JP4241173B2 - 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ - Google Patents

多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ Download PDF

Info

Publication number
JP4241173B2
JP4241173B2 JP2003128142A JP2003128142A JP4241173B2 JP 4241173 B2 JP4241173 B2 JP 4241173B2 JP 2003128142 A JP2003128142 A JP 2003128142A JP 2003128142 A JP2003128142 A JP 2003128142A JP 4241173 B2 JP4241173 B2 JP 4241173B2
Authority
JP
Japan
Prior art keywords
burner
nozzle
gas
glass
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128142A
Other languages
English (en)
Other versions
JP2004331440A (ja
Inventor
敏弘 大石
元宣 中村
朋浩 石原
達郎 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003128142A priority Critical patent/JP4241173B2/ja
Publication of JP2004331440A publication Critical patent/JP2004331440A/ja
Application granted granted Critical
Publication of JP4241173B2 publication Critical patent/JP4241173B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質ガラス微粒子堆積体を製造するために用いるガラス合成用バーナ、及びそのバーナを用いる多孔質ガラス堆積体の製造法に関する。
【0002】
【従来の技術】
出発材にガラス微粒子を堆積させて製造される多孔質ガラス微粒子堆積体は、例えば光ファイバ等を製造するための母材として用いることができる。多孔質ガラス微粒子堆積体の製造法として、いわゆる外付け法(OVD法)及び軸付け法(VAD法)が知られている。これらはいずれもガラス合成用バーナを用いて合成されたガラス微粒子を出発材上に堆積させることによって多孔質ガラス微粒子堆積体を製造する方法である。OVD法は一般に、軸まわりに回転させられた円柱または円筒状の出発材に対して、ガラス合成用バーナを相対的往復移動させながら、ガラス合成用バーナからガラス微粒子を含む火炎を出発材表面又は出発材表面にガラス微粒子が堆積されて形成されつつある多孔質ガラス微粒子堆積体の表面(以下、あわせて「ガラス微粒子堆積面」ともいう)に吹き付けることによって、ガラス微粒子を出発材上に堆積させる方法である。また、VAD法は一般に、回転させられた出発材下側のガラス微粒子堆積面にガラス合成用バーナからガラス微粒子を含む火炎を吹き付けることにより、ガラス微粒子を出発材下方に堆積させるとともに、出発材を上方向へ移動させて出発材の下方向に多孔質ガラス微粒子堆積体を成長させる方法である。
【0003】
多孔質ガラス微粒子堆積体を製造する場合に用いられるガラス合成用バーナには、一般にSiCl4等のガラス原料ガス、H2等の可燃性ガス、O2等の助燃性ガス、さらに必要に応じてAr等のシールガスが供給される。この可燃性ガス及び助燃性ガスの燃焼反応によって生じる水によってガラス原料ガスが加水分解され、または助燃性ガスによってガラス原料ガスが酸化されることなどによってガラス合成反応が起こり、ガラス合成用バーナの火炎中でガラス微粒子が合成される。
【0004】
上記方法に用いられるガラス合成用バーナとしては、バーナ中央部にガラス原料ガスを供給するための流路が配置され、その流路を取り囲んで環状の可燃ガス噴射流路が配置され、さらにその可燃ガス噴射流路の中に小口径助燃ガス噴射流路が環状に配置され、さらにバーナの外周に環状の助燃ガス噴射流路が配置された構成を有するバーナが知られている(例えば、特許文献1参照。)。また、ガラス原料ガスを供給するための流路がバーナ中央部に配置され、その流路を中心とする2以上の同心円周上ごとに複数の小口径助燃ガス噴射流路が配置され、さらにこの小口径助燃ガス噴射流路を取り囲む周囲に、可燃ガスを供給する流路が配置されるとともに、前記各同心円ごとにその上に配置された小口径助燃ガス噴射流路が焦点を結び、かつ外側の同心円上に配置された小口径助燃ガス噴射流路が結ぶ焦点ほどバーナ先端から遠くになるように調整されたバーナが知られている(例えば、特許文献2参照。)。また、バーナ中心に多重管構造を有するガス吹出孔を有し、さらにその周囲に小口径のガス吹出孔が配置されたガラス合成用バーナが知られている(例えば、特許文献3及び特許文献4参照。)。
【0005】
【特許文献1】
特開昭62−187135号公報
【特許文献2】
特開平5−323130号公報
【特許文献3】
特開平9−100133号公報(図4)
【特許文献4】
特開平6−247722号公報(図5)
【0006】
【発明が解決しようとする課題】
上記の公知のガラス合成用バーナ(以下、単に「バーナ」ともいう)においては、通常、バーナの中心に配置されたガス噴出口(以下、「ノズル」ともいう)からガラスの原料となるガラス原料ガスがバーナ火炎中に供給されるとともに、中央のノズルの外側に配置された小口径ノズルから助燃性ガスがバーナ火炎中に供給される。上記公知のバーナにおいては、バーナ中央部から噴射される原料ガスの流れの中心軸に向かって、助燃性ガスが収束するようにバーナが設計されており、指向性をもって噴射される助燃性ガスがつくるガス流によって、バーナから噴射される火炎が安定化され、かつ火炎が広がりすぎることがない。それにより、バーナから噴射される火炎によってガラス微粒子堆積面が効率良く加熱され、ガラス微粒子堆積面へのガラス微粒子の堆積効率及び堆積されたガラス微粒子どうしの結合を強くすることができる。
【0007】
しかしながら、上記公知の構造を有するバーナにおいては、助燃性ガスノズルが小口径であるために助燃性ガスのガス流は強い指向性を有するのに対し、可燃性ガスは、助燃性ガスノズルを取り囲む広い開口部から噴射されるために強い指向性を有していない。可燃性ガスのガス流の指向性が弱いことにより、可燃性ガスの燃焼によって発生する高い熱エネルギーを有するガス流の流れの指向性が強くないため、発生した熱エネルギーの多くがガラス微粒子堆積面を加熱することなく拡散している。可燃性ガスの燃焼によって発生した水分がガスの流れの中に引き込まれてガラス原料ガスのガラス生成反応に供されるが、その量は充分とはいえない。
【0008】
また、上記のとおり、従来はバーナから噴射される可燃性ガス流の指向性が良くないため、ガラス微粒子堆積面を充分に加熱するためには、バーナへの単位時間あたりの可燃性ガス供給量(以下、単に「可燃性ガスの供給量」ともいう)を多くする必要があった。可燃性ガスの供給量を多くした場合、ガラス微粒子堆積体を製造するための反応容器内で発生する熱量の合計量が増加するために反応容器内の温度が高くなり、それにより反応容器自体の変形や、高温での加熱及び冷却によるヒートサイクルによって、反応容器に亀裂が生じる等の問題が生じる場合があった。また、可燃性ガスの供給量を多くすることによって、発生する熱量が増加するため、反応容器内において生じる上昇気流が強くなり、それによりバーナ火炎が乱されることによって、製造される多孔質ガラス微粒子堆積体の外径変動が大きくなるという問題が生じる場合があった。さらに、可燃性ガスの供給量を多くすることは、製造コストを上昇させることにもなる。
【0009】
すなわち、本発明は、上記問題点を解決し、バーナに供給されるガラス原料の量に対してガラス微粒子堆積面に堆積されるガラス微粒子の量の割合を増加させることにより、出発材へのガラス微粒子の堆積効率を高めた多孔質ガラス微粒子堆積体の製造方法を提供しようとするものである。さらに本発明は、バーナへの可燃性ガスの供給量を従来よりも少なくしてもバーナ火炎によってガラス微粒子堆積面を充分に加熱することができ、それにより得られるガラス微粒子堆積体に割れ等が発生しにくく、しかもガラス微粒子堆積体の外径変動が小さいことを実現できる多孔質ガラス微粒子堆積体の製造法を提供しようとするものである。さらに本発明は本発明の多孔質ガラス微粒子堆積体の製造法に用いるためのバーナを提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明の多孔質ガラス微粒子堆積体の製造法は、多重管が配置され、さらに前記多重管の外側であってかつ多重管を取り囲む1以上の略円周上に、1つの前記略円周上あたり、多重管構造を有する火炎噴射ノズルが2つ以上配置され、前記火炎噴射ノズルが中心ノズル及び中心ノズルの外側に配置された1以上の外側ノズルを有し、かつ前記外側ノズルの先端面よりも前記中心ノズルの先端面がバーナ先端方向に向かって前方に出ているバーナを用い、前記多重管からガラス原料をバーナ火炎中に供給するとともに、前記火炎噴射ノズルに可燃性ガス及び助燃性ガスを供給し、ガラス微粒子を含む火炎を出発材に向けて噴射することにより、前記出発材上に前記ガラス微粒子を堆積させることを特徴とするものである。
【0015】
本発明のガラス合成用バーナは、多重管が配置され、さらにこの多重管の外側であってかつこの多重管を取り囲む1以上の略円周上に、1つの略円周上あたり、多重管構造を有する火炎噴射ノズルが2つ以上配置され、火炎噴射ノズルが、中心ノズル及び中心ノズルの外側に配置された1以上の外側ノズルを有し、かつ外側ノズルの先端面よりも中心ノズルの先端面がバーナ先端方向に向かって前方に出ていることを特徴とするものである。
【0017】
さらに本発明のガラス合成用バーナは、上記バーナにおいて、略同心円周上に配置された火炎噴射ノズルごとに、火炎噴射ノズルの中心軸の延長線が、バーナに配置された多重管の中心軸の略延長線上において交点を有するように各火炎噴射ノズルの中心軸が傾けられており、かつ各火炎噴射ノズルが配置された同心円の直径が6mm以上であることを特徴とするものである。
【0018】
さらに本発明のガラス合成用バーナは、上記バーナにおいて、火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と前記火炎噴射ノズルよりもバーナ外側に配置された管の内壁とによって囲まれる範囲において、火炎噴射ノズルのみから可燃性ガスを噴射させることを特徴とするものである。
【0019】
さらに本発明のガラス合成用バーナは、上記バーナにおいて、火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と火炎噴射ノズルよりもバーナ外側に配置された管の内壁とによって囲まれる範囲に仕切管を配置し、かつ火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と仕切管とによって囲まれる範囲に助燃性ガスを供給することを特徴とするものである。
【0020】
【発明の実施の形態】
本発明者らは、多重管が配置され、さらにその外側であってかつ多重管を取り囲む1以上の略円周上に、1つの略円周上あたり、多重管構造を有する2以上の火炎噴射ノズルが配置され、火炎噴射ノズルが中心ノズル及び中心ノズルの外側に配置された1以上の外側ノズルを有し、かつ外側ノズルの先端面よりも前記中心ノズルの先端面がバーナ先端方向に向かって前方に出ているバーナを用い、多重管からガラス原料をバーナ火炎中に供給するとともに、火炎噴射ノズルから可燃性ガス及び助燃性ガスを供給し、ガラス微粒子を含む火炎を出発材に向けて噴射して出発材上にガラス微粒子を堆積させることにより、バーナへの可燃性ガス供給量を従来より少なくしてもガラス微粒子堆積面の加熱を充分に行うことができ、十分なガラス微粒子どうしの結合強度を保つことができ、かつ外径変動も少ない多孔質ガラス微粒子堆積体を製造することができるとともに、反応容器内の温度を従来より低くできること等を見いだし、本発明を完成させたものである。なお本明細書において上記多重管とは、一般に中心ノズルを構成する管のまわりを中心ノズルより径の大きな1以上の管が取り囲んで順次配置されて構成された管であって、中心ノズル及び各管の間からガス等を噴射できるものをいい、本発明に用いる多重管としては、略円形の管を、管の長手方向に垂直に切ったときの断面が略同心円となるように各管を配置した多重管が特に好ましい。ただし、本発明の多重管は、断面が同心円形状のものに限定されるものではない。
【0021】
以下、図に基づいて本発明を説明する。図1aは、本発明のバーナの端部(ガス吹出口)における各ノズルの配置の一つの例を概念的に示した図である。さらに図1b及び図1cは、それぞれ図1aに示したバーナ先端部分のA−A線断面図、及びB−B線断面図を概念的に示した図である。なお、本発明のバーナは、以下の図に具体的に示された構造を有するバーナに限定されるものではない。また、以下の図において、バーナを構成する管の隔壁等は実線で表す。また、以下の各図において実質的に同一の構成部分については同じ番号を付している。
【0022】
図1aに示したバーナにおいては、中央部にノズル1及びノズル2を含む二重管構造を有する多重管10が配置される。さらにこの多重管10を略中心として多重管10を取り囲む略同心円上に8つの火炎噴射ノズル20が配置される。この火炎噴射ノズル20は、中心部に配置された助燃性ガスノズル3、及び助燃性ガスノズルの周囲を取り囲む可燃性ガスノズル4からなる二重管構造を有する。さらにバーナの最も外側に環状の助燃性ガス供給ポート6が配置される。なお、図1aにおいて実線で表される隔壁は、一般には石英ガラスで作製される。
【0023】
図1aに示したバーナにおいて、中央部に配置された多重管10からは、ガラス原料を含むガスがバーナ火炎中に供給される。例えば、ノズル1には、ガラス原料を含むガスが供給され、さらにノズル2には可燃性ガス、助燃性ガス、及びシールガスから選ばれる1種以上のガスを供給することができる。ガラス原料がガス状である場合は、ガラス原料ガスのみをノズル1から供給することも、またガラス原料ガスに可燃性ガス、助燃性ガス、及び不活性ガスなどから選ばれる1種以上のガスを混合して得られる混合ガスを供給することもできる。また、ガラス原料がガラス微粒子又は液体原料である場合は、ガラス原料とキャリアガスとの混合物、またはガラス原料を溶媒に分散もしくは溶解させた混合物とキャリアガスとの混合物としてバーナに供給することができる。
【0024】
本発明のバーナのノズル1及びノズル2に供給されるガスの種類は、本発明の効果を損なわないかぎりいかなる種類のガスを用いることもでき、当業者は技術常識に基づいて用いるガスを容易に選択することができる。また、バーナに供給されるガラス原料も、ノズル1及びノズル2のいずれか一つ、又は両者からバーナ火炎中に供給されることができる。
【0025】
本発明のバーナの火炎噴射ノズル20においては、ノズル3及びノズル4から噴射されるガス全体の中に可燃性ガス及び助燃性ガスの両者が含まれるように、ノズル3及びノズル4にガスを供給する。例えば、ノズル3に可燃性ガスを供給し、かつノズル4に助燃性ガスを供給する方法、あるいは、ノズル3に助燃性ガスを供給し、かつノズル4に可燃性ガスを供給する方法を用いることができる。そのほか、可燃性ガスとしてメタン及びプロパンなどの炭化水素化合物から選ばれるガスを用いる場合は、この可燃性ガスと助燃性ガスとの混合ガスをノズル3またはノズル4のいずれか一つまたは両者に供給することもできる。この場合、可燃性ガス及び助燃性ガスの混合ガスが供給されないノズル3またはノズル4には、シールガス、可燃性ガス、または助燃性ガスのいずれか、またはこれらのガスをさらに不活性ガス等で希釈したガスを供給することができる。図1aに示したバーナにおいては、さらに所望によりバーナの最外周に配置された助燃性ガス供給ポート6から助燃性ガスを供給することができる。本発明のバーナにおいては、火炎噴射ノズル20の周囲の空間5からは、ガスの供給を行わないことが好ましい。
【0026】
本発明においてバーナに供給されるガラス原料としては、SiCl4、GeCl4等の火炎加水分解反応及び/又は酸化反応によってガラスを生成する化合物、ガラス微粒子、シクロオクタメチルテトラシロキサン等の有機ケイ素化合物、及びアルコキシシラン類などからなる群から選ばれる1種以上の化合物を用いることができる。すなわち、本発明のバーナにおいては、予め合成されたガラス微粒子及びバーナ火炎中でガラス微粒子を生成する原料のいずれか一方又は両者をガラス原料として用いることができる。
【0027】
本発明においてバーナに供給される可燃性ガスとしては、水素及び炭化水素化合物、例えばメタン、プロパン、ブタンからなる群から選ばれる1種以上を用いることが好ましく、水素を用いることが特に好ましい。また、本発明においてバーナに供給される可燃性ガスとしては、酸素及び/又は清浄な空気を用いることが好ましい。
【0028】
一般に可燃性ガスとして水素を用い、助燃性ガスとして酸素又は空気を用いる場合、可燃性ガスと助燃性ガスとを予め混合した混合ガスをバーナのノズルから噴射することは安全性を高めるという観点から好ましくないが、可燃性ガスとして炭化水素化合物を用いる場合は、可燃性ガスと助燃性ガスとを予備混合して得られるガスをバーナのノズルから噴射することもできる。
【0029】
さらに、所望によりバーナに供給されるガスとしてシールガスを用いることができる。シールガスとしてはAr等の不活性ガス及び窒素から選ばれる1種以上のガスを用いることが好ましい。
【0030】
上述のとおり、本発明においては火炎噴射ノズル20から可燃性ガス及び助燃性ガスがバーナ火炎中に噴射されるが、バーナから噴射される火炎の安定性がよくなることから、ノズル3から助燃性ガスを噴射し、かつノズル4から可燃性ガスを噴射することがさらに好ましい。
【0031】
なお、当業者は、バーナの各ノズルから噴射される各種ガスの単位時間あたりの流量(以下、単に「流量」という)として好ましい流量を適宜定めることができる。一般にOVD法などでは、ガラス微粒子の堆積によって堆積体の径が変化するのにともない、ガス流量を変化させることが行われるが、例えばノズル3にO2、ノズル4にH2を供給する場合、1本の火炎噴射ノズルについてみた場合にH2/O2流量比を0.5〜15にすることで、効率良くガラス微粒子を出発材に堆積させることができる。
【0032】
図1aには、中心に配置された多重管10を取り囲む1つの略同心円上に8つの火炎噴射ノズル20を配置した例を示した。本発明における多重管10は、中心ノズルのまわりに同心環状に外側ノズルが配置された、2以上のガス吹出口を有する多重管であることが好ましく、3以上のガス吹出口を有する3重以上の多重管を用いることもでき、多重管10の一つ以上のガス吹出口からシールガスを噴射させることもできる。なお本発明の多重管10は、構成する各管の断面が略円形以外の形状でも良く、また各管の断面が同心円状に配置されているものに限定されるものでもない。
【0033】
また、本発明においてバーナに配置される火炎噴射ノズル20の数は2以上であればよく、図1aに示した例に限られない。さらに多重管10の周りに2以上の直径の異なる略円周上にそれぞれ2以上の火炎噴射ノズル20を配置することもできる。ここで、この2以上の円は直径の小さな円を直径の大きな円が取り囲むように配置されていることが好ましく、略同心円状に配置された2以上の円周上に火炎噴射ノズル20が配置されていることが特に好ましい。直径の異なる2以上の略円周上に火炎噴射ノズル20を配置する場合、本明細書中においては、一つの略円周上に配置された2以上の火炎噴射ノズル20をひとまとまりとして「層」といい、さらにバーナ中央に配置された多重管10に最も近い円周上の火炎噴射ノズル群から外側の円周上の火炎噴射ノズル群に向かって、第一層、第二層等という。
【0034】
本発明のバーナにおいては、上記層の各層ごとに火炎噴射ノズルの各中心軸の延長線が、多重管10の中心軸の延長線上の略一点で交差するように各火炎噴射ノズル20を傾斜させることが好ましい。本明細書において、以下、前記の交差する点を「焦点」といい、交差することを「焦点を結ぶ」という。また、本明細書においては、一つの層の上に配置された火炎噴射ノズル群が結ぶ焦点を、その層の焦点ともいう場合がある。ただし、この焦点は多重管10の延長線上の厳密な一点である必要はなく、各火炎噴射ノズル20の中心軸の延長線がおおよそ一点に集まっていれば足り、この場合も含めて「焦点を結ぶ」という。また火炎噴射ノズルの一層あたりに配置された火炎噴射ノズル群が2以上の焦点を有すること、すなわち一つの層が2以上の焦点を有することもできる。
【0035】
図2は、図1aに示した構造と同様の構造を有し、さらにバーナ火炎噴射ノズル20が2層に配置されたバーナの先端部の断面を模式的に示したものであり、断面はバーナの中心軸を含む面である。図2において、多重管10の外側第一層の火炎噴射ノズル20の各中心軸の延長線が、多重管10の中心軸の延長線上のf1位置において焦点を結ぶように各火炎噴射ノズル20がその中心軸を傾けられて配置される。さらに第二層の火炎噴射ノズル20の各中心軸の延長線が、多重管10の中心軸の延長線上のf2位置において焦点を結ぶように、各火炎噴射ノズル20がその中心軸を傾けられて配置される。このとき、多重管10の先端からf1までの距離(l1)よりも、多重管10の先端からf2までの距離(l2)のほうが長いことが好ましい。なお、これらの距離(l1及びl2)を本明細書中、焦点距離とよぶ。すなわち、一般に、本発明のバーナにおいて火炎噴射ノズル20を2層以上に配置する場合、バーナの外側の層に配置された火炎噴射ノズル20の中心軸の延長線が結ぶ焦点が、それより内側に配置された層の焦点よりも多重管10の先端に近くならないようにすることが好ましい。このようにすることにより、異なる層に配置された火炎噴射ノズルから噴射されるガス流が互いに衝突して乱されることを抑えることができる。
【0036】
各火炎噴射ノズル20の中心軸を上記のように傾斜させることによって、特に上記焦点付近において、多重管10から噴射されるガラス原料と火炎噴射ノズル20から噴射される火炎及び/又はガスとの混合がよくなる。これにより、火炎に含まれる水分及びガス成分、並びにガラス原料が混合されやすくなるため、加水分解反応及び/又は酸化反応によってガラスを生成するガラス原料を用いた場合はガラス合成反応が進行しやすくなる。また、ガラス原料としてガラス微粒子を用いる場合でも、上記焦点付近に火炎が集中することによって、焦点付近において多重管10から噴射されるガラス微粒子が加熱されやすくなるため、ガラス微粒子の温度を高くすることができ、それによって出発材へのガラス微粒子の堆積効率がよくなる。
【0037】
本発明のバーナにおいては、さらに第一層の火炎噴射ノズル20が配置される円の直径(例えば、図2のd)が6mm以上であることが好ましく、10mm以上であることがさらに好ましい。上記円の直径が6mm未満である場合は、バーナの製造上、多重管10の中心軸の延長線に対する火炎噴射ノズル20の中心軸の延長線の入射角が大きくなる構造となる。この場合、第一層の火炎噴射ノズル20の焦点において、多重管10から噴射されるガスの流れに対して火炎噴射ノズル20からの火炎及びガスの勢いが強すぎるためにガラス原料を含むガスの流れが乱れてしまい、むしろ出発材へのガラス微粒子の堆積効率が低下してしまう場合がある。火炎噴射ノズル20から噴射される火炎及びガスによってガラス原料を含むガスの流れを乱す点については、火炎噴射ノズル20の焦点距離(例えば、図2におけるl1及びl2)が短い場合も同じであるため、焦点距離は70mm以上であることが好ましい。このように設計されたバーナを用いると、多重管10から噴射されるガラス原料に対して、火炎噴射ノズル20から噴射される火炎の熱を効率良く伝えることができ、かつ火炎に含まれる水分をガラス原料と効率よく混合することができるとともに、多重管10から噴射されるガス流が大きく乱されることがないため、ガラス微粒子堆積面にガラス微粒子を効率よく堆積することができる。
【0038】
本発明のバーナにおいて用いられる火炎噴射ノズル20は、中心のノズルの周囲に同心円状に外側のノズルが配置された2重以上の多重管構造を有することが特に好ましい。この場合、この多重管の外側のノズルの先端面よりも中央のノズルの先端面がバーナ先端方向に向かって前方に出ていることが好ましい。この状態を図3に模式的に示した。図の左方向がバーナ先端方向である。図3に示したように、ノズル3の先端面がノズル4の先端面よりもバーナ先端方向に出ていることが好ましい。これは、ノズル3がノズル4よりもバーナ先端方向前方に出ていると、ノズル4から噴射されたガスがノズル3の先端より先で混合されて燃焼反応が起こって熱が発生しても、ノズル3及び4がその熱によって変形されないことによる。さらにノズル3がノズル4よりもバーナ先端方向前方に出ていると、火炎噴射ノズル20から噴射される火炎流の安定性が向上し、出発材へのガラス微粒子の堆積効率が向上するため好ましい。
【0039】
本発明のバーナにおいては、上述のとおり、バーナ中心部に配置された多重管10、及びその周囲に一層以上の火炎噴射ノズル20が配置される。さらに所望によりバーナの最も外側には、バーナを保護するためのガイド管、環状の助燃性ガス供給ポート(図1における6)、並びに環状の助燃性ガス供給ポート及び環状の可燃性ガス供給ポートを有する多重管からなる群から選ばれる構造を設けることができる。
【0040】
本発明のバーナにおいては、火炎噴射ノズル20よりもバーナ中央近くに配置された多重管10の外壁と火炎噴射ノズル20よりもバーナ外側に配置された管の内壁とによって囲まれる範囲において、火炎噴射ノズル20のみから可燃性ガスを供給することが好ましい。すなわち、この仕切られる範囲とは、例えば図1aにおいては5で示される範囲である。この範囲から可燃性ガスを供給しないことが好ましい。さらに、この範囲からは助燃性ガスも供給しないほうが好ましい。ただし、火炎噴射ノズル20の先端がバーナ中央部の多重管先端よりもバーナ前方に出ている場合は、上記範囲から助燃性ガスを供給してもよい。これは、火炎噴射ノズル20から噴射される可燃性ガスと上記範囲から供給される助燃性ガスとの燃焼反応によってバーナ先端部が過熱されることによって軟化等されないようにするためである。
【0041】
上記範囲から可燃性ガスを噴射しないことによって、火炎噴射ノズル20から噴射される火炎及びガスの流れの収束性をいっそう高くすることができるため、バーナ全体としての火炎の収束性も高められ、2本以上のバーナを用いて多孔質ガラス微粒子堆積体を製造する場合に、バーナ相互の火炎が干渉することを抑えることができ、それにより出発材へのガラス微粒子の堆積効率を高めることができる。また、上記範囲から可燃性ガスを噴射しないことによってバーナが発生する熱量を少なくできる。これは、ガラス微粒子の堆積に寄与しない熱の発生を抑えるということになる。これにより、ガラス微粒子堆積体を製造するための反応容器を、不必要に加熱することがない。したがって、反応容器が過度に熱せされて損傷されることを防ぐことができ、反応容器の冷却コストも低減できる。
【0042】
本発明のバーナにおいては、バーナ中央部に配置された多重管10、その周囲に配置された火炎噴射ノズル20のほかに、さらに単管ノズルを配置することもできる。この単管ノズルからは、たとえば、助燃性ガス、清浄空気、可燃性ガス等を噴射させることができる。さらに、本発明のバーナには、仕切管を配置することができる。仕切管としては、例えば、バーナの中心軸を中心とする略同心円筒形の管があげられる。具体例として、仕切管が一つ配置された本発明のバーナの一実施態様を図4に模式的に示した。以下、図4に基づいて本発明を説明する。
【0043】
本発明の製造法に用いるバーナの仕切管は、バーナの火炎噴射ノズル20よりもバーナ中央近くに配置された多重管10の外壁と火炎噴射ノズル20よりもバーナ外側に配置された管の内壁とによって囲まれる範囲配置されることが好ましい。ここで多重管10の外壁とは、多重管10を構成する最も外側の管のことをいう。また、バーナ外側に配置された管の内壁とは、火炎噴射ノズル20の外側にバーナの保護用のガイド管が配置されている場合はそのガイド管をいい、また火炎噴射ノズル20の外側に可燃性ガス等を噴射するために略同心管状の多重管が配置されている場合は、その多重管のうち最も火炎噴射ノズル20に近い側の管のことをいう。
【0044】
図4aは、バーナのガス吹出口側からみたバーナの端面の構成を示す。バーナ30には多重管10が配置され、さらに多重管10を取り囲む1つの略円周上に単管ノズル40が8つ配置される。さらに単管ノズル40の外側に仕切管45が配置される。仕切管45の外側に、多重管10を取り囲む1つの略円周上に火炎噴射ノズル20が8つ配置される。バーナの最も外側には環状のガス供給ポート6が配置される。なお、図4aにおいて実線はいずれも隔壁を表し、一般には石英ガラスで作製される。また、図4aに示したバーナをA−A線及びB−B線で切断した切断面をそれぞれ図4b及び図4cに示す。
【0045】
図4aに示されるバーナにおいて仕切管を配置する場合、仕切管は多重管10の最も外側の管55とバーナの最も外側に配置されたガイド管又は環状ノズルの内側の管50の間に一つ以上配置できる。
【0046】
図4aに示されるバーナの各ノズルからは、適宜選択されたガスを噴射することができるが、例えば、多重管10からガラス原料を含むガスを噴射し、さらに単管ノズル40及び環状ポート6からは助燃性ガスを噴射し、火炎噴射ノズル20からは可燃性ガス及び助燃性ガスを噴射することができる。前記ガラス原料を含むガスとしては、ガラス原料及び可燃性ガスの混合物、ガラス原料及び助燃性ガスの混合物、並びにガラス原料ガスを例示することができ、さらにこれらの各混合物又はガラス原料ガスにAr等の不活性ガス及び/又は窒素ガスを混合した混合物を多重管10からバーナ火炎中に噴射させることができる。
【0047】
仕切管が配置されたバーナにおいては、多重管10の最も外側の管55と多重管10の直近の外側に配置された仕切管45とによって挟まれた領域内から助燃性ガスを噴射させることが好ましい。すなわち、図4aに示したバーナにおいては、単管ノズル40から助燃性ガスを噴射することが好ましい。ただし、これは、前記領域内から助燃性ガスのみを噴射させる場合に限るものではなく、少なくとも助燃性ガスを含むガスを前記領域内から噴射させることを意味するものである。例えば前記領域内に火炎噴射ノズル20が配置され、火炎噴射ノズルから可燃性ガス及び助燃性ガスが噴射される場合も前記領域内から助燃性ガスを噴射する場合に含まれる。さらに、前記領域内に単管ノズル40及び火炎噴射ノズル20の両者が配置され、単管ノズル40から助燃性ガスが噴射されるとともに、火炎噴射ノズル20から可燃性ガス及び助燃性ガスが噴射される場合も前記領域内から助燃性ガスが噴射される場合に含まれる。すなわち、前記領域内から助燃性ガスを噴射させるとは、前記領域内から噴射されるガスが助燃性ガスを含むことをいう。
【0048】
次に、本発明のバーナのガス供給ポートから噴射される2種以上のガスが有する好ましい相互の関係について、以下に説明する。なお、以下、ガスが噴射される開口部をすべてポートといい、小口径のノズルも含む。
本発明のバーナにおいて用いられるガラス原料として、化学反応によってガラス微粒子を生成することが可能なガラス原料を用いる場合、ガラス原料、ガラス原料が供給されるポートに供給されるガラス原料以外のガス、及びガラス原料が供給されるポートに隣接したポートに供給されるガスからなる群から選ばれる1種、または2種以上がバーナ火炎中で反応することによりガラス化反応が起こらないように組み合わせて選択された前記ガラス原料及び前記各ガスを、前記ガラス原料が供給されるポート及び前記ポートに隣接するポートに供給することが好ましい。ここで、ポートが「隣接する」とは、2つのガス供給ポートが一つの隔壁によって隔てられている場合をいう。各ポートに供給された原料及び/またはガスは、そのポートからバーナ火炎中に噴射される。
【0049】
具体的には、化学反応によってガラス微粒子を生成することが可能なガラス原料としては、例えばSiCl4、GeCl4、シロキサン類、及び金属アルコキシド類等があげられる。バーナ火炎中で反応することによりガラス化反応するガスの組み合わせとしては、(i)加水分解及び/又は酸化反応によってガラスを生成可能な原料ガス、水素、及び酸素の組み合わせ、並びに(ii)炭化水素基を有するケイ素化合物及び酸素の組み合わせが例示できる。加水分解及び/又は酸化反応によってガラスを生成可能なガラス原料が供給されるポート、及びそれに隣接するポートに水素及び酸素が存在する場合、水素及び酸素が燃焼反応するとともにこれらのガスとガラス原料によってガラス化反応が可能である。水素及び酸素が燃焼することにより水が生成し、加水分解反応によってSiCl4等からガラスが生成されうる。また炭化水素基を有するケイ素化合物、例えばシクロオクタメチルテトラシロキサンと酸素とが燃焼反応することによってもガラスが生成されうる。
【0050】
図1に示した本発明の多重管10のノズル1及びノズル2を例にとって説明する。具体的には、ガラス原料ガスとしてSiCl4を用い、ノズル1にSiCl4及び酸素の混合ガスを供給した場合、ノズル1に隣接したノズル2に水素を供給することは好ましくない。また、ガラス原料ガスとしてSiCl4を用い、ノズル1にSiCl4及び水素の混合ガスを供給した場合、ノズル2に酸素を供給することは好ましくない。これらの場合、いずれもガラス原料であるSiCl4が供給されるポート及びそれに隣接したポートであるノズル1及びノズル2に存在するガスのみでガラスを生成することができるからである。さらに、ノズル1にシクロオクタメチルテトラシロキサン及び酸素の混合物を供給することは好ましくない。この場合は、オクタメチルテトラシロキサンが有するメチル基が酸素と反応するとともにガラスを生成することができるからである。同様にノズル1にシクロオクタメチルテトラシロキサンを供給する場合、ノズル2に酸素を供給することは好ましくない。この場合はノズル1に供給されるシクロオクタメチルテトラシロキサンとノズル2に供給される酸素のみでガラス化反応が完結されうるからである。また、可燃性ガスとして炭化水素ガス、例えばメタンを用い、ノズル1にSiCl4及びメタンの混合物を供給する場合、ノズル2には酸素を供給することは好ましくない。この場合、メタンが酸素と燃焼反応するとともに、SiCl4のガラス化反応が完結されうるためである。またノズル1にSiCl4を供給し、ノズル2にメタン及び酸素の混合ガスを供給することも好ましくない。この場合も、ガラス原料が供給されるポートに隣接したポートに供給されるメタン及び酸素が燃焼反応するとともに、ガラス原料のガラス化反応が完結しうるからである。なお、以上の例は、酸素の代わりに空気を用いる場合も同様である。
【0051】
化学反応によってガラス微粒子を生成する原料をガラス原料として用いる場合、例えばバーナ中央に断面が同心円状構造を有する3重管を配置し、中心ノズルにはガラス原料及び水素の混合物を供給し、そのすぐ外側のノズルには不活性ガスまたは窒素をシールガスとして供給し、さらにその外側のノズルには酸素を供給するというように、ガラス原料が供給されるノズルを含む隣接した2つのノズルから供給されるガス全体でガラス化反応が完結されないようにすることが好ましい。また、化学反応によってガラス微粒子を生成する原料をガラス原料として用い、例えば、中央に2重管が配置されたバーナを用いる場合、中心ノズルにガラス原料及び水素の混合物を供給するのであれば、中央ノズルに隣接するノズルには、水素及び/または炭化水素等の可燃性ガス、あるいは不活性ガス等のシールガスを供給し、中心ノズルとそれに隣接するノズルから供給されるガラス原料及び各ガスのみによってガラス化反応が完結しないようにすることが好ましい。また、図1aに示されたバーナにおいて、ノズル1にガラス原料として炭化水素基を含むケイ素化合物を供給する場合、ノズル2には、酸素または空気を供給せず、ノズル2には水素及び/または炭化水素等の可燃性ガスを供給するか、またはノズル2には不活性ガスまたは窒素等のシールガスを供給し、これらのみでガラス化反応が完結しないようにすることが好ましい。
【0052】
このように、化学反応によってガラス微粒子を生成することができるガラス原料を用いる場合、ガラス原料を供給するポート及びそれに隣接するポートに供給される化合物及び/またはガスの間の反応のみでガラス化反応が完結しないようにすることによって、生成したガラスがガラス原料供給ポートの先端部に堆積し、それによってそのポートが閉塞されることを防ぐことができる。
【0053】
本発明のバーナは従来公知のOVD法及びVAD法におけるガラス合成用バーナとして用いることができる。例えば、OVD法においては、円柱状又は円筒状の出発材にバーナから噴射される火炎があたるように本発明のバーナを配置し、出発材とバーナとを相対的に往復移動させるとともに、バーナからガラス微粒子を含む火炎を出発材に向けて吹き付けて出発材の上にガラス微粒子を堆積させる。本発明のバーナをOVD法に用いる場合、本発明のバーナは従来公知のバーナと比較して火炎の指向性が強く、かつ火炎の広がりが小さいため、2本以上のバーナを並列させて用いても、各バーナから噴射される火炎が相互に干渉して火炎流が著しく乱されるということが起こりにくい。したがって、本発明のガラス合成用バーナを短い間隔で2本以上並べても、バーナからの火炎流が乱れることがなく、出発材へのガラス微粒子の堆積効率を向上させることができる。また、本発明のバーナはVAD法にも用いることができ、この場合も2本以上のバーナを並べて用いてもバーナから噴射される火炎が他のバーナからの火炎流によって乱されにくいために好ましい。
【0054】
以上、本発明のガラス合成用バーナ及びそれを用いた多孔質ガラス微粒子堆積体の製造法を説明したが、本発明は上記実施態様に限定されるものではなく、当業者は適宜、必要な手段を付加等して本発明を実施することができる。
【0055】
【発明の効果】
本発明のバーナは、従来のバーナよりも火炎の指向性が高いため、バーナから噴射される可燃性ガス、例えば水素ガスの流量を従来のバーナで用いられていた流量より少なくしても、ガラス微粒子堆積面を充分に加熱することができるため、多孔質ガラス微粒子堆積体に割れが発生することを防止するために充分なガラスの結合強度を保つことができ、さらにバーナから噴射されるガラス原料のガラス合成反応を効率良く起こさせることができる。またガラス原料としてガラス微粒子を用いる場合は、本発明のバーナを用いることにより、バーナからの可燃性ガスの流量を少なくしても効率良くガラス微粒子を加熱することができる。これにより出発材へのガラス微粒子の堆積を効率良く行うことができるとともに、可燃性ガスの流量を少なくすることで反応容器内において発生する熱量を少なくすることができるため、たとえ複数本のバーナを用いた場合でも熱による反応容器の変形やヒートサイクルによる反応容器の割れを防止することもできる。さらに、上述のとおり反応容器内で発生する熱量を少なくできるため、反応容器内における上昇気流の発生を防止すること、または上昇気流を弱くすることができ、これによりバーナ火炎がさらに安定化されるため、本発明のバーナを用いて製造される多孔質ガラス微粒子堆積体の外径変動を小さくできるという効果が得られる。また、本発明のバーナから噴射される火炎は指向性が高いため、出発材を挟んでバーナの反対側の反応容器壁上であって、かつ火炎の延長方向上に排気口を配置すれば、バーナから噴射される火炎の流れにのって廃熱が排気口から効率良く排気されることができるため、反応容器内の温度が上昇することを抑えることができるという効果がある。
【図面の簡単な説明】
【図1】図1aは、本発明のガラス合成用バーナの一実施態様について、バーナのガス吹出口を模式的に表した図である。図1bは、図1aで表されたバーナのA−A線断面を模式的に表した図である。図1cは、図1aで表されたバーナのB−B線断面を模式的に表した図である。
【図2】図2は、2層の火炎噴射ノズルを有するガラス合成用バーナの先端部における、バーナ中心軸を含む断面を模式的に表した図である。
【図3】図3は、火炎噴射ノズルの一実施態様について、その先端部を模式的に表した図である。
【図4】図4aは、本発明のガラス合成用バーナの別の一実施態様について、バーナのガス吹出口を模式的に表した図である。図4bは、図4aで表されたバーナのA−A線断面を模式的に表した図である。図4cは、図4aで表されたバーナのB−B線断面を模式的に表した図である。
【符号の説明】
1〜4…ノズル
6…ガス供給ポート
10…多重管
20…火炎噴射ノズル
30…バーナ
40…単管ノズル
45…仕切管

Claims (5)

  1. 多重管が配置され、さらに前記多重管の外側であってかつ前記多重管を取り囲む1以上の略円周上に、1つの前記略円周上あたり、多重管構造を有する火炎噴射ノズルが2つ以上配置され、前記火炎噴射ノズルが中心ノズル及び中心ノズルの外側に配置された1以上の外側ノズルを有し、かつ前記外側ノズルの先端面よりも前記中心ノズルの先端面がバーナ先端方向に向かって前方に出ているバーナを用い、前記多重管からガラス原料をバーナ火炎中に供給するとともに、前記火炎噴射ノズルに可燃性ガス及び助燃性ガスを供給し、ガラス微粒子を含む火炎を出発材に向けて噴射することにより、前記出発材上に前記ガラス微粒子を堆積させることを特徴とする多孔質ガラス微粒子堆積体の製造法。
  2. 多重管が配置され、さらに前記多重管の外側であってかつ前記多重管を取り囲む1以上の略円周上に、1つの前記略円周上あたり、多重管構造を有する火炎噴射ノズルが2つ以上配置され、前記火炎噴射ノズルが中心ノズル及び中心ノズルの外側に配置された1以上の外側ノズルを有し、かつ前記外側ノズルの先端面よりも前記中心ノズルの先端面がバーナ先端方向に向かって前方に出ていることを特徴とするガラス合成用バーナ。
  3. 前記略円周上に配置された火炎噴射ノズルごとに、前記火炎噴射ノズルの中心軸の延長線が、前記バーナに配置された多重管の中心軸の略延長線上において交点を有するように前記各火炎噴射ノズルの中心軸が傾けられており、かつ前記各火炎噴射ノズルが配置された前記円の直径が6mm以上であることを特徴とする請求項に記載のガラス合成用バーナ。
  4. 前記火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と前記火炎噴射ノズルよりもバーナ外側に配置された管の内壁とによって囲まれる範囲において、前記火炎噴射ノズルのみから可燃性ガスを噴射させることを特徴とする請求項2又は3に記載のガラス合成用バーナ。
  5. 前記火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と前記火炎噴射ノズルよりもバーナ外側に配置された管の内壁とによって囲まれる範囲に仕切管を配置し、かつ前記火炎噴射ノズルよりもバーナ中央近くに配置された多重管の外壁と前記仕切管とによって囲まれる範囲に助燃性ガスを供給することを特徴とする請求項2〜4のいずれか一項に記載のガラス合成用バーナ。
JP2003128142A 2003-05-06 2003-05-06 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ Expired - Fee Related JP4241173B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128142A JP4241173B2 (ja) 2003-05-06 2003-05-06 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128142A JP4241173B2 (ja) 2003-05-06 2003-05-06 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ

Publications (2)

Publication Number Publication Date
JP2004331440A JP2004331440A (ja) 2004-11-25
JP4241173B2 true JP4241173B2 (ja) 2009-03-18

Family

ID=33504402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128142A Expired - Fee Related JP4241173B2 (ja) 2003-05-06 2003-05-06 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ

Country Status (1)

Country Link
JP (1) JP4241173B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322524B2 (ja) * 2007-07-23 2013-10-23 ホソカワミクロン株式会社 金属酸化物製造装置
JP5229957B2 (ja) 2008-02-27 2013-07-03 信越化学工業株式会社 光ファイバ用ガラス母材製造用バーナ
JP5236526B2 (ja) * 2008-02-27 2013-07-17 信越化学工業株式会社 多孔質ガラス母材製造用バーナー
JP4845221B2 (ja) 2008-05-13 2011-12-28 信越化学工業株式会社 多孔質ガラス母材の製造方法
JP4750867B2 (ja) * 2009-02-24 2011-08-17 信越化学工業株式会社 多孔質ガラス母材製造用バーナ及び多孔質ガラス母材の製造方法
JP5414611B2 (ja) 2010-04-23 2014-02-12 信越化学工業株式会社 多孔質ガラス母材製造用バーナ
JP2011230936A (ja) * 2010-04-23 2011-11-17 Shin-Etsu Chemical Co Ltd 多孔質ガラス母材製造用バーナ
JP5748633B2 (ja) 2011-10-18 2015-07-15 信越化学工業株式会社 多孔質ガラス母材製造用バーナ及び多孔質ガラス母材の製造方法
JP5904967B2 (ja) * 2013-02-14 2016-04-20 信越化学工業株式会社 多孔質ガラス母材製造用のバーナ
JP6066103B2 (ja) * 2014-02-27 2017-01-25 信越化学工業株式会社 多孔質ガラス母材製造用バーナ
CN111468473A (zh) * 2020-03-27 2020-07-31 通鼎互联信息股份有限公司 一种vad喷灯清洁装置及其清洁方法
CN117585896B (zh) * 2024-01-18 2024-03-29 武汉光盛通光电科技有限公司 一种用于稀土气相掺杂的螺旋混合气流高温注入管

Also Published As

Publication number Publication date
JP2004331440A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
JP4241173B2 (ja) 多孔質ガラス微粒子堆積体の製造法及び前記製造法に用いられるガラス合成用バーナ
JPH039047B2 (ja)
KR100567155B1 (ko) 유리 입자 합성용 버너 및 다공질 유리체의 제조방법
WO2009107392A1 (ja) 多孔質ガラス母材製造用バーナー
JP5229957B2 (ja) 光ファイバ用ガラス母材製造用バーナ
JP2014122141A (ja) ガラス微粒子合成用バーナ及びガラス微粒子堆積体の製造方法
US20050223750A1 (en) Burner assembly for producing glass preforms and corresponding production process
KR101035467B1 (ko) 광섬유용 모재의 퇴적용 버너
JP2016064954A (ja) ガラス微粒子堆積用バーナおよびガラス微粒子堆積体の製造方法
JP3653902B2 (ja) ガラス母材合成用バーナ及びガラス母材の製造方法
KR20040001769A (ko) 광섬유모재 제조를 위한 외부기상 증착장치 및 이를 이용한 광섬유모재 제조방법
KR101035437B1 (ko) 다공질 유리 모재 제조용 버너
JPH09100133A (ja) 光ファイバ用多孔質ガラス母材の製造方法
JP2007076957A (ja) ガラス合成用バーナ及び該バーナを用いたガラス微粒子堆積体の製造方法
JP2010202445A (ja) 光ファイバ用母材の製造方法
KR102545710B1 (ko) 합성용 버너
JPH0324417B2 (ja)
KR20090092685A (ko) 다공질 유리 모재 제조용 버너
JP5168772B2 (ja) ガラス微粒子堆積体の製造方法
JPS60112636A (ja) ガラス微粒子合成用バ−ナ
JPH09188522A (ja) ガラス微粒子合成用トーチ
KR100507623B1 (ko) 실리카 입자 증착을 위한 미분체 제조용 버너
JP2018024544A (ja) 光ファイバ母材の製造方法及び製造装置
JP2002274862A (ja) 多孔質ガラス微粒子堆積体の製造方法及びバーナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees