JP4210220B2 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
JP4210220B2
JP4210220B2 JP2003572098A JP2003572098A JP4210220B2 JP 4210220 B2 JP4210220 B2 JP 4210220B2 JP 2003572098 A JP2003572098 A JP 2003572098A JP 2003572098 A JP2003572098 A JP 2003572098A JP 4210220 B2 JP4210220 B2 JP 4210220B2
Authority
JP
Japan
Prior art keywords
segment
solar cell
segments
row
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003572098A
Other languages
English (en)
Other versions
JPWO2003073516A1 (ja
Inventor
孝夫 阿部
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002053882A external-priority patent/JP2002343999A/ja
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPWO2003073516A1 publication Critical patent/JPWO2003073516A1/ja
Application granted granted Critical
Publication of JP4210220B2 publication Critical patent/JP4210220B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【技術分野】
【0001】
本発明は、半導体単結晶基板を使用した太陽電池セルを複数配置して構成される太陽電池モジュール及びその製造方法に関する。
【背景技術】
【0002】
半導体単結晶ウェーハを用いた太陽電池セルは、多結晶やアモルファスを用いた場合と比較してエネルギー変換効率が高く、半導体単結晶ウェーハも比較的安価であることから、現在普及している太陽電池の主力となっている。
例えば、チョクラルスキー法(Czochralski法、以下、単にCZ法という)や、浮遊帯域溶融法(Floating zone法、以下、単にFZ法という)によって得られる半導体単結晶をスライスして得られる単結晶ウェーハは円板状である。全モジュール面積に対する太陽電池セルの占める割合をモジュール充填率としたとき、ウェーハの形状を維持した太陽電池セル、すなわち円板状の太陽電池セルをそのまま平面配置したのでは高レベルのモジュール充填率は達成できない。
【0003】
モジュールの面積を基準とした実質的なエネルギー変換効率を向上させるためには、このモジュール充填率を向上させる必要がある。そこで、モジュール充填率を高める手法として、四角形状に加工して配列する方法が一般的に良く知られている。この方法では円板状の半導体単結晶ウェーハを切断して四角形状にするため、結晶ロスが生ずるという問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0004】
モジュール充填率と結晶ロスという2つの問題点を解決する手法として、六角形状の太陽電池セルを作製する提案がなされている(米国特許4089705号参照)。しかしながらこの方法は、前述した四角形状の場合と比較して結晶ロスは低減できるものの、依然として結晶ロスは避けられない上、六角形状への加工が煩雑であるという問題や、六角形状であるがゆえに、通常のLSIのデバイスプロセスに使用される自動化された装置をそのまま利用できないという問題があった。
【0005】
本発明の課題は、使用する単結晶ウェーハのロスをなくし、かつ、セル形成プロセスにおいてLSIのデバイスプロセスに使用される自動化された装置を使用可能とし、さらに、円板状のセルをそのまま配置した場合と比較して、モジュール充填率を高めた太陽電池モジュール及びその製造方法を提供することにある。
【課題を解決するための手段及び作用・効果】
【0006】
上記課題を解決するために本発明の太陽電池モジュールの製造方法は、
シリコン単結晶棒をスライスして得られた半導体単結晶ウェーハによって太陽電池用基板を形成し、その円板状を成す太陽電池用基板を互いに形状の異なるセグメントに分割形成し、それらセグメントの同種のものをそれぞれ集め、各セグメントの種別ごとにそれらを平面的に配列した太陽電池モジュールの製造方法であって、
前記太陽電池用基板の前記セグメントには、分割前に太陽電池セル形成のためのセル形成プロセスが行われ、形状の異なる前記セグメントを得るために、前記半導体単結晶ウェーハの主表面上に切断予定線として、ウェーハ中心点に関して対称な位置にある平行線の組(以下、平行切断予定線という)を1組設定し、該平行切断予定線が境界線となるように、前記半導体単結晶ウェーハを、前記ウェーハ中心点を含む第一セグメントの形成領域と、その第一セグメントの形成領域の残余の領域である弓形の第二セグメントの形成領域とに区分してセル形成プロセスを行って前記太陽電池セルとなし、前記切断予定線にて前記太陽電池用基板を厚み方向に切断し、
前記第一セグメントについては、複数の第一セグメントを、前記平行切断予定線により形成される平行切断線同士が互いに隣接するように列方向に配置し、更に前記第一セグメントは千鳥状に複数列にわたって配置されており、
前記第二セグメントについては、前記第二セグメントの弦部をなす切断線に対し、次の第二セグメントの弧部を隣接させる形にて、複数の第二セグメントを一方向に配列した第一種セグメント列と、個々の第二セグメントの弦部と弧部との向きを前記第一種セグメント列とは逆転させた第二種セグメント列とを形成するとともに、
前記第一種セグメント列の互いに隣接する第二セグメントの、一方の第二セグメントの弦部と他方の第二セグメントの弧部との間に形成される凹状の領域に、前記第二種セグメント列の第二セグメントの弦方向端部を入り込ませる形で、それら第一種セグメント列と第二種セグメント列と交互に配置されており、
前記太陽電池セルを切断して得たそれぞれのセグメントには、第一主表面上に互いに略平行な複数の溝が形成され、各溝の幅方向片側における内側面に出力取出用の電極が設けられた構造を有するものを用い、それらセグメントを、前記溝の向きが互いに一致するように配置されていることを特徴とする。
【0007】
具体的には、太陽電池用基板のすべての部位を、複数セグメントのいずれかの種別のものに属するものとなるように分割形成している。すなわち、セル形成プロセスを行う以前の半導体単結晶ウェーハは、余すところなく全て使い尽くされる形となり、結晶ロスが全く生じない(ただし、切断刃等によりセグメントに分割する際に、その切断しろとなって消耗する部分はのぞく)。
【0008】
太陽電池セル化のための処理(セル形成プロセス)は、半導体単結晶ウェーハを分割したのちに行うことも可能であるが、望ましくは分割する以前の半導体単結晶に対して行うのがよい。すなわち、半導体単結晶ウェーハの状態でセグメントへの分割の予定された各領域のそれぞれにセル形成プロセスを行い、プロセス終了後にセグメントへ分割処理を行うとよい。このようにすると、セル形成のためのパターンは分割予定領域毎に必要となるが、セル形成プロセス自体は全てウェーハ全体で一括して行えるので特別な工程を含まず、従来と同様の装置をそのまま適用して太陽電池モジュールを製造できる。
この場合、セル形成プロセスを行う半導体単結晶ウェーハとしては、LSIのデバイスプロセスに使用されるウェーハと同様にウェーハの外周部に面取り加工を施したものを用いることが好ましい。これにより、面取り加工を施さずにセル化プロセスを行う従来の四角形状などのウェーハに比べて、セル化プロセスにおけるワレ、カケ等の不良率を低下させることができる。
【0009】
そして、具体的な円板状の太陽電池用基板から分割形成されたセグメントを得る方法としては、面積的に大きい主要なセグメントである第一セグメントを太陽電池モジュール形成に用いることはもちろんであるが、本発明においては、面積的には小さいいわば「端切れ」に相当し、一見廃棄するしか方法がないと思われる(というより、第一セグメントを採取した後は本質的に着目されにくい)第二セグメントをも、太陽電池モジュールの構成要素として有効に活用する点に最大の特徴がある。また、所定間隔の平行な切断位置にてウェーハを精度良く切断することは、特別な装置やプログラムを必要とせず、従来のデバイスプロセスに使用される自動化された装置をそのまま適用できる利点もある。
【0010】
上記のように太陽電池セルを第一セグメントと第二セグメントとに分割する場合、第二セグメントの面積が極度に小さくなりすぎると、1つの太陽電池モジュールを構成するのに非常に多くのセグメントが必要となり、セルの組み立て工数が増大してコストアップにつながる。従って、用いる円状の太陽電池セルの大きさを基準として、第二セグメントの大きさは適当な範囲に制限すること、例えば第一セグメントの大きさの10%〜30%程度に留めることが望ましい。
【0011】
切断の工数を少なくする観点からは、平行切断予定線を、半導体単結晶ウェーハの第一主表面上に1組のみ定める方法を採用するのがよい。この場合、図4に示すように、円状をなす第一主表面の半径をRとしたとき、各平行切断予定線とウェーハ中心点との距離を(R/2)に定めると、2枚の第二セグメントの合計面積が第一セグメントの面積に近くなり、並列接続した第二セグメントを1組として取り扱えば、種々の電池定数を第一セグメントに近くでき、第一セグメントと第二セグメントとの設計上の取り扱いを共通化できるので便利である。
【0012】
そして、上記製造方法における第一セグメントを用いて、以下のような本発明の太陽電池モジュールの第一の態様を実現することができる。すなわち、該太陽電池モジュールは、円板状の太陽電池セルの周縁部から、該太陽電池セルの主表面中心点に関し対称な1組の平行切断予定線により、1対の弓形形状の部分を切除した形状を有する太陽電池のセグメントが、その平行切断線同士を互いに隣接させる形で千鳥状に平行配列して構成されていることを特徴とする。
【0013】
この第一の態様の太陽電池モジュールにおいては、用いる第一セグメントが平行切断線を有するものであり、これを隣接させる配列とすることで、隣り合う第一セグメント同士を比較的長い距離に渡って密接配置できる。従って、円板状の太陽電池セルを配列した場合よりもはるかに高いモジュール充填率が達成できる。また、平行切断線を一組形成すればよいので、六角形状や四角形状のセグメントを得ようとする場合よりも切断工程は単純である。
【0014】
さて、円状の太陽電池セルを上記のような平行切断予定線にて切断を行えば、その両側に合同な2つの弓形の第二セグメントが得られる。本発明の太陽電池モジュールの第二の態様は、太陽電池のセグメントとして、互いに合同な平面形状を有する複数の弓形のセグメントを有し、それら弓形のセグメントの弦部に対し、次のセグメントの弧部を隣接させる形にて複数のセグメントを一方向に配列した第一種セグメント列と、個々のセグメントの弦部と弧部との向きを第一種セグメント列とは逆転させた第二種セグメント列とが形成され、第一種セグメント列の互いに隣接するセグメントの、一方のセグメントの弦部と他方のセグメントの弧部との間に形成される凹状の領域に、第二種セグメント列のセグメントの弦方向端部を入り込ませる形で、それら第一種セグメント列と第二種セグメント列とを交互に配置したことを特徴とする。
【0015】
該太陽電池モジュールの第の態様は、前記した第二セグメントの弦部をなす切断線に対し、次の第二セグメントの弧部を隣接させる形にて、複数の第二セグメントを一方向に配列した第一種セグメント列と、個々の第一のセグメントの弦部と弧部との向きを第一種セグメント列とは逆転させた第二種セグメント列とを形成するとともに、第一種セグメント列の互いに隣接する第二セグメントの、一方の第二セグメントの弦部と他方の第二セグメントの弧部との間に形成される凹状の領域に、第二種セグメント列の第二セグメントの弦方向端部を入り込ませる形で、それら第一種セグメント列と第二種セグメント列とを交互に配置することにより得られる。
【0016】
記の構成において、弓形の第二セグメントは、面積及び形状が等価なため、内部抵抗のほぼ等しい太陽電池として機能する。従って、モジュール化に際して直列接続する太陽電池間の出力電流を容易にマッチングさせることができ、効率のよい太陽電池モジュールを作ることができる。
【0017】
また、第一セグメントばかりからなるモジュールと、第二セグメントばかりからなるモジュールとを併用して太陽光発電に用いる場合、同じ面積の円板状のものを最密に配列してモジュールを作製した場合と比較して、平均的なモジュール充填率を向上させることができる。これにより、実質的には素子のエネルギー変換効率を向上させることと同等の効果が得られる。例えば、平行切断予定線を1組のみ定める態様において、各平行切断予定線とウェーハ中心点との距離を(R/2)に定める場合、1種類の円板状のセルから、前記第一の態様のモジュールと、第二の態様のモジュールとを作製して、それらの面積充填率を平均すると、同じ面積の円板状のものを最密に配列してモジュールを作製した場合と比較して、モジュール充填率は約4%あるいは5%向上する(これについては後述する)。
【0018】
本発明において、半導体単結晶ウェーハを切断してセグメントを形成する際、LSIの製造プロセスで使用するダイサー(ダイヤモンド刃やレーザー切断)を用いることが好ましい。
従来の太陽電池セル形成プロセスにおいて例えば四角形状のセルを形成する場合、外周刃を用いてスライスされているが、これでは切断精度が十分でなく(±0.5mmの精度)、稠密なセル配置を有するモジュールができなかった。これに対し、数μmから数十μmの精度でカットできるダイサーを用いることにより、セル間隔を1mm以下、あるいは500μm以下とした稠密なセル配置を有するモジュールを形成できるだけでなく、セルをならべる作業の自動化を容易にすることができる。
【発明を実施するための最良の形態】
【0019】
以下、本発明を実施するための最良の形態を、図面を用いて説明する。
図1は、太陽電池モジュールの製造工程の一例を示す流れ図である。太陽電池モジュール製造工程は大きくわけて、基板となる単結晶ウェーハ製造工程と、太陽電池セル(セグメント)を製造する工程とに分けられる。
【0020】
基板となる単結晶ウェーハ製造工程について簡単に説明する。太陽電池用半導体単結晶ウェーハとしては、シリコン単結晶ウェーハが一般的である。これらシリコン単結晶ウェーハはCZ法又はFZ法にて得られる単結晶棒をスライスして得ることができるので、CZ法にてまずシリコン単結晶棒を製造する(図1:S1)。なお、育成されるシリコン単結晶棒は、例えばガリウムやボロンを添加することによりp型に導電型が調整される。
【0021】
こうして得られた単結晶インゴットは、一定の抵抗率範囲のブロックに切断され(図1:S2)、例えば厚さ300μm程度に薄くスライシングされる(図1:S3)。スライシング後のシリコン単結晶ウェーハ(以下、単にウェーハともいう)は、必要に応じて面取り加工を施した後、遊離砥粒を用いて両面がラッピングされる(図1:S4)。次に、これをエッチング液に浸漬することにより、両面が化学エッチング処理される(図1:S5)。この化学エッチング工程は、S2〜S4の機械加工工程においてシリコン単結晶ウェーハの表面に生じたダメージ層を除去するために行われる。このダメージ層の化学エッチングによる除去は、例えば弗酸と硝酸と酢酸からなる混酸水溶液による酸エッチングにより行われる。なお、太陽電池用基板としてウェーハが製造される場合、S4のラッピング工程は省略されることが多く、S5のエッチング工程とS6のテクスチャ工程とを同時に行うこともある。
【0022】
化学エッチング処理(図1:S5)までの工程が施されたシリコン単結晶ウェーハに、図2に示すように第一主表面側にn型ドーパントの拡散層42を形成することにより、p−n接合部48を形成する(図1:S7)。ウェーハ41の主表面からp−n接合48までの深さは、通常0.5μm程度である。なお、n型ドーパントの拡散層42は、p型シリコン単結晶ウェーハの主表面から、例えば燐(P)を拡散することにより形成する。
【0023】
p−n接合部48が形成されたウェーハ41は、さらに、酸化膜43を第一主表面に形成した後に、第一主表面及び第二主表面に電極44,45を設け、円板状の太陽電池セルとなる(図1:S8)。これはのちに切断されて形状の異なる太陽電池セグメントとなるので、第一主表面上の電極形成は切断後のセグメントの形状を考慮して行う必要がある。例えば、ウェーハ41の中心点Oに関して対称、かつ平行な1組の直線状の切断予定線(図4参照)を第一主面上に定め、該切断予定線が境界線となるように、中心点Oを含む第一セグメントと、その第一セグメントの両端に隣接する2つの弓形の第二セグメントとに区分して、それぞれの領域ごとにセル形成プロセスを行う方法を例示できる。
【0024】
電極を形成したのち、光の反射による光エネルギーの損失を減らすために、第一主表面側に反射防止膜47を付けることにより(図1:S9)、円板状のシリコン単結晶ウェーハの形状を維持した太陽電池セルとなる。
【0025】
なお、図2の第一主表面(受光面)側の電極44は、p−n接合部48への光の入射効率を高めるために、例えば図3に示すようにフィンガー電極とされ、さらに、内部抵抗低減のため適当な間隔で太いバスバー電極が設けられる。他方、第二主表面側の電極45は該第二主表面の略全面を覆うものとされる(図3:裏面電極)。一方、図2の反射防止膜47は、シリコンと屈折率の異なる透明材料にて構成される。
【0026】
受光面が平坦である場合は、反射防止膜47を形成しても多かれ少なかれ反射が生じてしまうが、化学エッチング工程(図1:S5)の後に、図7に示すように、外面が(111)面の多数のピラミッド状突起からなるテクスチャ構造を第一主表面に形成することにより、反射をさらに抑制することができる(図1:S6)。このようなテクスチャ構造は、シリコン単結晶の(100)面を、ヒドラジン水溶液や水酸化ナトリウムなどのエッチング液を用いて異方性エッチングすることにより形成することができる。また、セルの軽量化のため基板の厚さを薄くする場合は、第二主表面側の電極45での少数キャリアの再結合・消滅を防止するために、図2に示すように、該第二主表面側に基板41と同一導電型であってより高濃度の裏面高濃度層46を形成することができる。
【0027】
以上のようにして得られた太陽電池セルは、ウェーハ41の形状を維持した円板状である。これをダイサーにより切断予定線にて厚み方向に精度よく切断して、図4に示すように、予め領域を定めて電極を形成された、形状の異なる第一セグメント10と2片の第二セグメント20,20に分離させる(図1:S10)。仮に、200mmのCZシリコン単結晶より得たウェーハ41を本発明に採用した場合、中心点Oを含む第一セグメント10の面積は約191.3cm2、中心点Oを含まない第二のセル20,20の面積はそれぞれ約61.37cm2となる。なお、ウェーハ41を所望の形状に切断したのち、その切断したウェーハに対し、セル形成プロセスを行うこともできる。
【0028】
次に、第一セグメント10のみを複数集めて、モジュールの充填率ができるだけ大きくなるように配置する。図5Bは、200mmのシリコン単結晶ウェーハを29枚使用して得た29枚の第一セグメント10の配置例を示した図である。このモジュール100は、第一セグメント10が、その平行切断線同士(弦状の縁)を互いに隣接させる形で千鳥状に平行配列して構成されている。
【0029】
この太陽電池モジュール100は、595mm×1022mmの長方形状となる。図5Aに示すようにセル同士の間隔、及びセルとセルを載置するフレームの端部との間隔は、最も近接している箇所でいずれも2mmである。(モジュール充填率)=(太陽電池セルの占める面積)/(モジュールの占める面積)として計算すると、この太陽電池モジュール100の充填率は約91.2%となる。
また、セル間隔をさらに近接させ、例えば1mmとすることにより、さらに充填率を高めることができる。
【0030】
一方、1対の弓形の第二セグメント20,20を、その切断線同士が対向する形で組み合わせて、モジュールの充填率ができるだけ大きくなるように配置する。図6Bは、図5Bに示した太陽電池モジュール100の場合と同様に200mmのシリコン単結晶ウェーハ41を29枚使用して得た29組の第二セグメント20,20の配置例を示した図である。このモジュール101は、第二セグメント20,20とを組み合わせた対が、千鳥状に平行配列して構成されている。
【0031】
この太陽電池モジュール101は、444mm×1042mmの長方形状となる。先の例と同様に、セル同士の間隔、及びセルとセルを載置する長方形状(あるいは正方形状)のモジュールプレート(フレーム)9の端部との間隔は、最も近接している箇所でいずれも2mmである(図6A)。モジュール充填率を計算すると、この第二の太陽電池モジュール101の充填率は約77.2%となる。なお、千鳥配列の場合は、第二セグメント20,20の列間の配列ずれの影響により、そのずれ方向の末端位置にあるプレート9の縁に沿って、1列毎に比較的大きなデッドスペースDSが生じることになる。これは、第一セグメント10を千鳥配列した図5Bのモジュールにおいても事情は同じである。しかし、図6Bのモジュールにおいては、千鳥配列の単位が2枚の第二セグメント20,20であることから、一点鎖線で示すように、そのデッドスペースDSを1枚の第二セグメント20にて埋めることが可能である。こうすればモジュール充填率はさらに上がり、79.8%に達する。
【0032】
そして、図5B及び図6Bのように構成された第一及び第二の太陽電池モジュールのトータルの充填率を計算すると約85.2%(デッドスペースDSを埋める場合は86.2%)となる。これに対し、分割せずに円板状のままの太陽電池セル29枚を図5B及び図6Bと同様に3列に配置すると、553mm×2022mmのアスペクト比の大きいモジュールとなり、その充填率は約81.4%になる(図示せず)。すなわち、本発明の実施形態である図5B及び図6Bのモジュールは、トータルの充填率で4%(デッドスペースDSを埋める場合は5%)近く高い値を示す。
【0033】
また、図5B及び図6Bのモジュールを組み合わせると、正方形に近い形状のモジュールを構成することができるため、実用上便利である。同様のほぼ正方形のモジュールを上記円形の太陽電池セル29枚で構成しようとすると、モジュール充填率はさらに低くなる。すなわち、本発明によると高レベルのモジュール充填率を維持しつつ、モジュールの形状を選択する自由度も向上する。
【0034】
一方、円板状のままの太陽電池セル29枚のモジュールを14枚(5枚、4枚、5枚の3列配置)と15枚(5枚、5枚、5枚の3列配置)の2つのモジュールに分けて形成すると、前者は553mm×1012mm、後者は553mm×1113mmのモジュールとなり、モジュール形状は本発明のモジュール形状と同等となるが、充填率はそれぞれ約78.6%、約76.6%であり、2つのモジュールのトータルの充填率は77.5%となる。従って、本発明の実施形態である図5B及び図6Bのモジュールは、トータルの充填率で7.5%も高い値が得られることになる。
【0035】
次に、図8に示すように、円板状の太陽電池セルに対し、平行切断予定線を2組定め、第一セグメント21を正方形状に形成することもできる。図8においては、直径200mmの太陽電池セルを用い、これにほぼ内接する正方形状(1辺が140mm)の第一セグメント21を得る例である。この場合は、4つの弓形の第二セグメント22が生ずる。
【0036】
第一セグメント21は、例えば図9に示すように、プレート9上に格子状に配列して太陽電池モジュールとすることができるが、プレート縁及びセグメント間の隙間を一律に2mmとする形でセグメント配列を行えば、このモジュールの面積充填率は約97%に達する。
【0037】
また、第二セグメント22は、図10に示すように、図6と同様の配列による太陽電池モジュールとすることができる(プレート縁に沿うデッドスペースを非対の第二セグメント22で埋めている)。このモジュールの面積充填率は、約80%である。両者の平均の充填率は約89%となり、円板状のままの太陽電池セルを配列したときの充填率(約81.4%)より7.6%向上する。
【0038】
また、図9,図10の場合も、セル間隔を1mm程度あるいはそれ以下に近接させることができるので、さらに充填率を高めることができる。
【0039】
なお、第一セグメント21の形状は、正方形の対角線の長さが、円板状の太陽電池セルの直径Dにほぼ一致する内接正方形の場合に加え、本明細書では、図11の第一セグメント21’に示すように、四隅が円外に少しはみ出した寸法となっている場合も概念に含む。この場合、はみ出した四隅の部分は太陽電池セル部分としての実体はないので、第一セグメント21’の実際の形状は、4隅が欠落した擬似正方形状のものとなる。この場合、四隅を補完した正方形の対角線長さD’が、直径Dの0.98〜1.1倍になっていれば、「正方形状」の概念に属するもとして取り扱う(下限値は1より少し小さくなっていてもよい。これは、切断代による寸法減少を見込めば容易に理解できる)。図12は、このようにして得られた第一セグメント21’による太陽電池モジュールの構成例である。各セグメント21’の四隅が欠落しているために、セグメント21’の頂点が集まっている位置にはデッドスペース23が形成される。従って、面積充填率は僅かではあるが減少するが、ほとんど影響はない。また、図13は、第二セグメント22’を集めた太陽電池モジュールの構成例である。第二セグメント22’の幅が狭くなるので、図10と比較して配置枚数が多くなっていることがわかる。
【0040】
図19は、弓形の第二セグメント22を集めた太陽電池モジュールの別の構成例を示す。この構成では、第二セグメント22の弦部(切断線)22gに対し、次の第二セグメント22の弧部22kを隣接させる形にて、複数の第二セグメント22を一方向に配列した第一種セグメント列30と、個々の第二セグメント22の弦部22gと弧部22kとの向きを第一種セグメント列30とは逆転させた第二種セグメント列40とを有する。そして、第一種セグメント列30の互いに隣接する第二セグメント22,22の、一方の第二セグメント22の弦部22gと他方の第二セグメント22の弧部22kとの間に形成される凹状の領域に、第二種セグメント列40の第二セグメント22の弦方向端部を入り込ませる形で、それら第一種セグメント列30と第二種セグメント列40とを交互に配置したものである。この構成は、図10や図13の千鳥配列のモジュールと同様の、高いセル面積充填率を達成できるとともに、水の流れを髣髴とさせる爽やかな意匠効果が現れるので、建築物等に組み込む際の装飾的な利用価値も高めることができる。
【0041】
なお、円状の太陽電池セルを切断して得られる第一種セグメントあるいは第二種セグメントを用いる場合、切断後のセグメントの寸法バラツキが大きいと、そのバラツキを吸収するために、隣接するセグメント間の間隔を大きく設定する必要が生じ、太陽電池モジュールのセルの面積充填率も下がらざるを得ない。そこで、太陽電池セルの切断は、LSIの製造プロセスで用いられる様な円板状の切断刃を有するダイシング装置を用いることにより、得られる第一種セグメントあるいは第二種セグメントの寸法精度を大幅に高めることができる。その結果、隣接するセグメントをより接近させることができ、セルの面積充填率向上に寄与する。特に、第一種セグメントが正方形状のセルとなる場合、切断後の寸法精度を高めることで、平面を隙間なく埋めることができる正方形特有の幾何学的性質を最大限に引き出すことができ、セルの面積充填率増加への貢献度が大きい。
【0042】
以上説明した実施形態では、太陽電池のセグメントとして第一主表面にフィンガー電極を形成する場合を例に取ったが、以下のような別の種類の太陽電池を用いることもできる。すなわち、図14に示すように、太陽電池のセグメントとして、第一主表面124a上に互いに略平行な複数の溝102が形成され、各溝102の幅方向片側における内側面に出力取出用の電極106が設けられた構造を有するものを用いる。このような構造は、OECO(Obliquely Evaporated Contact)構造と呼ばれる。溝内面を利用することにより電極6の主表面上への射影面積を低減できる結果、電池のシャドウイングロスが大幅に軽減され、高いエネルギー変換効率が達成可能となる。
【0043】
図14においては、p型シリコン単結晶基板の第一主表面124a上に、例えば幅数100μm程度、深さ100μm程度の多数の溝102が互いに平行に形成されている。上記溝刻設した基板の第一主表面124aには、n型ドーパントであるリンを熱拡散することによりエミッタ層104が形成され、p−n接合部が形成されている。そして、そのp−n接合部の上に、トンネル絶縁膜として機能する薄いシリコン酸化膜105が、例えば熱酸化法により形成されている。
【0044】
そして上記シリコン酸化膜105の上に電極106が形成されている。該電極106は、蒸着装置内において電極材料(例えばアルミニウム等の金属)を溝の内側面に蒸着することにより形成されたものであり、その蒸着時においては、溝幅方向における片側の内側面に優先的に電極材料が蒸着されるよう、蒸着源に対し基板101を所定角度以上に相対的に傾けて配置するようにする(これが、OECOの命名の由来でもある:なお、該蒸着時には、溝102,102間に形成された凸状部123の頂面にも余分の電極材料が堆積するが、これは塩酸溶液等のエッチング液にて除去される)。そして、電極106を含む基板101の第一主表面124aの全体が、保護層および反射防止膜として機能する窒化シリコン膜107により覆われている。
【0045】
OECO構造を有するセグメントにおいては、溝形成方向に対して太陽光が最適の角度で当たったとき、変換効率も最大となる。従って、1つのモジュールの中でセグメントの溝の向きがまちまちになっていると、出力ムラを生じてモジュール全体の発電効率を大幅に減少させることにつながる。そこで、モジュール内においては、溝の向きが互いに一致するようにセグメントを配列することが望ましい。図15に示すように、この溝は溝入れ刃により、円板状の基板の段階で一括形成される。従って、この基板から製造される太陽電池セルから切り出された第一セグメント21と第二セグメント22は、溝方向をそれぞれ考慮して、各々を集めたモジュール内に組みつけられる。
【0046】
例えば、図8あるいは図11と同様に正方形状の第一セグメント21を切り出す場合を考える。図16は、溝方向をそろえて第一セグメント21を配列した太陽電池モジュールの例である。また、溝102の方向を第一セグメント21のどちらか1辺の向きに合わせた場合、第二セグメントは、弦状の縁が溝102と平行になるセグメント22aと、同じく直交するセグメント22bとの二種類が生ずる。従って、図17及び図18に示すように、これら2種のセグメント22a,22bは別々に集められ、それぞれ溝方向をそろえた形でプレート9に組みつけられ、太陽電池モジュールとされる。
【0047】
以上示したように、本発明は使用する単結晶ウェーハのロスをなくし、太陽電池モジュール充填率の向上に寄与することは明らかである。なお、本発明は実施例に限定されるものではなく、要旨を逸脱しない範囲にて種々の態様で実施できることはいうまでもない。
【図面の簡単な説明】
【0048】
図1は、本発明に係る太陽電池モジュールの製造工程の一例を示す流れ図。
図2は、シリコン単結晶系太陽電池の断面構造の一例を示す模式図。
図3は、シリコン単結晶系太陽電池の受光面における電極形成形態の一例を模式的に示す斜視図。
図4は、形状の異なる第一セグメント及び第二セグメントを単一のシリコン単結晶ウェーハより切り出す方法を示す模式図。
図5Aは、第一セグメントのみを配置して作製した太陽電池モジュールの要部を示す平面模式図。
図5Bは、図5Aのモジュールの全体図。
図6Aは、第二セグメントの寸法説明図。
図6Bは、第二セグメントのみを配置して作製した太陽電池モジュールの平面模式図。
図7は、テクスチャ構造の概念図。
図8は、第一セグメントと第二セグメントとの分割方法の第一変形例を示す平面模式図。
図9は、図8の第一セグメントを用いた太陽電池モジュールの例を示す平面模式図。
図10は、同じく第二セグメントを用いた太陽電池モジュールの例を示す平面模式図。
図11は、第一セグメントと第二セグメントとの分割方法の第二変形例を示す平面模式図。
図12は、図11の第一セグメントを用いた太陽電池モジュールの例を示す平面模式図。
図13は、同じく第二セグメントを用いた太陽電池モジュールの例を示す平面模式図。
図14は、OECO構造の太陽電池セグメントの断面構造を模式的に示す図。
図15は、OECO構造の太陽電池セルを、正方形状の第一セグメントと、弓形の第二セグメントとに分割する例を示す平面模式図。
図16は、図15の第一セグメントを用いた太陽電池モジュールの例を示す平面模式図。
図17は、同じく2種の第二セグメントの一方を用いた太陽電池モジュールの例を示す平面模式図。
図18は、同じく2種の第二セグメントの他方を用いた太陽電池モジュールの例を示す平面模式図。
図19は、第二セグメントを用いた太陽電池モジュールの別例を示す平面模式図。
【符号の説明】
【0049】
10 21 第一セグメント
20 22 第二セグメント
22g 弦部
22k 弧部
30 第一種セグメント列
40 第二種セグメント列
41 半導体単結晶ウェーハ(太陽電池用基板)
100 101 太陽電池モジュール
102 溝
106 出力取出用の電極
124a 第一主表面

Claims (3)

  1. シリコン単結晶棒をスライスして得られた半導体単結晶ウェーハによって太陽電池用基板を形成し、その円板状を成す太陽電池用基板を互いに形状の異なるセグメントに分割形成し、それらセグメントの同種のものをそれぞれ集め、各セグメントの種別ごとにそれらを平面的に配列した太陽電池モジュールの製造方法であって、
    前記太陽電池用基板の前記セグメントには、分割前に太陽電池セル形成のためのセル形成プロセスが行われ、形状の異なる前記セグメントを得るために、前記半導体単結晶ウェーハの主表面上に切断予定線として、ウェーハ中心点に関して対称な位置にある平行線の組(以下、平行切断予定線という)を1組設定し、該平行切断予定線が境界線となるように、前記半導体単結晶ウェーハを、前記ウェーハ中心点を含む第一セグメントの形成領域と、その第一セグメントの形成領域の残余の領域である弓形の第二セグメントの形成領域とに区分してセル形成プロセスを行って前記太陽電池セルとなし、前記切断予定線にて前記太陽電池用基板を厚み方向に切断し、
    前記第一セグメントについては、複数の第一セグメントを、前記平行切断予定線により形成される平行切断線同士が互いに隣接するように列方向に配置し、更に前記第一セグメントは千鳥状に複数列にわたって配置されており、
    前記第二セグメントについては、前記第二セグメントの弦部をなす切断線に対し、次の第二セグメントの弧部を隣接させる形にて、複数の第二セグメントを一方向に配列した第一種セグメント列と、個々の第二セグメントの弦部と弧部との向きを前記第一種セグメント列とは逆転させた第二種セグメント列とを形成するとともに、
    前記第一種セグメント列の互いに隣接する第二セグメントの、一方の第二セグメントの弦部と他方の第二セグメントの弧部との間に形成される凹状の領域に、前記第二種セグメント列の第二セグメントの弦方向端部を入り込ませる形で、それら第一種セグメント列と第二種セグメント列と交互に配置されており、
    前記太陽電池セルを切断して得たそれぞれのセグメントには、第一主表面上に互いに略平行な複数の溝が形成され、各溝の幅方向片側における内側面に出力取出用の電極が設けられた構造を有するものを用い、それらセグメントを、前記溝の向きが互いに一致するように配置されていることを特徴とする太陽電池モジュールの製造方法。
  2. 円状をなす前記太陽電池用基板の前記第一主表面の半径をRとしたとき、各前記平行切断予定線と前記ウェーハ中心点との距離を(R/2)に定めることを特徴とする請求項1に記載の太陽電池モジュールの製造方法。
  3. シリコン単結晶棒をスライスして得られた半導体単結晶ウェーハによって太陽電池用基板を形成し、その円板状を成す太陽電池用基板は、ウェーハ中心点に関して対称な位置にある1組の平行な直線状切断予定線によって厚み方向に切断され、
    前記太陽電池用基板の切断によって、前記ウェーハ中心点を含む第一セグメントと、その第一セグメントの残余の領域である湾曲縁と直線縁を有する弓形の第二セグメントとによって、形状が異なる2種のセグメントが構成され、
    前記第一セグメントについては、複数の第一セグメントを、前記平行切断予定線により形成される平行切断線同士が互いに隣接するように列方向に配置し、更に前記第一セグメントは千鳥状に複数列にわたって配置され、
    前記第二セグメントについては、その弓形の第二セグメントの弦部に対し、次の第二セグメントの弧部を隣接させる形にて複数の第二セグメントを一方向に配列した第一種セグメント列と、個々の第二セグメントの弦部と弧部との向きを前記第一種セグメント列とは逆転させた第二種セグメント列と形成するとともに
    前記第一種セグメント列の互いに隣接する第二セグメントの、一方の第二セグメントの弦部と他方の第二セグメントの弧部との間に形成される凹状の領域に、前記第二種セグメント列の第二セグメントの弦方向端部を入り込ませる形で、それら第一種セグメント列と第二種セグメント列と交互に配置されており、
    前記太陽電池セルを切断して得たそれぞれのセグメントには、第一主表面上に互いに略平行な複数の溝が形成され、各溝の幅方向片側における内側面に出力取出用の電極が設け られた構造を有するものを用い、それらセグメントは、前記溝の向きが互いに一致するように配置されていることを特徴とする太陽電池モジュール。
JP2003572098A 2002-02-28 2002-11-08 太陽電池モジュール及びその製造方法 Expired - Lifetime JP4210220B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002053882A JP2002343999A (ja) 2001-03-13 2002-02-28 太陽電池モジュール及びその製造方法
JP2002053882 2002-02-28
PCT/JP2002/011648 WO2003073516A1 (fr) 2002-02-28 2002-11-08 Module solaire et son procede de fabrication

Publications (2)

Publication Number Publication Date
JPWO2003073516A1 JPWO2003073516A1 (ja) 2005-06-23
JP4210220B2 true JP4210220B2 (ja) 2009-01-14

Family

ID=27764374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003572098A Expired - Lifetime JP4210220B2 (ja) 2002-02-28 2002-11-08 太陽電池モジュール及びその製造方法

Country Status (7)

Country Link
US (1) US20050126619A1 (ja)
EP (1) EP1480277B1 (ja)
JP (1) JP4210220B2 (ja)
AU (1) AU2002367723A1 (ja)
ES (1) ES2554504T3 (ja)
TW (1) TWI256145B (ja)
WO (1) WO2003073516A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534077B2 (ja) * 2003-10-20 2010-09-01 信越化学工業株式会社 太陽電池モジュールの製造方法
ES2365904T3 (es) * 2004-01-13 2011-10-13 Sanyo Electric Co., Ltd. Dispositivo fotovoltaico.
US7714224B2 (en) * 2004-09-03 2010-05-11 Shin - Etsu Chemical Co., Ltd. Photovoltaic power generation module and photovoltaic power generation system employing same
JP2006339342A (ja) * 2005-06-01 2006-12-14 Shin Etsu Handotai Co Ltd 太陽電池および太陽電池の製造方法
JP5142565B2 (ja) * 2007-03-20 2013-02-13 三洋電機株式会社 太陽電池の製造方法
TWI419349B (zh) * 2007-07-26 2013-12-11 Univ Konstanz 具有回蝕刻射極之矽太陽能電池的製造方法及對應的太陽能電池
DE102008043833B4 (de) * 2008-11-18 2016-03-10 Maximilian Scherff Solarzellensystem, Solarmodul und Verfahren zur elektrischen Verschaltung rückseitenkontaktierter Solarzellen
TWI385813B (zh) * 2009-02-09 2013-02-11 Mitsubishi Electric Corp Method for manufacturing solar cells
JP5527417B2 (ja) * 2010-09-14 2014-06-18 信越化学工業株式会社 太陽電池及びその製造方法
JP2012089577A (ja) * 2010-10-15 2012-05-10 Mitsubishi Electric Corp 太陽電池モジュール
DE112013002371T5 (de) * 2012-05-09 2015-01-22 Sanyo Electric Co., Ltd Solarzellenmodul
IN2014DN09396A (ja) * 2012-05-09 2015-07-17 World Panel Inc
US9088169B2 (en) 2012-05-09 2015-07-21 World Panel, Inc. Power-conditioned solar charger for directly coupling to portable electronic devices
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US9780253B2 (en) * 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
CN103928572A (zh) * 2014-04-21 2014-07-16 上海空间电源研究所 一种太阳电池的制造方法
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
US10861999B2 (en) 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
US10673379B2 (en) 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
US11063166B2 (en) * 2017-10-05 2021-07-13 Sunpower Corporation System and method for shingling wafer strips connected in parallel
KR102524019B1 (ko) * 2018-03-26 2023-04-21 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지 및 이를 이용한 태양전지 모듈과 이의 제조 방법
WO2020246698A1 (ko) * 2019-06-03 2020-12-10 주성엔지니어링(주) 태양전지 제조방법
CN112750917B (zh) * 2019-10-30 2022-08-12 泰州隆基乐叶光伏科技有限公司 电池组件生产方法、电池组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369939A (en) * 1962-10-23 1968-02-20 Hughes Aircraft Co Photovoltaic generator
JPS51122574U (ja) * 1975-03-28 1976-10-04
US4089705A (en) * 1976-07-28 1978-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hexagon solar power panel
US4227940A (en) * 1978-08-21 1980-10-14 Optical Coating Laboratory, Inc. Solar cell for use in concentrator
US4313023A (en) * 1979-02-28 1982-01-26 Exxon Research & Engineering Co. Solar cell module
JP3349318B2 (ja) * 1995-11-27 2002-11-25 三洋電機株式会社 太陽電池モジュール
DE19741832A1 (de) * 1997-09-23 1999-03-25 Inst Solarenergieforschung Verfahren zur Herstellung einer Solarzelle und Solarzelle
JP3617923B2 (ja) * 1998-04-06 2005-02-09 信越化学工業株式会社 単結晶シリコン太陽電池及びモジュールの作製方法
JP2001094127A (ja) * 1999-09-20 2001-04-06 Shin Etsu Chem Co Ltd 太陽電池用基板、太陽電池および太陽電池モジュールならびにこれらの製造方法
JP2002076413A (ja) * 2000-08-28 2002-03-15 Sanyo Electric Co Ltd 太陽電池装置

Also Published As

Publication number Publication date
EP1480277A1 (en) 2004-11-24
ES2554504T3 (es) 2015-12-21
WO2003073516A1 (fr) 2003-09-04
TWI256145B (en) 2006-06-01
EP1480277B1 (en) 2015-09-30
US20050126619A1 (en) 2005-06-16
TW200303620A (en) 2003-09-01
JPWO2003073516A1 (ja) 2005-06-23
EP1480277A4 (en) 2009-08-19
AU2002367723A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
JP4210220B2 (ja) 太陽電池モジュール及びその製造方法
US9583668B2 (en) Semiconductor device
US4082570A (en) High intensity solar energy converter
US8822260B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
US20220278246A1 (en) Bifacial crystalline silicon solar panel with reflector
JP2001094127A (ja) 太陽電池用基板、太陽電池および太陽電池モジュールならびにこれらの製造方法
CN111223949A (zh) 单晶电池片切割方法、单晶电池片、光伏组件及制备方法
JP4534077B2 (ja) 太陽電池モジュールの製造方法
US4174561A (en) Method of fabricating high intensity solar energy converter
JP2001352083A (ja) 太陽電池セル及びその製造方法
JP2024016070A (ja) 太陽電池及びその製造方法、太陽光発電モジュール及び太陽光発電システム
CN1965415B (zh) 多晶硅板制备方法
JP2002343999A (ja) 太陽電池モジュール及びその製造方法
JP2023163098A (ja) 太陽電池およびその製造方法、光起電力モジュール
JP2003179248A (ja) 太陽電池モジュール及びその製造方法
JP5541409B2 (ja) 太陽電池の製造方法
KR20110060083A (ko) 태양전지용 기판 및 그 제조방법 그리고 이를 이용한 태양전지 모듈
JP2003282901A (ja) 太陽電池モジュールの製造方法
JP2013110187A (ja) 光電変換素子およびその製造方法
JP2013089624A (ja) 結晶シリコン太陽電池モジュールおよび結晶シリコン太陽電池モジュールの製造方法
JP2009043822A (ja) 光起電力装置の製造方法
CN118053921A (zh) 太阳能电池及其制备方法、光伏组件
JPH03206669A (ja) 太陽電池
AU2013201557A1 (en) Process for decreasing the reflectivity of a semiconductor material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4210220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term