弁機構において実現されるバルブリフトとクランク角の関係を示す図である。 吸気バルブのリフト量と作用角とを制御するVVL機構400の正面図である。 VVL機構を部分的に示した斜視図である。 VVL機構400の駆動軸410を軸方向に直線移動させるアクチュエータ500を示す断面図である。 図5に示したアクチュエータ500のVI部について拡大して詳細を示した図である。 アクチュエータ500の過熱を避ける動作について説明するための動作波形図である。 制御装置200で実行されるアクチュエータの制御について説明するためのフローチャートである。 図8のフローチャートの制御の変形例を示したフローチャートである。
符号の説明
100 エンジン、102 エアクリーナ、104 スロットルバルブ、106 シリンダ、108 インジェクタ、110 点火プラグ、112 三元触媒、114 ピストン、116 クランクシャフト、118 吸気バルブ、120 排気バルブ、122,124 カム、126 VVTL機構、128 ロッカアーム、129 VVT機構、130 カムシャフト、200 制御装置、300 カム角センサ、302 クランク角センサ、304 ノックセンサ、306 スロットル開度センサ、308 イグニッションスイッチ、312 スロットルモータ、314 アクセル開度センサ、400 VVL機構、410 駆動軸、412 係止ピン、420 支持パイプ、430 入力アーム、432 アーム部、434 ローラ部、440 揺動カム、442 ノーズ部、444 カム面、450 スライダギヤ、452,454 ヘリカルギヤ、456 長穴、500 アクチュエータ、510 ハウジング、514 開口部、516 周り止めカラー、600 差動ローラギヤ、610 サンシャフト、612 外周面、614 スプライン部、616,622 ねじ部、620 プラネタリシャフト、624,626 ギヤ部、630 ナット、640 サンギヤ、650 リングギヤ、700 モータ、720 ロータ、730 ステータ、740 コイル、750 永久磁石、800 軸、900,910 リテーナ、1000 センサ。

Claims (15)

  1. 内燃機関に設けられた吸気弁および排気弁のうちの少なくともいずれか一方の弁の動作特性を変化させる可変動弁機構の制御装置であって、
    前記可変動弁機構は、
    駆動要素を動かすことによって前記吸気弁および前記排気弁のうちの少なくともいずれか一方の弁の開弁から閉弁までの開弁範囲をクランク角度で示した作用角を決定するアクチュエータと、
    前記作用角を検知するための第1のセンサと、
    前記アクチュエータの過熱状態を検知するための第2のセンサとを含み、
    前記アクチュエータは、電動式であって、非通電状態において前記駆動要素の位置を固定可能に構成され、
    前記制御装置は、前記第2のセンサの出力に基づいて前記アクチュエータが過熱状態に至る恐れがあると判断した場合には、前記第1のセンサの出力に基づいて検知された前記作用角が固定目標値を超えるまでは前記アクチュエータの通電を維持し前記アクチュエータによる前記駆動要素の位置の可変制御を実行し、前記作用角が前記固定目標値を超えたときに通電状態を保ちながら前記作用角を固定するように前記アクチュエータを制御し、その後前記作用角が前記固定目標値に保持されていると判断したときに前記制御装置は、前記駆動要素の位置を停止させると共に前記アクチュエータを非通電状態とする、可変動弁機構の制御装置。
  2. 前記第1のセンサは、前記駆動要素の位置変化を検出し、
    前記制御装置は、前記第1のセンサの出力を受け、前記アクチュエータを非通電状態にした後に前記駆動要素の位置が目標位置よりも所定値以上離れたときには前記アクチュエータへの通電を再開する、請求項1に記載の可変動弁機構の制御装置。
  3. 前記制御装置は、前記可変動弁機構が動作再開条件を満たす場合に前記アクチュエータへの通電を再開させ、
    前記動作再開条件は、前記アクチュエータの温度が前記停止要求温度以下の停止再開温度まで下がったことを含む、請求項1に記載の可変動弁機構の制御装置。
  4. 前記制御装置は、前記アクチュエータへの通電を再開させた後に前記駆動要素の位置を固定状態に制御し、前記内燃機関への動作要求が所定の移行条件を満たしたときに前記アクチュエータによる前記駆動要素の位置の可変制御に移行する、請求項1に記載の可変動弁機構の制御装置。
  5. 前記所定の移行条件は、
    運転者からの加速要求があることを含む、請求項4に記載の可変動弁機構の制御装置。
  6. 前記所定の移行条件は、
    可変制御後の前記駆動要素の位置と前記固定状態における前記駆動要素位置との差が所定量以下となったことを含む、請求項4に記載の可変動弁機構の制御装置。
  7. 前記可変動弁機構は、駆動要素を動かすことによって前記作用角の増加とともに前記一方の弁の最大リフト量も増加させる、請求項1〜6のいずれか1項に記載の可変動弁機構の制御装置。
  8. 前記制御装置は、前記駆動要素の位置を停止させると共に前記アクチュエータを非通電状態とし、かつ、アクセル開度に応じてスロットルバルブを操作して吸気量を制御して内燃機関の運転を継続させる、請求項1〜7のいずれか1項に記載の可変動弁機構の制御装置。
  9. 内燃機関に設けられた吸気弁および排気弁のうちの少なくともいずれか一方の弁の動作特性を変化させる可変動弁機構の制御装置であって、
    前記可変動弁機構は、
    駆動要素を動かすことによって前記吸気弁および前記排気弁のうちの少なくともいずれか一方の弁の最大リフト量を決定するアクチュエータと、
    前記駆動要素の位置を検出するための第1のセンサと、
    前記アクチュエータの過熱状態を検知するための第2のセンサとを含み、
    前記アクチュエータは、電動式であって、非通電状態において前記駆動要素の位置を固定可能に構成され、
    前記制御装置は、前記第2のセンサの出力に基づいて前記アクチュエータが過熱状態に至る恐れがあると判断した場合には、前記第1のセンサの出力に基づいて検知された前記駆動要素の位置が固定目標値を超えるまでは前記アクチュエータの通電を維持し前記アクチュエータによる前記駆動要素の位置の可変制御を実行し、前記駆動要素の位置が前記固定目標値を超えたときに通電状態を保ちながら前記駆動要素の位置を固定するように前記アクチュエータを制御し、その後前記駆動要素の位置が前記固定目標値に保持されていると判断したときに前記制御装置は、前記駆動要素の位置を停止させると共に前記アクチュエータを非通電状態とする、可変動弁機構の制御装置。
  10. 前記制御装置は、前記第1のセンサの出力を受け、前記アクチュエータを非通電状態にした後に前記駆動要素の位置が目標位置よりも所定値以上離れたときには前記アクチュエータへの通電を再開する、請求項9に記載の可変動弁機構の制御装置。
  11. 前記制御装置は、前記可変動弁機構が動作再開条件を満たす場合に前記アクチュエータへの通電を再開させ、
    前記動作再開条件は、前記アクチュエータの温度が前記停止要求温度以下の停止再開温度まで下がったことを含む、請求項9に記載の可変動弁機構の制御装置。
  12. 前記制御装置は、前記アクチュエータへの通電を再開させた後に前記駆動要素の位置を固定状態に制御し、前記内燃機関への動作要求が所定の移行条件を満たしたときに前記アクチュエータによる前記駆動要素の位置の可変制御に移行する、請求項9に記載の可変動弁機構の制御装置。
  13. 前記所定の移行条件は、
    運転者からの加速要求があることを含む、請求項12に記載の可変動弁機構の制御装置。
  14. 前記所定の移行条件は、
    可変制御後の前記駆動要素の位置と前記固定状態における前記駆動要素位置との差が所定量以下となったことを含む、請求項12に記載の可変動弁機構の制御装置。
  15. 前記制御装置は、前記駆動要素の位置を停止させると共に前記アクチュエータを非通電状態とし、かつ、アクセル開度に応じてスロットルバルブを操作して吸気量を制御して内燃機関の運転を継続させる、請求項9〜14のいずれか1項に記載の可変動弁機構の制御装置。
JP2006009008A 2006-01-17 2006-01-17 可変動弁機構の制御装置 Active JP4265608B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006009008A JP4265608B2 (ja) 2006-01-17 2006-01-17 可変動弁機構の制御装置
US11/646,272 US7685978B2 (en) 2006-01-17 2006-12-28 Control device and method for variable valve mechanism
DE102007000016.4A DE102007000016B4 (de) 2006-01-17 2007-01-16 Steuervorrichtung und -verfahren für einen variablen Ventilmechanismus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009008A JP4265608B2 (ja) 2006-01-17 2006-01-17 可変動弁機構の制御装置

Publications (2)

Publication Number Publication Date
JP2007192057A JP2007192057A (ja) 2007-08-02
JP4265608B2 true JP4265608B2 (ja) 2009-05-20

Family

ID=38261963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009008A Active JP4265608B2 (ja) 2006-01-17 2006-01-17 可変動弁機構の制御装置

Country Status (3)

Country Link
US (1) US7685978B2 (ja)
JP (1) JP4265608B2 (ja)
DE (1) DE102007000016B4 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516547B2 (ja) * 2006-06-22 2010-08-04 トヨタ自動車株式会社 回転直線運動変換機構
JP4858288B2 (ja) 2006-06-22 2012-01-18 トヨタ自動車株式会社 回転直線運動変換機構の製造方法及びその実施に使用する治具
JP5096096B2 (ja) * 2007-10-01 2012-12-12 日立オートモティブシステムズ株式会社 可変動弁機構の制御装置
JP4901677B2 (ja) * 2007-10-01 2012-03-21 日立オートモティブシステムズ株式会社 可変動弁機構の制御装置
JP5020766B2 (ja) * 2007-10-01 2012-09-05 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
KR101231267B1 (ko) * 2010-12-07 2013-02-07 현대자동차주식회사 가변 밸브 리프트용 모터 제어 장치 및 방법
DE102011014744B4 (de) * 2011-03-22 2015-04-30 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
JP5990061B2 (ja) * 2011-09-20 2016-09-07 日立オートモティブシステムズ株式会社 可変動弁機構の制御装置
JP6350431B2 (ja) * 2015-07-28 2018-07-04 トヨタ自動車株式会社 内燃機関の制御装置
CN108223039B (zh) * 2017-06-09 2019-11-01 长城汽车股份有限公司 连续可变气门升程机构的控制方法、系统及车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821551C1 (de) * 1998-05-14 2000-02-24 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
JP3799944B2 (ja) * 2000-03-21 2006-07-19 トヨタ自動車株式会社 内燃機関の可変動弁機構および吸気量制御装置
JP4106201B2 (ja) * 2001-06-21 2008-06-25 株式会社日立製作所 エンジンの可変バルブ装置
JP3849618B2 (ja) * 2002-08-30 2006-11-22 トヨタ自動車株式会社 内燃機関の動弁装置の制御装置
JP2004183591A (ja) 2002-12-05 2004-07-02 Toyota Motor Corp 可変動弁機構を有する内燃機関の制御装置
JP4383767B2 (ja) 2003-04-22 2009-12-16 トヨタ自動車株式会社 内燃機関の可変動弁装置
JP2005220760A (ja) 2004-02-03 2005-08-18 Hitachi Ltd 可変動弁制御装置及び制御装置

Also Published As

Publication number Publication date
US20070163525A1 (en) 2007-07-19
DE102007000016B4 (de) 2014-10-09
US7685978B2 (en) 2010-03-30
JP2007192057A (ja) 2007-08-02
DE102007000016A1 (de) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4265608B2 (ja) 可変動弁機構の制御装置
JP5591204B2 (ja) 可変バルブタイミング機構の制御装置
JP5143877B2 (ja) バルブタイミング可変機構の制御装置
KR100963453B1 (ko) 내연 기관용 밸브 타이밍 제어 장치 및 제어 방법
JP4429286B2 (ja) 可変動弁機構の制御装置
JP2007303390A (ja) 内燃機関の減速時制御装置
JP4207961B2 (ja) 内燃機関の制御装置
JP2007113440A (ja) 内燃機関の制御装置
JP4267636B2 (ja) 可変バルブタイミング装置
JP6027494B2 (ja) 可変バルブタイミング機構の制御装置
JP4532399B2 (ja) 内燃機関の制御装置
JP4661600B2 (ja) 可変動弁機構の制御装置
JP4579323B2 (ja) 可変動弁機構の制御装置
JP2007077917A (ja) 可変動弁機構の異常判定装置
JP4525579B2 (ja) 内燃機関のバルブ特性制御装置
JP4784302B2 (ja) 可変動弁機構の異常検出装置
US10344638B2 (en) Internal combustion engine system
JP2011099381A (ja) 内燃機関の制御装置
JP2008267162A (ja) 内燃機関の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2009215936A (ja) 可変動弁機構の制御システム
JP2008215239A (ja) 内燃機関の可変動弁装置
JP2006274958A (ja) 内燃機関のバルブタイミング制御装置
JP2007315362A (ja) 内燃機関の制御装置
JP2008286049A (ja) 車両用エンジンの制御装置
JP2007138857A (ja) 内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R151 Written notification of patent or utility model registration

Ref document number: 4265608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5