WO2020246698A1 - 태양전지 제조방법 - Google Patents

태양전지 제조방법 Download PDF

Info

Publication number
WO2020246698A1
WO2020246698A1 PCT/KR2020/004684 KR2020004684W WO2020246698A1 WO 2020246698 A1 WO2020246698 A1 WO 2020246698A1 KR 2020004684 W KR2020004684 W KR 2020004684W WO 2020246698 A1 WO2020246698 A1 WO 2020246698A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
solar cell
manufacturing
scribing
moving
Prior art date
Application number
PCT/KR2020/004684
Other languages
English (en)
French (fr)
Inventor
김정배
강준영
문향주
민선기
서정호
신원석
신현교
윤영태
임경진
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190065440A external-priority patent/KR102629917B1/ko
Priority claimed from KR1020190065826A external-priority patent/KR102720681B1/ko
Priority claimed from KR1020190065820A external-priority patent/KR20200139383A/ko
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to JP2021568393A priority Critical patent/JP7542011B2/ja
Priority to CN202080027772.8A priority patent/CN113711369A/zh
Priority to US17/438,416 priority patent/US20220149224A1/en
Priority to EP20818238.6A priority patent/EP3979339A4/en
Publication of WO2020246698A1 publication Critical patent/WO2020246698A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell, and relates to a solar cell in which a substrate-type solar cell and a thin-film solar cell are combined.
  • a solar cell is a device that converts light energy into electrical energy using the properties of a semiconductor.
  • the solar cell has a PN junction structure in which a P (positive) type semiconductor and an N (negative) type semiconductor are bonded.
  • the semiconductor When sunlight is incident on a solar cell of this structure, the semiconductor is generated by the energy of the incident sunlight. Holes and electrons are generated within, and at this time, due to the electric field generated in the PN junction, the holes (+) move toward the P-type semiconductor and the electrons (-) move toward the N-type semiconductor. When is generated, electricity can be produced.
  • such solar cells can be classified into substrate-type solar cells and thin-film solar cells.
  • the substrate-type solar cell is a solar cell manufactured by using a semiconductor material such as a silicon wafer itself as a substrate
  • the thin-film solar cell is a solar cell manufactured by forming a semiconductor in the form of a thin film on a substrate such as glass. .
  • the substrate-type solar cell has an advantage of superior efficiency compared to the thin-film solar cell, and the thin-film solar cell has an advantage of reducing manufacturing cost compared to the substrate-type solar cell.
  • FIGS. 1A to 1D are schematic side views illustrating a method of manufacturing a solar cell according to the prior art.
  • a seating process of mounting a cell having a plurality of thin film layers formed thereon in a processing space (not shown) for manufacturing a solar cell is performed.
  • the processing space may be entirely implemented as a chamber.
  • a scribing process of irradiating a laser toward the cell 100 is performed.
  • a cell separation unit 200 for separating the cell 100 into a plurality of unit cells 100a may be formed.
  • the scribing process may be performed by a scribing device 200a that irradiates a laser to the cell 100.
  • a coating process of spraying the conductive material 300 onto the cell 100 is performed.
  • the conductive material 300 may be sprayed onto the cell 100.
  • the coating process may be performed by a conductive material sprayer 200a spraying the conductive material 300 onto the cell 100.
  • a cutting process for separating the cell 100 into a plurality of unit cells 100a is performed.
  • the cell 100 may be divided into a plurality of unit cells 100a through the cell separation unit 200.
  • Fig. 1c if the cell 100 is to be separated into five unit cells 100a, 100a', 100a'', 100a''', 100a''', 4 cutting processes are required. Can be done.
  • the bonding process may be performed by bonding the separated unit cells 100a via the conductive material 300.
  • the solar cell 1000 in the form of a module in which the unit cells 100a are connected to each other may be manufactured.
  • the present invention has been conceived to solve the above-described demands, and is to provide a method of manufacturing a solar power capable of improving the quality of solar cells, manufacturing time of solar cells, and manufacturing cost of solar cells.
  • the present invention may include the following configurations to solve the above problems.
  • the solar cell manufacturing method includes a seating process for mounting a cell in which a plurality of thin film layers are formed in a processing space for manufacturing a solar cell, a coating process for spraying a conductive material on the cell, and the cell as a plurality of unit cells. It may include a scribing process of irradiating a laser toward the cell to form a cell separation portion for separation.
  • the coating process may be performed first before the scribing process is performed.
  • the coating process and the scribing process may be performed in parallel.
  • the solar cell manufacturing method is a mounting process for mounting a cell having a plurality of thin film layers in a processing space for manufacturing a solar cell, and N-1 for separating the cell into N (N is an integer of 3 or more) unit cells.
  • a bonding process performed immediately immediately after the cutting process may be included. The cutting process and the bonding process may be repeatedly performed.
  • the solar cell manufacturing method separates the substrate into two pieces along any one cell separation unit among N-1 cell separation units for separating the substrate into N (N is an integer of 3 or more) unit pieces.
  • a cutting process and a bonding process of bonding the separated two pieces may be included.
  • the cutting process and the bonding process may each be repeated N-1 times.
  • the present invention since it is possible to increase the bonding strength of the conductive material, it is possible to improve the completeness of the bonding process. In addition, according to an embodiment of the present invention, it is possible to reduce the probability of occurrence of cracks on the cell, and thus, the quality of the completed solar cell may be improved.
  • FIGS. 1A to 1D are schematic side views illustrating a method of manufacturing a solar cell according to the prior art.
  • FIG. 2 is a schematic flowchart of a solar cell manufacturing method according to the present invention
  • 3A and 3B are schematic side views illustrating a coating process and a scribing process in the solar cell manufacturing method according to the present invention.
  • FIG. 4 is a schematic process side view showing that the solar cell manufacturing method according to the present invention is performed by a plurality of conductive material injectors and a plurality of scribing devices
  • FIG. 5 is a schematic process side view showing a cutting process in the solar cell manufacturing method according to the present invention
  • FIG. 6 is a schematic side view showing a solar cell in which a bonding process and a curing process are performed in the solar cell manufacturing method according to the present invention
  • FIG. 7 is a schematic flowchart of a solar cell manufacturing method according to a second embodiment of the present invention.
  • FIGS. 8A and 8B are schematic process side views showing an embodiment of a solar cell manufacturing method according to a second embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a solar cell manufacturing method according to a third embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a bonding process in a solar cell manufacturing method according to a third embodiment of the present invention
  • FIG. 11 is a schematic process side view of a scribing process in the solar cell manufacturing method according to the third embodiment of the present invention
  • FIG. 12 is a schematic process side view of a coating process in the solar cell manufacturing method according to the third embodiment of the present invention
  • FIGS. 13A to 13E are schematic side views of a cutting process and a bonding process in a solar cell manufacturing method according to the prior art.
  • FIGS. 14A to 14H are schematic side views of a cutting process and a bonding process in the solar cell manufacturing method according to the third embodiment of the present invention.
  • 15A to 15E are schematic process side views of a module process in a solar cell manufacturing method according to a third embodiment of the present invention
  • each of the features of the various embodiments of the present invention can be partially or entirely combined or combined with each other, technically various interlocking and driving are possible, and each of the embodiments can be implemented independently of each other or can be implemented together in a related relationship. May be.
  • positional relationship for example, if the positional relationship of two parts is described as'upper','upper of','lower of','next to','right' Or, unless'direct' is used, one or more other parts may be located between the two parts.
  • temporal relationship for example, when a temporal predecessor relationship is described as'after','following','after','before', etc.,'right' or'direct' It may also include cases that are not continuous unless this is used.
  • the solar cell manufacturing method according to the present invention is to manufacture a solar cell that converts light energy of sunlight into electric energy.
  • the solar cell manufacturing method according to the present invention can be used to manufacture a substrate type solar cell and a thin film type solar cell.
  • description will be made on the basis of manufacturing a substrate-type solar cell through the solar cell manufacturing method according to the present invention, but manufacturing a thin-film solar cell using the solar cell manufacturing method according to the present invention is a person skilled in the art. It will be obvious to you.
  • the solar cell manufacturing method includes a seating process (S100) of seating a cell having a plurality of thin film layers formed in a processing space for manufacturing a solar cell, and conduction on the cell (1).
  • a laser is irradiated toward the cell 1 to form a coating process (S200) of spraying the material 20, and a cell separation unit 30 for separating the cell 1 into a plurality of unit cells 10 ( It may include a scribing process (S300) to reflect.
  • the solar cell manufacturing method according to the present invention may include a cell manufacturing process of forming a plurality of thin film layers on the substrate before the seating process S100 is performed.
  • a cell manufacturing process of forming a plurality of thin film layers on the substrate before the seating process S100 is performed.
  • the cell manufacturing process is a process of forming a plurality of thin film layers on a substrate having an electrically conductive polarity.
  • the cell 1 refers to a stack of a plurality of thin film layers on the substrate.
  • a potential difference occurs due to the movement of the holes and the electrons in the cell 1, the solar cell manufactured by the solar cell manufacturing method according to the present invention can generate power.
  • a plurality of thin film layers may be stacked on the substrate.
  • the cell manufacturing process may include the following processes.
  • the substrate is prepared.
  • the substrate may be made of a silicon wafer, and specifically, may be made of an N-type silicon wafer or a P-type silicon wafer.
  • the upper and lower surfaces of the substrate may have a concave-convex structure, and in this case, each of the layers formed on the upper and lower surfaces of the substrate in a process to be described later has a concave-convex structure. Is formed.
  • the first thin film layer may be a semiconductor layer formed in the form of a thin film on the substrate.
  • the first thin film layer may form a PN junction with the substrate. Accordingly, when the substrate is made of an N-type silicon wafer, the first thin film layer may be made of a P-type semiconductor layer.
  • the first thin film layer may be formed using a chemical vapor deposition (CVD) process or the like.
  • the first thin layer may be formed in a PIN structure in which a P-type semiconductor material, an I-type semiconductor material, and an N-type semiconductor material are sequentially stacked.
  • the I-type semiconductor material becomes depleted by the P-type semiconductor material and the N-type semiconductor material, thereby generating an electric field inside, which is generated by sunlight. Holes and electrons are drifted by the electric field and are collected in the P-type semiconductor material and the N-type semiconductor material, respectively.
  • the solar cell manufacturing method according to the present invention may be formed such that the first thin film layer has a stacked structure.
  • the first thin film layer may be formed to have a tandem [Tandem (PIN/PIN)] type or a triple [Triple (PIN/PIN/PIN)] type stacked structure.
  • the first thin film layer may be formed on the upper surface of the substrate.
  • the first thin film layer may be formed on an upper surface of a substrate and a lower surface of the substrate, respectively.
  • the second thin film layer may be a transparent conductive layer formed on the first thin film layer.
  • the second thin film layer may protect the first thin film layer and collect carriers, such as holes (+), generated in the substrate, and move the collected carriers upward.
  • the second thin film layer may be made of a transparent conductive material such as Indium Tin Oxide (ITO), ZnOH, ZnO:B, ZnO:Al, SnO 2 , SnO 2 :F.
  • the second thin film layer may be formed of a transparent conductive material such as ZnO, ZnO:B, ZnO:Al, or Ag using a sputtering method or an MOCVD method.
  • the second thin film layer has a function of increasing a ratio of light re-incident to the first thin film layer by scattering sunlight to proceed at various angles. Meanwhile, in the solar cell manufacturing method according to the present invention, only the first thin film layer may be formed without forming the second thin film layer. That is, the solar cell manufacturing method according to the present invention may selectively form the second thin film layer.
  • the cell manufacturing process may include a process of forming an electrode on a substrate.
  • the electrodes may be disposed on the substrate to be spaced apart at predetermined intervals.
  • the process of forming the electrode may be performed before forming the thin film layer on the substrate.
  • the electrode may be formed on the substrate.
  • the electrode may be formed on each of the upper surface of the substrate and the lower surface of the substrate.
  • the electrode may be formed on the thin film layer.
  • the electrode may be formed on each of the upper surface of the thin film layer and the lower surface of the thin film layer.
  • the seating process 100, the coating process S200, and the scribing process S300 may be performed.
  • the solar cell manufacturing method according to the present invention is implemented in various embodiments.
  • embodiments of the solar cell manufacturing method according to the present invention will be sequentially described with reference to the accompanying drawings.
  • the solar cell manufacturing method according to the first embodiment of the present invention is implemented such that the coating process S200 is performed before the scribing process S300 is performed. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention can achieve the following effects.
  • the solar cell manufacturing method according to the first embodiment of the present invention includes the scribing process (S300). Since the coating process (S200) is performed first compared to ), the coating process (S200) may be performed without particles generated by the scribing process (S300) on the cell 1. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention can increase the bonding strength of the conductive material 20. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention can improve the completeness of the process of bonding the unit cells 10 using the conductive material 20.
  • the solar cell manufacturing method according to the first embodiment of the present invention since the conductive material 20 is applied in advance on the area where the scribing process (S300) is performed, the conductive material 20 It is possible to implement a suppression force that suppresses the possibility of cracks on the cell 1. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention can improve the quality of the completed solar cell.
  • the seating process (S100), the coating process (S200), and the scribing process (S300) may be implemented as follows.
  • the seating process (S100) may be a process of seating the cell in the processing space for manufacturing a solar cell.
  • the seating process may be performed by a loading device (not shown) that loads the cell into the processing space.
  • the processing space accommodates manufacturing apparatuses (not shown) necessary for manufacturing solar cells therein, and may be implemented as a whole chamber.
  • the coating process S200 may be a process of spraying the conductive material 20 onto the cell 1.
  • the coating process (S200) may be performed after the mounting process (S100).
  • the coating process S200 may be performed by a conductive material injector 2 that injects the conductive material 20.
  • the conductive material injector 2 may inject the conductive material 20 into a coating area, which is one area on the cell 1.
  • the conductive material 20 may be implemented as a conductive material.
  • 3A and 3B schematically show that one conductive material 20 is sprayed on the cell 1. In FIGS. 3A to 4, the coating process S200 is shown to be performed on the upper surface 1a of the cell 1, but this is exemplary, and the coating process S200 is performed on the lower surface of the cell 1 ( It can also be done in 1b).
  • the coating process S200 may include a process of spraying a plurality of conductive materials 20 on the cell 1.
  • the process of injecting the plurality of conductive materials 20 may be performed by the plurality of conductive material injectors 2.
  • the coating process S200 includes four conductive material sprayers 2, 2', 2'', 2''). Therefore, when the first conductive material injector 2 sprays the conductive material 20 into the first coating area of the cell 1, the second conductive material injector 2'is spaced apart from the first coating area.
  • the conductive material 20 is sprayed on the second coating area, and the third conductive material sprayer 2'' is applied to the third coating area spaced apart from each of the first coating area and the second coating area.
  • the fourth conductive material sprayer (2 ′′') applies the conductive material 20 to the fourth coating area separated from each of the first coating area, the second coating area, and the third coating area.
  • the conductive material injectors 2, 2 ′, 2 ′′, 2 ′′ ′ may be disposed to be spaced apart at predetermined intervals. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention may be implemented so that the coating process S200 is performed on the entire surface of the cell 1.
  • the solar cell manufacturing method according to the first embodiment of the present invention can reduce the time required for the coating process (S200).
  • the first coating area, the second coating area, the third coating area, and the fourth coating area may be one areas existing on the upper surface 1a of the cell 1.
  • the scribing process S300 may be a process of forming a cell separation unit 30 for separating the cell 1 into a plurality of unit cells 10.
  • the scribing process (S300) may be performed after the coating process (S200).
  • the scribing process (S300) may be performed by the scribing device 3 that irradiates a laser toward the cell 1.
  • the scribing device 3 may irradiate a laser to a scribing area, which is an area on the cell 1.
  • the scribing area and the coating area may be disposed in different areas of the cell 1.
  • 3B and 4 schematically show the laser irradiated by the scribing device 3.
  • 3B and 4 show that the scribing process (S300) is performed on the lower surface (1b) of the cell (1), but this is exemplary, and the scribing process (S300) is performed by the cell (1). ) May be performed on the upper surface 1a.
  • the scribing process (S300) may be performed by irradiating a laser toward the cell 1. Accordingly, the cell separation unit 30 may be formed by removing a predetermined area of the cell 1. The cell separation unit 30 may be implemented as a groove recessed by a predetermined depth from the surface of the cell 1. The cell separation unit 30 may be formed to extend from one side of the cell 1 to the other side. 3B shows that one cell separation unit 30 is formed on the cell 1.
  • the scribing process S300 may include a process of forming a plurality of cell separation units 30 on the cell 1.
  • the process of forming the plurality of cell separation units 30 may be performed by a plurality of scribing devices 3.
  • the scribing process S300 includes the four scribing devices 3, 3', 3'', 3'').
  • the first scribing device 3 irradiates the laser to the first scribing area of the cell 1
  • the second scribing device 3 ′ from the first scribing area
  • a laser is irradiated to the spaced second scribing area
  • the third scribing device (3'') provides a third scribing spaced apart from each of the first scribing area and the second scribing area.
  • the fourth scribing device (3 ′′') is separated from each of the first scribing area, the second scribing area, and the third scribing area.
  • a laser may be irradiated to the fourth scribing area.
  • the scribing devices 3, 3', 3", 3"' may be arranged to be spaced apart at a predetermined interval. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention may be implemented such that the scribing process S300 is performed on the entire surface of the cell 1. Therefore, the solar cell manufacturing method according to the first embodiment of the present invention can reduce the time required for the scribing process (S300).
  • the first scribing area, the second scribing area, the third scribing area, and the fourth scribing area may be one areas existing on the lower surface 1b of the cell 1. have.
  • the scribing process (S300) may be performed by irradiating a laser onto the coating area.
  • the scribing process (S300) and the coating process (S200) may be performed on the same surface of the cell 1.
  • the solar cell manufacturing method according to the first embodiment of the present invention is implemented to irradiate a laser to a region on which the conductive material 20 is previously applied, so that the crack is generated by the scribing process (S300). It can reduce the likelihood. Therefore, the solar cell manufacturing method according to the first embodiment of the present invention can improve the quality of the solar cell.
  • the coating process (S200) is performed by a transparent conductive film ( Transparent Conductive Films, TCF) can be used. Accordingly, the solar cell manufacturing method according to the first embodiment of the present invention can reduce the probability of occurrence of cracks and implement a transmittance through which the laser can penetrate the conductive material 20.
  • the coating process S200 and the scribing process S300 may be performed at different positions of the cell 1.
  • the coating process S200 may be performed in the first application area spaced apart from the first scribing area.
  • the conductive material ( 20) can be implemented to suppress the curing ( ⁇ ) inhibiting power.
  • the coating process S200 and the scribing process S300 may be performed at a location spaced apart from the first axial direction.
  • the first axis direction may be a direction parallel to the direction in which the scribing device 3 irradiates the laser. Accordingly, in the solar cell manufacturing method according to the first embodiment of the present invention, regions in which the coating process S200 and the scribing process S300 are performed may be separated from each other.
  • the coating process S200 and the scribing process S300 may be performed on different surfaces of the cell 1.
  • the coating process S200 may be performed on the upper surface 1a of the cell 1 and the scribing process S300 may be performed on the lower surface 1b of the cell 1. Accordingly, in the solar cell manufacturing method according to the first embodiment of the present invention, by separating the surfaces on which the coating process (S200) and the scribing process (S300) are performed, the conductive material ( 20) It is possible to implement an inhibitory force that suppresses curing.
  • the solar cell manufacturing method according to the first embodiment of the present invention may include a cutting process S400 of separating the cell 1 into unit cells 10.
  • the cutting process S400 may be a process for separating the cell 1 into a plurality of unit cells 10.
  • the cutting process S400 may be performed after the scribing process S300.
  • the first of the present invention The solar cell manufacturing method according to the first embodiment may include four cutting processes (S400). That is, in the case of separating the cell 1 into L (L is an integer of 2 or more) unit cells 10, the solar cell manufacturing method according to the first embodiment of the present invention comprises the cutting process L-1 ( S400) may be included.
  • the cutting process S400 is performed, the cell 1 may be divided into a plurality of unit cells 10 based on the cell separation unit 30.
  • the cutting process S400 may be performed by a cutting robot (not shown) that separates the cell 1 into the unit cell 10.
  • the solar cell manufacturing method according to the first embodiment of the present invention may include a bonding process (S500) of bonding the separated unit cells 10.
  • the bonding process S500 may be a process of bonding the separated unit cells 10.
  • the bonding process (S500) may be performed by bonding the separated unit cells 10 via the conductive material 20.
  • the bonding process (S500) may be performed after the cutting process (S400).
  • the solar cell manufacturing method according to the first embodiment of the present invention may include four bonding steps (S500). That is, when L unit cells 10 are to be bonded, the solar cell manufacturing method according to the first embodiment of the present invention may include the bonding step L-1 (S500).
  • the bonding process (S500) is a process of bonding an upper surface of one side of the first unit cell 10 and a lower surface of one side of the second unit cell 10 ′, as shown in FIG. 6, and a second unit cell 10 ′.
  • One side and the other side of each of the unit cells 10 may be disposed at positions opposite to each other based on an intermediate point of the unit cell 10.
  • the bonding process S500 may be performed by a transfer robot (not shown) that moves the separated unit cells 10.
  • the solar cell manufacturing method according to the first embodiment of the present invention may include a curing process (S600).
  • the curing process (S600) is a process of curing the bonded unit cells 10.
  • the curing process (S600) may be performed after the bonding process (S500).
  • the curing process S600 may be performed by a heating device (not shown) that heats the unit cells 10 joined together.
  • a solar cell 10A in the form of a module in which the unit cells 10 are connected to each other may be manufactured. 6 shows that the solar cell 10A is composed of five unit cells 10, but this is exemplary, and the solar cell 10A is composed of two or more and four or less unit cells 10, or Or, it may be composed of six or more unit cells 10.
  • the solar cell manufacturing method according to the second embodiment of the present invention is implemented such that the coating process (S200) and the scribing process (S300) are performed in parallel. Accordingly, the solar cell manufacturing method according to the second embodiment of the present invention can achieve the following effects.
  • the solar cell manufacturing method according to the second embodiment of the present invention is implemented so that the coating process (S200) and the scribing process (S300) are simultaneously performed, the time required for manufacturing the solar cell can be reduced. Therefore, the solar cell manufacturing method according to the second embodiment of the present invention can increase the mass productivity of the solar cell.
  • the solar cell manufacturing method according to the second embodiment of the present invention includes a series of transferring the cell 1 between the space in which the scribing process (S300) is performed and the space in which the application process (S200) is performed. It is implemented to omit the process of. Accordingly, the solar cell manufacturing method according to the second embodiment of the present invention can reduce the manufacturing cost of the solar cell by reducing the equipment cost such as the cell transport means (not shown) used for the cell (1) transport. have.
  • the seating process (S100), the coating process (S200), and the scribing process (S300) may be implemented as follows. Since the seating process (S100), the coating process (S200), and the scribing process (S300) may be implemented in approximately the same manner as described in the method for manufacturing a solar cell according to the first embodiment of the present invention. , The explanation is mainly focused on the parts with differences.
  • the step of forming the plurality of cell separating units 30 may include moving the scribing device 3 along a first axis direction. It can also be performed by moving.
  • a scribing transfer means (not shown) for moving the scribing devices 3 may be installed.
  • the first axial direction may be a direction perpendicular to a direction in which the laser is irradiated on the cell 1.
  • the process of forming the plurality of cell separation units 30 is as follows: It can be done together.
  • two cell separation units 30 are formed on the right side of the cell 1 by means of the scribing devices 3 and 3'.
  • the scribing device 3 can move along the first axis direction by the scribing transfer means.
  • two cell separation units 30 are formed on the left side of the cell 1 through the scribing devices 3 and 3 ′ based on the midpoint of the cell 1.
  • a process of forming a plurality of cell separation units 30 on the cell 1 may be performed in the same manner as described above.
  • a material having conductivity such as transparent conductive films (TCF) may be used as the conductive material 200.
  • TCF transparent conductive films
  • the coating area and the scribing area may be disposed in different areas of the cell 1.
  • the coating process (S200) and the scribing process (S300) may be performed in parallel.
  • the process of spraying the plurality of conductive materials 20 on the cell 1 may be performed by moving the conductive material injector 2 along the first axis direction.
  • a coating and moving means (not shown) for moving the conductive material injector 2 may be installed.
  • the process of spraying the plurality of conductive materials 20 may be performed as follows. have. First, two conductive materials 20 are sprayed on the left side based on the midpoint of the cell 1 through the conductive material sprayer 2. Next, the conductive material injectors 2 are moved in the first axial direction by the coating and transfer means. Next, two conductive materials 20 are sprayed on the right side with respect to the midpoint of the cell 1 through the two conductive material sprayers 2.
  • a process of spraying a plurality of conductive materials 20 on the cell 1 may be performed in the same manner as described above.
  • the coating process (S200) and the scribing process (S300) may be performed in the same space. That is, both the coating process S200 and the scribing process S300 may be performed within the processing space.
  • the coating process S200 and the scribing process S300 may be performed at a location spaced apart from the first axial direction.
  • the coating process (S200) and the scribing process (S300) are performed in the solar cell manufacturing method according to the second embodiment of the present invention will be described with reference to the accompanying drawings.
  • the coating process (S200) is performed by four conductive material injectors (2, 2', 2 ⁇ , 2'''), and the scribing process (S300) includes four scribing processes. It will be described based on what is performed by the ice apparatus 3, 3', 3'', 3'''.
  • the cell 1 is prepared.
  • Two conductive material injectors 2 and 2 ′ may be disposed in the upper direction of the cell 1 and two scribing devices 3 and 3 ′ may be disposed in the lower direction of the cell 1.
  • the conductive material injectors (2, 2') and the scribing devices (3, 3') are arranged to be spaced apart from each other in the first axial direction.
  • the scribing devices 3 and 3' may be disposed on the right side based on the middle point of the cell 1.
  • the coating process (S200) and the scribing process (S300) are performed in parallel.
  • the conductive material injectors (2, 2') are on the upper surface (1a) of the cell (1) as shown in FIG.
  • the scribing devices (3, 3') form cell separation portions (30, 30') on the lower surface (1b) of the cell (1) It can be done by doing.
  • the conductive material injectors (2, 2') and the scribing devices (3, 3') are disposed to be spaced apart from each other in the first axial direction, so the conductive materials (20, 20) ') can be prevented from being cured by the laser.
  • a process of moving the cell 1 along the first axis direction may be performed.
  • the process of moving the cell 1 may be performed by a cell moving means (not shown).
  • the conductive material injectors 2'', 2''' are disposed on the right side based on the midpoint of the cell 1, and the scribing devices 3'', 3''' ) May be disposed on the left side based on the midpoint of the cell 1.
  • the coating process (S200) and the scribing process (S300) are performed in parallel.
  • the conductive material injectors 2 ′′ and 2 ′′ ′ are formed on the upper surface of the cell 1 (
  • the scribing devices 3 ′′, 3 ′′′ are on the lower surface 1b of the cell 1 It can be performed by forming the cell separation parts (30", 30"').
  • the conductive material injectors 2 ′′, 2 ′′′ and the scribing devices 3 ′′ and 3 ′′' are disposed to be spaced apart from each other in the first axial direction,
  • the conductive materials 20 ′′ and 20 ′′ ′ may be prevented from being cured by a laser.
  • the scribing process (S300) and the It may be implemented so that the coating process (S200) is performed in parallel.
  • the solar cell manufacturing method according to the second embodiment of the present invention may include the cutting process S400 and the bonding process S500. Since the cutting process (S400) and the bonding process (S500) may be implemented in substantially the same manner as described in the method for manufacturing a solar cell according to the first embodiment of the present invention, a detailed description thereof will be omitted.
  • the solar cell manufacturing method includes a seating process (S100) of mounting a cell in which a plurality of thin film layers are formed in a processing space for manufacturing a solar cell, and the cell ( Scribing that irradiates a laser to the cell 1 to form an N-1 cell separation unit 30 for separating 1) into N (N is an integer of 3 or more) unit cells 10
  • a process (S300) a coating process of spraying the conductive material 20 onto the cell 1 (S200), a cutting process (S400) of separating the cell 1 into two unit cells 10, and separation
  • a bonding process (S500) that is continuously performed immediately after the cutting process (S400) is included.
  • the solar cell manufacturing method according to the third embodiment of the present invention is implemented so that the cutting process (S400) and the bonding process (S500) are repeatedly performed N-1 times. Accordingly, in the solar cell manufacturing method according to the third embodiment of the present invention, the bonding process (S500) is performed after all the cells (1) are separated into N unit cells (10) in the cutting process (S400). When compared with the conventional technology implemented to be possible, it is possible to reduce the time required for the bonding process (S500). This will be described in detail with reference to the accompanying drawings, as follows. For convenience of understanding, the description will be based on separating the cell 1 into five unit cells 10, 10', 10'', 10''', 10'''', 10''''.
  • FIG. 13A to 13E are side views illustrating a cutting process (S400) and a bonding process (S500) in a method for manufacturing a solar cell according to the prior art.
  • S400 cutting processes
  • FIG. 13A four cutting processes (S400) to separate the cell (1) into the five unit cells (10, 10', 10 ⁇ , 10''', 10''') ) Can be performed simultaneously.
  • Cutting distance (CL) between five unit cells (10, 10', 10 ⁇ , 10''', 10'''') as 4 cutting processes (S400) are simultaneously performed on the cell 1 Can be separated from each other.
  • the four cutting distances CL between the five unit cells 10, 10 ′, 10 ′′, 10 ′′ and 10 ′′'' may be the same.
  • the bonding process (S500) may be performed.
  • the second unit cell 10 ′ may be bonded to the first unit cell 10.
  • the bonding process S500 may include a process of moving the second unit cell 10 ′ by approximately one cutting distance CL.
  • the third unit cell 10 ′′ may be bonded to the second unit cell 10 ′.
  • the bonding process S500 may include a process of moving the third unit cell 10 ′′ by approximately two cutting distances 2CL.
  • the process of moving the second unit cell 10' by one cutting distance CL is performed while the second unit cell 10' is separated from the third unit cell 10', so the third unit This is because the cell 10 ′′ needs to be moved further by one cutting distance CL moved by the second unit cell 10 ′.
  • the bonding process (S500) is performed, the fourth unit cell 10 ′′′ may be bonded to the third unit cell 10 ′′.
  • the bonding process S500 may include a process of moving the fourth unit cell 10 ′′′ by approximately three cutting distances 3CL.
  • the process of moving the third unit cell (10'') by two cutting distances (2CL) is performed while the third unit cell (10'') is separated from the fourth unit cell (10'''), This is because the fourth unit cell 10 ′′′ needs to be moved further by the two cutting distances (2CL) that the third unit cell 10 ′′ has moved.
  • the bonding process S500 may include a process of moving the fifth unit cell 10 ′′′′ by approximately four cutting distances 4 CL.
  • the process of moving the 4th unit cell (10''') by three cutting distances (3CL) is to keep the 4th unit cell (10''') separated from the 5th unit cell (10''''). Therefore, it is because the fifth unit cell 10 ′′′′ has to be further moved by the three cutting distances 3CL that the fourth unit cell 10 ′′'has moved.
  • FIG. 14A to 14H are side views illustrating a cutting process S400 and a bonding process S500 in the solar cell manufacturing method according to the third embodiment of the present invention.
  • the cell 1 is divided into five unit cells (10, 10', 10 ⁇ , 10''', 10''').
  • the solar cell manufacturing method according to the third embodiment of the present invention is implemented such that when the first cutting process (S400) is performed, the first bonding process (S500) is sequentially performed.
  • a cutting process (S400) and a bonding process (S500) of the solar cell manufacturing method according to the third embodiment of the present invention will be described.
  • a single cutting process (S400) of separating the first unit cell 10 and the second unit cell 10' on the cell 1 is performed.
  • the first unit cell 10 and the second unit cell 10 ′ may be spaced apart by the cutting distance CL.
  • the bonding process S500 may include a process of moving the second unit cell 10 ′ approximately by the cutting distance CL.
  • one cutting process (S400) for separating the second unit cell 10 ′ and the third unit cell 10 ′′ is performed.
  • the second unit cell 10 ′ and the third unit cell 10 ′′ may be spaced apart by the cutting distance CL.
  • the third unit cell 10 ′′ may be bonded to the second unit cell 10 ′.
  • the bonding process S500 may include a process of moving the third unit cell 10 ′′ approximately by the cutting distance CL.
  • the solar cell manufacturing method according to the third embodiment of the present invention in the bonding process (S500) of bonding the second unit cell 10' to the first unit cell 10, the second unit cell 10' is 1 As it moves to the first unit cell 10, the third unit cell 10′′ is also implemented to move. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the moving distance required to bond the third unit cell 10 ′′ as compared to the comparative example.
  • one cutting process (S400) of separating the third unit cell 10 ′′ and the fourth unit cell 10 ′′' is performed.
  • the fourth unit cell 10 ′′′ and the third unit cell 10 ′′ may be spaced apart by the cutting distance CL.
  • the fourth unit cell 10 ′′′ may be bonded to the third unit cell 10 ′′.
  • the bonding process S500 may include a process of moving the fourth unit cell 10 ′′′ approximately by the cutting distance CL.
  • the solar cell manufacturing method according to the third embodiment of the present invention in the bonding process (S500) of bonding the third unit cell 10 ′′ to the second unit cell 10 ′, the third unit cell 10 ′′ As) moves to the second unit cell 10 ′, the fourth unit cell 10 ′′′ is also implemented to move. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the moving distance required to bond the fourth unit cell 10 ′′′ as compared to the comparative example.
  • one cutting process (S400) for separating the fourth unit cell 10 ′′′ and the fifth unit cell 10 ′′′′ is performed.
  • the fifth unit cell 10 ′′′′ and the fourth unit cell 10 ′′ may be spaced apart by the cutting distance CL.
  • the fifth unit cell 10 ′′′′ may be bonded to the fourth unit cell 10 ′′′.
  • the bonding process S500 may include a process of moving the fifth unit cell 10 ′′′′ approximately by the cutting distance CL.
  • the fourth unit cell 10 ′′′ As it moves to the third unit cell 10′′, the fifth unit cell 10′′′′ is also implemented to move. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the moving distance required to bond the fifth unit cell 10 ′′′′ when compared to the comparative example.
  • the solar cell manufacturing method comprises five unit cells (10, 10', 10 ⁇ , 10''', 10''') separated in the bonding process (S500). It may include a process of moving the four cutting distances (4CL).
  • one joining step (S500) is successively performed immediately after one cutting step (S400) is performed on the cell 1, and the cutting The process (S400) and the bonding process (S500) are each implemented to be repeatedly performed N-1 times. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention is compared with the comparative example, although the same number of cutting processes (S400) and the same number of bonding processes (S500) are performed. It may be implemented to reduce the moving distance of the unit cells 10 separated in (S500). Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can improve mass productivity of the solar cell by reducing the time required for the bonding process (S500).
  • the mounting step S100 may be a step of mounting the cell in the processing space for manufacturing a solar cell.
  • the mounting process (S100) may be a process of preparing the substrate on which the solar cell is formed in the processing space.
  • the solar cell may be the cell 1 in which a plurality of thin film layers are stacked on the substrate.
  • the seating process may be performed by a loading device (not shown) that loads the cell into the processing space.
  • the processing space accommodates manufacturing apparatuses (not shown) necessary for manufacturing solar cells therein, and may be implemented as a whole chamber.
  • the scribing process (S300) is a process for separating the cell 1 into a plurality of unit cells 10.
  • the scribing process (S300) may be performed after the seating process (S100).
  • the scribing process (S300) may be performed by the scribing device 3 that irradiates a laser toward the cell 1.
  • the scribing device 3 may irradiate a laser to a scribing area, which is an area on the cell 1.
  • the arrows of the dashed-dotted line shown in Fig. 11 schematically show the laser irradiated by the scribing device 3.
  • FIG 11 shows that the scribing process (S300) is performed on the upper surface (1a) of the cell (1), but this is exemplary, and the scribing process (S300) is performed on the lower surface of the cell (1). It may also be performed in (1b).
  • the scribing process S300 may be a process of forming N-1 cell separation units 30 for separating the cell 1 into N unit cells 10.
  • the scribing process S300 may be performed by N-1 scribing devices 3.
  • the scribing process (S300) is performed by the four scribing devices 3, 3', 3'', 3 '''). Accordingly, four cell separation units 30 may be formed on the cell 1.
  • the fourth scribing device includes a fourth scribing area separated from each of the first scribing area, the second scribing area, and the third scribing area. You can irradiate the laser.
  • the scribing devices 3, 3', 3", 3"' may be arranged to be spaced apart at a predetermined interval. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention may be implemented such that the scribing process S300 is simultaneously performed on the entire surface of the cell 1. Therefore, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the time required for the scribing process (S300).
  • the first scribing area, the second scribing area, the third scribing area, and the fourth scribing area may be one areas existing on the upper surface 1a of the cell 1 have.
  • the scribing process (S300) may be performed by irradiating a laser toward the cell 1. Accordingly, the cell separation unit 30 may be formed by removing a predetermined area of the cell 1. As the scribing process (S300) is performed, the cell separation unit 30 may be formed on one surface of the cell 1. As the scribing process (S300) is performed, the cell separation unit 30 may be formed on one surface of the substrate. The cell separation unit 30 may be implemented as a groove recessed by a predetermined depth from the surface of the cell 1. The cell separation unit 30 may be formed to extend from one side of the cell 1 to the other side.
  • the coating process S200 may be a process of spraying a conductive material 20 onto the cell 1.
  • the conductive material 20 may be applied around the cell separation unit 30.
  • the coating process (S200) may be performed after the scribing process (S300).
  • the conductive material 20 may be a material having conductivity such as transparent conductive films (TCF).
  • the coating process S200 may be performed by a conductive material injector 2 that injects the conductive material 20.
  • the conductive material injector 2 may inject the conductive material 20 into a coating area, which is one area on the cell 1.
  • the coating area and the scribing area may be disposed in different areas of the cell 1.
  • the coating process (S200) is shown to be performed on the upper surface (1a) of the cell (1), but this is exemplary, and the coating process (S200) is performed on the lower surface (1b) of the cell (1). It can also be done.
  • the coating process S200 may include a process of spraying a plurality of conductive materials 20 onto the cell 1 by a plurality of conductive material injectors 2.
  • the coating process S200 may be performed by N-1 conductive material injectors 2.
  • the coating process S200 is performed using four conductive material sprayers 2, 2', 2''. , 2'''). Therefore, when the first conductive material injector 2 sprays the conductive material 20 into the first coating area of the cell 1, the second conductive material injector 2'is spaced apart from the first coating area.
  • the conductive material 20 is sprayed onto the second coated area, and the third conductive material sprayer 2'' is applied to the third coated area separated from each of the first and second coated areas.
  • the fourth conductive material sprayer (2 ′′') is applied to the first coating area, the second coating area, and the fourth coating area spaced apart from each of the third coating area. (20) can be sprayed.
  • the conductive material injectors 2, 2 ′, 2 ′′, 2 ′′ ′ may be disposed to be spaced apart at predetermined intervals. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention may be implemented such that the coating process S200 is simultaneously performed on the entire surface of the cell 1.
  • the solar cell manufacturing method according to the third embodiment of the present invention can reduce the time required for the coating process (S200).
  • the first coating area, the second coating area, the third coating area, and the fourth coating area may be one areas existing on the upper surface 1a of the cell 1.
  • the coating process S200 and the scribing process S300 may be performed on different surfaces of the cell 1.
  • the coating process S200 may be performed on the upper surface 1a of the cell 1 and the scribing process S300 may be performed on the lower surface 1b of the cell 1. Accordingly, in the solar cell manufacturing method according to the third embodiment of the present invention, by separating the surfaces on which the coating process (S200) and the scribing process (S300) are performed, the conductive material ( 20) It is possible to implement an inhibitory force that suppresses curing.
  • the cutting process S400 is a process of separating the cell 1 into two unit cells 10. That is, as the cutting process (S400) is performed, the substrate constituting the cell 1 is divided into two pieces along any one cell separation unit 30 among the N-1 cell separation units 30. Can be separated. As the cutting process S400 is performed, the cell 1 may be divided into two unit cells 10 based on the cell separation unit 30. The cutting process S400 may be performed by a cutting robot (not shown) that separates the cell 1 into two unit cells 10. When N-1 cell separation units 30 are formed on the cell 1, the cutting process S400 may be performed N-1 times.
  • a cutting distance CL may be formed between the two unit cells 10 separated as the cutting process S400 is performed. That is, as the cutting process S400 is performed, the two pieces separated may be separated from each other by a cutting distance CL.
  • the bonding process S500 may include a process of moving the separated unit cells 10.
  • the cutting distance CL formed may gradually decrease.
  • the cutting distance CL formed when one cutting process S400 is performed is the cutting distance CL formed when the two cutting processes S400 are performed as shown in FIG. 14C. May be larger than (CL).
  • the solar cell manufacturing method according to the third embodiment of the present invention is implemented so that the cutting distance CL formed as the cutting process S400 is repeatedly performed is gradually reduced, so that the unit in the bonding process S500 It is possible to reduce the moving distance for joining the cells 10. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the time required for the bonding process (S500).
  • the cutting distance CL formed as the cutting process S400 is repeatedly performed may be the same.
  • the bonding process S500 is a process of bonding the separated unit cells 10. That is, the bonding process (S500) may be a process of bonding the separated two pieces to each other.
  • the bonding process (S500) is continuously performed immediately after the one cutting process (S400) in order to bond the two separated unit cells 10, and the bonding process (S500) and the cutting process (S400) are N -Can be performed repeatedly once. Accordingly, in the solar cell manufacturing method according to the third embodiment of the present invention, the bonding process (S500) is performed after all the cells 1 are separated into a plurality of unit cells 10 in the cutting process (S400).
  • the bonding process (S500) is performed after all the cells 1 are separated into a plurality of unit cells 10 in the cutting process (S400).
  • the bonding process S500 may be performed by bonding the two unit cells 10 separated by the conductive material 20 as a medium.
  • the bonding process S500 may be performed the same number of times as the cutting process S400. For example, as illustrated in FIGS. 14A to 14F, when the cutting process S400 is performed three times, the bonding process S500 may also be performed three times.
  • the bonding process (S500) may include a process of moving any one unit cell 10 among the two separated unit cells 10. That is, the bonding process (S500) may include a process of moving one of the two separated pieces to overlap with a part of the other piece.
  • the portion where the two pieces overlap may be a coating distance (SL, shown in FIG. 14A), which is the length of the conductive material 20 sprayed on the cell 1.
  • the bonding process S500 may be performed by a transfer robot (not shown) that moves the unit cell 10.
  • the bonding process (S500) may include a process of moving only one unit cell 10 among the two unit cells 10 separated. Accordingly, as compared to the comparative example in which all the unit cells 10 are moved in the bonding process (S500), it is possible to improve the ease of operation of moving the unit cells 10.
  • the bonding process S500 may include a moving process S510 of moving the moving cell 10b to the fixed cell 10a.
  • the moving cell 10b may move to the fixed cell 10a.
  • the fixed cell 10a may be a fixed unit cell 10 that does not move during the bonding process S500 among the separated unit cells 10.
  • the moving cell 10b may be a unit cell 10 that moves during the bonding process S500 among the separated unit cells 10.
  • the moving process S510 may be performed by the transfer robot.
  • the moving step S510 may include a first moving step S511 and a second moving step S512.
  • the first moving step S511 may be a step of moving the moving cell 10b along a first axis direction.
  • the first axis direction may be a direction parallel to a direction in which the laser is irradiated.
  • the moving cell 10b may be disposed upwardly with respect to the fixed cell 10a.
  • the second moving step S512 may be a step of moving the moving cell 10b along a second axis direction.
  • the second axial direction may be a direction perpendicular to the first axial direction.
  • the moving cell 10b may move by the cutting distance CL and the coating distance SL (shown in FIG. 14A).
  • the coating distance SL may be the length of the conductive material 20 sprayed on the cell 1 based on the second axial direction.
  • the second moving process S512 may be sequentially performed after the first moving process S511 is performed.
  • the second moving process S512 and the first moving process S511 may be performed in parallel. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention can reduce the time required to move the moving cell 10b.
  • the second moving process S512 may be implemented to be performed earlier than the first moving process S511. In this case, the second moving process S512 may be performed so that the moving cell 10b does not move beyond the cutting distance CL. Accordingly, in the solar cell manufacturing method according to the third embodiment of the present invention, the mobile cell 10b generated by colliding with the fixed cell 10a during the bonding process S500 10b) and the possibility of damage to the fixed cell 10a may be prevented. Further, in the solar cell manufacturing method according to the third embodiment of the present invention, the moving cell 10b moves only the cutting distance CL, thereby improving the efficiency of the bonding process S500.
  • the solar cell manufacturing method according to the third embodiment of the present invention may further include a determination process S700.
  • the determination process S700 is to determine whether the number of times each of the cutting process S400 and the bonding process S500 has been performed reaches N-1 times.
  • the determination process S700 may be performed by a control unit (not shown) that counts the number of times each of the cutting process S400 and the bonding process S500 have been performed.
  • the control unit determines that the repetitive process is less than N-1 times, the control unit includes the cutting robot (not shown) and the transfer robot (not shown) so that the cutting process (S400) and the joining process (S500) are performed.
  • Process signals can be provided to When the control unit determines that the repetitive process is N-1 times, the control unit provides the process signal to the cutting robot and the transfer robot so that the cutting process (S400) and the joining process (S500) are no longer performed. I can't.
  • the solar cell manufacturing method according to the third embodiment of the present invention may include a curing process (S600).
  • the curing process (S600) is a process of curing the bonded unit cells 10.
  • the curing process (S600) may be performed after the determination process (S700). That is, the curing process S600 may be performed after N-1 times of the cutting process S400 and N-1 times of the bonding process S500 are completed.
  • the curing process S600 may be performed by a heating device (not shown) that heats the unit cells 10 joined together.
  • the solar cell 100 in the form of a module in which the N unit cells 10 are connected to each other may be manufactured. 14H shows that the solar cell 100 is composed of five unit cells 10, but this is exemplary, and the solar cell 100 includes one or more and four or less unit cells 10, or 6 It may be composed of more than one unit cell 10.
  • a method of manufacturing a solar cell according to an embodiment of the present invention may include a module process.
  • the module process includes the seating process (S100), the scribing process (S300), the coating process (S200), the N-1 cutting process (S400), and the N-1 bonding process (S500).
  • This is a process of combining a connection module composed of M (M is an integer of 2 or more) unit module cells 11 (shown in FIG. 15A) to the performed cell (hereinafter, referred to as “base module”).
  • base module For example, in the module process, 5 unit cells 10, 10', 10'', 10''', 10''', 10'''' are connected to each other as shown in FIG.
  • the cells 11, 11', 11'', 11'', 11''', 11'''' may be a process for combining connection modules connected to each other.
  • the module process may be performed in the processing space.
  • the module process may include a connection process.
  • the connection process may be a process of connecting the connection cells 11A having a plurality of thin film layers formed thereon to the base module.
  • the connection process may be performed by spraying the conductive material 20 onto the base module and then bonding the connection cells 11A.
  • the connection cell 11A may be manufactured through the cell manufacturing process. Accordingly, the connection cell 11A may be implemented approximately the same as the cell 1.
  • the connection process may be performed after the cutting process S400 and the bonding process S500 are each performed N-1 times.
  • the connection process may be performed by the transfer robot.
  • the module process may include a module scribing process and a module application process.
  • the module scribing process is a process of forming M-1 cell separation units for separating the connection cells 11A into M (M is an integer of 2 or more) unit module cells 11.
  • M is an integer of 2 or more
  • the unit module cell 11 may be implemented approximately the same as the unit cell 10.
  • the module scribing process may be implemented substantially the same as the scribing process (S300).
  • the module application process is a process of spraying the conductive material 20 onto the connection cell 11A.
  • the module application process may be performed after the module scribing process.
  • the module application process may be implemented approximately the same as the application process (S200).
  • the module application process and the module scribing process may be performed before the connection process.
  • the cell separation unit 30 may be formed in the connection cell 11A before the connection process is performed, and the conductive material 20 may be sprayed.
  • the module application process and the module scribing process may be performed after the connection process.
  • the module process may include a module cutting process.
  • the module cutting process is for separating the connection cell 11A into two unit module cells 11.
  • the module cutting process may be performed after the connection process.
  • a cutting distance CL may be formed between the separated two unit module cells 11.
  • the module cutting process may be performed M-1 times.
  • the module cutting process may be implemented substantially the same as the cutting process (S400).
  • the module process may include a module bonding process.
  • the module bonding process is a process of bonding the separated two unit module cells 11.
  • the module bonding process may be continuously performed immediately after the module cutting process to bond the separated two unit module cells 11.
  • the module bonding process may be performed the same number of times as the module cutting process.
  • the module bonding process may be implemented substantially the same as the bonding process (S500).
  • the module bonding process may be continuously performed immediately after the module cutting process once, and the module bonding process and the module cutting process may be repeatedly performed M-1 times, respectively. Accordingly, the solar cell manufacturing method according to the third embodiment of the present invention is implemented so that the module bonding process is performed after all of the connection cells 11A are separated into a plurality of unit module cells 11 in the module cutting process. Compared to the comparative example, it is possible to reduce the time required for the module bonding process.
  • the curing process S600 may be performed after the module process is completed.
  • the curing process (S600) may cure the base module and the connection module.
  • the solar cell 100 in the form of a module in which N unit cells 10 and M unit module cells 11 are connected to each other may be manufactured.
  • 15D shows five unit cells (10, 10', 10 ⁇ , 10''', 10'''') and five unit module cells (11, 11', 11'', 11''', 11 It shows a solar cell 100 composed of).
  • the solar cell manufacturing method according to the third embodiment of the present invention may be implemented such that the module process is repeatedly performed.
  • nine connection modules may be sequentially coupled to the base module.
  • the solar cell 100 includes five unit cells (10, 10', 10 ⁇ , 10''', 10''') and 45 units. It may be composed of module cells 11, 11', 11'', 11''', 11''', ...
  • the curing process S600 may be performed after the module process is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정, 상기 셀 상에 전도성 물질을 분사하는 도포공정, 및 상기 셀을 복수개의 단위 셀로 분리시키기 위한 셀 분리부를 형성하도록 상기 셀 쪽으로 레이저를 조사(照射)하는 스크라이빙 공정을 포함하는 태양전지 제조방법에 관한 것이다.

Description

태양전지 제조방법
본 발명은 태양전지(Solar Cell)에 관한 것으로서, 기판형 태양전지와 박막형 태양전지를 조합한 태양전지에 관한 것이다.
태양전지는 반도체의 성질을 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치이다.
태양전지는 P(positive)형 반도체와 N(negative)형 반도체를 접합시킨 PN접합 구조를 하고 있으며, 이러한 구조의 태양전지에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 반도체 내에서 정공(hole) 및 전자(electron)가 발생하고, 이때, PN접합에서 발생한 전기장에 의해서 상기 정공(+)은 P형 반도체쪽으로 이동하고 상기 전자(-)는 N형 반도체쪽으로 이동하게 되어 전위가 발생하게 됨으로써 전력을 생산할 수 있게 된다.
이와 같은 태양전지는 일반적으로 기판형 태양전지와 박막형 태양전지로 구분할 수 있다.
상기 기판형 태양전지는 실리콘 웨이퍼와 같은 반도체물질 자체를 기판으로 이용하여 태양전지를 제조한 것이고, 상기 박막형 태양전지는 유리 등과 같은 기판 상에 박막의 형태로 반도체를 형성하여 태양전지를 제조한 것이다.
상기 기판형 태양전지는 상기 박막형 태양전지에 비하여 효율이 우수한 장점이 있고, 상기 박막형 태양전지는 상기 기판형 태양전지에 비하여 제조비용이 감소되는 장점이 있다.
이에, 상기 기판형 태양전지와 박막형 태양전지를 조합한 태양전지가 제안된 바 있다. 이하 도면을 참조로 종래의 태양전지에 대해서 설명하기로 한다.
도 1a 내지 도 1d는 종래 기술에 따른 태양전지의 제조방법을 도시한 개략적인 측면도이다.
우선, 태양전지를 제조하기 위한 처리공간(미도시)에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정을 수행한다. 상기 처리공간은 전체적으로 챔버(Chamber)로 구현될 수 있다.
다음, 도 1a에 도시된 바와 같이 상기 셀(100) 쪽으로 레이저를 조사(照射)하는 스크라이빙(Scribing)공정을 수행한다. 상기 스크라이빙 공정이 수행됨에 따라 상기 셀(100)을 복수개의 단위 셀(100a)로 분리시키는 셀 분리부(200)가 형성될 수 있다. 상기 스크라이빙 공정은 상기 셀(100)에 레이저를 조사하는 스크라이빙 장치(200a)에 의해 수행될 수 있다.
다음, 도 1b에 도시된 바와 같이 셀(100) 상에 전도성 물질(300)을 분사하는 도포공정을 수행한다. 상기 도포공정이 수행됨에 따라 상기 셀(100) 상에는 상기 전도성 물질(300)이 분사될 수 있다. 상기 도포공정은 상기 셀(100)에 상기 전도성 물질(300)을 분사하는 전도성 물질 분사기(200a)에 의해 수행될 수 있다.
다음, 도 1c에 도시된 바와 같이 상기 셀(100)을 복수개의 단위 셀(100a)로 분리시키기 위한 커팅공정을 수행한다. 상기 커팅공정이 수행됨에 따라 상기 셀 분리부(200)를 통하여 상기 셀(100)은 복수개의 단위 셀(100a)로 분리될 수 있다. 도 1c에 도시된 바와 같이 상기 셀(100)을 5개의 단위 셀(100a, 100a', 100a'', 100a''', 100a'''')로 분리시키고자 할 경우, 4번의 커팅공정이 수행될 수 있다.
다음, 도 1d에 도시된 바와 같이 분리된 단위 셀들(100a, 100a', 100a'', 100a''', 100a'''')을 접합하기 위한 접합공정을 수행한다. 상기 접합공정은 상기 전도성 물질(300)을 매개로 하여 분리된 단위 셀들(100a)을 접합함으로써 수행될 수 있다.
다음, 접합된 단위 셀들(100a, 100a', 100a'', 100a''', 100a'''')을 경화(硬化)하는 큐어링(Curing)공정을 수행한다. 이에 따라, 상기 단위 셀(100a)들이 서로 연결된 모듈(Module) 형태인 태양전지(1000)가 제조될 수 있다.
이러한 태양전지 제조방법에 있어서, 태양전지의 품질, 태양전지의 제조시간, 태양전지의 제조비용 등을 개선할 수 있는 기술의 개발이 절실히 요구되고 있다.
본 발명은 상술한 바와 같은 요구를 해소하고자 안출된 것으로, 태양전지의 품질, 태양전지의 제조시간, 태양전지의 제조비용 등을 개선할 수 있는 태양전기 제조방법을 제공하기 위한 것이다.
본 발명은 상기와 같은 과제를 해결하기 위해 다음과 같은 구성을 포함할 수 있다.
본 발명에 따른 태양전지 제조방법은 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정, 상기 셀 상에 전도성 물질을 분사하는 도포공정, 및 상기 셀을 복수개의 단위 셀로 분리시키기 위한 셀 분리부를 형성하도록 상기 셀 쪽으로 레이저를 조사(照射)하는 스크라이빙 공정을 포함할 수 있다.
본 발명에 따른 태양전지 제조방법에 있어서, 상기 도포공정은 상기 스크라이빙 공정이 수행되기 이전에 먼저 수행될 수 있다.
본 발명에 따른 태양전지 제조방법에 있어서, 상기 도포공정과 상기 스크라이빙 공정은 병행하여 수행될 수 있다.
본 발명에 따른 태양전지 제조방법은 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정, 상기 셀을 N(N은 3이상의 정수)개의 단위 셀로 분리시키기 위한 N-1개의 셀 분리부를 형성하도록 상기 셀에 레이저를 조사(照射)하는 스크라이빙 공정, 상기 셀 상에 전도성 물질을 분사하는 도포공정, 상기 셀을 2개의 단위 셀로 분리시키는 커팅공정, 및 분리된 2개의 단위 셀을 접합시키기 위해 상기 커팅공정 직후 연속하여 수행되는 접합공정을 포함할 수 있다. 상기 커팅공정과 상기 접합공정은 반복하여 수행될 수 있다.
본 발명에 따른 태양전지 제조방법은 기판을 N(N은 3이상의 정수)개의 단위 조각으로 분리하기 위한 N-1개의 셀 분리부 중에서 어느 하나의 셀 분리부를 따라 상기 기판을 2개의 조각으로 분리하는 커팅공정, 및 상기 분리된 2개의 조각을 접합시키는 접합공정을 포함할 수 있다. 상기 커팅공정과 상기 접합공정은 각각 N-1회 반복하여 수행될 수 있다.
본 발명에 따르면, 다음과 같은 효과를 도모할 수 있다.
본 발명의 일실시예에 따르면, 전도성 물질의 접합력을 증대시킬 수 있으므로, 접합공정의 완성도를 향상시킬 수 있다. 또한, 본 발명의 일실시예에 따르면, 셀 상에 크랙의 발생 가능성을 감소시킬 수 있으므로, 완성된 태양전지의 품질을 향상시킬 수 있다.
본 발명의 다른 실시예에 따르면, 태양전지의 제조시간을 감소시킬 수 있으므로, 태양전지의 양산성을 향상시킬 수 있다. 또한, 본 발명의 다른 실시예에 따르면, 태양전지를 제조하는데 필요한 설비비용을 감소시킬 수 있으므로, 태양전지의 제조비용을 감소시킬 수 있다.
본 발명의 또 다른 실시예에 따르면, 접합공정에 소요되는 시간을 감소시킬 수 있으므로, 태양전지의 양산성을 향상시킬 수 있다.
도 1a 내지 도 1d는 종래 기술에 따른 태양전지 제조방법을 도시한 개략적인 공정 측면도
도 2는 본 발명에 따른 태양전지 제조방법에 대한 개략적인 순서도
도 3a 및 도 3b는 본 발명에 따른 태양전지 제조방법에 있어서 도포공정과 스크라이빙 공정을 도시한 개략적인 공정 측면도
도 4는 본 발명에 따른 태양전지 제조방법이 복수개의 전도성 물질 분사기와 복수개의 스크라이빙 장치에 의해 수행되는 것을 나타낸 개략적인 공정 측면도
도 5는 본 발명에 따른 태양전지 제조방법에 있어서 커팅공정을 도시한 개략적인 공정 측면도
도 6은 본 발명에 따른 태양전지 제조방법에 있어서 접합공정과 큐어링공정이 수행된 태양전지를 도시한 개략적인 측면도
도 7는 본 발명의 제2실시예에 따른 태양전지 제조방법에 대한 개략적인 순서도
도 8a 및 도 8b는 본 발명의 제2실시예에 따른 태양전지 제조방법의 일 실시예를 나타낸 개략적인 공정 측면도
도 9는 본 발명의 제3실시예에 따른 태양전지 제조방법에 대한 개략적인 순서도
도 10은 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 접합공정에 대한 개략적인 블록도
도 11은 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 스크라이빙 공정에 대한 개략적인 공정 측면도
도 12는 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 도포공정에 대한 개략적인 공정 측면도
도 13a 내지 도 13e는 종래 기술에 따른 태양전지 제조방법에 있어서 커팅공정과 접합공정에 대한 개략적인 공정 측면도
도 14a 내지 도 14h는 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 커팅공정과 접합공정에 대한 개략적인 공정 측면도
도 15a 내지 도 15e는 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 모듈공정에 대한 개략적인 공정 측면도
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다. 위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다. 시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
이하에서는 본 발명에 따른 태양전지 제조방법의 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
본 발명에 따른 태양전지 제조방법은 태양광선의 빛에너지를 전기에너지로 바꾸어 주는 태양전지를 제조하기 위한 것이다. 본 발명에 따른 태양전지 제조방법은 기판형 태양전지와 박막형 태양전지를 제조하는데 이용될 수 있다. 이하에서는 본 발명에 따른 태양전지 제조방법을 통해 기판형 태양전지를 제조하는 것을 기준으로 설명하나 본 발명에 따른 태양전지 제조방법을 이용하여 박막형 태양전지를 제조하는 것은 본 발명이 속한 기술분야의 당업자에게 있어 자명할 것이다.
도 2 내지 도 4를 참고하면, 본 발명에 따른 태양전지 제조방법은 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정(S100), 상기 셀(1) 상에 전도성 물질(20)을 분사하는 도포공정(S200), 및 상기 셀(1)을 복수개의 단위 셀(10)로 분리시키기 위한 셀 분리부(30)를 형성하도록 상기 셀(1) 쪽으로 레이저를 조사(照射)하는 스크라이빙 공정(S300)을 포함할 수 있다.
본 발명에 따른 태양전지 제조방법은 상기 안착공정(S100)이 수행되기 전에 상기 기판 상에 복수개의 박막층을 형성하는 셀 제조공정을 포함할 수 있다. 상기 안착공정(S100), 상기 도포공정(S200), 및 상기 스크라이빙 공정(S300)을 설명하기에 앞서, 상기 셀 제조공정을 첨부된 도면을 참조하여 구체적으로 설명한다.
상기 셀 제조공정은 전기전도 극성을 갖는 기판 상에 복수개의 박막층을 형성하는 공정이다. 상기 셀(1)은 상기 기판 상에 복수개의 박막층이 적층된 것을 말한다. 상기 셀(1)에 태양광이 입사되면, 입사된 태양광이 가지고 있는 에너지에 의해 상기 셀(1) 내에서 정공(hole) 및 전자(Elecrton)가 발생한다. 상기 셀(1) 내에서 상기 정공과 상기 전자의 이동의 의해 전위차가 발생하게 되면, 본 발명에 따른 태양전지 제조방법에 의해 제조된 태양전지는 전력을 생산할 수 있다. 상기 셀 제조공정이 수행됨에 따라 상기 기판 상에는 복수개의 박막층이 적층될 수 있다.
상기 셀 제조공정은 다음과 같은 공정을 포함할 수 있다.
우선, 상기 기판을 준비한다. 상기 기판은 실리콘 웨이퍼로 이루어질 수 있으며, 구체적으로는, N형 실리콘 웨이퍼 또는 P형 실리콘 웨이퍼로 이루어질 수 있다. 도시하지는 않았지만, 상기 기판의 상면(上面)과 하면(下面)은 요철(凹凸)구조로 이루어질 수 있으며, 이 경우, 후술하는 공정에서 상기 기판의 상면과 하면에 형성되는 각각의 층들도 요철구조로 형성된다.
다음, 상기 기판 상에 제1박막층을 형성한다. 상기 제1박막층은 상기 기판에 박막의 형태로 형성된 반도체층일 수 있다. 상기 제1박막층은 상기 기판과 함께 PN접합을 형성할 수 있다. 따라서, 상기 기판이 N형 실리콘 웨이퍼로 이루어진 경우 상기 제1박막층은 P형 반도체층으로 이루어질 수 있다. 상기 제1박막층은 CVD(Chemical Vapor Deposition) 공정 등을 이용하여 형성될 수 있다. 상기 제1박막층은 P형 반도체 물질, I형 반도체 물질 및 N형 반도체 물질이 순서대로 적층된 PIN구조로 형성할 수 있다. 이와 같이 상기 제1박막층을 PIN구조로 형성하게 되면, I형 반도체 물질이 P형 반도체 물질과 N형 반도체 물질에 의해 공핍(Depletion)이 되어 내부에 전기장이 발생하게 되고, 태양광에 의해 생성되는 정공 및 전자가 전기장에 의해 드리프트(Drift)되어 각각 P형 반도체 물질 및 N형 반도체 물질에서 수집되게 된다. 한편, 상기 제1박막층을 PIN구조로 형성할 경우에는, 상기 제1박막층 상부에 P형 반도체 물질을 형성하고, 이어서 I형 반도체 물질 및 N형 반도체 물질을 형성하는 것이 바람직하다. 그 이유는 일반적으로 정공의 드리프트 이동도(Drift Mobility)가 전자의 드리프트 이동도에 비해 낮기 때문에 입사광에 의한 수집효율을 극대화하기 위해서 P형 반도체 물질을 수광면에 가깝게 형성하기 위함이다. 한편, 본 발명에 따른 태양전지 제조방법은 상기 제1박막층이 적층형 구조를 갖도록 형성할 수도 있다. 예컨대, 본 발명에 따른 태양전지 제조방법은 상기 제1박막층이 텐덤[Tandem(PIN/PIN)]형 또는 트리플[Triple(PIN/PIN/PIN)]형태의 적층형 구조를 갖도록 형성할 수 있다. 상기 제1박막층은 상기 기판의 상면에 형성될 수 있다. 상기 제1박막층은 기판의 상면과 상기 기판의 하면에 각각 형성될 수도 있다.
다음, 상기 제1박막층 상에 제2박막층을 형성한다. 상기 제2박막층은 상기 제1박막층 상에 형성된 투명 도전층일 수 있다. 상기 제2박막층은 상기 제1박막층을 보호함과 아울러 상기 기판에서 생성된 캐리어, 예컨대 정공(+)을 수집하고 상기 수집한 캐리어를 상측방향으로 이동시킬 수 있다. 상기 제2박막층은 ITO(Indium Tin Oxide), ZnOH, ZnO:B, ZnO:Al, SnO2, SnO2:F 등과 같은 투명한 도전물질로 이루어질 수 있다. 상기 제2박막층은 ZnO, ZnO:B, ZnO:Al, Ag와 같은 투명한 도전물질을 스퍼터링(Sputtering)법 또는 MOCVD법 등을 이용하여 형성할 수 있다. 상기 제2박막층은 태양광을 산란시켜 다양한 각으로 진행하도록 함으로써, 상기 제1박막층으로 재입사되는 광의 비율을 증가시키는 기능을 갖는다. 한편, 본 발명에 따른 태양전지 제조방법은, 상기 제2박막층을 형성하지 않고, 상기 제1박막층만을 형성할 수도 있다. 즉, 본 발명에 따른 태양전지 제조방법은 상기 제2박막층을 선택적으로 형성할 수 있다.
상기에서는 상기 기판 상에 2개의 박막층이 형성된 셀(1)을 기준으로 설명하였으나 이는 예시적인 것이며, 상기 기판 상에는 3개 이상의 박막층이 형성될 수도 있다.
상기 셀 제조공정은 기판 상에 전극을 형성하는 공정을 포함할 수 있다. 상기 전극은 상기 기판 상에서 소정 간격으로 이격되게 배치될 수 있다. 상기 전극을 형성하는 공정은 상기 기판 상에 상기 박막층을 형성하기 이전에 수행될 수 있다. 상기 전극은 상기 기판 상에 형성될 수 있다. 예컨대, 상기 전극은 상기 기판의 상면과 상기 기판의 하면 각각에 형성될 수 있다. 상기 전극은 상기 박막층 상에 형성될 수도 있다. 예컨대, 상기 전극은 상기 박막층의 상면과 상기 박막층의 하면 각각에 형성될 수 있다.
이러한 상기 셀 제조공정을 거친 후에, 상기 안착공정(100), 상기 도포공정(S200), 및 상기 스크라이빙 공정(S300)이 이루어질 수 있다. 여기서, 본 발명에 따른 태양전지 제조방법은 여러 가지 실시예로 구현되는 바, 이하에서는 본 발명에 따른 태양전지 제조방법의 실시예들에 대해 첨부된 도면을 참조하여 순차적으로 설명한다.
<제1실시예>
도 2 내지 도 6을 참고하면, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)이 수행되기 전에 상기 도포공정(S200)이 수행되도록 구현된다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 다음과 같은 작용 효과를 도모할 수 있다.
첫째, 상기 스크라이빙 공정(S300)이 수행됨에 따라 상기 셀(1) 상에 파티클(Particle)이 형성되는데, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 스크라이빙공정(S300)에 비해 상기 도포공정(S200)이 먼저 수행되므로, 상기 셀(1) 상에 상기 스크라이빙 공정(S300)에 의해 발생된 파티클이 없는 상태로 상기 도포공정(S200)이 수행될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 전도성 물질(20)의 접합력을 증대시킬 수 있다. 따라서, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 전도성 물질(20)을 이용하여 상기 단위 셀(10)을 접합시키는 공정의 완성도를 향상시킬 수 있다.
둘째, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)이 수행되는 영역 상에 미리 상기 전도성 물질(20)을 도포하므로, 상기 전도성 물질(20)을 통해 상기 셀(1) 상의 크랙의 발생 가능성을 억제하는 억제력을 구현할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 완성된 태양전지의 품질을 향상시킬 수 있다.
이러한 본 발명의 제1실시예에 따른 태양전지 제조방법에 따르면, 상기 안착공정(S100), 상기 도포공정(S200), 및 상기 스크라이빙 공정(S300)은 다음과 같이 구현될 수 있다.
도 2를 참고하면, 상기 안착공정(S100)은 태양전지를 제조하기 위한 상기 처리공간에 상기 셀을 안착시키는 공정일 수 있다. 상기 안착공정은 상기 셀을 상기 처리공간으로 로딩하는 로딩장치(미도시)에 의해 수행될 수 있다. 상기 처리공간은 내부에 태양전지를 제조하는데 필요한 제조장치(미도시)들을 수용하며, 전체적으로 챔버(Chamber)로 구현될 수 있다.
도 2 내지 도 4를 참고하면, 상기 도포공정(S200)은 상기 셀(1) 상에 전도성 물질(20)을 분사하는 공정일 수 있다. 상기 도포공정(S200)은 상기 안착공정(S100) 이후에 수행될 수 있다. 상기 도포공정(S200)은 상기 전도성 물질(20)을 분사하는 전도성 물질 분사기(2)에 의해 수행될 수 있다. 상기 전도성 물질 분사기(2)는 상기 셀(1) 상의 일 영역인 도포영역에 상기 전도성 물질(20)을 분사할 수 있다. 상기 전도성 물질(20)은 전도성(Conductive)을 가진 물질로 구현될 수 있다. 도 3a 및 도 3b는 상기 셀(1) 상에 하나의 전도성 물질(20)이 분사된 것을 모식적으로 도시한 것이다. 도 3a 내지 도 4에서는 상기 도포공정(S200)이 상기 셀(1)의 상면(1a)에 수행되는 것으로 도시되어 있으나 이는 예시적인 것이며, 상기 도포공정(S200)은 상기 셀(1)의 하면(1b)에 수행될 수도 있다.
상기 도포공정(S200)은 상기 셀(1) 상에 복수개의 전도성 물질(20)을 분사하는 공정을 포함할 수 있다. 이 경우, 상기 복수개의 전도성 물질(20)을 분사하는 공정은, 복수개의 전도성 물질 분사기(2)에 의해 수행될 수 있다. 예컨대, 도 4에 도시된 바와 같이 상기 셀(1) 상에 4개의 상기 전도성 물질(20)을 동시에 분사하고자 할 경우, 상기 도포공정(S200)은 4개의 상기 전도성 물질 분사기(2, 2', 2'', 2''')에 의해 수행될 수 있다. 따라서, 제1전도성 물질 분사기(2)가 전도성 물질(20)을 상기 셀(1)의 제1도포영역으로 분사할 때, 제2전도성 물질 분사기(2')는 상기 제1도포영역으로부터 이격된 제2도포영역에 전도성 물질(20)을 분사하고, 제3전도성 물질 분사기(2'')는 상기 제1도포영역과 상기 제2도포영역 각각으로부터 이격된 제3도포영역에 전도성 물질(20)을 분사함과 아울러 제4전도성 물질 분사기(2''')는 상기 제1도포영역, 상기 제2도포영역, 및 상기 제3도포영역 각각으로부터 이격된 제4도포영역에 전도성 물질(20)을 분사할 수 있다. 이 경우, 상기 전도성 물질 분사기들(2, 2', 2'', 2''')은 소정 간격으로 이격되어 배치될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)이 상기 셀(1)의 전면(全面)에 수행되도록 구현될 수 있다. 따라서, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)에 소요되는 시간을 절감시킬 수 있다. 상기 제1도포영역, 상기 제2도포영역, 상기 제3도포영역, 및 상기 제4도포영역은 상기 셀(1)의 상면(1a)에 존재하는 일 영역들일 수 있다.
도 2 내지 도 4를 참고하면, 상기 스크라이빙 공정(S300)은 상기 셀(1)을 복수개의 단위 셀(10)로 분리시키기 위한 셀 분리부(30)를 형성하는 공정일 수 있다. 상기 스크라이빙 공정(S300)은 상기 도포공정(S200) 이후에 수행될 수 있다. 상기 스크라이빙 공정(S300)은 상기 셀(1) 쪽으로 레이저를 조사하는 스크라이빙 장치(3)에 의해 수행될 수 있다. 상기 스크라이빙 장치(3)는 상기 셀(1) 상의 일 영역인 스크라이빙 영역에 레이저를 조사할 수 있다. 상기 스크라이빙 영역과 상기 도포영역은 상기 셀(1)의 서로 다른 영역에 배치될 수 있다. 도 3b 및 도 4에 도시된 일점쇄선의 화살표는 상기 스크라이빙 장치(3)가 조사하는 레이저를 모식적으로 도시한 것이다. 도 3b 및 도 4에서는 상기 스크라이빙 공정(S300)이 상기 셀(1)의 하면(1b)에 수행되는 것으로 도시되어 있으나 이는 예시적인 것이며, 상기 스크라이빙 공정(S300)은 상기 셀(1)의 상면(1a)에 수행될 수도 있다.
상기 스크라이빙 공정(S300)은 상기 셀(1) 쪽으로 레이저를 조사함으로써 이루어질 수 있다. 이에 따라, 상기 셀(1)의 소정 영역을 제거함으로써, 상기 셀 분리부(30)를 형성할 수 있다. 상기 셀 분리부(30)는 상기 셀(1)의 표면으로부터 소정 깊이 함몰된 홈(Groove)으로 구현될 수 있다. 상기 셀 분리부(30)는 상기 셀(1)의 일측에서 타측까지 연장되어 형성될 수 있다. 도 3b는 상기 셀(1) 상에 하나의 셀 분리부(30)가 형성된 것을 도시한 것이다.
상기 스크라이빙 공정(S300)은 상기 셀(1) 상에 복수개의 셀 분리부(30)를 형성하는 공정을 포함할 수 있다. 이 경우, 상기 복수개의 셀 분리부(30)를 형성하는 공정은 복수개의 스크라이빙 장치(3)에 의해 수행될 수 있다. 예컨대, 도 4에 도시된 바와 같이 상기 셀(1) 상에 4개의 셀 분리부(30)를 동시에 형성하고자 할 경우, 상기 스크라이빙 공정(S300)은 4개의 상기 스크라이빙 장치(3, 3', 3'', 3''')에 의해 수행될 수 있다. 따라서, 제1스크라이빙 장치(3)가 레이저를 상기 셀(1)의 제1스크라이빙 영역으로 조사할 때, 제2스크라이빙 장치(3')는 상기 제1스크라이빙 영역으로부터 이격된 제2스크라이빙 영역에 레이저를 조사하고, 제3스크라이빙 장치(3'')는 상기 제1스크라이빙 영역과 상기 제2스크라이빙 영역 각각으로부터 이격된 제3스크라이빙 영역에 레이저를 조사함과 아울러 상기 제4스크라이빙 장치(3''')는 상기 제1스크라이빙 영역, 상기 제2스크라이빙 영역, 및 상기 제3스크라이빙 영역 각각으로부터 이격된 제4스크라이빙 영역에 레이저를 조사할 수 있다. 이 경우, 상기 스크라이빙 장치들(3, 3', 3'', 3''')은 소정 간격으로 이격되어 배치될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)이 상기 셀(1)의 전면(全面)에 수행되도록 구현될 수 있다. 따라서, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)에 소요되는 시간을 절감시킬 수 있다. 상기 제1스크라이빙 영역, 상기 제2스크라이빙 영역, 상기 제3스크라이빙 영역, 및 상기 제4스크라이빙 영역은 상기 셀(1)의 하면(1b)에 존재하는 일 영역들일 수 있다.
상기 스크라이빙 공정(S300)은 상기 도포영역에 레이저를 조사함에 따라 수행될 수 있다. 이 경우, 상기 스크라이빙 공정(S300)과 상기 도포공정(S200)은 상기 셀(1)의 동일한 면에서 수행될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 전도성 물질(20)이 미리 도포된 영역에 레이저를 조사하도록 구현됨으로써, 상기 스크라이빙 공정(S300)에 의해 상기 크랙의 발생 가능성을 감소시킬 수 있다. 따라서, 본 발명의 제1실시예에 따른 태양전지 제조방법은 태양전지의 품질을 향상시킬 수 있다.
상기 스크라이빙 공정(S300)이 상기 전도성 물질(20)이 도포된 영역에 레이저를 조사하도록 수행될 경우, 상기 도포공정(S200)은 레이저가 상기 셀(1) 상에 조사되도록 투명전도성필름(Transparent Conductive Films, TCF)을 이용하여 수행될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 크랙의 발생 가능성을 감소시킬 수 있음과 아울러 레이저가 상기 전도성 물질(20)을 투과할 수 있는 투과력을 구현할 수 있다.
도 3a 내지 도 4를 참고하면, 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 상기 셀(1)의 서로 다른 위치에서 수행될 수 있다. 예컨대, 상기 스크라이빙 공정(S300)이 상기 제1스크라이빙 영역에서 수행된 경우, 상기 도포공정(S200)은 상기 제1스크라이빙 영역으로부터 이격된 상기 제1도포영역에서 수행될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 도포공정(S300)과 상기 스크라이빙 공정(S200)이 수행되는 영역을 서로 이격시킴으로써, 레이저의 온도로 인하여 상기 전도성 물질(20)이 경화(硬化)되는 것을 억제하는 억제력을 구현할 수 있다.
상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 제1축방향을 기준으로 이격된 위치에서 수행될 수 있다. 상기 제1축방향은 상기 스크라이빙 장치(3)가 레이저를 조사하는 방향에 대해 평행한 방향일 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 수행되는 영역을 서로 이격시킬 수 있다.
도 3a 내지 도 4를 참고하면, 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 상기 셀(1)의 서로 다른 면(面)에서 수행될 수 있다. 예컨대, 상기 도포공정(S200)은 상기 셀(1)의 상면(1a)에서 수행됨과 아울러 상기 스크라이빙 공정(S300)은 상기 셀(1)의 하면(1b)에서 수행될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 수행되는 면을 서로 이격시킴으로써, 레이저의 온도로 인하여 상기 전도성 물질(20)이 경화되는 것을 억제하는 억제력을 구현할 수 있다.
도 2 및 도 5를 참고하면, 본 발명의 제1실시예에 따른 태양전지 제조방법은 상기 셀(1)을 단위 셀(10)로 분리하는 커팅공정(S400)을 포함할 수 있다.
상기 커팅공정(S400)은 상기 셀(1)을 복수개의 단위 셀(10)로 분리시키기 위한 공정일 수 있다. 상기 커팅공정(S400)은 상기 스크라이빙 공정(S300) 이후에 수행될 수 있다. 도 5에 도시된 바와 같이, 상기 셀(1)을 5개의 단위 셀(10, 10', 10'', 10''', 10'''')로 분리시키고자 할 경우, 본 발명의 제1실시예에 따른 태양전지 제조방법은 4번의 커팅공정(S400)을 포함할 수 있다. 즉, 상기 셀(1)을 L(L은 2이상의 정수)개의 단위 셀(10)로 분리시키고자 할 경우, 본 발명의 제1실시예에 따른 태양전지 제조방법은 L-1번의 커팅공정(S400)을 포함할 수 있다. 상기 커팅공정(S400)이 수행됨에 따라 상기 셀 분리부(30)를 기준으로 상기 셀(1)은 복수개의 단위 셀(10)로 분리될 수 있다. 상기 커팅공정(S400)은 상기 셀(1)을 상기 단위 셀(10)로 분리시키는 커팅로봇(미도시)에 의해 수행될 수 있다.
도 2 및 도 6을 참고하면, 본 발명의 제1실시예에 따른 태양전지 제조방법은 분리된 단위 셀(10)을 접합하는 접합공정(S500)을 포함할 수 있다.
상기 접합공정(S500)은 분리된 단위 셀(10)들을 접합하는 공정일 수 있다. 상기 접합공정(S500)은 상기 전도성 물질(20)을 매개로 하여 분리된 단위 셀(10)들을 접합함으로써 수행될 수 있다. 상기 접합공정(S500)은 상기 커팅공정(S400) 이후에 수행될 수 있다. 상기 커팅공정(S400)을 통해 상기 셀(1)이 5개의 단위 셀(10, 10', 10'', 10''', 10'''')로 분리된 경우, 도 6에 도시된 바와 같이 본 발명의 제1실시예에 따른 태양전지 제조방법은 4번의 접합공정(S500)을 포함할 수 있다. 즉, L개의 단위 셀(10)을 접합시키고자 할 경우, 본 발명의 제1실시예에 따른 태양전지 제조방법은 L-1번의 접합공정(S500)을 포함할 수 있다. 상기 접합공정(S500)은 도 6에 도시된 바와 같이, 1번째 단위 셀(10) 일측의 상면과 2번째 단위 셀(10') 일측의 하면을 접합시키는 공정, 2번째 단위 셀(10') 타측의 상면과 3번째 단위 셀(10'') 일측의 하면을 접합시키는 공정, 및 3번째 단위 셀(10'') 타측의 상면과 4번째 단위 셀(10''') 일측의 하면을 접합시키는 공정, 및 4번째 단위 셀(10''') 타측의 상면과 5번째 단위 셀(10'''') 일측의 하면을 접합시키는 공정을 포함할 수 있다. 상기 단위 셀(10)들 각각의 일측과 타측은, 상기 단위 셀(10)의 중간지점을 기준으로 서로 반대되는 위치에 배치된 것일 수 있다. 상기 접합공정(S500)은 분리된 단위 셀(10)을 이동시키는 이송로봇(미도시)에 의해 수행될 수 있다.
도 2 및 도 6을 참고하면, 본 발명의 제1실시예에 따른 태양전지 제조방법은 큐어링공정(S600)을 포함할 수 있다.
상기 큐어링공정(S600)은 접합된 단위 셀(10)들을 경화하는 공정이다. 상기 큐어링공정(S600)은 상기 접합공정(S500) 이후에 수행될 수 있다. 상기 큐어링공정(S600)은 접합된 단위 셀(10)들을 가열하는 가열장치(미도시) 등에 의해 수행될 수 있다. 상기 큐어링공정(S600)이 수행됨에 따라 상기 단위 셀(10)들이 서로 연결된 모듈(Module) 형태인 태양전지(10A)가 제조될 수 있다. 도 6에서는 상기 태양전지(10A)가 5개의 단위 셀(10)로 구성된 것이 도시되어 있으나 이는 예시적인 것이며, 상기 태양전지(10A)는 2개 이상 4개 이하의 단위 셀(10)로 구성되거나, 또는 6개 이상의 단위 셀(10)로 구성될 수도 있다.
<제2실시예>
도 3b 내지 도 8b를 참고하면, 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 병행하여 수행되도록 구현된다. 이에 따라, 본 발명의 제2실시예에 따른 태양전지 제조방법은 다음과 같은 작용 효과를 도모할 수 있다.
첫째, 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 동시에 수행되도록 구현되므로, 태양전지를 제조하기 위한 시간을 줄일 수 있다. 따라서, 본 발명의 제2실시예에 따른 태양전지 제조방법은 태양전지의 양산성을 증대시킬 수 있다.
둘째, 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 셀(1)을 상기 스크라이빙 공정(S300)이 수행된 공간과 도포공정(S200)이 수행되는 공간 간에 이송시키는 등의 일련의 공정을 생략할 수 있도록 구현된다. 이에 따라, 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 셀(1) 이송에 사용되는 셀 이송수단(미도시) 등의 설비비용을 감소시킴으로써, 태양전지의 제조비용을 절감시킬 수 있다.
이러한 본 발명의 제2실시예에 따른 태양전지 제조방법에 따르면, 상기 안착공정(S100), 상기 도포공정(S200), 및 상기 스크라이빙 공정(S300)은 다음과 같이 구현될 수 있다. 상기 안착공정(S100), 상기 도포공정(S200), 및 상기 스크라이빙 공정(S300)은, 상술한 본 발명의 제1실시예에 따른 태양전지 제조방법에서 설명한 바와 대략 일치하게 구현될 수 있으므로, 차이점이 있는 부분을 위주로 하여 설명한다.
도 3b 내지 도 8b를 참고하면, 상기 스크라이빙 공정(S300)에 있어서, 상기 복수개의 셀 분리부(30)를 형성하는 공정은, 상기 스크라이빙 장치(3)를 제1축방향을 따라 이동시킴으로 수행될 수도 있다. 이 경우, 상기 스크라이빙 장치(3)들을 이동시키기 위한 스크라이빙 이송수단(미도시)이 설치될 수 있다. 상기 제1축방향은 레이저가 상기 셀(1) 상에 조사되는 방향에 대해 수직한 방향일 수 있다. 예컨대, 2개의 스크라이빙 장치(3)를 이용하여 상기 셀(1)에 4개의 셀 분리부(30)를 형성하고자 할 경우, 상기 복수개의 셀 분리부(30)를 형성하는 공정은 다음과 같이 진행될 수 있다. 우선, 상기 스크라이빙 장치들(3, 3')를 통해 상기 셀(1)의 중간지점을 기준으로 하여 우측부분에 2개의 셀 분리부(30)를 형성한다. 다음, 상기 스크라이빙 장치(3)는 상기 스크라이빙 이송수단에 의해 상기 제1축방향을 따라 이동할 수 있다. 다음, 상기 스크라이빙 장치들(3, 3')를 통해 상기 셀(1)의 중간지점을 기준으로 하여 좌측부분에 2개의 셀 분리부(30)를 형성한다. 상기와 같은 과정으로 상기 셀(1) 상에 복수개의 셀 분리부(30)를 형성하는 공정이 수행될 수 있다.
도 3b 내지 도 8b를 참고하면, 상기 도포공정(S200)은 상기 전도성 물질(200)로 투명전도성필름(Transparent Conductive Films, TCF) 등과 같은 전도성을 가진 물질을 이용할 수 있다. 상기 도포영역과 상기 스크라이빙 영역은 상기 셀(1)의 서로 다른 영역에 배치될 수 있다. 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 병행하여 수행될 수 있다.
상기 셀(1) 상에 복수개의 전도성 물질(20)을 분사하는 공정은, 상기 전도성 물질 분사기(2)를 상기 제1축방향을 따라 이동시킴으로써 수행될 수도 있다. 이 경우, 상기 전도성 물질 분사기(2)를 이동시키기 위한 도포이동수단(미도시)이 설치될 수 있다. 예컨대, 2개의 전도성 물질 분사기(2)를 이용하여 상기 셀(1)에 4개의 전도성 물질(20)을 분사하고자 할 경우, 상기 복수개의 전도성 물질(20)을 분사하는 공정은 다음과 같이 진행될 수 있다. 우선, 상기 전도성 물질 분사기(2)를 통해 상기 셀(1)의 중간지점을 기준으로 하여 좌측부분에 2개의 전도성 물질(20)을 분사한다. 다음, 상기 전도성 물질 분사기(2)들은 상기 도포이송수단에 의해 상기 제1축방향으로 이동한다. 다음, 상기 2개의 전도성 물질 분사기(2)를 통해 상기 셀(1)의 중간지점을 기준으로 하여 우측부분에 2개의 전도성 물질(20)을 분사한다. 상기와 같은 과정으로 상기 셀(1) 상에 복수개의 전도성 물질(20)을 분사하는 공정이 수행될 수 있다.
상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 동일 공간에서 수행될 수 있다. 즉, 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 상기 처리공간 내에서 모두 수행될 수 있다.
상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 제1축방향을 기준으로 이격된 위치에서 수행될 수 있다. 이하에서는 본 발명의 제2실시예에 따른 태양전지 제조방법에 있어서 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 수행되는 일 실시예를 첨부된 도면을 참고하여 설명한다. 이해의 편의를 위해 상기 도포공정(S200)은 4개의 전도성 물질 분사기(2, 2', 2'', 2''')에 의해 수행됨과 아울러 상기 스크라이빙 공정(S300)은 4개의 스크라이빙 장치(3, 3', 3'', 3''')에 의해 수행되는 것을 기준으로 설명한다.
우선, 상기 셀(1)을 준비한다. 상기 셀(1)의 상측방향에는 2개의 전도성 물질 분사기(2, 2')가 배치됨과 아울러 상기 셀(1)의 하측방향에는 2개의 스크라이빙 장치(3, 3')가 배치될 수 있다. 이 경우, 상기 전도성 물질 분사기들(2, 2')과 상기 스크라이빙 장치들(3, 3')은 상기 제1축방향을 기준으로 이격되게 배치되도록 상기 전도성 물질 분사기들(2, 2')은 상기 셀(1)의 중간지점을 기준으로 좌측에 배치됨과 아울러 상기 스크라이빙 장치들(3, 3')은 상기 셀(1)의 중간지점을 기준으로 우측에 배치될 수 있다.
다음, 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)을 병행하여 수행한다. 상기예에서 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 도 8a에 도시된 바와 같이 상기 전도성 물질 분사기들(2, 2')이 상기 셀(1)의 상면(1a) 상에 전도성 물질들(20, 20')을 분사함과 아울러 상기 스크라이빙 장치들(3, 3')이 상기 셀(1)의 하면(1b) 상에 셀 분리부들(30, 30')을 형성함으로써 수행될 수 있다. 이 경우, 상기 전도성 물질 분사기들(2, 2')과 상기 스크라이빙 장치들(3, 3')은 상기 제1축방향을 기준으로 이격되게 배치되어 있으므로, 상기 전도성 물질들(20, 20')이 레이저에 의해 경화되는 것을 방지할 수 있다.
다음, 상기 셀(1)을 상기 제1축방향을 따라 이동시는 공정이 수행될 수 있다. 상기 셀(1)을 이동시키는 공정은, 셀 이동수단(미도시)에 의해 수행될 수 있다. 이 경우, 상기 전도성 물질 분사기들(2'', 2''')은 상기 셀(1)의 중간지점을 기준으로 우측에 배치됨과 아울러 상기 스크라이빙 장치들(3'', 3''')은 상기 셀(1)의 중간지점을 기준으로 좌측에 배치될 수 있다.
다음, 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)을 병행하여 수행한다. 상기예에서 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 도 8b에 도시된 바와 같이 상기 전도성 물질 분사기들(2'', 2''')이 상기 셀(1)의 상면(1a) 상에 전도성 물질들(20'', 20''')을 분사함과 아울러 상기 스크라이빙 장치들(3'', 3''')이 상기 셀(1)의 하면(1b) 상에 셀 분리부들(30'', 30''')을 형성함으로써 수행될 수 있다. 이 경우, 상기 전도성 물질 분사기들(2'', 2''')과 상기 스크라이빙 장치들(3'', 3''')은 상기 제1축방향을 기준으로 이격되게 배치되어 있으므로, 상기 전도성 물질들(20'', 20''')이 레이저에 의해 경화되는 것이 방지될 수 있다.
상기와 같이 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 스크라이빙 장치(3)들과 상기 전도성 물질 분사기(2)들을 이격시킨 상태에서, 상기 스크라이빙 공정(S300)과 상기 도포공정(S200)이 병행하여 수행되도록 구현될 수 있다.
도 3b 내지 도 8b를 참고하면, 본 발명의 제2실시예에 따른 태양전지 제조방법은 상기 커팅공정(S400), 및 상기 접합공정(S500)을 포함할 수 있다. 상기 커팅공정(S400)과 상기 접합공정(S500)은, 상술한 본 발명의 제1실시예에 따른 태양전지 제조방법에서 설명한 바와 대략 일치하게 구현될 수 있으므로, 이에 대한 구체적인 설명은 생략한다.
<제3실시예>
도 9 내지 도 15e를 참고하면, 본 발명의 제3실시예에 따른 태양전지 제조방법은 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정(S100), 상기 셀(1)을 N(N은 3이상의 정수)개의 단위 셀(10)로 분리시키기 위한 N-1개의 셀 분리부(30)를 형성하도록 상기 셀(1)에 레이저를 조사(照射)하는 스크라이빙 공정(S300), 상기 셀(1) 상에 전도성 물질(20)을 분사하는 도포공정(S200), 상기 셀(1)을 2개의 단위 셀(10)로 분리시키는 커팅공정(S400), 및 분리된 2개의 단위 셀(10)을 접합시키기 위해 상기 커팅공정(S400) 직후 연속하여 수행되는 접합공정(S500)을 포함한다.
본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 커팅공정(S400)과 상기 접합공정(S500)이 N-1회 반복하여 수행되도록 구현된다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 커팅공정(S400)에서 상기 셀(1)을 N개의 단위 셀(10)로 모두 분리시킨 이후 상기 접합공정(S500)이 수행되도록 구현된 종래 기술과 대비하여 볼 때, 상기 접합공정(S500)에 소요되는 시간을 감소시킬 수 있다. 이를 첨부된 도면을 참고하여 구체적으로 설명하면, 다음과 같다. 이해의 편의를 위해, 상기 셀(1)을 5개의 단위 셀(10, 10', 10'', 10''', 10'''')로 분리시키는 것을 기준으로 설명한다.
도 13a 내지 도 13e는 종래 기술에 따른 태양전지 제조방법에 있어서 커팅공정(S400)과 접합공정(S500)을 도시한 공정 측면도이다. 도 13a에 도시된 바와 같이, 상기 셀(1)을 상기 5개의 단위 셀(10, 10', 10'', 10''', 10'''')로 분리시키기 위해 4번의 커팅공정(S400)이 동시에 수행될 수 있다. 4번의 커팅공정(S400)이 상기 셀(1) 상에 동시에 수행됨에 따라 5개의 단위 셀(10, 10', 10'', 10''', 10'''') 간에는 커팅거리(CL)로 서로 이격될 수 있다. 여기서, 5개의 단위 셀(10, 10', 10'', 10''', 10'''') 간의 4개의 커팅거리(CL)들은 서로 동일할 수 있다.
도 13b 내지 도 13e를 참고하면, 상기 커팅공정(S400)을 수행한 후 5개의 단위 셀(10, 10', 10'', 10''', 10'''')을 접합시키기 위해 4번의 접합공정(S500)이 수행될 수 있다. 우선, 도 13b에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 2번째 단위 셀(10')은 1번째 단위 셀(10)에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 2번째 단위 셀(10')을 대략적으로 하나의 커팅거리(CL)만큼 이동시키는 공정을 포함할 수 있다. 다음, 도 13c에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 3번째 단위 셀(10'')은 2번째 단위 셀(10')에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 3번째 단위 셀(10'')을 대략적으로 두개의 커팅거리(2CL)만큼 이동시키는 공정을 포함할 수 있다. 2번째 단위 셀(10')을 하나의 커팅거리(CL)만큼 이동시키는 공정은, 2번째 단위 셀(10')이 3번째 단위 셀(10'')과 분리된 채로 수행되므로, 3번째 단위 셀(10'')은 2번째 단위 셀(10')이 이동한 하나의 커팅거리(CL)만큼 더 이동하여야 하기 때문이다. 다음, 6D에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 4번째 단위 셀(10''')은 3번째 단위 셀(10'')에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 4번째 단위 셀(10''')을 대략적으로 세개의 커팅거리(3CL)만큼 이동시키는 공정을 포함할 수 있다. 3번째 단위 셀(10'')을 두개의 커팅거리(2CL)만큼 이동시키는 공정은, 3번째 단위 셀(10'')이 4번째 단위 셀(10''')과 분리된 채로 수행되므로, 4번째 단위 셀(10''')은 3번째 단위 셀(10'')이 이동한 두개의 커팅거리 (2CL)만큼 더 이동하여야 하기 때문이다. 다음, 도 13e에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 5번째 단위 셀(10'''')은 4번째 단위 셀(10''')에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 5번째 단위 셀(10'''')을 대략적으로 네개의 커팅거리(4CL)만큼 이동시키는 공정을 포함할 수 있다. 4번째 단위 셀(10''')을 세개의 커팅거리(3CL)만큼 이동시키는 공정은, 4번째 단위 셀(10''')이 5번째 단위 셀(10'''')과 분리된 채로 수행되므로, 5번째 단위 셀(10'''')은 4번째 단위 셀(10''')이 이동한 세개의 커팅거리(3CL)만큼 더 이동하여야 하기 때문이다. 이처럼, 비교예는 상기 접합공정(S500)에서 5개의 단위 셀(10, 10', 10'', 10''', 10'''')을 대략적으로 열개의 커팅거리(10CL=CL+2CL+3CL+4CL)만큼 이동시키는 공정을 포함할 수 있다.
도 14a 내지 도 14h는 본 발명의 제3실시예에 따른 태양전지 제조방법에 있어서 커팅공정(S400)과 접합공정(S500)을 도시한 공정 측면도이다. 본 발명의 제3실시예에 따른 태양전지 제조방법은 비교예와 달리 상기 셀(1)을 5개의 단위 셀(10, 10', 10'', 10''', 10'''')로 분리시키기 위하여 상기 커팅공정(S400)이 동시에 수행되지 않는다. 즉, 본 발명의 제3실시예에 따른 태양전지 제조방법은 1번의 커팅공정(S400)이 수행되면 순차적으로 1번의 접합공정(S500)이 연속하여 수행되도록 구현된다. 이하, 본 발명의 제3실시예에 따른 태양전지 제조방법의 커팅공정(S400)과 접합공정(S500)을 설명한다.
도 14a를 참고하면, 우선 상기 셀(1) 상에 1번째 단위 셀(10)과 2번째 단위 셀(10')을 분리시키는 1회의 커팅공정(S400)을 수행한다. 이 경우, 1번째 단위 셀(10)과 2번째 단위 셀(10')은 상기 커팅거리(CL)로 이격될 수 있다.
다음, 도 14b에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 2번째 단위 셀(10')은 1번째 단위 셀(10)에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 2번째 단위 셀(10')을 대략적으로 상기 커팅거리(CL)만큼 이동시키는 공정을 포함할 수 있다.
다음, 도 14c에 도시된 바와 같이 2번째 단위 셀(10')과 3번째 단위 셀(10'')을 분리시키는 1회의 커팅공정(S400)을 수행한다. 이 경우, 2번째 단위 셀(10')과 3번째 단위 셀(10'')은 상기 커팅거리(CL)로 이격될 수 있다.
다음, 도 14d에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 3번째 단위 셀(10'')은 2번째 단위 셀(10')에 접합될 수 있다. 이 경우, 접합공정(S500)은 3번째 단위 셀(10'')을 대략적으로 상기 커팅거리(CL)만큼 이동시키는 공정을 포함할 수 있다. 본 발명의 제3실시예에 따른 태양전지 제조방법은 2번째 단위 셀(10')을 1번째 단위 셀(10)에 접합시키는 접합공정(S500)에서, 2번째 단위 셀(10')이 1번째 단위 셀(10)에 이동함에 따라 3번째 단위 셀(10'')도 함께 이동하도록 구현된다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 비교예와 대비하여 볼 때, 3번째 단위 셀(10'')을 접합하는데 필요한 이동거리를 감소시킬 수 있다.
다음, 도 14e에 도시된 바와 같이 3번째 단위 셀(10'')과 4번째 단위 셀(10''')을 분리시키는 1회의 커팅공정(S400)을 수행한다. 이 경우, 4번째 단위 셀(10''')과 3번째 단위 셀(10'')은 상기 커팅거리(CL)로 이격될 수 있다.
다음, 도 14f에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 4번째 단위 셀(10''')은 3번째 단위 셀(10'')에 접합될 수 있다. 이 경우, 접합공정(S500)은 4번째 단위 셀(10''')을 대략적으로 상기 커팅거리(CL)만큼 이동시키는 공정을 포함할 수 있다. 본 발명의 제3실시예에 따른 태양전지 제조방법은 3번째 단위 셀(10'')을 2번째 단위 셀(10')에 접합시키는 접합공정(S500)에서, 3번째 단위 셀(10'')이 2번째 단위 셀(10')에 이동함에 따라 4번째 단위 셀(10''')도 함께 이동하도록 구현된다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 비교예와 대비하여 볼 때 4번째 단위 셀(10''')을 접합하는데 필요한 이동거리를 감소시킬 수 있다.
다음, 도 14g에 도시된 바와 같이 4번째 단위 셀(10''')과 5번째 단위 셀(10'''')을 분리시키는 1회의 커팅공정(S400)을 수행한다. 이 경우, 5번째 단위 셀(10'''')과 4번째 단위 셀(10''')은 상기 커팅거리(CL)로 이격될 수 있다.
다음, 도 14h에 도시된 바와 같이 상기 접합공정(S500)이 수행됨에 따라 5번째 단위 셀(10'''')은 4번째 단위 셀(10''')에 접합될 수 있다. 이 경우, 상기 접합공정(S500)은 5번째 단위 셀(10'''')을 대략적으로 상기 커팅거리(CL)만큼 이동시키는 공정을 포함할 수 있다. 본 발명의 제3실시예에 따른 태양전지 제조방법은 4번째 단위 셀(10''')을 3번째 단위 셀(10'')에 접합시키는 공정에서, 4번째 단위 셀(10''')이 3번째 단위 셀(10'')에 이동함에 따라 5번째 단위 셀(10'''')도 함께 이동하도록 구현된다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 비교예와 대비하여 볼 때, 5번째 단위 셀(10'''')을 접합하는데 필요한 이동거리를 감소시킬 수 있다.
이처럼, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 접합공정(S500)에서 분리된 5개의 단위 셀(10, 10', 10'', 10''', 10'''')을 네개의 커팅거리(4CL)만큼 이동시키는 공정을 포함할 수 있다.
상기와 같이, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 셀(1)에 1회의 커팅공정(S400)이 수행된 직후 1회의 접합공정(S500)이 연속하여 수행되고, 상기 커팅공정(S400)과 상기 접합공정(S500)이 각각 N-1회 반복하여 수행되도록 구현된다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 비교예와 대비하여 볼 때, 동일한 횟수의 커팅공정(S400)과 동일한 횟수의 접합공정(S500)이 수행됨에도 불구하고 상기 접합공정(S500)에서 분리된 단위 셀(10)들의 이동거리를 감소시키도록 구현될 수 있다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 접합공정(S500)에 소요되는 시간을 감소시킴으로써, 태양전지의 양산성을 향상시킬 수 있다.
이하에서는 상기 안착공정(S100), 상기 스크라이빙 공정(S300), 상기 도포공정(S200), 상기 커팅공정(S400), 및 상기 접합공정(S500)에 대해 첨부된 도면을 참고하여 구체적으로 설명한다.
도 9를 참고하면, 상기 안착공정(S100)은 태양전지를 제조하기 위한 상기 처리공간에 상기 셀을 안착시키는 공정일 수 있다. 상기 안착공정(S100)은 태양전지가 형성된 상기 기판을 상기 처리공간에 준비하는 공정일 수 있다. 여기서, 상기 태양전지는 상기 기판 상에 복수개의 박막층이 적층된 상기 셀(1)일 수 있다. 상기 안착공정은 상기 셀을 상기 처리공간으로 로딩하는 로딩장치(미도시)에 의해 수행될 수 있다. 상기 처리공간은 내부에 태양전지를 제조하는데 필요한 제조장치(미도시)들을 수용하며, 전체적으로 챔버(Chamber)로 구현될 수 있다.
도 9 및 도 11을 참고하면, 상기 스크라이빙 공정(S300)은 상기 셀(1)을 복수개의 단위 셀(10)로 분리시키기 위한 공정이다. 상기 스크라이빙 공정(S300)은 상기 안착공정(S100) 이후에 수행될 수 있다. 상기 스크라이빙 공정(S300)은 상기 셀(1) 쪽으로 레이저를 조사하는 스크라이빙 장치(3)에 의해 수행될 수 있다. 상기 스크라이빙 장치(3)는 상기 셀(1) 상의 일 영역인 스크라이빙 영역에 레이저를 조사할 수 있다. 도 11에 도시된 일점쇄선의 화살표는 상기 스크라이빙 장치(3)가 조사하는 레이저를 모식적으로 도시한 것이다. 도 11에서는 상기 스크라이빙 공정(S300)이 상기 셀(1)의 상면(1a)에 수행되는 것으로 도시되어 있으나 이는 예시적인 것이며, 상기 스크라이빙 공정(S300)은 상기 셀(1)의 하면(1b)에 수행될 수도 있다.
상기 스크라이빙 공정(S300)은 상기 셀(1)을 N개의 단위 셀(10)로 분리시키기 위한 N-1개의 셀 분리부(30)를 형성하는 공정일 수 있다. 이 경우, 상기 스크라이빙 공정(S300)은 N-1개의 스크라이빙 장치(3)에 의해 수행될 수 있다. 예컨대, 도 11에 도시된 바와 같이 5개의 단위 셀(10)로 분리시키고자 할 경우, 상기 스크라이빙 공정(S300)은 4개의 상기 스크라이빙 장치(3, 3', 3'', 3''')에 의해 수행될 수 있다. 이에 따라, 상기 셀(1) 상에는 4개의 셀 분리부(30)가 형성할 수 있다. 따라서, 제1스크라이빙 장치(3)가 레이저를 상기 셀(1)의 제1스크라이빙 영역으로 조사할 때, 제2스크라이빙 장치(3')는 상기 제1스크라이빙 영역으로부터 이격된 제2스크라이빙 영역에 레이저를 조사하고, 제3스크라이빙 장치(3'')는 상기 제1스크라이빙 영역과 상기 제2스크라이빙 영역 각각으로부터 이격된 제3스크라이빙 영역에 레이저를 조사함과 아울러, 제4스크라이빙 장치는 상기 제1스크라이빙 영역, 상기 제2스크라이빙 영역, 및 상기 제3스크라이빙 영역 각각으로부터 이격된 제4스크라이빙 영역에 레이저를 조사할 수 있다. 이 경우, 상기 스크라이빙 장치들(3, 3', 3'', 3''')은 소정 간격으로 이격되어 배치될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)이 상기 셀(1)의 전면(全面)에 동시에 수행되도록 구현될 수 있다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 스크라이빙 공정(S300)에 소요되는 시간을 절감시킬 수 있다. 상기 제1스크라이빙 영역, 상기 제2스크라이빙 영역, 상기 제3스크라이빙 영역, 및 상기 제4스크라이빙 영역은 상기 셀(1)의 상면(1a)에 존재하는 일 영역들일 수 있다.
상기 스크라이빙 공정(S300)은 상기 셀(1) 쪽으로 레이저를 조사함으로써 이루어질 수 있다. 이에 따라, 상기 셀(1)의 소정 영역을 제거함으로써, 상기 셀 분리부(30)를 형성할 수 있다. 상기 스크라이빙 공정(S300)이 수행됨에 따라 상기 셀 분리부(30)는 상기 셀(1)의 일면에 형성될 수 있다. 상기 스크라이빙 공정(S300)이 수행됨에 따라 상기 셀 분리부(30)는 상기 기판의 일면에 형성될 수도 있다. 상기 셀 분리부(30)는 상기 셀(1)의 표면으로부터 소정 깊이 함몰된 홈(Groove)으로 구현될 수 있다. 상기 셀 분리부(30)는 상기 셀(1)의 일측에서 타측까지 연장되어 형성될 수 있다.
도 9 및 도 12를 참고하면, 상기 도포공정(S200)은 상기 셀(1) 상에 전도성 물질(20)을 분사하는 공정일 수 있다. 상기 도포공정(S200)이 수행됨에 따라 상기 셀 분리부(30)의 주변에는 상기 전도성 물질(20)이 도포될 수 있다. 상기 도포공정(S200)은 상기 스크라이빙 공정(S300) 이후에 수행될 수 있다. 상기 전도성 물질(20)은 투명전도성필름(Transparent Conductive Films, TCF) 등과 같은 전도성(Conductive)을 가진 물질일 수 있다. 상기 도포공정(S200)은 상기 전도성 물질(20)을 분사하는 전도성 물질 분사기(2)에 의해 수행될 수 있다. 상기 전도성 물질 분사기(2)는 상기 셀(1) 상의 일 영역인 도포영역에 상기 전도성 물질(20)을 분사할 수 있다. 상기 도포영역과 상기 스크라이빙 영역은 상기 셀(1)의 서로 다른 영역에 배치될 수 있다. 도 12에서는 상기 도포공정(S200)이 상기 셀(1)의 상면(1a)에 수행되는 것으로 도시되어 있으나 이는 예시적인 것이며, 상기 도포공정(S200)은 상기 셀(1)의 하면(1b)에 수행될 수도 있다.
상기 도포공정(S200)은 복수개의 전도성 물질 분사기(2)에 의해 상기 셀(1) 상에 복수개의 전도성 물질(20)을 분사하는 공정을 포함할 수 있다. 상기 셀(1)을 N개의 단위 셀(10)로 분리하고자 할 경우, 상기 도포공정(S200)은 N-1개의 전도성 물질 분사기(2)에 의해 수행될 수 있다. 예컨대, 도 12에 도시된 바와 같이 상기 셀(1)을 5개의 단위 셀(10)로 분리하고자 할 경우, 상기 도포공정(S200)은 4개의 상기 전도성 물질 분사기(2, 2', 2'', 2''')에 의해 수행될 수 있다. 따라서, 제1전도성 물질 분사기(2)가 상기 전도성 물질(20)을 상기 셀(1)의 제1도포영역으로 분사할 때, 제2전도성 물질 분사기(2')는 상기 제1도포영역으로부터 이격된 제2도포영역에 상기 전도성 물질(20)을 분사하고, 제3전도성 물질 분사기(2'')는 상기 제1도포영역과 상기 제2도포영역 각각으로부터 이격된 제3도포영역에 상기 전도성 물질(20)을 분사함과 아울러, 제4전도성 물질 분사기(2''')는 상기 제1도포영역, 상기 제2도포영역, 및 상기 제3도포영역 각각으로부터 이격된 제4도포영역에 전도성 물질(20)을 분사할 수 있다. 이 경우, 상기 전도성 물질 분사기들(2, 2', 2'', 2''')은 소정 간격으로 이격되어 배치될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)이 상기 셀(1)의 전면(全面)에 동시에 수행되도록 구현될 수 있다. 따라서, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)에 소요되는 시간을 절감시킬 수 있다. 상기 제1도포영역, 상기 제2도포영역, 상기 제3도포영역, 및 상기 제4도포영역은 상기 셀(1)의 상면(1a)에 존재하는 일 영역들일 수 있다.
상기 도포공정(S200)과 상기 스크라이빙 공정(S300)은 상기 셀(1)의 서로 다른 면(面)에서 수행될 수 있다. 예컨대, 상기 도포공정(S200)은 상기 셀(1)의 상면(1a)에서 수행됨과 아울러 상기 스크라이빙 공정(S300)은 상기 셀(1)의 하면(1b)에서 수행될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 도포공정(S200)과 상기 스크라이빙 공정(S300)이 수행되는 면을 서로 이격시킴으로써, 레이저의 온도로 인하여 상기 전도성 물질(20)이 경화되는 것을 억제하는 억제력을 구현할 수 있다.
도 9, 및 도 14a 내지 도 14h를 참고하면, 상기 커팅공정(S400)은 상기 셀(1)을 2개의 단위 셀(10)로 분리시키는 공정이다. 즉, 상기 커팅공정(S400)이 수행됨에 따라 상기 셀(1)을 구성하는 상기 기판은 상기 N-1개의 셀 분리부(30) 중에서 어느 하나의 셀 분리부(30)를 따라 2개의 조각으로 분리될 수 있다. 상기 커팅공정(S400)이 수행됨에 따라 상기 셀 분리부(30)를 기준으로 상기 셀(1)은 2개의 단위 셀(10)로 분리될 수 있다. 상기 커팅공정(S400)은 상기 셀(1)을 2개의 단위 셀(10)로 분리시키는 커팅로봇(미도시)에 의해 수행될 수 있다. 상기 셀(1) 상에 N-1개의 셀 분리부(30)가 형성된 경우, 상기 커팅공정(S400)은 N-1회 수행될 수 있다.
도 9, 및 도 14a 내지 도 14h를 참고하면, 상기 커팅공정(S400)이 수행됨에 따라 분리된 2개의 단위 셀(10) 사이에는 커팅거리(CL)가 형성될 수 있다. 즉, 상기 커팅공정(S400)이 수행됨에 따라 분리된 2개의 조각은 커팅거리(CL)로 서로 이격될 수 있다. 이 경우, 상기 접합공정(S500)은 분리된 단위 셀(10)들을 이동시키는 공정을 포함할 수 있다.
상기 커팅공정(S400)이 반복 수행됨에 따라 형성되는 커팅거리(CL)는 점차 감소할 수 있다. 예컨대, 도 14a에 도시된 바와 같이 1회의 커팅공정(S400)이 수행됨에 따라 형성되는 커팅거리(CL)는 도 14c에 도시된 바와 같이 2회의 커팅공정(S400)이 수행됨에 따라 형성되는 커팅거리(CL)에 비해 더 클 수 있다. 이처럼, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 커팅공정(S400)이 반복 수행됨에 따라 형성되는 커팅거리(CL)가 점차 감소되도록 구현됨으로써, 상기 접합공정(S500)에서 상기 단위 셀(10)들을 접합하기 위한 이동거리를 감소시킬 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 접합공정(S500)에 소요되는 시간을 감소시킬 수 있다. 상기 커팅공정(S400)이 반복 수행됨에 따라 형성되는 커팅거리(CL)는 동일할 수도 있다.
도 9, 및 도 14a 내지 도 14h를 참고하면, 상기 접합공정(S500)은 분리된 단위 셀(10)을 접합시키는 공정이다. 즉, 상기 접합공정(S500)은 분리된 2개의 조각을 서로 접합시키는 공정일 수 있다. 상기 접합공정(S500)은 분리된 2개의 단위 셀(10)을 접합시키기 위해 1회의 상기 커팅공정(S400) 직후 연속하여 수행됨과 아울러, 상기 접합공정(S500)과 상기 커팅공정(S400)은 N-1회 반복하여 수행될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 커팅공정(S400)에서 상기 셀(1)을 복수개의 단위 셀(10)로 모두 분리시킨 이후 상기 접합공정(S500)이 수행되도록 구현된 종래 기술과 대비하여 볼 때, 상기 접합공정(S500)에 소요되는 시간을 감소시킬 수 있다.
상기 접합공정(S500)은 상기 전도성 물질(20)을 매개로 하여 분리된 2개의 단위 셀(10)을 접합함으로써 수행될 수 있다. 상기 접합공정(S500)은 상기 커팅공정(S400)과 동일한 횟수로 수행될 수 있다. 예컨대, 도 14a 내지 도 14f에 도시된 바와 같이 상기 커팅공정(S400)이 3회 수행된 경우, 상기 접합공정(S500) 또한 3회 수행될 수 있다.
상기 접합공정(S500)은 분리된 2개의 단위 셀(10) 중에서 어느 하나의 단위 셀(10)을 이동시키는 공정을 포함할 수 있다. 즉, 상기 접합공정(S500)은 분리된 2개의 조각 중 어느 하나의 조각을 이동시켜서 다른 조각의 일부분과 겹치도록 하는 공정을 포함할 수 있다. 여기서, 2개의 조각이 겹쳐지는 부분은 상기 셀(1) 상에 분사된 상기 전도성 물질(20)의 길이인 도포거리(SL, 도 14a에 도시됨)일 수 있다. 상기 접합공정(S500)은 상기 단위 셀(10)을 이동시키는 이송로봇(미도시)에 의해 수행될 수 있다.
상기 접합공정(S500)은 분리된 2개의 단위 셀(10) 중에서 어느 하나의 단위 셀(10)만을 이동시키는 공정을 포함할 수 있다. 이에 따라, 상기 접합공정(S500)에서 상기 단위 셀(10)을 모두 이동시키는 비교예와 대비하여 볼 때, 상기 단위 셀(10)을 이동시키는 작업에 대한 용이성을 향상시킬 수 있다.
도 10 및 도 14a 내지 도 14h를 참고하면, 상기 접합공정(S500)은 이동 셀(10b)을 고정 셀(10a)로 이동시키는 이동공정(S510)을 포함할 수 있다. 상기 이동공정(S510)이 수행됨에 따라 상기 이동 셀(10b)은 상기 고정 셀(10a)로 이동할 수 있다. 상기 고정 셀(10a)은 상기 분리된 단위 셀(10)들 중에서 상기 접합공정(S500)시 이동하지 않는 고정된 단위 셀(10)일 수 있다. 상기 이동 셀(10b)은 분리된 단위 셀(10)들 중에서 상기 접합공정(S500)시 이동하는 단위 셀(10)일 수 있다. 상기 이동공정(S510)은 상기 이송로봇에 의해 수행될 수 있다.
상기 이동공정(S510)은 제1이동공정(S511), 및 제2이동공정(S512)을 포함할 수 있다.
상기 제1이동공정(S511)은 상기 이동 셀(10b)을 제1축방향에 따라 이동시키는 공정일 수 있다. 상기 제1축방향은 레이저가 조사되는 방향에 대해 평행한 방향일 수 있다. 상기 제1이동공정(S511)이 수행됨에 따라 상기 이동 셀(10b)은 상기 고정 셀(10a)에 대해 상측방향 쪽에 배치될 수 있다.
상기 제2이동공정(S512)은 상기 이동 셀(10b)을 제2축방향을 따라 이동시키는 공정일 수 있다. 상기 제2축방향은 상기 제1축방향에 대해 수직한 방향일 수 있다. 상기 제2이동공정(S512)이 수행됨에 따라 상기 이동 셀(10b)은 상기 커팅거리(CL)와 도포거리(SL, 도 14a에 도시됨)만큼 이동할 수 있다. 상기 도포거리(SL)는 상기 제2축방향을 기준으로 하여 상기 셀(1) 상에 분사된 전도성 물질(20)의 길이일 수 있다. 상기 제2이동공정(S512)은 상기 제1이동공정(S511)이 수행된 이후 순차적으로 수행될 수 있다.
상기 제2이동공정(S512)과 상기 제1이동공정(S511)은 병행하여 수행될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 이동 셀(10b)을 이동시키는데 소요되는 시간을 감소시킬 수 있다.
상기 제2이동공정(S512)은 상기 제1이동공정(S511)에 비해 먼저 수행되도록 구현될 수도 있다. 이 경우, 상기 제2이동공정(S512)은 상기 이동 셀(10b)이 상기 커팅거리(CL)를 초과하여 이동하지 않도록 이루어질 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 접합공정(S500)이 수행되는 과정에서 상기 이동 셀(10b)이 상기 고정 셀(10a)에 충돌함으로써 발생되는 상기 이동 셀(10b)과 상기 고정 셀(10a)의 손상 가능성을 방지할 수 있다. 또한, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 이동 셀(10b)이 상기 커팅거리(CL)만을 이동함으로써, 접합공정(S500)의 효율성을 향상시킬 수 있다.
도 9, 및 도 14a 내지 도 14h를 참고하면, 본 발명의 제3실시예에 따른 태양전지 제조방법은 판단공정(S700)을 더 포함할 수 있다.
상기 판단공정(S700)은 상기 커팅공정(S400)과 상기 접합공정(S500) 각각이 수행된 횟수가 N-1회에 도달하였는지 여부를 판단하는 것이다. 상기 판단공정(S700)은 상기 커팅공정(S400)과 상기 접합공정(S500) 각각이 수행된 횟수를 카운팅하는 제어부(미도시)에 의해 수행될 수 있다. 상기 제어부가 상기 반복공정이 N-1회 미만인 것을 판단한 경우, 상기 제어부는 상기 커팅공정(S400)과 상기 접합공정(S500)이 수행되도록 상기 커팅로봇(미도시)과 상기 이송로봇(미도시)에 공정신호를 제공할 수 있다. 상기 제어부가 상기 반복공정이 N-1회인 것을 판단한 경우, 상기 제어부는 상기 커팅공정(S400)과 상기 접합공정(S500)이 더 이상 수행되지 않도록 상기 커팅로봇과 상기 이송로봇에 상기 공정신호를 제공하지 않을 수 있다.
도 9 및 도 14h를 참고하면, 본 발명의 제3실시예에 따른 태양전지 제조방법은 큐어링공정(S600)을 포함할 수 있다.
상기 큐어링공정(S600)은 접합된 단위 셀(10)들을 경화하는 공정이다. 상기 큐어링공정(S600)은 상기 판단공정(S700) 이후에 수행될 수 있다. 즉, 상기 큐어링공정(S600)은 N-1회의 상기 커팅공정(S400)과 N-1회의 상기 접합공정(S500)이 완료된 이후에 수행될 수 있다. 상기 큐어링공정(S600)은 접합된 단위 셀(10)들을 가열하는 가열장치(미도시) 등에 의해 수행될 수 있다. 상기 큐어링공정(S600)이 수행됨에 따라 N개의 단위 셀(10)들이 서로 연결된 모듈(Module) 형태인 태양전지(100)가 제조될 수 있다. 도 14h에서는 상기 태양전지(100)가 5개의 단위 셀(10)로 구성된 것이 도시되어 있으나 이는 예시적인 것이며, 상기 태양전지(100)는 1개 이상 4개 이하의 단위 셀(10), 또는 6개 이상의 단위 셀(10)로 구성될 수도 있다.
도 15a 내지 도 15e를 참고하면, 본 발명의 일 실시예에 따른 태양전지 제조방법은 모듈공정을 포함할 수 있다.
상기 모듈공정은 상기 안착공정(S100), 상기 스크라이빙 공정(S300), 상기 도포공정(S200), N-1회의 상기 커팅공정(S400), 및 N-1회의 상기 접합공정(S500)이 수행된 셀(이하, “베이스 모듈”이라 함)에 추가적으로 M(M은 2이상의 정수)개의 단위모듈 셀(11, 도 15a에 도시됨)로 구성된 연결모듈을 결합시키는 공정이다. 예컨대, 상기 모듈공정은 도 15d에 도시된 바와 같이 5개의 단위 셀(10, 10', 10'', 10''', 10'''')이 서로 연결된 상기 베이스 모듈에 추가적으로 5개의 단위모듈 셀(11, 11', 11'', 11''', 11'''')이 서로 연결된 연결모듈을 결합시키기 위한 공정일 수 있다. 모듈공정은 상기 처리공간에서 수행될 수 있다.
도 15a를 참고하면, 상기 모듈공정은 연결공정을 포함할 수 있다.
상기 연결공정은 상기 베이스 모듈에 복수개의 박막층이 형성된 연결 셀(11A)을 연결시키는 공정일 수 있다. 상기 연결공정은 상기 베이스 모듈에 상기 전도성 물질(20)을 분사한 이후, 상기 연결 셀(11A)을 접합함으로써 이루어질 수 있다. 상기 연결 셀(11A)은 상기 셀 제조공정으로 제조될 수 있다. 따라서, 상기 연결 셀(11A)은 상기 셀(1)과 대략적으로 동일하게 구현될 수 있다. 상기 연결공정은 상기 커팅공정(S400)과 상기 접합공정(S500)이 각각 N-1회 수행된 이후에 수행될 수 있다. 상기 연결공정은 상기 이송로봇에 의해 수행될 수 있다.
상기 모듈공정은 모듈스크라이빙 공정과 모듈도포공정을 포함할 수 있다.
상기 모듈스크라이빙 공정은 상기 연결 셀(11A)을 M(M은 2이상의 정수)개의 단위모듈 셀(11)로 분리시키기 위한 M-1개의 셀 분리부를 형성하는 공정이다. 여기서, 상기 단위모듈 셀(11)은 대략적으로 단위 셀(10)과 동일하게 구현될 수 있다. 상기 모듈스크라이빙 공정은 상기 스크라이빙 공정(S300)과 대략적으로 동일하게 구현될 수 있다.
상기 모듈도포공정은 상기 연결 셀(11A) 상에 상기 전도성 물질(20)을 분사하는 공정이다. 상기 모듈도포공정은 상기 모듈스크라이빙 공정 이후에 수행될 수도 있다. 상기 모듈도포공정은 상기 도포공정(S200)과 대략적으로 동일하게 구현될 수 있다.
상기 모듈도포공정과 상기 모듈스크라이빙 공정은 상기 연결공정 이전에 수행될 수 있다. 이 경우, 상기 연결 셀(11A)에는 상기 연결공정이 수행되기 이전에 상기 셀 분리부(30)가 형성됨과 아울러, 상기 전도성 물질(20)이 분사될 수 있다. 상기 모듈도포공정과 상기 모듈스크라이빙 공정은 상기 연결공정 이후에 수행될 수도 있다.
도 15b를 참고하면, 상기 모듈공정은 모듈커팅공정을 포함할 수 있다.
상기 모듈커팅공정은 상기 연결 셀(11A)을 2개의 단위모듈 셀(11)로 분리시키기 위한 것이다. 상기 모듈커팅공정은 상기 연결공정 이후에 수행될 수 있다. 상기 모듈커팅공정이 수행됨에 따라 분리된 2개의 단위모듈 셀(11) 사이에는 커팅거리(CL)가 형성될 수 있다. 상기 연결 셀(11A) 상에 M-1개의 셀 분리부가 형성된 경우, 상기 모듈커팅공정은 M-1회 수행될 수 있다. 상기 모듈커팅공정은 상기 커팅공정(S400)과 대략적으로 동일하게 구현될 수 있다.
도 15c를 참고하면, 상기 모듈공정은 모듈접합공정을 포함할 수 있다.
상기 모듈접합공정은 분리된 2개의 단위모듈 셀(11)을 접합시키는 공정이다. 상기 모듈접합공정은 분리된 2개의 단위모듈 셀(11)을 접합시키기 위해 상기 모듈커팅공정 직후 연속하여 수행될 수 있다. 상기 모듈접합공정은 상기 모듈커팅공정과 동일한 횟수로 수행될 수 있다. 상기 모듈접합공정은 상기 접합공정(S500)과 대략적으로 동일하게 구현될 수 있다.
도 15d를 참고하면, 상기 모듈접합공정은 1회의 상기 모듈커팅공정 직후 연속하여 수행됨과 아울러, 상기 모듈접합공정과 상기 모듈커팅공정은 각각 M-1회 반복하여 수행될 수 있다. 이에 따라, 본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 모듈커팅공정에서 상기 연결 셀(11A)을 복수개의 단위모듈 셀(11)로 모두 분리시킨 이후 상기 모듈접합공정이 수행되도록 구현된 비교예와 대비하여 볼 때, 상기 모듈접합공정에 소요되는 시간을 감소시킬 수 있다.
도 15d를 참고하면, 본 발명의 제3실시예에 따른 태양전지 제조방법이 상기 모듈공정을 포함하는 경우, 상기 큐어링공정(S600)은 상기 모듈공정이 완료된 이후에 수행될 수 있다. 이 경우, 상기 큐어링공정(S600)은 상기 베이스 모듈과 상기 연결모듈을 경화시킬 수 있다. 상기 큐어링공정(S600)이 수행됨에 따라 N개의 단위 셀(10)과 M개의 단위모듈 셀(11)이 서로 연결된 모듈 형태인 태양전지(100)가 제조될 수 있다. 도 15d은 5개의 단위 셀(10, 10', 10'', 10''', 10'''')과 5개의 단위모듈 셀(11, 11', 11'', 11''', 11'''')로 구성된 태양전지(100)를 도시한 것이다.
본 발명의 제3실시예에 따른 태양전지 제조방법은 상기 모듈공정이 반복하여 수행되도록 구현될 수 있다. 예컨대, 도 15e에 도시된 바와 같이 상기 베이스 모듈에 9개의 상기 연결모듈이 순차적으로 결합될 수 있다. 상기 연결모듈들 각각이 5개의 단위모듈 셀로 연결된 경우, 상기 태양전지(100)는 5개의 단위 셀(10, 10', 10'', 10''', 10'''')과 45개의 단위모듈 셀(11, 11', 11'', 11''', 11'''', … 11'''')로 구성될 수 있다. 이 경우, 상기 큐어링공정(S600)은 상기 모듈공정이 완료된 이후에 수행될 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (27)

  1. 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정;
    상기 셀 상에 전도성 물질을 분사하는 도포공정; 및
    상기 셀을 복수개의 단위 셀로 분리시키기 위한 셀 분리부를 형성하도록 상기 셀 쪽으로 레이저를 조사(照射)하는 스크라이빙 공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  2. 제1항에 있어서,
    상기 도포공정은 상기 스크라이빙 공정이 수행되기 이전에 먼저 수행되는 것을 특징으로 하는 태양전지 제조방법.
  3. 제2항에 있어서,
    상기 스크라이빙 공정은 상기 전도성 물질이 도포된 도포영역에 레이저를 조사하는 것을 특징으로 하는 태양전지 제조방법.
  4. 제3항에 있어서,
    상기 도포공정은 레이저가 상기 셀 상에 조사되도록 투명전도성필름(Transparent Conductive Films)을 이용하여 수행되는 것을 특징으로 하는 태양전지 제조방법.
  5. 제2항에 있어서,
    상기 도포공정은 상기 셀의 전면(全面)에 수행되는 것을 특징으로 하는 태양전지 제조방법.
  6. 제1항에 있어서,
    상기 도포공정과 상기 스크라이빙 공정은 병행하여 수행되는 것을 특징으로 하는 태양전지 제조방법.
  7. 제2항 또는 제6항에 있어서,
    상기 도포공정과 상기 스크라이빙 공정은 상기 셀 상의 서로 다른 면(面)에서 수행되는 것을 특징으로 하는 태양전지 제조방법.
  8. 제7항에 있어서,
    상기 도포공정은 상기 셀의 상면(上面)에서 수행되고,
    상기 스크라이빙 공정은 상기 셀의 하면(下面)에서 수행되는 것을 특징으로 하는 태양전지 제조방법.
  9. 제2항 또는 제6항에 있어서,
    상기 스크라이빙 공정과 상기 도포공정은 상기 셀의 서로 다른 위치에서 수행되는 것을 특징으로 하는 태양전지 제조방법.
  10. 제2항 또는 제6항에 있어서,
    상기 도포공정은 복수개의 전도성 물질 분사기에 의해 상기 셀 상에 복수개의 전도성 물질을 분사하는 공정을 포함하고,
    상기 스크라이빙 공정은 복수개의 스크라이빙 장치에 의해 상기 셀 상에 복수개의 셀 분리부를 형성하는 공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  11. 제2항 또는 제6항에 있어서,
    상기 셀을 복수개의 단위 셀로 분리하는 커팅공정; 및
    분리된 단위 셀들을 접합하는 접합공정; 및
    접합된 단위 셀들을 경화(硬化)하는 큐어링공정을 더 포함하는 것을 특징으로 하는 태양전지 제조방법.
  12. 제6항에 있어서,
    상기 도포공정과 상기 스크라이빙 공정은 레이저가 조사되는 방향에 대해 수직한 제1축방향을 기준으로 이격된 위치에서 수행되는 것을 특징으로 하는 태양전지 제조방법.
  13. 제6항에 있어서,
    상기 스크라이빙 공정은 상기 셀의 전면(全面)에 수행되는 것을 특징으로 하는 태양전지 제조방법.
  14. 제6항에 있어서,
    상기 스크라이빙 공정과 상기 도포공정은 동일 공간에서 수행되는 것을 특징으로 하는 태양전지 제조방법.
  15. 태양전지를 제조하기 위한 처리공간에 복수개의 박막층이 형성된 셀을 안착시키는 안착공정;
    상기 셀을 N(N은 3이상의 정수)개의 단위 셀로 분리시키기 위한 N-1개의 셀 분리부를 형성하도록 상기 셀에 레이저를 조사(照射)하는 스크라이빙 공정;
    상기 셀 상에 전도성 물질을 분사하는 도포공정;
    상기 셀을 2개의 단위 셀로 분리시키는 커팅공정; 및
    분리된 2개의 단위 셀을 접합시키기 위해 상기 커팅공정 직후 연속하여 수행되는 접합공정을 포함하고,
    상기 커팅공정과 상기 접합공정은 반복하여 수행되는 것을 특징으로 하는 태양전지 제조방법.
  16. 제15항에 있어서,
    상기 접합공정은 분리된 2개의 단위 셀 중에서 어느 하나의 단위 셀만을 이동시키는 공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  17. 제15항에 있어서,
    상기 접합공정은 분리된 2개의 단위 셀 중에서 이동 셀을 분리된 2개의 단위 셀 중에서 고정 셀 쪽으로 이동시키는 이동공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  18. 제17항에 있어서,
    상기 이동공정은,
    상기 이동 셀을 레이저가 조사되는 방향에 대해 평행한 제1축방향을 따라 이동시키는 제1이동공정; 및
    상기 이동 셀을 상기 제1축방향에 대해 수직한 제2축방향을 따라 이동시키는 제2이동공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  19. 제18항에 있어서,
    상기 제2이동공정은 상기 고정 셀과 상기 이동 셀이 이격된 커팅거리 및 상기 전도성 물질이 분사된 도포거리를 가산한 거리만큼 상기 이동 셀을 이동시키는 것을 특징으로 하는 태양전지 제조방법.
  20. 제18항에 있어서,
    상기 제1이동공정과 상기 제2이동공정은 병행하여 수행되는 것을 특징으로 하는 태양전지 제조방법.
  21. 제15항에 있어서,
    상기 커팅공정이 수행됨에 따라 분리된 2개의 단위 셀 사이에는 커팅거리가 형성되는 것을 특징으로 하는 태양전지 제조방법.
  22. 제21항에 있어서,
    상기 커팅공정이 반복 수행됨에 따라 형성되는 커팅거리는 점차 감소하는 것을 특징으로 하는 태양전지 제조방법.
  23. 제21항에 있어서,
    상기 커팅공정이 반복 수행됨에 따라 형성되는 커팅거리는 동일한 것을 특징으로 하는 태양전지 제조방법.
  24. 제15항에 있어서,
    상기 안착공정, 상기 스크라이빙 공정, 상기 도포공정, N-1회의 상기 커팅공정, 및 N-1회의 상기 접합공정이 수행된 베이스 모듈에 M(M은 2이상의 정수)개의 단위모듈 셀로 구성된 연결모듈을 연결시키는 모듈공정; 및
    상기 베이스 모듈과 상기 연결모듈을 경화하는 큐어링공정을 더 포함하는 것을 특징으로 하는 태양전지 제조방법.
  25. 기판을 N(N은 3이상의 정수)개의 단위 조각으로 분리하기 위한 N-1개의 셀 분리부 중에서 어느 하나의 셀 분리부를 따라 상기 기판을 2개의 조각으로 분리하는 커팅공정; 및
    상기 분리된 2개의 조각을 접합시키는 접합공정을 포함하고,
    상기 커팅공정과 상기 접합공정은 각각 N-1회 반복하여 수행되는 것을 특징으로 하는 태양전지 제조방법.
  26. 제25항에 있어서,
    상기 접합공정은 분리된 2개의 조각 중 어느 하나의 조각을 이동시켜서 다른 조각의 일부분과 겹치도록 하는 공정을 포함하는 것을 특징으로 하는 태양전지 제조방법.
  27. 제25항에 있어서,
    태양전지가 형성된 기판을 준비하는 안착공정;
    상기 기판의 일면에 상기 N-1개의 셀 분리부를 형성하는 스크라이빙 공정; 및
    상기 셀 분리부의 주변에 전도성 물질을 도포하는 도포공정;
    상기 안착공정, 상기 스크라이빙 공정, 상기 도포공정은 상기 커팅공정 이전에 수행되는 것을 특징으로 하는 태양전지 제조방법.
PCT/KR2020/004684 2019-06-03 2020-04-07 태양전지 제조방법 WO2020246698A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021568393A JP7542011B2 (ja) 2019-06-03 2020-04-07 太陽電池の製造方法
CN202080027772.8A CN113711369A (zh) 2019-06-03 2020-04-07 太阳能电池制造方法
US17/438,416 US20220149224A1 (en) 2019-06-03 2020-04-07 Method for manufacturing solar cell
EP20818238.6A EP3979339A4 (en) 2019-06-03 2020-04-07 PROCESS FOR MANUFACTURING A PHOTOCELL

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2019-0065440 2019-06-03
KR1020190065440A KR102629917B1 (ko) 2019-06-03 2019-06-03 태양전지 제조방법
KR1020190065826A KR102720681B1 (ko) 2019-06-04 태양전지 제조방법
KR10-2019-0065820 2019-06-04
KR1020190065820A KR20200139383A (ko) 2019-06-04 2019-06-04 태양전지 제조방법
KR10-2019-0065826 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246698A1 true WO2020246698A1 (ko) 2020-12-10

Family

ID=73652443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004684 WO2020246698A1 (ko) 2019-06-03 2020-04-07 태양전지 제조방법

Country Status (6)

Country Link
US (1) US20220149224A1 (ko)
EP (1) EP3979339A4 (ko)
JP (1) JP7542011B2 (ko)
CN (1) CN113711369A (ko)
TW (1) TW202046508A (ko)
WO (1) WO2020246698A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250800A (ja) * 2000-03-06 2001-09-14 Seiko Epson Corp 半導体装置の製造方法、電気光学装置及び電気光学装置の製造方法
US20050126619A1 (en) * 2002-02-28 2005-06-16 Shin-Etsu Handotai Co., Ltd Solar cell module and manufacturing method thereof
JP2012119602A (ja) * 2010-12-03 2012-06-21 Sharp Corp 裏面電極型太陽電池セル、太陽電池モジュール、太陽電池ウェハおよび太陽電池モジュールの製造方法
WO2017136672A1 (en) * 2016-02-05 2017-08-10 Applied Materials, Inc. Porous silicon structures and laser machining methods for semiconductor wafer processing
KR20180076197A (ko) * 2016-12-27 2018-07-05 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176148A (ja) 2010-02-24 2011-09-08 Nitto Denko Corp 太陽電池モジュールの製造方法およびそれを用いて得られた太陽電池モジュール
CL2016003045A1 (es) * 2014-05-27 2017-06-09 Sunpower Corp Modulo escalonado de celda solar
US20160158890A1 (en) * 2014-12-05 2016-06-09 Solarcity Corporation Systems and methods for scribing photovoltaic structures
US9991412B2 (en) 2014-12-05 2018-06-05 Solarcity Corporation Systems for precision application of conductive adhesive paste on photovoltaic structures
US10804422B2 (en) 2015-12-01 2020-10-13 Sunpower Corporation Multi-operation tool for photovoltaic cell processing
CN111223966A (zh) 2016-05-06 2020-06-02 应用材料意大利有限公司 用于制造至少两个太阳能电池布置的设备
US20180151766A1 (en) * 2016-11-29 2018-05-31 Solarcity Corporation Anti-corrosion protection in photovoltaic structures
US11502213B2 (en) 2016-12-30 2022-11-15 Sunpower Corporation Solar cell having a plurality of sub-cells coupled by cell level interconnection
KR102020347B1 (ko) * 2017-11-21 2019-09-11 한국생산기술연구원 슁글드 어레이유닛, 슁글드 어레이유닛을 갖는 태양광모듈 및 슁글드 어레이유닛의 제조방법
WO2021020657A1 (ko) * 2019-07-29 2021-02-04 한국생산기술연구원 슁글드 태양전지 패널 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250800A (ja) * 2000-03-06 2001-09-14 Seiko Epson Corp 半導体装置の製造方法、電気光学装置及び電気光学装置の製造方法
US20050126619A1 (en) * 2002-02-28 2005-06-16 Shin-Etsu Handotai Co., Ltd Solar cell module and manufacturing method thereof
JP2012119602A (ja) * 2010-12-03 2012-06-21 Sharp Corp 裏面電極型太陽電池セル、太陽電池モジュール、太陽電池ウェハおよび太陽電池モジュールの製造方法
WO2017136672A1 (en) * 2016-02-05 2017-08-10 Applied Materials, Inc. Porous silicon structures and laser machining methods for semiconductor wafer processing
KR20180076197A (ko) * 2016-12-27 2018-07-05 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979339A4 *

Also Published As

Publication number Publication date
US20220149224A1 (en) 2022-05-12
EP3979339A1 (en) 2022-04-06
TW202046508A (zh) 2020-12-16
JP7542011B2 (ja) 2024-08-29
CN113711369A (zh) 2021-11-26
EP3979339A4 (en) 2023-07-12
JP2022534684A (ja) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2010114294A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2010147260A1 (en) Solar cell and method of manufacturing the same
WO2015041467A1 (ko) 태양전지 및 이의 제조 방법
WO2010018961A2 (ko) 태양전지 및 그 제조방법
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2010058976A2 (en) Solar cell and method of manufacturing the same
WO2011122853A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2015046845A1 (ko) 태양전지
WO2011040779A2 (ko) 태양광 발전장치
WO2011040781A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011002212A2 (ko) 태양광 발전장치 및 이의 제조방법
EP3437144A2 (en) Solar cell panel
WO2011040778A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2017171287A2 (en) Solar cell panel
WO2012033274A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2019083059A1 (ko) 에지 수집전극을 구비하는 태양전지 및 이를 포함하는 태양전지 모듈
WO2012148191A2 (ko) 태양전지의 전면전극 형성방법
WO2020246698A1 (ko) 태양전지 제조방법
WO2011002210A2 (ko) 태양광 발전장치
WO2011083994A2 (ko) 태양광 발전장치
WO2024071795A1 (ko) 양면 수광형 실리콘 / 페로브스카이트 텐덤 태양전지
WO2019112091A1 (ko) 에지 수집전극을 구비하는 태양전지 및 이를 포함하는 태양전지 모듈
WO2012165689A1 (en) Solar cell and method for manufacturing the same
WO2020054920A1 (ko) 전도성 고분자를 활용한 반투명 유기태양광전지 및 그 제조방법
WO2011040785A2 (ko) 태양광 발전장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020818238

Country of ref document: EP

Effective date: 20220103