JP4201882B2 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
JP4201882B2
JP4201882B2 JP14434398A JP14434398A JP4201882B2 JP 4201882 B2 JP4201882 B2 JP 4201882B2 JP 14434398 A JP14434398 A JP 14434398A JP 14434398 A JP14434398 A JP 14434398A JP 4201882 B2 JP4201882 B2 JP 4201882B2
Authority
JP
Japan
Prior art keywords
foil
resin
laminated
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14434398A
Other languages
Japanese (ja)
Other versions
JPH11333975A (en
Inventor
達也 奥西
哲也 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP14434398A priority Critical patent/JP4201882B2/en
Publication of JPH11333975A publication Critical patent/JPH11333975A/en
Application granted granted Critical
Publication of JP4201882B2 publication Critical patent/JP4201882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,外面や内部に導体回路を有する積層板を製造するための樹脂付き導体箔を用いて積層板を製造する方法に関する。さらに詳細には,積層板を製造する過程における取扱性の向上や製造期間の短縮を図った積層板の製造方法に関するものである。
【0002】
【従来の技術】
従来,積層板を製造するために,片面が導体箔でありその裏面側が樹脂層である樹脂付き導体箔が使用されている。従来の樹脂付き導体箔は,図10に示すように,銅箔91と,エポキシ層95とを有している。そして,この樹脂付き導体箔を用いての積層板の製造は,次のように行われている。すなわち,導体箔や樹脂層のパターニングと積層とを繰り返し,多層化していくのである。
【0003】
【発明が解決しようとする課題】
しかしながら,このような従来の技術による積層板の製造には,以下のような問題点があった。すなわち,原材料として使用する樹脂付き導体箔の片面が,エポキシ樹脂であるために,積み重ねて保管しておくと隣接するエポキシ樹脂と銅箔とが接着しやすい。このため,樹脂付き導体箔を1枚ずつ分離するのが困難である。また,分離してもエポキシ樹脂の一部が剥離して銅箔の表面に付着したままになっている場合がある。これにより,付着したエポキシ樹脂片がプレスの際に打痕となる等,パターン欠陥の原因なってしまう。ガラスクロスを含まないエポキシ樹脂のみの層は割れやすくまた粉末を発生しやすいからである。このため,多数の樹脂付き導体箔を積み重ねて保管するためには,樹脂付き導体箔同士が接触しないように特殊な積み重ね治具が必要になる等,不便であった。
【0004】
さらに,多層化に当たり1層ずつ積層とパターニングとを繰り返していく必要があるので,多層であるほど工数が増え,製造に必要な期間が長くなってしまう。このため,内層部分の導体回路が特注仕様であると,たとえ外層部分の導体回路が標準的な仕様のものであっても,受注から出荷までの期間が長くなる問題があった。また,積層とパターニングとを繰り返すことにより,上層に行くほど層の平坦性が害され,高いパターニング精度が得にくくなるとともに部品を実装する際の半田付性も悪くなりがちである。
【0005】
本発明は,前記した従来の技術が有する問題点の解決を目的としてなされたものである。すなわちその課題とするところは,樹脂付き導体箔の取扱性を改善して積層板の製造の便宜を図り,また積層板の製造に必要な期間の短縮や平坦性の改善を図ることにある。
【0006】
【課題を解決するための手段】
この課題の解決のためになされた本発明の積層板の製造方法は,導体箔(1)とその片面側の樹脂層とを有する樹脂付き導体箔と,支持板と,導体箔(2)と,を用いる積層板の製造方法であって,支持板の両面に前記導体箔(2)部分的に貼り合わせ,導体箔(2)上に前記樹脂付き導体箔の樹脂層側の面を貼り合わせて積層体を作成する工程(1)と,導体箔(1)にパターン加工を施して樹脂層上に回路パターンを形成する工程と,導体箔(1)を含む積層体上に内層コア用の積層板を貼り合わせる工程と,支持板と導体箔(2)とが貼り合わせられている部分を他の部分から切断することによって積層体から支持板を取り除き,導体箔(2),樹脂層,回路パターン,及び内層コア用の積層板を含む積層板を取り出す工程(2)とを含んでいる。
【0007】
この製造方法によれば,まず,工程(1)により,支持板と導体箔(2)と樹脂付き導体箔とを貼り合わせた積層体が作成される。この積層体では,支持板と樹脂付き導体箔とが導体箔(2)を挟んで積層されている。ここにおいて,樹脂付き導体箔の樹脂層側の面が導体箔(2)に貼り合わせられている。また,支持板と導体箔(2)との貼り合わせは,全面ではなく部分的になされている。その貼り合わせ箇所は,支持板の周辺部分とするのが好ましい。また,支持板と導体箔(2)との貼り合わせと,導体箔(2)と樹脂付き導体箔との貼り合わせは,どちらを先に行ってもかまわない。そして,積層体のうち樹脂付き導体箔の部分について適宜,公知の方法でパターン加工が施される。また,必要に応じてその上にさらに上層が積層される。
【0008】
そして,工程(2)により,積層体から支持板が取り除かれる。これにより積層板(1)が取り出される。それは,導体箔(2)と樹脂付き導体箔とを含んでいる。かくして,積層板が製造される。かくして製造された積層板のうち,導体箔(2)に由来する部分は,下層パターン上に形成されたものではなく,元来平坦である。したがって,この部分にビアホール等が形成されていても,平坦性は非常に高い。したがって,高い精度でパターン加工できる。また,さらにその上に上層を形成しパターン加工する場合にも高い加工精度が得られる。
【0009】
そして,工程(2)においては,前記支持板と前記導体箔(2)とが貼り合わせられている部分を他の部分から切断することで,容易に積層板(1)と支持板とが分離し,積層板(1)が取り出される。
【0010】
また,本発明の積層板の製造方法においては,前記工程(1)で,前記支持板の両面に前記導体箔(2)を部分的に貼り合わせ,各導体箔(2)上に前記樹脂付き導体箔の樹脂層側の面を貼り合わせる。このようにすると工程(1)では,支持板の両面に積層板(1)を有する積層体が作成される。したがって,この積層体の両面に適宜パターン加工や上層の積層を行い,そして工程(2)を行うと,2枚の積層板(1)が得られる。このため ,生産効率が高い。
【0011】
また,積層板(1)とは別に積層板(2)を用意しておき,前記積層板(1)に前記積層板(2)を貼り合わせれば,さらに多層化した積層板が得られる。このようにすると,製造に必要な期間をさほど長期化させないで多層基板を製造することができる。なお,積層板(1)と積層板(2)との貼り合わせは,積層板(1)が支持板から分離される前に行ってもよいし,積層板(1)を支持板から分離してから行ってもよい。ただし,積層板(1)と積層板(2)との貼り合わせを先に行った方が,全工程数が少なくて済み,より有利である。
【0012】
また,積層板(2)は,あらかじめ用意しておいてもよく,あるいは,工程(1)〜工程(2)と並行して製造してもよい。特に,標準的な仕様の回路パターンを含む基板を積層板(2)としてあらかじめ用意しておき,特注仕様の回路パターンを積層板(1)の中に含めることが有益である。全層を受注後に製造する従来の製造方法と比較して,受注から出荷までの期間を著しく短縮することができるからである。
【0013】
樹脂付き導体箔としては,樹脂層の反対側の面に離型材の層を有するものを用いることが好ましい。すなわち,この離型材の層により,積み重ねたときに隣接する樹脂付き導体箔間で樹脂層と銅箔とが接着することが防止される。このため,多数の樹脂付き導体箔を積み重ねて保管しても容易に1枚ずつ分離して取り出し,積層板の製造に供することができる。この場合,積み重ねる樹脂付き導体箔間に隙間を持たせる等の特殊な保管方法を要しない。なお,前記導体箔と前記離型材の層との間に接着剤の層を設けると,導体箔と離型材の層とが剥離することがない。
【0014】
樹脂層は通常,エポキシ樹脂の層である。また,離型材は,PET(ポリエチレンテレフタレート)樹脂やPPS(ポリフェニレンサルファイド)樹脂,PPO(ポリフェニレンオキサイド)樹脂,あるいはアクリル系樹脂やフッ素樹脂等の粘着性の低い材料のことである。
【0015】
この構造の樹脂付き導体箔は,導体箔の一面側に離型材の層を形成してから他面側に樹脂層を形成して製造してもよいし,逆に一面側に樹脂層を形成してから他面側に離型材の層を形成して製造してもよい。樹脂層の形成は,導体箔に樹脂を塗布して乾燥させればよい。離型材の層の形成は,導体箔に接着剤を介して離型材のフィルムを貼り合わせればよい。
【0016】
【発明の実施の形態】
以下,本発明を具体化した実施の形態について,図面を参照しつつ詳細に説明する。
【0017】
まず,本実施の形態に係る樹脂付き銅箔(以下,「RCC(Resin Coated Copper )」という)について,図1の断面図により説明する。図1に示すRCC10は,銅箔1を中心に,その一面にエポキシ樹脂層5を形成し,他面にPETフィルム4を貼着してなるものである。銅箔1とPETフィルム4との間には,接着剤層3が介在している。ここにおいて銅箔1は,後にパターン加工を受け,積層板における回路パターンとなるものである。ここでは12μm厚のものを用いている。このように薄いものを使用できるのは,RCC10が,PETフィルム4のついた導体箔として使用されるものであり,取扱性がよいからである。エポキシ樹脂層5は,銅箔1の一面にエポキシ樹脂を適度な厚さで塗布し乾燥させたものである。
【0018】
PETフィルム4は,25〜75μm(より好ましくは38〜50μm)厚のものを使用している。この厚さは,プレス時の打痕吸収性(厚い方がよい)や剥離時の裂けにくさ(同),プレス時のプレス面へのなじみ性(薄い方がよい)を考慮して定めたものである。接着剤層3は,ST(パナック株式会社製)接着剤あるいはHP(同)接着剤等を用いて,銅箔1とPETフィルム4とのピール力が5〜10gf/25mm程度になるようにしたものである。このRCC10は,多層の積層板を製造するための出発材料として使用されるものである。
【0019】
このRCC10は,片面がPETフィルム4で覆われておりこの面の離型性に優れている。このため,図2に示すように多数を隙間なくそのまま積み重ねて保管しておいても,上側のRCC10のエポキシ樹脂層5が直下のRCC10にくっつくことがない。したがって,積み重ねて保管している状態から容易にRCC10を1枚ずつ取り出し,積層板の製造に供することができる。また,そのときにエポキシ樹脂層5が割れたり,さらにその破片や粉末がRCC10のPETフィルム4にくっついたままの状態で積層板の製造に供されることがない。
【0020】
このRCC10は,次のようにして製造される。まず銅箔1を用意し,PETフィルム4の貼り合わせを行う。この貼り合わせは,銅箔1とPETフィルム4とを,間に接着剤を介在させつつラミネータで貼着することにより行う。これにより,銅箔1とPETフィルム4とは取扱時に不用意に剥がれてしまうことはないが,5〜10gf/25mm程度もしくはそれ以上のピール力を加えれば容易に剥離できる状態となる。次いで,PETフィルム4を貼り合わせた面の裏面側に,エポキシ樹脂層5を形成する。この形成は,エポキシ樹脂の原材料を溶剤に溶解して7Pa・s程度の粘度に混練し,これをロールコータを用いて塗布することにより行う。塗布後は60〜80℃で乾燥を行う。かくして,図1のRCC10が製造される。なお,PETフィルム4の貼り合わせとエポキシ樹脂層5の形成との順序については,これを逆にして,エポキシ樹脂層5の形成をPETフィルム4の貼り合わせより先に行ってもかまわない。
【0021】
次に,図1のRCC10を利用した積層板の製造について説明する。このためには,支持板(ガラエポ基板等)と,2枚の銅箔(図1中の銅箔1と同じものでよい)と,2枚のRCC10(図1のもの)とを用意する。さらに,RCC10とは別に,内層コアとなるべき2枚の積層板を別途用意しておく。そして,まず,図3に示すように,支持板11の表裏両面に,接着剤12を用いて銅箔2を貼り合わせる。このとき,貼り合わせのための接着剤12が周辺部aのみに存在し,それ以外の部分bは接着されないようにする。なお,このときの接着剤12は,図1中の接着剤層3の接着剤と同じものでよい。
【0022】
次に,図3の状態のものの表裏両面に,図1のRCC10を積層し,図4の状態を得る。このとき表裏とも,RCC10のエポキシ樹脂層5が内側に来るようにする。すなわち,エポキシ樹脂層5と銅箔2とが接触するようにする。積層は,上下から一対の鏡面プレス板を用いて,170〜80℃程度の温度で約60分加圧して行う。加圧の圧力は,30〜40kgf/cm2 程度とする。これによりエポキシ樹脂層5と銅箔2とが密着し,全体で一体化する。これが積層体である。この積層作業において,RCC10がPETフィルム4を有していることにより,上述のように,エポキシ樹脂層5の破損等が防止されている。また,仮にエポキシ樹脂その他の粉末が挟まった状態でプレスが行われても,PETフィルム4によりその形状が吸収され,RCC10の銅箔1に打痕が生じることはない。また,RCC10においてPETフィルム4は接着剤層3を介して銅箔1に貼り合わせられているので,プレス等の作業の際に不用意に剥がれてしまうことがない。
【0023】
そして,表裏両面のPETフィルム4を剥離する。PETフィルム4は,5〜10gf/25mm程度もしくはそれ以上のピール力を加えることにより容易に剥離できる。このとき,PETフィルム4の厚さが25μm(より好ましくは38μm)以上あり,極端に薄いわけではないので,剥離作業の際に裂けて一部がRCC10の銅箔1上に残ることはない。かくして,図5の状態が得られる。
【0024】
そして,図5に示される積層体に対し表裏両面に,プレスや穴開け等の公知の手法により絶縁層や導体層をビルドアップしていく。この状態の積層体を図6に示す。この状態では,複数の絶縁層や導体層を含む積層板21が,支持板11の表裏両面に合計2枚形成されている。この中には,銅箔2に接するビアホール13を含めることもできる。なお,絶縁層や導体層の層数は,図6に示すものよりもっと多くてもかまわないことはもちろんである。
【0025】
そして図7に示すように,図6に示す積層体の表裏両面に,別途用意した内層コア用の積層板22を重ね合わせてプレスする。このとき,図6に示す積層体と上下の積層板22との間には,ともにプリプレグ15を介在させておく。これにより図8に示すように,RCC10を利用して得られた積層板21と,別途用意した内層コア用の積層板22と,の2つを積層した積層板が,支持板11の表裏両面に,合計2枚得られる。
【0026】
そして,図8中のAに示す位置でこの積層体を切断する。これにより,支持板11と表裏の積層板21とが接着剤12により接着されている周辺部分が除去される。残った中央部分では,支持板11と表裏の積層板21とは全く接着されていないので,図9に示す積層板23が2枚得られる。積層板23は,RCC10から得られた積層板21と内層コア板22とを積層したものである。図9中最上の導体層14は,図3中の銅箔2に由来するものである。したがって,凹凸のある絶縁層上にめっき等により形成されたものと異なり,うねりがなく本質的に平坦である。このため,ビアホール13上においても全く凹凸のない平坦な導体層14が得られている。なお,この後導体層14に対しパターンエッチングを施して回路加工を行うことができる。
【0027】
以上詳細に説明したように本実施の形態によれば,銅箔1に対しその一面にエポキシ樹脂層5を形成するだけでなくその裏面側にPETフィルム4を貼着したので,積み重ねて保管してもエポキシ樹脂層5の密着あるいは割れやその破片・粉末に基づく弊害が発生することがない。そしてRCC10において,銅箔1とPETフィルム4との間に接着剤層3を介在させたので,取扱時に銅箔1とPETフィルム4とが不用意に剥がれてしまうことなく,かつ,ある程度のピール力を加えることにより容易にPETフィルム4を剥離することができるようにされている。さらに,PETフィルム4の厚さを25μm以上としたので,剥離する際に裂けてその一部が銅箔1上に残ることがない。かくして,取扱性に優れたRCC10が実現されている。
【0028】
そして,支持板11の表裏両面に銅箔2を介してRCC10を貼り合わせ,これを用いて積層板21を形成し,さらに内層コア用の積層板22を積層して積層板23とすることとしたので,内層コア用の積層板22をあらかじめ別途用意しておくことにより,製造に必要な時間を大幅に短縮でき,また工程数も半減させることができる。また,支持板11の表裏両面と銅箔2との間の接着剤12による接着を,周辺部分のみとしたので,積層板23が形成されてから周辺の接着部分を切断して除去することにより,容易に2枚の積層板23を支持板11から分離して取り出すことができる。さらに,かくして取り出された積層板23の最上層の導体層14は,支持板11に最初に貼り合わせられた銅箔2に由来するものであるので,ビアホール13の直上位置を含めた全体が本質的に平坦である。このため,パターン加工を高精度に行うことができ,また部品を実装する際の半田付性も良好である。
【0029】
かくして,平坦性の高い表層導体層を有する積層板を少ない工程数で短期間に得ることができる積層板の製造方法が実現されている。特に,標準的な仕様の回路パターンを含む基板を積層板22としてあらかじめ用意しておき,特注仕様の回路パターンをRCC10に基づく積層板21の中に形成することにより,受注から出荷までの期間を著しく短縮することができる。
【0030】
なお,前記実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,導体箔として,銅箔1や銅箔2の代わりに銅以外の導電性物質の箔を使用してもよい。また,エポキシ樹脂層5やPETフィルム4等についても,同様の特性を有する他の材質のもので置き換えてもよい。
【0031】
また,支持板11とRCC10とを利用して積層板23を作製するに際し,必ず支持板11の両面に積層板23を形成しなければならないわけではなく,片面のみを使用してもかまわない。また,支持板11上のRCC10を基に形成された積層板21に対し,必ず積層板22を積み重ねなければならないわけではない。図6に示す状態で積層板21を支持板11から切り離しても,平坦な表層導体層を有する積層板21が得られるし,その後これに対しさらにビルドアップすることも可能である。
【0032】
【発明の効果】
以上の説明から明らかなように本発明によれば,取扱性に優れ保管時の密着や樹脂層の割れ等が発生しない樹脂付き導体箔がその製造方法とともに提供されている。また,この樹脂付き導体箔を用いて,平坦性のよい積層板を短い製造時間で製造することができる積層板の製造方法が提供されている。
【図面の簡単な説明】
【図1】 実施の形態に係る樹脂付き銅箔(RCC)の断面図である。
【図2】 RCCを積み重ねて保管している状態を示す図である。
【図3】 支持板の両面に銅箔を部分的に接着した状態を示す図である。
【図4】 図3に示すものの両面に図1のRCCを積層した状態を示す図である。
【図5】 図4に示すものの両面のPETフィルムを剥離した状態を示す図である。
【図6】 図5に示すものの両面にビルドアップした状態を示す図である。
【図7】 図6に示すものの両面への内層コアの積層を説明する図である。
【図8】 図7に示すもののプレス後を示す図である。
【図9】 図8に示すものを切断して取り出した積層板を示す図である。
【図10】 従来の樹脂付き銅箔を示す図である。
【符号の説明】
1 銅箔(導体箔(1))
2 銅箔(導体箔(2))
3 接着剤層
4 PETフィルム(離型材の層)
5 エポキシ樹脂層
10 樹脂付き銅箔
11 支持板
21 積層板(積層板(1))
22 積層板(積層板(2))
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a laminated board using a resin foil with resin for producing a laminated board having a conductor circuit on its outer surface or inside. More specifically, the present invention relates to a method for manufacturing a laminated board that improves handling and shortens the manufacturing period in the process of manufacturing the laminated board .
[0002]
[Prior art]
Conventionally, in order to manufacture a laminated board, a conductor foil with a resin whose one side is a conductor foil and whose back side is a resin layer is used. As shown in FIG. 10, the conventional conductor foil with resin has a copper foil 91 and an epoxy layer 95. And the manufacture of the laminated board using this conductor foil with resin is performed as follows. That is, the patterning and lamination of the conductor foil and the resin layer are repeated to increase the number of layers.
[0003]
[Problems to be solved by the invention]
However, there are the following problems in the manufacture of such a conventional laminated board. That is, since one side of the conductor foil with resin used as the raw material is an epoxy resin, the adjacent epoxy resin and the copper foil are easily bonded to each other when stored in a stacked state. For this reason, it is difficult to separate the conductor foils with resin one by one. Moreover, even if it isolate | separates, a part of epoxy resin may peel and may remain on the surface of copper foil. As a result, the adhered epoxy resin piece becomes a dent during pressing, which causes pattern defects. This is because the epoxy resin-only layer that does not contain glass cloth is easy to break and generate powder. For this reason, in order to stack and store a large number of conductor foils with resin, it is inconvenient that a special stacking jig is required so that the conductor foils with resin do not contact each other.
[0004]
Furthermore, since it is necessary to repeat lamination and patterning one layer at a time for multilayering, the number of man-hours increases as the number of layers increases, and the time required for manufacturing increases. For this reason, if the conductor circuit in the inner layer part is a custom specification, there is a problem that the period from the order to the shipment becomes long even if the conductor circuit in the outer layer part has a standard specification. Further, by repeating the lamination and patterning, the flatness of the layer is impaired as it goes to the upper layer, and it becomes difficult to obtain high patterning accuracy, and the solderability at the time of mounting the component tends to deteriorate.
[0005]
The present invention has been made for the purpose of solving the problems of the prior art described above. That is, the problem is to improve the handleability of the resin-coated conductor foil to facilitate the production of the laminate, and to shorten the period required for the production of the laminate and improve the flatness.
[0006]
[Means for Solving the Problems]
The manufacturing method of the laminated board of this invention made | formed for the solution of this subject is a conductor foil with resin which has conductor foil (1) and the resin layer of the single side | surface, a support board, conductor foil (2), , Wherein the conductor foil (2) is partially bonded to both surfaces of the support plate , and the resin layer side surface of the resin foil with resin is placed on each conductor foil (2). A step (1) of creating a laminate by bonding, a step of patterning the conductor foil (1) to form a circuit pattern on the resin layer, and an inner core on the laminate including the conductor foil (1) The process of laminating the laminated board for use, and removing the supporting board from the laminated body by cutting the part where the supporting board and the conductive foil (2) are laminated from the other part, the conductive foil (2) , resin Step (2) of taking out the laminated board including the laminated board for the layer, the circuit pattern, and the inner layer core Including.
[0007]
According to this manufacturing method, first, a laminated body in which the support plate, the conductive foil (2), and the conductive foil with resin are bonded together is created in step (1). In this laminate, the support plate and the conductor foil with resin are laminated with the conductor foil (2) interposed therebetween. Here, the surface on the resin layer side of the conductor foil with resin is bonded to the conductor foil (2). Further, the bonding of the support plate and the conductor foil (2) is performed partially rather than the entire surface. The bonding location is preferably the peripheral portion of the support plate. Further, either the bonding of the support plate and the conductive foil (2) or the bonding of the conductive foil (2) and the conductive foil with resin may be performed first. And a pattern process is given by a well-known method suitably about the part of conductor foil with resin among laminated bodies. Further, an upper layer is further laminated thereon as necessary.
[0008]
And a support plate is removed from a laminated body by process (2). Thereby, a laminated board (1) is taken out. It includes a conductor foil (2) and a conductor foil with resin. Thus, a laminated board is manufactured. Of the laminated board thus manufactured, the part derived from the conductor foil (2) is not formed on the lower layer pattern but is originally flat. Therefore, even if a via hole or the like is formed in this portion, the flatness is very high. Therefore, pattern processing can be performed with high accuracy. Further, high processing accuracy can be obtained also when an upper layer is formed thereon and pattern processing is performed.
[0009]
In step (2), the laminate (1) and the support plate are easily separated by cutting the portion where the support plate and the conductive foil (2) are bonded together from the other portion. Then, the laminated plate (1) is taken out.
[0010]
Moreover, in the manufacturing method of the laminated board of this invention, the said conductor foil (2) is partially bonded together on both surfaces of the said support board at the said process (1), and the said resin is attached on each conductor foil (2). Bond the resin layer side of the conductor foil. If it does in this way, in a process (1), the laminated body which has a laminated board (1) on both surfaces of a support plate will be created. Therefore, two laminates (1) can be obtained by appropriately patterning and laminating the upper layer on both sides of this laminate and performing step (2). For this reason , production efficiency is high.
[0011]
Further, if a laminated plate (2) is prepared separately from the laminated plate (1) and the laminated plate (2) is bonded to the laminated plate (1), a laminated plate having a further multilayered structure can be obtained. In this way, a multilayer substrate can be manufactured without prolonging the period required for manufacturing. The lamination plate (1) and the lamination plate (2) may be bonded together before the lamination plate (1) is separated from the support plate, or the lamination plate (1) is separated from the support plate. It may be done after. However, it is more advantageous to first laminate the laminated plate (1) and the laminated plate (2) because the total number of steps can be reduced.
[0012]
Further, the laminated plate (2) may be prepared in advance, or may be manufactured in parallel with the steps (1) to (2). In particular, it is beneficial to prepare a substrate including a standard specification circuit pattern in advance as a laminate (2) and to include a custom specification circuit pattern in the laminate (1). This is because the period from the order to the shipment can be significantly shortened compared with the conventional manufacturing method in which all layers are manufactured after the order is received.
[0013]
As the conductive foil with resin, it is preferable to use a conductive foil having a release material layer on the surface opposite to the resin layer. That is, this release material layer prevents the resin layer and the copper foil from adhering to each other between the adjacent conductor foils with resin when stacked. Therefore, even if a large number of conductor foils with resin are stacked and stored, they can be easily separated and taken out one by one for use in the production of a laminated board. In this case, there is no need for a special storage method such as providing a gap between the conductor foils with resin to be stacked. If an adhesive layer is provided between the conductor foil and the release material layer, the conductor foil and the release material layer do not peel off.
[0014]
The resin layer is usually an epoxy resin layer. The release material is a material having low adhesiveness such as PET (polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, PPO (polyphenylene oxide) resin, acrylic resin or fluororesin.
[0015]
A conductor foil with resin of this structure may be manufactured by forming a release layer on one side of the conductor foil and then forming a resin layer on the other side, or conversely forming a resin layer on one side. Then, a release material layer may be formed on the other side. The resin layer may be formed by applying a resin to the conductor foil and drying it. The release material layer may be formed by bonding a release material film to the conductor foil via an adhesive.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings.
[0017]
First, a resin-attached copper foil (hereinafter referred to as “RCC (Resin Coated Copper)”) according to the present embodiment will be described with reference to a cross-sectional view of FIG. The RCC 10 shown in FIG. 1 is obtained by forming an epoxy resin layer 5 on one surface of a copper foil 1 and sticking a PET film 4 on the other surface. An adhesive layer 3 is interposed between the copper foil 1 and the PET film 4. Here, the copper foil 1 is subjected to pattern processing later and becomes a circuit pattern in the laminated board. Here, a 12-micrometer-thick thing is used. The reason why such a thin material can be used is that the RCC 10 is used as a conductor foil with the PET film 4 and is easy to handle. The epoxy resin layer 5 is obtained by applying an epoxy resin to an appropriate thickness on one surface of the copper foil 1 and drying it.
[0018]
The PET film 4 is 25 to 75 μm (more preferably 38 to 50 μm) thick. This thickness was determined in consideration of the absorbability of dents during pressing (thicker is better), the resistance to tearing during peeling (same), and the conformability to the pressed surface during pressing (thin is better). Is. The adhesive layer 3 was made to have a peel force between the copper foil 1 and the PET film 4 of about 5 to 10 gf / 25 mm by using ST (manufactured by Panac Corporation) adhesive or HP (same) adhesive. Is. The RCC 10 is used as a starting material for manufacturing a multilayer laminate.
[0019]
The RCC 10 has one surface covered with the PET film 4 and is excellent in releasability on this surface. For this reason, as shown in FIG. 2, even if many are stacked and stored without any gap, the epoxy resin layer 5 of the upper RCC 10 does not stick to the RCC 10 directly below. Therefore, the RCCs 10 can be easily taken out one by one from the state of being stacked and stored, and can be used for the production of laminated plates. Further, at that time, the epoxy resin layer 5 is not cracked, and further, the fragments and powders are not used for the production of the laminate in a state where they are stuck to the PET film 4 of the RCC 10.
[0020]
The RCC 10 is manufactured as follows. First, the copper foil 1 is prepared, and the PET film 4 is bonded. This laminating is performed by laminating the copper foil 1 and the PET film 4 with a laminator with an adhesive interposed therebetween. As a result, the copper foil 1 and the PET film 4 are not inadvertently peeled off during handling, but can be easily peeled off when a peel force of about 5 to 10 gf / 25 mm or more is applied. Next, an epoxy resin layer 5 is formed on the back side of the surface to which the PET film 4 is bonded. This formation is performed by dissolving the raw material of the epoxy resin in a solvent, kneading to a viscosity of about 7 Pa · s, and applying this using a roll coater. After application, drying is performed at 60 to 80 ° C. Thus, the RCC 10 of FIG. 1 is manufactured. The order of the bonding of the PET film 4 and the formation of the epoxy resin layer 5 may be reversed, and the formation of the epoxy resin layer 5 may be performed prior to the bonding of the PET film 4.
[0021]
Next, manufacture of the laminated board using RCC10 of FIG. 1 is demonstrated. For this purpose, a support plate (glass epoxy substrate or the like), two copper foils (which may be the same as the copper foil 1 in FIG. 1), and two RCCs 10 (in FIG. 1) are prepared. Further, separately from the RCC 10, two laminated plates to be the inner core are prepared separately. Then, first, as shown in FIG. 3, the copper foil 2 is bonded to both the front and back surfaces of the support plate 11 using the adhesive 12. At this time, the adhesive 12 for bonding exists only in the peripheral portion a, and the other portions b are not bonded. The adhesive 12 at this time may be the same as the adhesive of the adhesive layer 3 in FIG.
[0022]
Next, the RCC 10 of FIG. 1 is laminated on both the front and back surfaces of the state of FIG. 3 to obtain the state of FIG. At this time, the epoxy resin layer 5 of the RCC 10 is placed inside both the front and back sides. That is, the epoxy resin layer 5 and the copper foil 2 are brought into contact with each other. Lamination is performed by pressing for about 60 minutes at a temperature of about 170 to 80 ° C. using a pair of mirror press plates from above and below. The pressurizing pressure is about 30 to 40 kgf / cm 2 . As a result, the epoxy resin layer 5 and the copper foil 2 are in close contact with each other and integrated as a whole. This is a laminate. In this laminating operation, since the RCC 10 has the PET film 4, the epoxy resin layer 5 is prevented from being damaged as described above. Further, even if pressing is performed in a state where an epoxy resin or other powder is sandwiched, the shape is absorbed by the PET film 4, and no dent is generated on the copper foil 1 of the RCC 10. Moreover, since the PET film 4 is bonded to the copper foil 1 via the adhesive layer 3 in the RCC 10, it will not be inadvertently peeled off during operations such as pressing.
[0023]
Then, the PET films 4 on both the front and back surfaces are peeled off. The PET film 4 can be easily peeled by applying a peel force of about 5 to 10 gf / 25 mm or more. At this time, the thickness of the PET film 4 is 25 μm (more preferably 38 μm) or more, and is not extremely thin. Therefore, the PET film 4 is not extremely thin and does not partly remain on the copper foil 1 of the RCC 10. Thus, the state of FIG. 5 is obtained.
[0024]
Then, an insulating layer and a conductor layer are built up on the front and back surfaces of the laminate shown in FIG. 5 by a known method such as pressing or punching. The laminated body in this state is shown in FIG. In this state, a total of two laminated plates 21 including a plurality of insulating layers and conductor layers are formed on the front and back surfaces of the support plate 11. In this case, a via hole 13 in contact with the copper foil 2 can be included. Needless to say, the number of insulating layers and conductor layers may be larger than that shown in FIG.
[0025]
Then, as shown in FIG. 7, separately prepared laminated plates 22 for the inner layer core are pressed on both the front and back surfaces of the laminated body shown in FIG. 6. At this time, the prepreg 15 is interposed between the laminate shown in FIG. 6 and the upper and lower laminates 22. As a result, as shown in FIG. 8, the laminate plate obtained by laminating the laminate plate 21 obtained by using the RCC 10 and the separately prepared laminate plate 22 for the inner core is formed on both the front and back surfaces of the support plate 11. In total, two sheets are obtained.
[0026]
And this laminated body is cut | disconnected in the position shown to A in FIG. Thereby, the peripheral part to which the support plate 11 and the laminated board 21 of the front and back are adhere | attached with the adhesive agent 12 is removed. In the remaining central portion, the support plate 11 and the front and back laminated plates 21 are not bonded at all, so that two laminated plates 23 shown in FIG. 9 are obtained. The laminated plate 23 is obtained by laminating the laminated plate 21 obtained from the RCC 10 and the inner layer core plate 22. The uppermost conductor layer 14 in FIG. 9 is derived from the copper foil 2 in FIG. Therefore, unlike those formed by plating or the like on an uneven insulating layer, it is essentially flat with no undulations. For this reason, a flat conductor layer 14 having no irregularities on the via hole 13 is obtained. Thereafter, the circuit processing can be performed by performing pattern etching on the conductor layer 14.
[0027]
As described in detail above, according to the present embodiment, not only the epoxy resin layer 5 is formed on one surface of the copper foil 1 but also the PET film 4 is adhered to the back surface thereof, so that they are stacked and stored. However, there will be no adverse effects due to adhesion or cracking of the epoxy resin layer 5 or fragments or powders thereof. In the RCC 10, since the adhesive layer 3 is interposed between the copper foil 1 and the PET film 4, the copper foil 1 and the PET film 4 are not inadvertently peeled off during handling, and a certain amount of peel is caused. The PET film 4 can be easily peeled off by applying force. Furthermore, since the thickness of the PET film 4 is set to 25 μm or more, the PET film 4 is not torn when being peeled and part of the PET film 4 remains on the copper foil 1. Thus, the RCC 10 having excellent handling properties is realized.
[0028]
Then, the RCC 10 is bonded to both the front and back surfaces of the support plate 11 via the copper foil 2 to form the laminated plate 21, and the laminated plate 22 for the inner core is further laminated to form the laminated plate 23. Therefore, by separately preparing the laminated plate 22 for the inner layer core in advance, the time required for production can be greatly shortened, and the number of processes can be halved. Further, since the adhesive 12 between the front and back surfaces of the support plate 11 and the copper foil 2 is only the peripheral portion, the peripheral adhesive portion is cut and removed after the laminated plate 23 is formed. The two laminated plates 23 can be easily separated from the support plate 11 and taken out. Furthermore, since the uppermost conductor layer 14 of the laminated board 23 thus taken out is derived from the copper foil 2 first bonded to the support plate 11, the entire structure including the position immediately above the via hole 13 is essential. Flat. For this reason, pattern processing can be performed with high accuracy, and solderability when mounting components is also good.
[0029]
Thus, a method of manufacturing a laminated board that can obtain a laminated board having a highly flat surface conductor layer in a short time with a small number of steps has been realized. In particular, a board including standard circuit patterns is prepared in advance as a laminated board 22 and a custom-made circuit pattern is formed in the laminated board 21 based on the RCC 10, thereby reducing the period from order receipt to shipment. It can be significantly shortened.
[0030]
In addition, the said embodiment is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, instead of the copper foil 1 or the copper foil 2, a conductive material foil other than copper may be used as the conductor foil. The epoxy resin layer 5 and the PET film 4 may be replaced with other materials having similar characteristics.
[0031]
Further, when the laminated plate 23 is produced using the support plate 11 and the RCC 10, the laminated plate 23 does not necessarily have to be formed on both sides of the support plate 11, and only one side may be used. Further, the laminated plate 22 is not necessarily stacked on the laminated plate 21 formed on the support plate 11 based on the RCC 10. Even if the laminated plate 21 is separated from the support plate 11 in the state shown in FIG. 6, the laminated plate 21 having a flat surface conductor layer is obtained, and it is possible to further build up thereafter.
[0032]
【The invention's effect】
As is apparent from the above description, according to the present invention, there is provided a conductor foil with a resin that is excellent in handleability and does not cause adhesion during storage, cracking of the resin layer, and the like along with its manufacturing method. Moreover, the manufacturing method of the laminated board which can manufacture a laminated board with sufficient flatness in a short manufacturing time using this conductor foil with resin is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a resin-coated copper foil (RCC) according to an embodiment.
FIG. 2 is a diagram showing a state where RCCs are stacked and stored.
FIG. 3 is a view showing a state where a copper foil is partially bonded to both surfaces of a support plate.
4 is a diagram showing a state in which the RCC of FIG. 1 is laminated on both sides of what is shown in FIG. 3;
FIG. 5 is a diagram showing a state where the PET films on both sides of what is shown in FIG. 4 are peeled off.
6 is a diagram showing a state in which build-up is performed on both sides of what is shown in FIG. 5;
7 is a diagram for explaining the lamination of inner core layers on both sides of what is shown in FIG. 6; FIG.
FIG. 8 is a view showing what is shown in FIG. 7 after pressing.
FIG. 9 is a view showing a laminated board cut out from the one shown in FIG.
FIG. 10 is a view showing a conventional copper foil with resin.
[Explanation of symbols]
1 Copper foil (Conductor foil (1))
2 Copper foil (Conductor foil (2))
3 Adhesive Layer 4 PET Film (Releasing Material Layer)
5 Epoxy resin layer 10 Copper foil with resin 11 Support plate 21 Laminated plate (Laminated plate (1))
22 Laminated board (Laminated board (2))

Claims (3)

導体箔(1)とその片面側の樹脂層とを有する樹脂付き導体箔と,支持板と,導体箔(2)と,を用いる積層板の製造方法において,
前記支持板の両面に前記導体箔(2)部分的に貼り合わせ,導体箔(2)上に前記樹脂付き導体箔の樹脂層側の面を貼り合わせて積層体を作成する工程(1)と,
前記導体箔(1)にパターン加工を施して前記樹脂層上に回路パターンを形成する工程と,
前記導体箔(1)を含む積層体上に内層コア用の積層板を貼り合わせる工程と,
前記支持板と前記導体箔(2)とが貼り合わせられている部分を他の部分から切断することによって前記積層体から前記支持板を取り除き,前記導体箔(2),樹脂層,回路パターン,及び内層コア用の積層板を含む積層板を取り出す工程(2)とを含むことを特徴とする積層板の製造方法。
In a method for manufacturing a laminated board using a conductive foil with resin having a conductive foil (1) and a resin layer on one side thereof, a support plate, and a conductive foil (2),
A step of partially laminating the conductor foil (2) on both surfaces of the support plate, and laminating the surface on the resin layer side of the resin foil with resin on each conductor foil (2) (1) )When,
Forming a circuit pattern on the resin layer by patterning the conductor foil (1);
Bonding the laminate for the inner core onto the laminate comprising the conductor foil (1);
The support plate and the conductive foil (2) are removed from the laminated body by cutting a portion where the support foil and the conductive foil (2) are bonded together, and the conductive foil (2) , a resin layer, a circuit pattern, And a step (2) of taking out the laminate including the laminate for the inner core, and a method for producing the laminate.
請求項1に記載する積層板の製造方法において,
前記樹脂付き導体箔として,前記導体箔(1)の前記樹脂層とは反対側の面に離型材の層を有するものを用いるとともに,
前記工程(1)の後で前記離型材の層を除去することを特徴とする積層板の製造方法。
In the manufacturing method of the laminated board of Claim 1,
As the conductor foil with resin, a conductor foil (1) having a release material layer on the surface opposite to the resin layer,
A method for producing a laminated board, wherein the release material layer is removed after the step (1).
請求項2に記載する積層板の製造方法において,
前記樹脂付き導体箔として,前記導体箔(1)と前記離型材の層との間に接着剤の層を有するものを用いることを特徴とする積層板の製造方法。
In the manufacturing method of the laminated board of Claim 2,
A method for producing a laminated board, wherein the conductor foil with resin is one having an adhesive layer between the conductor foil (1) and the release material layer.
JP14434398A 1998-05-26 1998-05-26 Laminate production method Expired - Lifetime JP4201882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14434398A JP4201882B2 (en) 1998-05-26 1998-05-26 Laminate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14434398A JP4201882B2 (en) 1998-05-26 1998-05-26 Laminate production method

Publications (2)

Publication Number Publication Date
JPH11333975A JPH11333975A (en) 1999-12-07
JP4201882B2 true JP4201882B2 (en) 2008-12-24

Family

ID=15359910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14434398A Expired - Lifetime JP4201882B2 (en) 1998-05-26 1998-05-26 Laminate production method

Country Status (1)

Country Link
JP (1) JP4201882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595808A (en) * 2011-01-11 2012-07-18 三星电机株式会社 Method for manufacturing multilayer circuit board

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520606B2 (en) * 2000-09-11 2010-08-11 イビデン株式会社 Multilayer circuit board manufacturing method
JP4549695B2 (en) * 2003-08-08 2010-09-22 日本特殊陶業株式会社 Wiring board manufacturing method
JP2006049660A (en) * 2004-08-06 2006-02-16 Cmk Corp Manufacturing method of printed wiring board
JP4912716B2 (en) * 2006-03-29 2012-04-11 新光電気工業株式会社 Wiring substrate manufacturing method and semiconductor device manufacturing method
JP2009021435A (en) * 2007-07-12 2009-01-29 Sony Chemical & Information Device Corp Manufacturing method of wiring board
TWI442482B (en) * 2011-10-17 2014-06-21 Advance Materials Corp Method of manufacturing package structure
KR20140057861A (en) * 2012-11-05 2014-05-14 삼성전기주식회사 Method of manufacturing printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595808A (en) * 2011-01-11 2012-07-18 三星电机株式会社 Method for manufacturing multilayer circuit board

Also Published As

Publication number Publication date
JPH11333975A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP4201882B2 (en) Laminate production method
JP4084385B2 (en) Method for manufacturing multilayer unit for multilayer electronic component
JP2004311628A (en) Multilayer substrate and its manufacturing method
JP3231537B2 (en) Method for manufacturing multilayer substrate
JP2001044071A (en) Manufacture of ceramic electronic component
JPH07106760A (en) Manufacture of mutlilayered substrate
JP3846241B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3956667B2 (en) Circuit board and manufacturing method thereof
JP5057339B2 (en) Wiring board manufacturing method
JPH10163603A (en) Method and apparatus for manufacturing circuit board
JPH0821765B2 (en) Method and apparatus for manufacturing a printed circuit board
JP3331884B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2001189228A (en) Method of manufacturing laminate and laminate pressurizing equipment
CN116033678B (en) Processing method for soft and hard combined plate for improving asymmetric structure
JP3943735B2 (en) Manufacturing method of build-up type multilayer printed wiring board
TWI790103B (en) Multilayer circuit board and manufacturing method thereof
JP3925434B2 (en) Manufacturing method of ceramic electronic component
JP2003037363A (en) Method of manufacturing board for multilayer board, method of manufacturing multilayer board by use of element board manufactured by the method, and element board used for multilayer board
JP2002026517A (en) Printed-wiring board with multilayer structure and its manufacturing method
TW200945968A (en) Method for manufacturing a printed circuit board having different thicknesses
JP2001199005A (en) Copper foil laminate, method of manufacturing the same and method for manufacturing printed circuit board
JPH09116264A (en) Method for sticking conductor circuit forming metallic material to printed wiring board
JPH0434993A (en) Manufacture of multilayer printed wiring board having flexible part
JP2004111564A (en) Construction method for pressing
CN114449768A (en) Method for attaching multiple pieces of back adhesive of FPC (Flexible printed Circuit)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term