JP4249831B2 - タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置 - Google Patents

タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置 Download PDF

Info

Publication number
JP4249831B2
JP4249831B2 JP36221198A JP36221198A JP4249831B2 JP 4249831 B2 JP4249831 B2 JP 4249831B2 JP 36221198 A JP36221198 A JP 36221198A JP 36221198 A JP36221198 A JP 36221198A JP 4249831 B2 JP4249831 B2 JP 4249831B2
Authority
JP
Japan
Prior art keywords
delay time
circuit
phase
signal transmission
total delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36221198A
Other languages
English (en)
Other versions
JP2000180514A (ja
Inventor
弘幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP36221198A priority Critical patent/JP4249831B2/ja
Publication of JP2000180514A publication Critical patent/JP2000180514A/ja
Application granted granted Critical
Publication of JP4249831B2 publication Critical patent/JP4249831B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は例えばIC試験装置に適用した好適なタイミング校正方法、タイミング校正装置及びこのタイミング校正装置を具備したIC試験装置に関する。
【0002】
【従来の技術】
図4にIC試験装置の概略構成を示す。図中TESはIC試験装置の全体を示す。IC試験装置TESは主制御器111と、パターン発生器112,タイミング発生器113,波形フォーマッタ114,論理比較器115,ドライバ116,アナログ比較器117,不良解析メモリ118,論理振幅基準電圧源121,比較基準電圧源122,デバイス電源123等により構成される。
【0003】
主制御器111は一般にコンピュータシステムによって構成され、利用者が作成した試験プログラムに従って主にパターン発生器112とタイミング発生器113を制御し、パターン発生器112から試験パターンデータを発生させ、この試験パターンデータを波形フォーマッタ114で実波形を持つ試験パターン信号に変換し、この試験パターン信号を論理振幅基準電圧源121で設定した振幅値を持った波形に電圧増幅するドライバ116を通じて被試験IC119に印加し記憶させる。
【0004】
被試験IC119から読み出した応答信号はアナログ比較器117で比較基準電圧源122から与えられる基準電圧と比較し、所定の論理レベル(H論理の電圧、L論理の電圧)を持っているか否かを判定し、所定の論理レベルを持っていると判定した信号は論理比較器115でパターン発生器112から出力される期待値と比較し、期待値と不一致が発生した場合は、その読み出したアドレスのメモリセルに不良があるものと判定し、不良発生ごとに不良解析メモリ118に不良アドレスを記憶し、試験終了時点で例えば不良セルの救済が可能か否かを判定する。
【0005】
ここで、タイミング発生器113は被試験IC119に与える試験パターン信号の波形の立上がりのタイミング及び立下りのタイミングを規定するタイミングと、論理比較器115で論理比較のタイミングを規定するストローブパルスのタイミングを発生する。
これらの各タイミングは利用者が作成した試験プロクラムに記載され、利用者が意図したタイミングで被試験IC119を動作させ、またその動きが正常か否かを試験できるように構成されている。
【0006】
つまり、被試験IC119の各入力端子に与える試験パターン信号の位相は、通常は同一位相に揃えた状態で試験を行うが、動作の限界を試験する場合には、各入力端子に与える試験パターン信号のそれぞれに位相差を与え、その位相差を限界まで拡げた状態でも被試験IC119が正常に動作するか否かを試験する。各試験パターン信号に位相差を持たせたり、同一の位相に揃えたりするために波形フォーマッタ114内には試験パターン信号の位相を例えば2ns程度のピッチで位相設定を行う位相設定回路と、この位相設定回路のリニアリティ誤差を補正する位相補正回路とが設けられる。
【0007】
図5はその様子を示す。波形フォーマッタ114に位相設定回路114Aと位相補正回路114Bとが縦続接続されて設けられ、位相設定回路114Aに適当な遅延時間を設定することにより、ドライバ116からICソケットSKに供給される試験パターン信号の位相が設定される。
タイミング発生器113にはクロック発生器113Aとテスト周期発生器113Bと、コントローラ113Cとが設けられ、テスト周期発生器113Bがテスト周期を発生し、このテスト周期に従ってクロック発生器113AがクロックCLKを発生する。
【0008】
波形フォーマッタ114は、このクロックCLKのタイミングから位相設定回路114Aと位相補正回路114Bに設定される遅延時間に従って試験パターン信号の立上がりのタイミング及び立下りのタイミングが規定され、試験パターン信号の実波形を生成する。
ここで、従来のIC試験装置で行われているタイミング校正方法を図6を用いて説明する。
【0009】
図6に示す例では、3つのチャンネルCH1,CH2,CH3のタイミングを校正する場合を示す。
▲1▼ 各波形フォーマッタ114に設けた位相設定回路114Aに基準となる或る設定値B1,B2,B3を設定した状態で他の測定基準系(例えばオシロスコープ)を用いて各ドライバ116が出力する試験パターン信号の位相差が理想的にOPSとなるように、各チャンネルCH1,CH2,CH3の位相補正回路114Bを用いて調整する。
【0010】
このときの位相補正回路114Bの遅延時間はC1,C2,C3である。各チャンネルCH1,CH2,CH3のタイミング発生器113から位相設定回路114Aまでの遅延時間A1,A2,A3と、各ドライバ116からICソケットSKの端子までの遅延時間D1,D2,D3は各チャンネルごとに固有値である。
【0011】
▲2▼ 全てのドライバ116の出力がICソケットSKの各端子部分において位相が揃えられた状態で、各ドライバ116の出力をリレーマトリクス124を通じて選択的にタイミング発生器113に帰還させ、閉ループ125を形成し、閉ループ発振回路を形成する。
閉ループ125にはそれぞれに位相設定回路114Aと位相補正回路114Bの各遅延時間B1,B2,B3及びC1,C2,C3と、タイミング発生器113から波形フォーマッタ114までの回路の遅延時間A1,A2,A3と、ドライバ116の出力端子からリレーマトリクス124を通じてタイミング発生器113までの信号伝送路の遅延時間E1,E2,E3の全遅延時間A1+B1+C1+E1,A2+B2+C2+E2,A3+B3+C3+E3で決まる周期のループ発振が開始される。このループ発振周波数を周波数測定手段113Dで測定し、各ドライバ116の出力が同一位相に合致した条件下にある各閉ループの基準となる全遅延時間TPD1,TPD2,TPD3を計測し、この計測した全遅延時間TPD1,TPD2,TPD3を校正値として記憶する。
【0012】
▲3▼ 環境温度の変化等により、例えばタイミング発生器113から位相設定回路114Aまでの信号伝送路の遅延時間A1,A2,A3が、図6Cに示すようにA1からA1′に、A2からA2′に、A3からA3′に変動する等してタイミング校正が必要とされる場合に、▲2▼と同様に閉ループを構成し、閉ループの発振周波数が▲2▼で測定した状態と同じ周波数、つまり全遅延時間TPD1,TPD2,TPD3になるように位相補正回路114Bを用いて校正する。つまり、A1がA1′に変化したのに対し、位相補正回路114Bでは遅延時間をC1からC1′に変化させてA1からA1′に変化した遅延時間の変動を吸収し、▲2▼で測定したループ発振回路の周波数、つまり全遅延時間TPD1,TPD2,TPD3を再現する。図6Dはその状態を示す。
【0013】
【発明が解決しようとする課題】
上述したように、従来のタイミング校正は位相設定回路114Aで設定する或る基準と定めた設定値B1,B2,B3を用いてタイミング校正を行っている。しかしながら、位相設定回路114Aの設定値に対する実際の遅延時間は図7に示すように、リニアリティ誤差(設定値に対して実際の遅延時間が異なる値を示す誤差)を持つ、しかもこのリニアリティ誤差は図8に示すように、各チャンネルごとに異なるため、このリニアリティ誤差によって基準とした設定値B1,B2,B3以外の設定値を位相設定回路114Aに設定した場合は、各チャンネルCH1,CH2,CH3の位相は同一位相に揃わないことになる。
【0014】
図6Eはその様子を示す。図6Eでは位相設定回路114Aに先に基準とした設定値B1,B2,B3とは異なる設定値B1′,B2′,B3′を設定した状態を示す。この設定値B1′,B2′,B3′を設定した場合、位相設定回路114Aの実際の遅延時間はそれぞれにリニアリティ誤差±β1,±β2,±β3を含むため、このリニアリティ誤差±β1,±β2,±β3の分がICソケットSKの各端子に供給される信号の位相差θ1,θ2として現れる。
【0015】
従来のタイミング校正方法の欠点を図9を用いて更に詳細に説明する。図9に示す直線Aは理想値を示す。折れ線Bは位相設定回路114Aの設定値S1,S2,S3……に対する実際の遅延時間TPDの変化する様子を示す。各設定値S1,S2……に対し実際の遅延時間はリニアリティ誤差Δ1,Δ2,Δ3,Δ4……を持っている。
【0016】
ここで、例えば設定値S4において理想値に合致するように位相補正回路114Bの遅延時間をΔ4だけずらして実際の遅延時間をTPD4からTPD4′に校正したとすると、設定値S1,S4,S7の位置では理想値に合致しても、他の設定値、図の例ではS2,S3,S5,S6では理想値から大きく外れてしまう欠点が生じる。
【0017】
この発明の目的は位相設定回路114Aにループ発振動作によりタイミング校正した設定値以外の設定値を設定しても、各チャンネルごとに信号の位相差が発生しないタイミング校正方法と、このタイミング校正方法を用いたタイミング校正装置及びタイミング校正装置を備えたIC試験装置を提案するものである。
【0018】
【課題を解決するための手段】
この発明では位相設定器の一つの設定値を基準設定値と定め、この基準設定値を各チャンネルの位相設定回路に設定し、その設定した設定値の設定状態を利用して信号伝送線路の終端、IC試験装置の場合はICソケットの各端子部分で、例えばオロスコープ等の他の測定系を用いて同一位相となるように各チャンネルに設けてある位相補正回路の遅延時間を調整する。
【0019】
各チャンネルの終端の信号の位相が同一位相になる状態に調整した状態で、終端側から始端側に帰還ループを接続し、ループ発振回路を構成し、ループ発振周波数を測定する。このループ発振周波数により位相設定回路と位相補正回路を含む系の全体の全遅延時間を求め、その全遅延時間を基準とする全遅延時間として記憶する。
【0020】
位相設定回路に基準とした設定値以外の設定値を設定する場合は、その設定しようとする新たな設定値と基準となる設定値との時間差を算出し、その時間差分を基準とする全遅延時間に加減算して目標とする全遅延時間を各チャンネルごとに求め、この状態で閉ループを構成しループ発振させる。
各チャンネルのループ発振周波数が先に求めた目標とする全遅延時間を与える周波数に合致するように、各チャンネルの位相補正回路の遅延時間を調整すれば、各チャンネルの終端における信号の位相は新たな設定値において同一位相の状態に揃えられる。
【0021】
従って、この発明によるタイミング校正方法によれば、基準となる設定値以外のあらゆる設定値を位相設定回路に設定しても、全ての設定状態で各チャンネルの信号の位相が合致した状態を再現することができる。
【0022】
【発明の実施の形態】
図1を用いてこの発明の請求項1で提案するタイミング校正方法を説明する。図1では校正すべき信号伝送路が3チャンネル存在する場合を示すが、この発明では必ずしも信号伝送路が複数存在することを要件としない。つまり、単一の信号伝送路に図3に示すように位相設定回路114Aと位相補正回路114Bが縦続接続されて配置されていればよいものとする。
【0023】
図1Aは信号伝送路を本来の信号伝送路として機能させ、始端側から供給した信号が終端まで伝送される状態において、終端に伝送される信号の位相を位相設定回路114Aと位相補正回路114Bを調整して所望の位相に設定する第1校正動作を実行した様子を示す。
つまり、具体的にIC試験装置を例示して説明すると、各信号伝送チャンネルCH1,CH2,CH3のタイミング発生器113から位相設定回路114Aまでの信号伝送路の遅延時間がA1,A2,A3で、各位相設定回路114Aに設定した遅延時間がB1,B2,B3であり、ドライバ116からICソケットSKの各端子までの伝搬遅延時間がD1,D2,D3であった場合に、このICソケットSKの各端子に供給される信号の位相を所望の位相、つまり、この例では同一位相に揃えるには位相補正回路114Bの各遅延時間がC1,C2,C3でなければならない状態を示す。従って、位相補正回路114Bの遅延時間をC1,C2,C3に調整して第1校正動作を終了する。
【0024】
第1校正動作によりICソケットの各端子に供給される信号の位相が同一位相に揃えられる。この設定状態のまま、リレーマトリクス124を操作して各信号伝送路の終端側、この例ではドライバ116の出力側から信号を取り出し、信号伝送路の始端側に帰還させ、位相設定回路114Aと位相補正回路114Bを含む閉ループを構成し、閉ループ発振回路を形成する。
【0025】
タイミング発生器113には、例えば周波数カウンタのような周波数測定手段113Dを設け、この周波数測定手段113Dにより、各ループ発振周波数F1,F2,F3を測定する。各ループのループ発振周波数F1,F2,F3が測定されることにより、そのループ発振周波数F1,F2,F3からループの全遅延時間TPD1,TPD2,TPD3が次式で求められる。
【0026】
TPD1=1/F1
TPD2=1/F2
TPD3=1/F3
図1Bはこのループ発振時の各部の遅延時間の様子を示す。図1Bに示す遅延時間E1,E2,E3はリレーマトリクス125を含む帰還回路の遅延時間を示す。E1,E2,E3が異なる時間長になる理由は、リレーマトリックス124の接続ルートの違い等により発生する。
【0027】
計測して求めた各閉ループの伝搬遅延時間TPD1,TPD2,TPD3を校正値として記憶させ、第2校正動作を終了する。
この第2校正動作の終了により実用可能な状態になる。つまり、実用中に例えばタイミング発生器113から位相設定回路114Aまでの各チャンネルの遅延時間A1,A2,A3が図1Cに示すように、A1からA1′に、A2からA2′に、A3からA3′に変化した場合、または位相設定回路114Aに設定する設定時間をB1からB1′,B2からB2′,B3からB3′に変化した場合には以下に説明する第3校正動作を実行する。
【0028】
位相設定回路114Aの設定値に変更がなく、タイミング発生器113から位相設定回路114Aまでの遅延時間A1,A2,A3がA1′,A2′,A3′に変動しただけの場合は、各チャンネルCH1,CH2,CH3を選択的に閉ループに接続し、各ループ発振周波数が第2校正動作で測定した発振周波数F1,F2,F3に合致するように位相補正回路114Bの遅延時間を設定すれば、ICソケットSKの各端子に供給される信号の位相は図1Aに示す状態を再現することができる。
【0029】
一方、位相設定回路114Aに設定する設定値を図1Dに示すようにB1からB1′に、B2からB2′に、B3からB3′に変更する場合には、先ずこれらの設定値の変更量(設定値の差)を演算により求める。
例えば設定値B1=B2=B3=4ns(B1,B2,B3は位相設定回路114Aに設定したはずの値であり、リニアリティ誤差を含むものではない)であったものを、B1′=B2′=B3′=6nsに変更した場合には2nsの増加量が得られる。この設定値の増加量を先に校正値として求めた各ループの伝搬遅延時間TPD1,TPD2,TPD3に加算し、全遅延時間の目標値TPD1′,TPD2′,TPD3′を
TPD1′=TPD1+2ns
TPD2′=TPD2+2ns
TPD3′=TPD3+2ns
算出し、各チャンネルの閉ループの発振周波数F1′,F2′,F3′が伝搬遅延時間TPD1′,TPD2′,TPD3′を満たす周波数
F1′=1/TPD1′=1/(TPD1+2ns)
F2′=1/TPD2′=1/(TPD2+2ns)
F3′=1/TPD3′=1/(TPD3+2ns)
になるように位相補正回路114Bの遅延時間C1,C2,C3をC1をC1′に、C2をC2′,C3をC3′に微調整して第3校正動作を終了する。
【0030】
第3校正動作において、位相設定回路114Aの実際の遅延時間が2nsの増加分に対してリニアリティ誤差を含んで変更されても、そのリニアリティ誤差分は閉ループの発振周波数がF1′,F2′,F3′となるように位相補正回路114Bの設定値をC1からC1′,C2からC2′,C3からC3′に変更することにより吸収され、結局、信号伝送路の伝搬遅延時間は加算した2nsの増加分だけが真の増加量となる。
【0031】
従って、この第3校正動作後に各閉ループを解けば、ICソケットSKには図1Dに示すように、第1校正動作時の同相条件を維持したまま、信号の位相が2ns遅れ位相に設定される。上述では位相設定回路114Aに設定する変更量を2nsとして説明したが、その変更量を任意に選定することによりICソケットSKに与えられる信号の位相を第1校正動作で設定した初期条件を維持したまま自由に変更することができる。しかも、その変更される位相には位相設定回路114Aのリニアリティ誤差を含むものでなく、正確なタイミングの設定を行うことができる。
【0032】
位相設定回路114Aの設定値を自由に変更しても、第3校正動作により正しいタイミングに校正される理由を図2を用いて更に詳細に説明する。図2に示す直線Aは位相設定回路114Aの設定値を変更した場合にループ発振回路の全遅延時間が変化する理想直線を示す。折れ線Bは位相設定回路114Aの設定値を変更した場合に実際の閉ループ内の全遅延時間が変化する様子を示す。図2では位相設定回路114Aに設定する値を2ns,4ns,6ns,8ns…と具体的な数値で示す。
【0033】
第1校正動作及び校正動作によって閉ループ内の全遅延時間が理想直線A上に位置するTPD1に校正されたとする。この状態から位相設定回路114Aの設定値を4nsから6nsに変更した場合には、この発明によればその設定値の差2nsを算出し、この2nsを校正値TPD1に加算して目標値TPD1′を算出する。この目標値TPD1′は必然的に理想直線A上に位置している。この目標値TPD1′に合致するように位置補正回路114Bを調整して閉ループの発振周波数を校正すれば、系の全遅延時間は理想値に校正されたことになる。
【0034】
位相設定回路114Aの設定値を8nsに変更した場合も同様に校正値TPD1に設定値の差4nsを校正値TPD1に加えて目標値TPD1″を算出し、この目標値TPD1″に合致するように閉ループの発振周波数を調整すればよい。また設定値を2nsに設定した場合は、校正値TPD1から2nsを減算し、目標値TPD1°を算出し、この目標値TPD1°を満たす発振周波数に調整すればよい。
【0035】
図3は上述したタイミング校正方法を用いたタイミング校正手段の実施例を示す。この実施例ではIC試験装置にタイミング校正手段を付設した実施例を示す。更に、タイミングの設定を行う信号伝送路はICソケットSKに試験パターン信号を供給する信号伝送路である場合を示す。
図3において、図5と対応する部分には同一符号を付して示す。図2に示す130はこの出願の請求項3で提案するタイミング校正手段を示す。この発明によるタイミング校正手段130は位相設定回路114Aに設定する遅延時間と、位相補正回路114Bに設定する遅延時間を入力する入力手段131と、第1校正動作制御手段132と、第2校正動作制御手段133と、第3校正動作制御手段134と、記憶器135と、演算手段136とを具備して構成される。
【0036】
第1校正動作制御手段132は各チャンネルの位相設定回路114Aに基準となる遅延設定値、例えば4nsを入力し、位相設定回路114Aの各遅延時間を4nsに設定する。位相設定回路114Aの実際の遅延時間は4ns±βとするリニアリティ誤差±βを含んでいるから、この状態ではICソケットSKの各端子に供給される信号(タイミング発生器113から与えられる)の位相は同一の位相に揃えられていない。このためICソケットSKの各端子に、例えばオシロスコープのような他の測定器を接続し、各ICソケットSKの端子部分で信号の位相が同一位相になるように位相補正回路114Bの遅延時間を調整する。この調整は入力手段131から位相補正回路114Bに設定値を入力して位相補正回路114Bの遅延時間を調整する。
【0037】
第1校正動作を終了した時点で第2校正動作制御手段133を起動させる。この起動も入力手段131から入力して起動させる。第2校正動作制御手段133が起動されると、リレーマトリクス124が制御されて、各チャンネルのドライバ116の出力をタイミング発生器113に帰還させ、各チャンネルにおいて選択的にループ発振回路を構成する。
【0038】
各チャンネルの信号伝送路がループ発振するごとに、各ループ発振周波数を周波数測定手段113Dで測定し、その測定された周波数からループの伝搬遅延時間TPD1,TPD2,TPD3を算出する。この算出した伝搬遅延時間TPD1,TPD2,TPD3を校正値として記憶器135に記憶させ、第2校正動作制御手段133の制御動作は終了する。
【0039】
第3校正動作制御手段134の起動は操作員の判断により必要に応じて実行される。つまり、信号伝送路のタイミング発生器113から位相設定回路114Aまでの遅延時間A1,A2,A3が温度変化、環境の変化により変動した場合、或いは位相設定回路114Aの設定値を変更してICソケットSKに印加する試験パターン信号の印加タイミングを変更する場合に、入力手段131からの入力によって第3校正動作制御手段134を起動する。
【0040】
第3校正動作制御手段134を起動させる目的が各信号伝送路のタイミング発生器113から位相設定回路114Aまでの遅延時間A1,A2,A3が第1校正動作時点の遅延時間A1,A2,A3から変動したことを修正する場合には、第3校正動作制御手段134はリレーマトリクス124を制御し、信号伝送路を閉ループの状態に制御する。各チャンネルのループ発振周波数で求められる伝搬遅延時間が記憶器135に記憶した各チャンネルの校正値に等しくなるように入力手段131から位相補正回路114Bに設定値を入力し、位相補正回路114Bの設定値を制御して終了する。
【0041】
次に、ICソケットSKの各端子に供給する信号の位相を変更するために、位相設定回路114Aの設定値を変更する場合には、その変更を指定するコマンドを入力手段131から入力し、タイミング校正手段130を位相設定回路114Aの設定値変更モードに設定する。
タイミング校正手段130が位相設定回路114Aの設定値変更モードに設定されると、先ず入力手段131から新しく設定する遅延時間を入力する。入力された新しい遅延時間設定値は、先に位相設定回路114Aに設定している設定値との差を演算手段136で算出する。
【0042】
この算出した差の遅延時間を記憶器135に記憶している各チャンネルの校正値に加算すると共に、位相設定回路114Aの設定値にも加算する。
なお、新しい設定値が既に設定されている設定値より小さい場合は、差の遅延時間値は負の値となり、この場合には差の遅延時間を記憶器135から読み出した校正値及び位相設定回路114Aの設定値から引算することになる。
【0043】
位相設定回路114Aに新しい設定値が設定されると、第3校正動作制御手段134はリレーマトリックス124を制御し、各信号伝送路を閉ループに切替え、各閉ループの発振周波数を周波数測定手段113Dで測定する。
この発振周波数で求められる閉ループの伝搬遅延時間が校正値と演算手段136で算出した差の遅延時間を加えた値に合致するように、第3校正動作制御手段134が位相補正回路114Bの遅延時間を調整し、位相設定回路114Aの設定値変更モードを終了する。
【0044】
【発明の効果】
以上説明したように、この発明によれば位相設定回路114Aが持つリニアリティ誤差を吸収し、位相設定回路114Aの設定値をどの設定値に設定してもリニアリティ誤差を除去した正しい遅延時間を設定することができる。この結果、例えばIC試験装置に利用した場合には、被試験ICに与える試験パターン信号の位相を正確に設定できるため、試験の精度を高めることができる利点が得られる。
【図面の簡単な説明】
【図1】この発明によるタイミング校正方法を説明するための図。
【図2】この発明によるタイミング校正方法を更に詳細に説明するための図。
【図3】この発明によるタイミング校正方法を用いたタイミング校正装置をIC試験装置に付設した実施例を説明するためのブロック図。
【図4】IC試験装置の概要を説明するためのブロック図。
【図5】従来のIC試験装置に用いられているタイミング校正方法を説明するためのブロック図。
【図6】従来のタイミング校正方法を説明するための図。
【図7】位相設定回路が持つリニアリティ誤差を説明するための図。
【図8】位相設定回路が持つリニアリティ誤差の差を説明するための図。
【図9】従来のタイミング校正方法の欠点を説明するためのグラフ。
【符号の説明】
113 タイミング発生器
114A 位相設定回路
114B 位相補正回路
125 閉ループ

Claims (3)

  1. 信号伝送路に位相の調整を行う位相設定回路と、この位相設定回路のリニアリティ誤差を補正する位相補正回路とが縦続接続されて設けられ、上記信号伝送路の終端に出力される信号を始端側に帰還させ、この帰還によって閉ループ発振回路を構成し、この閉ループ発振回路の発振周波数から上記信号伝送路の全遅延時間を計測し、基準となる全遅延時間を定め、環境変化により上記信号伝送路の全遅延時間が変動した場合は、上記閉ループ発振回路を構成して上記全遅延時間を上記基準となる全遅延時間に上記位相補正回路を調整して校正し、常に正しい全遅延時間に維持できるようにしたタイミング校正方法において、
    上記位相設定回路の設定値を変更する場合は、新たに設定する設定値と、上記基準となる設定値との差を求め、この設定値の差を上記基準となる全遅延時間に加減算して目標となる全遅延時間を算出し、上記閉ループ発振回路の発振周波数を上記目標となる全遅延時間に基づく発振周波数になるように上記位相補正回路を調整して校正することを特徴とするタイミング校正方法。
  2. A.信号伝送路に縦続接続された位相設定回路及び位相補正回路と、
    B.上記位相設定回路に基準となる遅延時間を設定した状態で、上記信号伝送路の終端側から始端側に信号を帰還させ、上記信号伝送路と、位相設定回路、位相補正回路とを含む閉ループ発振回路を校正する帰還回路と、
    C.この帰還回路により、上記閉ループ発振回路が形成された状態で基準となるループ発振周波数を測定し、上記信号伝送路の基準となる全遅延時間を測定する周波数測定手段と、
    D.上記基準遅延時間以外の遅延時間を上記位相設定回路に設定する場合は、上記基準設定値と新たに設定しようとする設定値との差を求める演算手段と、
    E.この演算手段で算出した差の時間を上記基準となる全遅延時間に加減算して目標となる全遅延時間を算出する加減算手段と、
    F.この加減算手段が算出した目標となる全遅延時間に、上記閉ループ発振回路の発振周波数で決まる全遅延時間が合致するように、上記位相補正回路の遅延時間を調整する制御器と、
    を具備して構成したことを特徴とするタイミング校正装置。
  3. 請求項2記載のタイミング校正装置を被試験ICに試験パターン信号を与える信号伝送路に適用したことを特徴とするIC試験装置。
JP36221198A 1998-12-21 1998-12-21 タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置 Expired - Fee Related JP4249831B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36221198A JP4249831B2 (ja) 1998-12-21 1998-12-21 タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36221198A JP4249831B2 (ja) 1998-12-21 1998-12-21 タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置

Publications (2)

Publication Number Publication Date
JP2000180514A JP2000180514A (ja) 2000-06-30
JP4249831B2 true JP4249831B2 (ja) 2009-04-08

Family

ID=18476278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36221198A Expired - Fee Related JP4249831B2 (ja) 1998-12-21 1998-12-21 タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置

Country Status (1)

Country Link
JP (1) JP4249831B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292243B2 (ja) 2009-09-28 2013-09-18 株式会社日立製作所 半導体集積回路
CN114201072A (zh) * 2021-11-29 2022-03-18 深圳市德明利技术股份有限公司 触控芯片的校准方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2000180514A (ja) 2000-06-30

Similar Documents

Publication Publication Date Title
KR100402653B1 (ko) Ic 시험장치의 타이밍 교정방법 및 그 교정방법을이용한 교정기능을 갖는 ic 시험장치
KR0184041B1 (ko) 반도체 시험장치의 측정 신호의 타이밍 교정 방법 및 그 회로
US7782064B2 (en) Test apparatus and test module
KR20020010545A (ko) 타이밍 교정방법 및 타이밍 교정기능을 가진 반도체 디바이스 시험장치
JPH01188027A (ja) ディジタル−アナログ較正システム
JP4249831B2 (ja) タイミング校正方法、タイミング校正装置及びこのタイミング校正装置を備えたic試験装置
JP4477450B2 (ja) タイミング発生器、試験装置、及びスキュー調整方法
JP5292243B2 (ja) 半導体集積回路
JP4394788B2 (ja) 遅延時間判定装置
KR100293277B1 (ko) 가변지연회로의 교정방법 및 이 교정방법에 의해 교정동작하는가변지연회로
JP4162810B2 (ja) 半導体デバイス試験装置のタイミング位相校正方法・装置
JP2002139556A (ja) 半導体試験装置
KR20050065569A (ko) 멀티 스트로브 장치, 시험 장치 및 조정 방법
JPH02198375A (ja) Ic試験装置
JP3588235B2 (ja) 半導体試験装置
JPH08226957A (ja) 半導体試験装置のタイミング補正装置
JP4866514B2 (ja) 遅延回路、及び試験装置
EP1873787B1 (en) Automatic regulation method for the reference sources in a non volatile memory device and corresponding memory device
JPH0961503A (ja) 半導体試験装置における試験信号のタイミング校正装置
JPH09325174A (ja) 半導体検査装置
JPH09304482A (ja) Ic試験装置
JPH0774818B2 (ja) テスターのタイミング信号発生回路
JP2008045879A (ja) コンパレータのスキュー測定方法
JP2002156414A (ja) タイミング校正機能を具備した半導体デバイス試験装置
JPS58201121A (ja) 遅延時間補正方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees