JP3956667B2 - Circuit board and manufacturing method thereof - Google Patents

Circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP3956667B2
JP3956667B2 JP2001324724A JP2001324724A JP3956667B2 JP 3956667 B2 JP3956667 B2 JP 3956667B2 JP 2001324724 A JP2001324724 A JP 2001324724A JP 2001324724 A JP2001324724 A JP 2001324724A JP 3956667 B2 JP3956667 B2 JP 3956667B2
Authority
JP
Japan
Prior art keywords
component
aramid
circuit board
groove
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324724A
Other languages
Japanese (ja)
Other versions
JP2003133743A (en
Inventor
昭夫 越智
信治 平田
健一郎 堀
彰 和田
秀二 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001324724A priority Critical patent/JP3956667B2/en
Publication of JP2003133743A publication Critical patent/JP2003133743A/en
Application granted granted Critical
Publication of JP3956667B2 publication Critical patent/JP3956667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部に部品素子を有する回路基板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、高密度化に伴い、産業用にとどまらず民生用の分野において、回路基板に対するファイン化が強く要望され、内部に部品素子を有するインナビアホール接続を持つ回路基板が必要になってきた。
【0003】
以下従来の回路基板の製造方法について説明する。図4(a)〜(f)は従来の回路基板の製造方法を示す工程断面図である。
【0004】
まず、図4(a)に示すように、両面にポリエステルなどの離型フィルム101を備えた厚さtbの絶縁基材102を準備する。次に図4(b)に示すように、絶縁基材102の所定の箇所にレーザ光などを利用して貫通孔103を形成する。次に図4(c)に示すように、貫通孔103に導電性ペースト104を充填する。このとき、上面の離型性フィルム101は印刷マスクの役割と、絶縁基材102の表面の汚染防止の役割を果たしている。次に絶縁基材102の両面から離型性フィルム101を剥離する。次に図4(d)に示すように、絶縁基材102の両面に銅箔などの金属箔105を貼付ける。この状態で加熱加圧することにより、図4(e)に示すように、絶縁基材102の厚さはtaに圧縮され、導電性ペースト104の導電性物質が緻密化されることにより導電性ペースト104と金属箔105を電気的に接続する。さらに図4(f)に示すように金属箔105を選択的にエッチングして配線パターン106を形成することにより回路基板107が得られる。
【0005】
【発明が解決しようとする課題】
しかしながら、上述する回路基板の製造方法では、内部に部品素子を有する回路基板を提供することが困難であった。
【0006】
本発明はこのような従来方法の課題を解決するものであり、内部に部品素子を有するインナビアホール接続を持つ回路基板の製造方法を提供することができるものである。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、部品素子を内蔵した回路基板の製造方法であって、導電性ペーストを充填したビアホールを有する被圧縮性の絶縁基材の一部に、部品素子より大きい溝を形成する溝加工工程と、少なくとも一方の面に配線パターンを有する部品搭載基板に接続した前記部品素子を、前記溝の内部に配置して積層する部品配置工程と、積層したこれら絶縁基材と部品搭載基板を加熱加圧することで、前記導電性ペーストを緻密化して前記配線パターンと電気的に接続する硬化工程とを備え、前記硬化工程は、加熱加圧するとともに絶縁基材の樹脂成分で溝を微小化した後硬化することで、この溝内部の部品素子を保持することを特徴とする回路基板の製造方法であって、上記製造方法を用いることにより、溝内部に配置された部品素子を、硬化工程において絶縁基材の樹脂成分で確実に保持することができるとともに、絶縁基材の圧縮性を増すことができるので、導電性ペーストがさらに緻密になり、その結果、電気的接続が強固な信頼性の高いインナビアホールが得られるという作用を有する。
【0013】
【発明の実施の形態】
(実施の形態1)
図1は本発明の実施の形態1における、内部に部品素子を有する回路基板の製造工程を示す工程断面図である。まず、図1(a)に示すように厚さt1の被圧縮性を持つ絶縁基材1を準備する。この絶縁基材1としては、例えば芳香族ポリアミド繊維に熱硬化性エポキシ樹脂を含浸させた複合材からなる基材(以下アラミド−エポキシシートと称する)が用いられる。次に図1(b)に示すようにアラミド−エポキシシート1の所定の位置にレーザ光などを利用して溝2を加工する。このとき溝2の形状や個数は任意であり、アラミド−エポキシシート1のどちらの面に加工してもかまわないし、両面に加工してもよい。また、金型やレーザ光等を利用した貫通孔であってもよい。
【0014】
次に図1(c)に示すように熱プレスやラミネータを用いて、ポリエステルなどの離型性フィルム3をアラミド−エポキシシート1の両面に貼付ける。このとき離型性フィルム3は片面のみであってもかまわない。次に図1(d)に示すようにレーザ光などを利用してアラミド−エポキシシート1と離型性フィルム3に対してビアホールとなる貫通孔5を設ける。次に図1(e)に示すように、貫通孔5に例えばエポキシ樹脂と銅粉等の金属粉を含む導電性ペースト6を充填する。
【0015】
導電性ペーストを充填する方法としては、貫通孔5を有するアラミド−エポキシシート1を印刷機(図示せず)のテーブル上に設置し、直接導電性ペーストを離型性フィルム3の上から印刷する。このとき、上面の離型性フィルム3は印刷マスクの役割と、アラミド−エポキシシート1の表面の汚染防止の役割を果たしている。次に図1(f)に示すようにアラミド−エポキシシート1の両面から離型性フィルム3を剥離する。
【0016】
次に図1(g)に示すように、配線パターン7が一方の面に形成され、もう一方の面の金属箔8と導電性ペースト9によってインナビアホール接続され、かつ、溝10が加工され、かつ、導電性を有する配線パターン11に電気的に接続して搭載した部品素子12を有した部品搭載基板13を準備し、溝2が加工され貫通孔5に導電性ペースト6が充填されたアラミド−エポキシシート1を部品搭載基板13に重ね合わせ、さらにアラミド−エポキシシート1のもう一方の面には例えば銅箔などの金属箔14を重ね合わせる。このとき、導電性ペースト6に部品搭載基板13の配線パターン7を当接すると同時に、溝2の内部に部品素子12を配置するように重ね合わせる。
【0017】
ここで、部品搭載基板13はスルーホールに銅めっきを施すことにより電気的に接続した一般の両面回路基板や多層基板に部品素子を有した部品搭載基板でもよい。また、一方の面に重ね合わせた金属箔14のかわりに一般の回路基板や多層基板を積ね合わせてもかまわないし、一般の回路基板や多層基板に部品素子を搭載した部品搭載基板を重ね合わせてもかまわない。
【0018】
次に、図1(h)に示すように、加熱加圧することにより、アラミド−エポキシシート1の一構成成分であるエポキシ樹脂および導電性ペースト6が硬化すると共に、アラミド−エポキシシート1と部品搭載基板13、金属箔14とが接着される。また、この工程において、アラミド−エポキシシート1の一構成成分であるエポキシ樹脂は溝2,10へ押し出され、溝2,10を縮小化する。このとき溝2はアラミド−エポキシシート1の一構成成分であるエポキシ樹脂で完全に満たされることで、部品搭載基板13上の部品素子12を保持する。そして、アラミド−エポキシシート1の一構成成分であるエポキシ樹脂が溝2,10へ押し出されることにより、もともと被圧縮性を持つアラミド−エポキシシート1はさらに圧縮されることになり、厚さはt2になる。同時に導電性ペースト6も圧縮されることにより、導電性ペースト6の銅粉間からエポキシ樹脂が押し出されて銅粉が緻密化し、銅粉同士および銅粉と金属箔間、もしくは銅粉と配線パターン間の電気的および機械的結合が強固になる。
【0019】
なお、部品素子12が内部に配置されない部分でのアラミド−エポキシシート1の溝2と部品搭載基板13の溝10は無くてもかまわない。なお、アラミド−エポキシシート1の一構成成分であるエポキシ樹脂が溝2,10へ押し出される量を調整するには、溝2,10の形状や個数により、もしくは、加熱加圧条件により対応が可能であるが、別途準備した例えばエポキシ樹脂のような樹脂等を、加熱加圧前にあらかじめ溝2,10内へ適度に注入しておいてもよい。
【0020】
その後、図1(i)に示すように金属箔8,14を選択的にエッチングして配線パターン15,16を形成することにより、部品素子12を内蔵した4層回路基板17が得られる。
【0021】
なお、本実施の形態では、溝2をアラミド−エポキシシート1に対して最初に加工したが、アラミド−エポキシシート1に離型性フィルム3を貼付けて貫通孔5を設け、さらに導電性ペースト6を充填後に離型性フィルム3を剥離した後、もしくは、部品搭載基板13と導電性ペースト6が充填されたアラミド−エポキシシート1を重ね合わせた後に、溝2をアラミド−エポキシシート1に対して加工してもかまわない。
【0022】
また、上記の工程を繰り返すことにより、部品素子を内蔵したさらに高多層の多層回路基板を得ることができる。
【0023】
なお、本実施の形態では、片面のみに配線パターン7を形成した部品搭載基板13を用いたが、あらかじめ両面に配線パターンを形成した部品搭載基板を用いてもかまわない。
【0024】
(実施の形態2)
図2は本発明の実施の形態2における、内部に部品素子を有する回路基板の製造工程を示す工程断面図である。まず、図2(a)に示すように厚さt1の被圧縮性を持つ絶縁基材18,19を準備する。この絶縁基材18,19としては、例えばアラミド−エポキシシートが用いられる。次に図2(b)に示すようにアラミド−エポキシシート18,19の所定の位置にレーザ光などを利用して溝20,21を加工する。このとき溝20,21の形状や個数は任意であり、アラミド−エポキシシート18,19のどちらの面に加工してもかまわないし、両面に加工してもよい。また、金型やレーザ光等を利用した貫通孔であってもよい。
【0025】
次に図2(c)に示すように、第1の配線パターン22と第2の配線パターン23を表裏に有し、導電性ペースト24によりインナービア接続され、かつ、溝25,26が加工され、かつ、導電性を有する配線パターン27,28に電気的に接続して搭載した部品素子29,30を有した部品搭載基板31の両面に、アラミド−エポキシシート18,19とポリエステルなどの離型性フィルム32を熱プレスやラミネータを用いて貼付ける。このとき、溝20,21の内部に部品素子29,30を配置するように重ね合わせる。ここで、部品搭載基板31はスルーホールに銅めっきを施すことにより電気的に接続した一般の回路基板や多層基板に部品素子を有した部品搭載基板でもよい。なお、部品搭載基板31の片面のみにアラミド−エポキシシート18と離型性フィルム32を貼付けてももちろんよい。
【0026】
次に図2(d)に示すようにレーザ光などを利用してアラミド−エポキシシート18,19とポリエステルなどの離型性フィルム32に対してビアホール34,35を設ける。このとき、ビアホール34,35は部品搭載基板31の第1の配線パターン22と第2の配線パターン23の表面を視認して穴加工する。次に図2(e)に示すように、ビアホール34,35には例えばエポキシ樹脂と銅粉等の金属粉を含む導電性ペースト36,37を充填する。導電性ペースト36,37を充填する方法としては、ビアホール34,35を有するアラミド−エポキシシート18,19を貼付けた部品搭載基板31を印刷機(図示せず)のテーブル上に設置し、直接導電性ペーストを離型性フィルム32の上から印刷する。このとき、上面の離型性フィルム32は印刷マスクの役割と、アラミド−エポキシシート18,19の表面の汚染防止の役割を果たしている。なお、部品搭載基板31に対するアラミド−エポキシシート18,19の貼付け、レーザ光によるビアホール34,35の穴加工、ビアホール34,35への導電性ペースト36,37の充填の各工程は、片面ずつ実行するか、両面同時に実行するかは任意である。
【0027】
次に図2(f)に示すようにアラミド−エポキシシート18,19から離型性フィルム32を剥離する。次に図2(g)に示すように、部品搭載基板31の両面に貼付けたアラミド−エポキシシート18,19の表面に銅箔などの金属箔38,39を重ね合わせる。この状態で加熱加圧することにより、図2(h)に示すように、アラミド−エポキシシート18,19の一構成成分であるエポキシ樹脂および導電性ペースト36,37が硬化されるとともにアラミド−エポキシシート18,19と金属箔38,39とが接着される。また、この工程において、アラミド−エポキシシート18,19の一構成成分であるエポキシ樹脂は溝20,21および溝25,26へ押し出され、溝20,21および溝25,26を縮小化する。このとき溝20,21はアラミド−エポキシシート18,19の一構成成分であるエポキシ樹脂で完全に満たされることで部品搭載基板31上の部品素子29,30を保持する。そして、アラミド−エポキシシート18,19の一構成成分であるエポキシ樹脂が溝20,21および溝25,26へ押し出されることにより、もともと被圧縮性を持つアラミド−エポキシシート18,19はさらに圧縮されることになり、厚さはt2になる。同時に導電性ペースト36,37も圧縮されることにより、導電性ペースト36,37の銅粉間からエポキシ樹脂が押し出されて銅粉が緻密化し、銅粉同士および銅粉と金属箔間、もしくは銅粉と配線パターン間の結合が強固になる。
【0028】
なお、部品素子29,30が内部に配置されない部分のアラミド−エポキシシート18,19の溝20,21と部品搭載基板31の溝25,26は無くてもかまわない。
【0029】
次に図2(i)に示すように金属箔38,39を選択的にエッチングして配線パターン40,41を形成することにより、部品素子29,30を内蔵した4層回路基板42を得ることができる。
【0030】
また、上記の工程を繰り返すことにより、部品素子を内蔵したさらに高多層の多層回路基板を得ることができる。
【0031】
(実施の形態3)
図3は本発明の実施の形態3における、内部に部品素子を有する回路基板の製造工程を示す工程断面図である。まず、図3(a)に示すように厚さt1の被圧縮性を持つ絶縁基材50を準備する。この絶縁基材50としては、例えばアラミド−エポキシシートが用いられる。次に図3(b)に示すようにアラミド−エポキシシート50の所定の位置にレーザ光などを利用して溝51を加工する。このとき溝51の形状や個数は任意であり、アラミド−エポキシシート50のどちらの面に加工してもかまわないし、両面に加工してもよい。また、金型やレーザ光等を利用した貫通孔であってもよい。
【0032】
次に図3(c)に示すように熱プレスやラミネータを用いて、ポリエステルなどの離型性フィルム52をアラミド−エポキシシート50の両面に貼付ける。このとき離型性フィルム52は片面のみであってもかまわない。次に図3(d)に示すようにレーザ光などを利用してアラミド−エポキシシート50と離型性フィルム52に対して貫通孔53を設ける。
【0033】
次に図3(e)に示すように、貫通孔53に例えばエポキシ樹脂と銅粉等の金属粉を含む導電性ペースト54を充填する。導電性ペーストを充填する方法としては、貫通孔53を有するアラミド−エポキシシート50を印刷機(図示せず)のテーブル上に設置し、直接、導電性ペーストを離型性フィルム52の上から印刷する。このとき、上面の離型性フィルム52は印刷マスクの役割と、アラミド−エポキシシート50の表面の汚染防止の役割を果たしている。次に図3(f)に示すようにアラミド−エポキシシート50の両面から離型性フィルム52を剥離する。
【0034】
一方、図3(g)に示すように一方の面に配線パターン55が形成され、もう一方の面の金属箔56もしくは配線パターン57と導電性ペースト58によってインナビアホール接続され、かつ、導電性を有する配線パターン59に電気的に接続して搭載した部品素子60を有した部品搭載基板61を用意する。次に、図3(h)に示すように、部品搭載基板61の所定の位置にレーザ光などを利用して溝62を加工する。このとき溝62の形状や個数は任意であり、金型やレーザ光等を利用した貫通孔であってもよい。
【0035】
次に図3(i)に示すように、アラミド−エポキシシート50と部品搭載基板61を交互に重ね合わせる。このとき、導電性ペースト54に部品搭載基板61の配線パターン55,57を接合すると同時に、溝51,62の内部に部品素子60を配置するように重ね合わせる。また、アラミド−エポキシシート50と部品搭載基板61を交互に重ね合わせる枚数により、最外層がアラミド−エポキシシート50になるときは、銅箔などの金属箔(図示せず)を最外層のアラミド−エポキシシート50のさらに外側に重ね合わせる。
【0036】
次に図3(j)に示すように、加熱加圧することにより、アラミド−エポキシシート50の一構成成分であるエポキシ樹脂および導電性ペースト54が硬化すると共に、アラミド−エポキシシート50と部品搭載基板61が接着される。また、この工程において、アラミド−エポキシシート50の一構成成分であるエポキシ樹脂は溝51,62へ押し出され、溝51,62を縮小化する。このとき溝51,62はアラミド−エポキシシート50の一構成成分であるエポキシ樹脂で完全に満たされることで、部品搭載基板61上の部品素子60を保持する。
【0037】
そして、アラミド−エポキシシート50の一構成成分であるエポキシ樹脂が溝51,62へ押し出されることにより、もともと被圧縮性を持つアラミド−エポキシシート50はさらに圧縮されることになり、厚さはt2になる。同時に導電性ペースト54も圧縮されることにより、導電性ペースト54の銅粉間からエポキシ樹脂が押し出されて銅粉が緻密化し、銅粉同士および銅粉と金属箔間、もしくは銅粉と配線パターン間の結合が強固になる。なお、部品素子60が内部に配置されない部分でのアラミド−エポキシシート50の溝51と部品搭載基板61の溝62は無くてもかまわない。
【0038】
その後、図3(k)に示すように金属箔56を選択的にエッチングして配線パターン63を形成することにより、部品素子60を内蔵した多層回路基板64が得られる。
【0039】
また、上記の工程を繰り返すことにより、部品素子を内蔵したさらに高多層の多層回路基板を得ることができる。
【0040】
なお、本実施の形態では、最外層に片面が金属箔56で覆われた部品搭載基板61を用いたが、あらかじめ両面に配線パターンを形成した部品搭載基板を用いてもかまわない。
【0041】
【発明の効果】
以上のように本発明は、部品素子を内蔵した回路基板の製造方法であって、導電性ペーストを充填したビアホールを有する被圧縮性の絶縁基材の一部に、部品素子より大きい溝を形成する溝加工工程と、少なくとも一方の面に配線パターンを有する部品搭載基板に接続した前記部品素子を、前記溝の内部に配置して積層する部品配置工程と、積層したこれら絶縁基材と部品搭載基板を加熱加圧することで、前記導電性ペーストを緻密化して前記配線パターンと電気的に接続する硬化工程とを備え、前記硬化工程は、加熱加圧するとともに絶縁基材の樹脂成分で溝を微小化した後硬化することで、この溝内部の部品素子を保持することを特徴とする回路基板の製造方法であって、上記製造方法を用いることにより、溝内部に配置された部品素子を、硬化工程において絶縁基材の樹脂成分で確実に保持することができるとともに、絶縁基材の圧縮性を増すことができるので、導電性ペーストがさらに緻密になり、その結果、電気的接続が強固な信頼性の高いインナビアホールが得られる。
【0042】
また、本発明は、溝加工工程において、複数枚の薄板状の絶縁部材より成り立つ絶縁基材の所定位置に、部品素子の形状よりも大きい形状の溝を形成することにより、絶縁部材の1枚の厚みより高さが高い部品素子を基板内部に配置することができる。
【0043】
また、本発明は、溝加工工程において、回路基板を含む複数枚の薄板状の絶縁部材より成り立つ絶縁基材の所定位置に、部品素子の形状よりも大きい形状の溝を形成することにより、各種厚みの各種回路基板を絶縁部材として用いることができるため、高さが高い部品素子を自由に基板内部に配置することができる。
【0044】
さらに、本発明は、溝加工工程において、導電性を有する配線パターンに電気的に接続された部品素子を少なくとも一方の面上に有した部品搭載基板を含む複数枚の薄板状の絶縁部材より成り立つ絶縁基材の所定位置に、部品素子の形状よりも大きい形状の溝を形成することにより、部品素子を高密度に基板内部に配置することができる。
【0045】
また、本製造方法を用いることで、絶縁基材の圧縮性を増して、導電性ペーストをより緻密にすることができ、その結果、電気的接続がより強固な信頼性の高いインナビアホール接続を有する回路基板が得られる。
【0046】
さらに、本発明は、絶縁基材のビアホール内に充填された、導電性物質を有する導電性ペーストと、導電性を有する配線パターンを少なくとも一方の面上に有した表層としての回路基板の前記配線パターンとが電気的に接続された回路基板において、少なくとも前記絶縁基材の所定位置に形成した貫通孔と、前記絶縁基材に隣接する前記回路基板の前記貫通孔に隣接する位置に形成した溝もしくは貫通孔が微小化することにより、部品素子を絶縁基材の貫通孔と、隣接する前記回路基板の溝もしくは貫通孔内に保持した回路基板であり、絶縁基材の圧縮性が増すことにより、導電性ペーストの導電性物質がさらに緻密化して電気的接続がより強固な信頼性の高いインナビアホール接続を持つ回路基板が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における、内部に部品素子を有する回路基板の製造工程を示す工程断面図
【図2】本発明の実施の形態2における、内部に部品素子を有する回路基板の製造工程を示す工程断面図
【図3】本発明の実施の形態3における、内部に部品素子を有する回路基板の製造工程を示す工程断面図
【図4】従来の回路基板の製造方法を示す工程断面図
【符号の説明】
1 絶縁基材(アラミド−エポキシシート)
2 溝
3 離型性フィルム
5 貫通孔
6 導電性ペースト
7 配線パターン
8 金属箔
9 導電性ペースト
10 溝
11 配線パターン
12 部品素子
13 部品搭載基板
14 金属箔
15 配線パターン
16 配線パターン
17 4層回路基板
18 絶縁基材(アラミド−エポキシシート)
19 絶縁基材(アラミド−エポキシシート)
20 溝
21 溝
22 第1の配線パターン
23 第2の配線パターン
24 導電性ペースト
25 溝
26 溝
27 配線パターン
28 配線パターン
29 部品素子
30 部品素子
31 部品搭載基板
32 離型性フィルム
34 ビアホール
35 ビアホール
36 導電性ペースト
37 導電性ペースト
38 金属箔
39 金属箔
40 配線パターン
41 配線パターン
42 4層回路基板
50 絶縁基材(アラミド−エポキシシート)
51 溝
52 離型性フィルム
53 貫通孔
54 導電性ペースト
55 配線パターン
56 金属箔
57 配線パターン
58 導電性ペースト
59 配線パターン
60 部品素子
61 部品搭載基板
62 溝
63 配線パターン
64 多層回路基板
101 離型性フィルム
102 絶縁基材
103 貫通孔
104 導電性ペースト
105 金属箔
106 配線パターン
107 回路基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board having component elements therein and a method for manufacturing the circuit board.
[0002]
[Prior art]
In recent years, with the miniaturization and higher density of electronic devices, there has been a strong demand for finer circuit boards not only for industrial use but also for consumer use. It has become.
[0003]
A conventional circuit board manufacturing method will be described below. 4A to 4F are process cross-sectional views illustrating a conventional method for manufacturing a circuit board.
[0004]
First, as shown in FIG. 4A, an insulating base material 102 having a thickness tb provided with a release film 101 such as polyester on both sides is prepared. Next, as shown in FIG. 4B, a through-hole 103 is formed at a predetermined position of the insulating base 102 using a laser beam or the like. Next, as shown in FIG. 4C, the conductive paste 104 is filled into the through hole 103. At this time, the release film 101 on the upper surface plays a role of a printing mask and a prevention of contamination of the surface of the insulating base material 102. Next, the release film 101 is peeled from both surfaces of the insulating substrate 102. Next, as shown in FIG. 4D, a metal foil 105 such as a copper foil is pasted on both surfaces of the insulating base material 102. By heating and pressing in this state, as shown in FIG. 4E, the thickness of the insulating base material 102 is compressed to ta, and the conductive material of the conductive paste 104 is densified, thereby forming the conductive paste. 104 and the metal foil 105 are electrically connected. Further, as shown in FIG. 4F, the circuit board 107 is obtained by selectively etching the metal foil 105 to form the wiring pattern 106.
[0005]
[Problems to be solved by the invention]
However, in the circuit board manufacturing method described above, it has been difficult to provide a circuit board having component elements therein.
[0006]
The present invention solves such problems of the conventional method, and can provide a method of manufacturing a circuit board having an inner via hole connection having a component element therein.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a method of manufacturing a circuit board incorporating a component element , wherein the component element is formed on a part of a compressible insulating substrate having a via hole filled with a conductive paste. A groove processing step for forming a large groove, a component placement step for placing and laminating the component elements connected to a component mounting substrate having a wiring pattern on at least one surface, and laminating these insulating bases A curing step of densifying the conductive paste and electrically connecting the wiring pattern by heating and pressurizing the material and the component mounting board, wherein the curing step heats and pressurizes and the resin component of the insulating base in that hardens after micronizing groove, a manufacturing method of a circuit board, characterized in that to hold the groove of the components inside the device, by using the above manufacturing method, it is disposed inside the groove The component devices, it is possible to reliably held in the resin component of the insulating substrate in the curing process, it is possible to increase the compressibility of the insulating substrate, the conductive paste becomes denser, as a result, electrical It has the effect that a reliable and highly reliable inner via hole can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
FIG. 1 is a process cross-sectional view showing a manufacturing process of a circuit board having a component element inside according to the first embodiment of the present invention. First, as shown in FIG. 1A, an insulating base material 1 having a compressibility with a thickness t1 is prepared. As the insulating substrate 1, for example, a substrate (hereinafter referred to as an aramid-epoxy sheet) made of a composite material in which an aromatic polyamide fiber is impregnated with a thermosetting epoxy resin is used. Next, as shown in FIG. 1B, the groove 2 is processed at a predetermined position of the aramid-epoxy sheet 1 using a laser beam or the like. At this time, the shape and number of the grooves 2 are arbitrary, and may be processed on either side of the aramid-epoxy sheet 1 or may be processed on both sides. Moreover, the through-hole using a metal mold | die, a laser beam, etc. may be sufficient.
[0014]
Next, as shown in FIG.1 (c), the mold release films 3, such as polyester, are stuck on both surfaces of the aramid-epoxy sheet 1 using a hot press or a laminator. At this time, the releasable film 3 may be only on one side. Next, as shown in FIG. 1D, through-holes 5 serving as via holes are provided in the aramid-epoxy sheet 1 and the release film 3 using laser light or the like. Next, as shown in FIG.1 (e), the through-hole 5 is filled with the electrically conductive paste 6 containing metal powders, such as an epoxy resin and copper powder, for example.
[0015]
As a method of filling the conductive paste, an aramid-epoxy sheet 1 having through holes 5 is placed on a table of a printing machine (not shown), and the conductive paste is directly printed from the release film 3. . At this time, the release film 3 on the upper surface plays a role of a printing mask and a prevention of contamination of the surface of the aramid-epoxy sheet 1. Next, as shown in FIG. 1 (f), the release film 3 is peeled off from both surfaces of the aramid-epoxy sheet 1.
[0016]
Next, as shown in FIG. 1 (g), the wiring pattern 7 is formed on one side, the inner foil is connected by the metal foil 8 and the conductive paste 9 on the other side, and the groove 10 is processed, In addition, a component mounting substrate 13 having a component element 12 electrically connected to and mounted on the conductive wiring pattern 11 is prepared, and the aramid in which the groove 2 is processed and the through-hole 5 is filled with the conductive paste 6 is prepared. -The epoxy sheet 1 is overlaid on the component mounting board 13, and a metal foil 14 such as a copper foil is overlaid on the other surface of the aramid-epoxy sheet 1. At this time, the wiring pattern 7 of the component mounting board 13 is brought into contact with the conductive paste 6 and at the same time, the component elements 12 are superposed so as to be disposed inside the groove 2.
[0017]
Here, the component mounting board 13 may be a general double-sided circuit board or a component mounting board having a component element on a multilayer board electrically connected by copper plating on the through holes. In addition, a general circuit board or multilayer board may be stacked instead of the metal foil 14 superimposed on one surface, and a component mounting board on which component elements are mounted is overlaid on a general circuit board or multilayer board. It doesn't matter.
[0018]
Next, as shown in FIG. 1 (h), by applying heat and pressure, the epoxy resin and the conductive paste 6 which are one component of the aramid-epoxy sheet 1 are cured, and the aramid-epoxy sheet 1 and the components are mounted. The substrate 13 and the metal foil 14 are bonded. In this step, the epoxy resin, which is a constituent component of the aramid-epoxy sheet 1, is extruded into the grooves 2 and 10 to reduce the grooves 2 and 10. At this time, the groove 2 holds the component element 12 on the component mounting board 13 by being completely filled with the epoxy resin which is one component of the aramid-epoxy sheet 1. The aramid-epoxy sheet 1 which is a constituent component of the aramid-epoxy sheet 1 is extruded into the grooves 2 and 10 so that the aramid-epoxy sheet 1 originally having compressibility is further compressed, and the thickness is t2. become. At the same time, the conductive paste 6 is also compressed, so that the epoxy resin is extruded from between the copper powders of the conductive paste 6 to make the copper powder dense, and between the copper powders and between the copper powder and the metal foil, or between the copper powder and the wiring pattern. The electrical and mechanical coupling between them becomes stronger.
[0019]
Note that the groove 2 of the aramid-epoxy sheet 1 and the groove 10 of the component mounting board 13 at the portion where the component element 12 is not disposed may be omitted. It should be noted that the amount of the epoxy resin that is a constituent component of the aramid-epoxy sheet 1 is extruded into the grooves 2 and 10 can be adjusted depending on the shape and number of the grooves 2 and 10 or by heating and pressing conditions. However, a separately prepared resin such as an epoxy resin may be appropriately injected into the grooves 2 and 10 in advance before heating and pressing.
[0020]
Thereafter, as shown in FIG. 1 (i), the metal foils 8 and 14 are selectively etched to form wiring patterns 15 and 16, whereby a four-layer circuit board 17 incorporating the component element 12 is obtained.
[0021]
In this embodiment, the groove 2 is first processed with respect to the aramid-epoxy sheet 1, but the release film 3 is pasted on the aramid-epoxy sheet 1 to provide the through holes 5, and the conductive paste 6 is further formed. After the release film 3 is peeled after filling, or after the component mounting substrate 13 and the aramid-epoxy sheet 1 filled with the conductive paste 6 are overlapped, the groove 2 is formed on the aramid-epoxy sheet 1. It can be processed.
[0022]
Further, by repeating the above-described steps, it is possible to obtain a multi-layer circuit board having a higher multi-layer structure incorporating component elements.
[0023]
In the present embodiment, the component mounting board 13 in which the wiring pattern 7 is formed on only one side is used. However, a component mounting board in which the wiring pattern is formed on both sides in advance may be used.
[0024]
(Embodiment 2)
FIG. 2 is a process cross-sectional view showing a manufacturing process of a circuit board having component elements inside according to Embodiment 2 of the present invention. First, as shown to Fig.2 (a), the insulation base materials 18 and 19 with the compressibility of thickness t1 are prepared. As the insulating base materials 18 and 19, for example, an aramid-epoxy sheet is used. Next, as shown in FIG. 2B, the grooves 20 and 21 are processed at predetermined positions of the aramid-epoxy sheets 18 and 19 using a laser beam or the like. At this time, the shape and the number of the grooves 20 and 21 are arbitrary, and may be processed on either side of the aramid-epoxy sheets 18 and 19, or may be processed on both sides. Moreover, the through-hole using a metal mold | die, a laser beam, etc. may be sufficient.
[0025]
Next, as shown in FIG. 2C, the first wiring pattern 22 and the second wiring pattern 23 are provided on the front and back sides, inner via connection is made by the conductive paste 24, and the grooves 25 and 26 are processed. In addition, the aramid-epoxy sheets 18 and 19 and the release of polyester or the like are formed on both surfaces of the component mounting board 31 having the component elements 29 and 30 mounted in electrical connection with the conductive wiring patterns 27 and 28. The adhesive film 32 is pasted using a hot press or a laminator. At this time, the component elements 29 and 30 are superposed so as to be disposed inside the grooves 20 and 21. Here, the component mounting board 31 may be a general circuit board electrically connected by copper plating on the through holes or a component mounting board having a component element on a multilayer board. Of course, the aramid-epoxy sheet 18 and the release film 32 may be attached to only one side of the component mounting board 31.
[0026]
Next, as shown in FIG. 2D, via holes 34 and 35 are provided in the aramid-epoxy sheets 18 and 19 and the releasable film 32 such as polyester using a laser beam or the like. At this time, the via holes 34 and 35 are drilled by visually recognizing the surfaces of the first wiring pattern 22 and the second wiring pattern 23 of the component mounting board 31. Next, as shown in FIG. 2E, the via holes 34 and 35 are filled with conductive pastes 36 and 37 containing, for example, an epoxy resin and metal powder such as copper powder. As a method of filling the conductive pastes 36 and 37, the component mounting board 31 on which the aramid-epoxy sheets 18 and 19 having the via holes 34 and 35 are pasted is placed on a table of a printing machine (not shown) and directly conductive. The adhesive paste is printed from above the release film 32. At this time, the release film 32 on the upper surface plays a role of a printing mask and a prevention of contamination of the surfaces of the aramid-epoxy sheets 18 and 19. The aramid-epoxy sheets 18 and 19 are attached to the component mounting board 31, the via holes 34 and 35 are processed by laser light, and the conductive pastes 36 and 37 are filled into the via holes 34 and 35, respectively. It is optional whether to execute both sides simultaneously.
[0027]
Next, the release film 32 is peeled from the aramid-epoxy sheets 18 and 19 as shown in FIG. Next, as shown in FIG. 2G, metal foils 38 and 39 such as copper foil are superposed on the surfaces of the aramid-epoxy sheets 18 and 19 attached to both surfaces of the component mounting board 31. By heating and pressing in this state, as shown in FIG. 2 (h), the epoxy resin and the conductive pastes 36 and 37, which are one component of the aramid-epoxy sheets 18 and 19, are cured and the aramid-epoxy sheet. 18 and 19 and the metal foils 38 and 39 are bonded together. In this step, the epoxy resin, which is a constituent component of the aramid-epoxy sheets 18 and 19, is extruded into the grooves 20 and 21 and the grooves 25 and 26, and the grooves 20 and 21 and the grooves 25 and 26 are reduced. At this time, the grooves 20 and 21 hold the component elements 29 and 30 on the component mounting board 31 by being completely filled with the epoxy resin which is one component of the aramid-epoxy sheets 18 and 19. The epoxy resin, which is one component of the aramid-epoxy sheets 18 and 19, is extruded into the grooves 20 and 21 and the grooves 25 and 26, whereby the aramid-epoxy sheets 18 and 19 that originally have compressibility are further compressed. Therefore, the thickness becomes t2. At the same time, the conductive pastes 36 and 37 are also compressed, so that the epoxy resin is extruded from between the copper powders of the conductive pastes 36 and 37, thereby densifying the copper powder, and between the copper powders and between the copper powder and the metal foil, or copper. The bond between the powder and the wiring pattern is strengthened.
[0028]
It should be noted that the grooves 20 and 21 of the aramid-epoxy sheets 18 and 19 and the grooves 25 and 26 of the component mounting board 31 that are not disposed inside the component elements 29 and 30 may be omitted.
[0029]
Next, as shown in FIG. 2 (i), the metal foils 38 and 39 are selectively etched to form the wiring patterns 40 and 41, thereby obtaining the four-layer circuit board 42 in which the component elements 29 and 30 are incorporated. Can do.
[0030]
Further, by repeating the above-described steps, it is possible to obtain a multi-layer circuit board having a higher multi-layer structure incorporating component elements.
[0031]
(Embodiment 3)
FIG. 3 is a process cross-sectional view showing a manufacturing process of a circuit board having component elements inside according to Embodiment 3 of the present invention. First, as shown in FIG. 3A, an insulative base material 50 having compressibility with a thickness t1 is prepared. As this insulating substrate 50, for example, an aramid-epoxy sheet is used. Next, as shown in FIG. 3B, a groove 51 is processed at a predetermined position of the aramid-epoxy sheet 50 using a laser beam or the like. At this time, the shape and number of the grooves 51 are arbitrary, and may be processed on either side of the aramid-epoxy sheet 50, or may be processed on both sides. Moreover, the through-hole using a metal mold | die, a laser beam, etc. may be sufficient.
[0032]
Next, as shown in FIG.3 (c), the mold release films 52, such as polyester, are affixed on both surfaces of the aramid-epoxy sheet 50 using a hot press or a laminator. At this time, the releasable film 52 may be only on one side. Next, as shown in FIG. 3D, through-holes 53 are provided in the aramid-epoxy sheet 50 and the release film 52 using laser light or the like.
[0033]
Next, as shown in FIG.3 (e), the through-hole 53 is filled with the electrically conductive paste 54 containing metal powders, such as an epoxy resin and copper powder, for example. As a method of filling the conductive paste, an aramid-epoxy sheet 50 having a through hole 53 is placed on a table of a printing machine (not shown), and the conductive paste is directly printed on the release film 52. To do. At this time, the release film 52 on the upper surface plays a role of a printing mask and a prevention of contamination of the surface of the aramid-epoxy sheet 50. Next, as shown in FIG. 3 (f), the release film 52 is peeled from both surfaces of the aramid-epoxy sheet 50.
[0034]
On the other hand, as shown in FIG. 3 (g), a wiring pattern 55 is formed on one surface, the inner foil is connected to the metal foil 56 or the wiring pattern 57 on the other surface by a conductive paste 58, and the conductivity is improved. A component mounting board 61 having a component element 60 electrically connected to and mounted on the wiring pattern 59 is prepared. Next, as shown in FIG. 3H, a groove 62 is processed at a predetermined position of the component mounting board 61 using a laser beam or the like. At this time, the shape and the number of the grooves 62 are arbitrary, and may be a through hole using a mold or a laser beam.
[0035]
Next, as shown in FIG. 3I, the aramid-epoxy sheet 50 and the component mounting board 61 are alternately stacked. At this time, the wiring patterns 55 and 57 of the component mounting board 61 are bonded to the conductive paste 54 and, at the same time, the component elements 60 are superposed so as to be disposed in the grooves 51 and 62. Further, when the outermost layer becomes the aramid-epoxy sheet 50 due to the number of the aramid-epoxy sheets 50 and the component mounting boards 61 alternately stacked, a metal foil (not shown) such as a copper foil is used as the outermost aramid- The epoxy sheet 50 is overlaid on the outer side.
[0036]
Next, as shown in FIG. 3 (j), by applying heat and pressure, the epoxy resin and the conductive paste 54 as one component of the aramid-epoxy sheet 50 are cured, and the aramid-epoxy sheet 50 and the component mounting board are cured. 61 is glued. In this step, the epoxy resin, which is a constituent component of the aramid-epoxy sheet 50, is extruded into the grooves 51 and 62, and the grooves 51 and 62 are reduced. At this time, the grooves 51 and 62 are completely filled with the epoxy resin which is one component of the aramid-epoxy sheet 50, thereby holding the component element 60 on the component mounting board 61.
[0037]
Then, the epoxy resin, which is a constituent component of the aramid-epoxy sheet 50, is extruded into the grooves 51, 62, whereby the aramid-epoxy sheet 50 that originally has compressibility is further compressed, and the thickness is t2. become. At the same time, the conductive paste 54 is also compressed, so that the epoxy resin is extruded from between the copper powders of the conductive paste 54 to make the copper powder dense, and between the copper powders and between the copper powder and the metal foil, or between the copper powder and the wiring pattern. The bond between them becomes stronger. It should be noted that the groove 51 of the aramid-epoxy sheet 50 and the groove 62 of the component mounting board 61 at the portion where the component element 60 is not disposed may be omitted.
[0038]
Thereafter, as shown in FIG. 3 (k), the metal foil 56 is selectively etched to form a wiring pattern 63, whereby a multilayer circuit board 64 incorporating the component element 60 is obtained.
[0039]
Further, by repeating the above-described steps, it is possible to obtain a multi-layer circuit board having a higher multi-layer structure incorporating component elements.
[0040]
In the present embodiment, the component mounting substrate 61 whose one surface is covered with the metal foil 56 is used as the outermost layer, but a component mounting substrate in which a wiring pattern is formed on both surfaces in advance may be used.
[0041]
【The invention's effect】
As described above, the present invention is a method of manufacturing a circuit board having a component element built therein, and a groove larger than the component element is formed in a part of a compressible insulating base material having a via hole filled with a conductive paste. A groove processing step, a component placement step of placing and laminating the component elements connected to a component mounting substrate having a wiring pattern on at least one surface, and laminating these laminated insulating substrates and components A curing step of densifying the conductive paste and electrically connecting the wiring pattern by heating and pressurizing the substrate, wherein the curing step heats and pressurizes and finely forms the grooves with the resin component of the insulating base material. by curing after ized, a manufacturing method of a circuit board, characterized in that to hold the groove of the components inside the device, by using the above manufacturing method, the component elements which are disposed within the groove , It is possible to reliably held in the resin component of the insulating substrate in the curing process, it is possible to increase the compressibility of the insulating substrate, the conductive paste becomes denser, so that firm electrical connection Highly reliable inner via hole.
[0042]
Further, the present invention provides one insulating member by forming a groove having a shape larger than the shape of the component element at a predetermined position of the insulating base material composed of a plurality of thin insulating members in the groove processing step. A component element whose height is higher than the thickness of the substrate can be arranged inside the substrate.
[0043]
Further, the present invention provides a groove processing step in which grooves having a shape larger than the shape of the component element are formed at predetermined positions on an insulating base material including a plurality of thin plate-shaped insulating members including a circuit board. Since various circuit boards having a thickness can be used as the insulating member, a component element having a high height can be freely arranged inside the board.
[0044]
Furthermore, the present invention comprises a plurality of thin plate-like insulating members including a component mounting board having a component element electrically connected to a conductive wiring pattern on at least one surface in the groove processing step. By forming a groove having a shape larger than the shape of the component element at a predetermined position of the insulating base material, the component element can be arranged at a high density inside the substrate.
[0045]
Also, by using this manufacturing method, the compressibility of the insulating base material can be increased, and the conductive paste can be made denser. As a result, a highly reliable inner via hole connection with a stronger electrical connection can be achieved. A circuit board having the same is obtained.
[0046]
Furthermore, the present invention provides the wiring of the circuit board as a surface layer having a conductive paste having a conductive substance and a conductive wiring pattern on at least one surface, filled in a via hole of an insulating base material. In a circuit board to which a pattern is electrically connected, at least a through hole formed at a predetermined position of the insulating base material and a groove formed at a position adjacent to the through hole of the circuit board adjacent to the insulating base material Alternatively, by miniaturizing the through hole, the component substrate is held in the through hole of the insulating base and the adjacent groove or through hole of the circuit board, and the compressibility of the insulating base is increased. As a result, the conductive material of the conductive paste is further densified to obtain a circuit board having a highly reliable inner via hole connection with a stronger electrical connection.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view showing a manufacturing process of a circuit board having a component element inside in Embodiment 1 of the present invention. FIG. 2 is a circuit board having a component element inside in Embodiment 2 of the present invention. FIG. 3 is a process cross-sectional view showing a manufacturing process of a circuit board having a component element inside in Embodiment 3 of the present invention. FIG. 4 shows a conventional circuit board manufacturing method. Process cross section 【Explanation of symbols】
1 Insulation substrate (aramid-epoxy sheet)
2 groove 3 releasable film 5 through-hole 6 conductive paste 7 wiring pattern 8 metal foil 9 conductive paste 10 groove 11 wiring pattern 12 component element 13 component mounting substrate 14 metal foil 15 wiring pattern 16 wiring pattern 17 four-layer circuit board 18 Insulation substrate (aramid-epoxy sheet)
19 Insulating substrate (aramid-epoxy sheet)
20 groove 21 groove 22 first wiring pattern 23 second wiring pattern 24 conductive paste 25 groove 26 groove 27 wiring pattern 28 wiring pattern 29 component element 30 component element 31 component mounting substrate 32 release film 34 via hole 35 via hole 36 Conductive paste 37 Conductive paste 38 Metal foil 39 Metal foil 40 Wiring pattern 41 Wiring pattern 42 Four-layer circuit board 50 Insulating base material (aramid-epoxy sheet)
51 groove 52 releasable film 53 through hole 54 conductive paste 55 wiring pattern 56 metal foil 57 wiring pattern 58 conductive paste 59 wiring pattern 60 component element 61 component mounting substrate 62 groove 63 wiring pattern 64 multilayer circuit substrate 101 releasability Film 102 Insulating base material 103 Through hole 104 Conductive paste 105 Metal foil 106 Wiring pattern 107 Circuit board

Claims (1)

部品素子を内蔵した回路基板の製造方法であって、導電性ペーストを充填したビアホールを有する被圧縮性の絶縁基材の一部に、部品素子より大きい溝を形成する溝加工工程と、少なくとも一方の面に配線パターンを有する部品搭載基板に接続した前記部品素子を、前記溝の内部に配置して積層する部品配置工程と、積層したこれら絶縁基材と部品搭載基板を加熱加圧することで、前記導電性ペーストを緻密化して前記配線パターンと電気的に接続する硬化工程とを備え、前記硬化工程は、加熱加圧するとともに絶縁基材の樹脂成分で溝を微小化した後硬化することで、この溝内部の部品素子を保持することを特徴とする回路基板の製造方法。  A method of manufacturing a circuit board incorporating a component element, wherein at least one of a groove processing step of forming a groove larger than the component element in a part of a compressible insulating substrate having a via hole filled with a conductive paste The component element connected to the component mounting substrate having a wiring pattern on the surface of the component is placed in the groove and laminated, and the laminated insulating base material and the component mounting substrate are heated and pressurized. A curing step in which the conductive paste is densified and electrically connected to the wiring pattern, and the curing step is performed by heating and pressurizing and then miniaturizing the grooves with the resin component of the insulating base material, and then curing. A method of manufacturing a circuit board, comprising: holding a component element inside the groove.
JP2001324724A 2001-10-23 2001-10-23 Circuit board and manufacturing method thereof Expired - Fee Related JP3956667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324724A JP3956667B2 (en) 2001-10-23 2001-10-23 Circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324724A JP3956667B2 (en) 2001-10-23 2001-10-23 Circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003133743A JP2003133743A (en) 2003-05-09
JP3956667B2 true JP3956667B2 (en) 2007-08-08

Family

ID=19141405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324724A Expired - Fee Related JP3956667B2 (en) 2001-10-23 2001-10-23 Circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3956667B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608477B2 (en) 2003-07-04 2009-10-27 Murata Manufacturing Co., Ltd. Process for substrate incorporating component
US7488895B2 (en) 2003-09-29 2009-02-10 Panasonic Corporation Method for manufacturing component built-in module, and component built-in module
JP2005158770A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Laminated substrate and manufacturing method thereof, manufacturing method and apparatus of module using the laminated substrate
JP4218576B2 (en) * 2004-04-19 2009-02-04 パナソニック株式会社 Manufacturing method of laminated substrate
KR100763345B1 (en) 2006-08-30 2007-10-04 삼성전기주식회사 Manufacturing method of imbedded pcb
EP2146559A1 (en) * 2008-07-15 2010-01-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method of forming a high density structure
WO2010095211A1 (en) * 2009-02-17 2010-08-26 株式会社村田製作所 Method for manufacturing module with built-in component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199824A (en) * 1995-11-16 1997-07-31 Matsushita Electric Ind Co Ltd Printed wiring board and its mounting body
JP3051700B2 (en) * 1997-07-28 2000-06-12 京セラ株式会社 Method of manufacturing multilayer wiring board with built-in element
JP4545866B2 (en) * 1999-12-08 2010-09-15 イビデン株式会社 Method for manufacturing circuit board for multilayer printed wiring board

Also Published As

Publication number Publication date
JP2003133743A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
KR100274360B1 (en) Printed wiring board with protruding electrodes and its manufacturing method
JP3744383B2 (en) Composite wiring board and manufacturing method thereof
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP3903701B2 (en) Multilayer circuit board and manufacturing method thereof
JP2012015562A (en) Method of manufacturing circuit board
JP2002064270A (en) Circuit board and its manufacturing method
JP3215090B2 (en) Wiring board, multilayer wiring board, and methods of manufacturing the same
JP4348815B2 (en) Method for manufacturing printed wiring board
JP3956667B2 (en) Circuit board and manufacturing method thereof
KR101694575B1 (en) Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies
JPH08195561A (en) Multi-layer printed circuit board and its manufacture
JP5057653B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP2006313932A (en) Multilayer circuit board and manufacturing method therefor
JP4161604B2 (en) Printed wiring board and manufacturing method thereof
JP3738536B2 (en) Method for manufacturing printed wiring board
JP2004273575A (en) Multilayer printed wiring board and its manufacturing method
JPH0621619A (en) Printed circuit board and method for formation thereof
JP2004153000A (en) Method of manufacturing printed board, and printed board manufactured thereby
JP3840953B2 (en) Circuit board and manufacturing method thereof
JP3780535B2 (en) Method for manufacturing printed wiring board
JP2004111702A (en) Wiring board and manufacturing method therefor
JP3855670B2 (en) Multilayer circuit board manufacturing method
JP2000151102A (en) Manufacture of multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees