JP4198079B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method Download PDF

Info

Publication number
JP4198079B2
JP4198079B2 JP2004072727A JP2004072727A JP4198079B2 JP 4198079 B2 JP4198079 B2 JP 4198079B2 JP 2004072727 A JP2004072727 A JP 2004072727A JP 2004072727 A JP2004072727 A JP 2004072727A JP 4198079 B2 JP4198079 B2 JP 4198079B2
Authority
JP
Japan
Prior art keywords
substrate
film
photovoltaic device
groove
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004072727A
Other languages
Japanese (ja)
Other versions
JP2005260149A (en
Inventor
利夫 浅海
英治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004072727A priority Critical patent/JP4198079B2/en
Publication of JP2005260149A publication Critical patent/JP2005260149A/en
Application granted granted Critical
Publication of JP4198079B2 publication Critical patent/JP4198079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、半導体接合を用いた光起電力装置の製造法に関する。   The present invention relates to a method for manufacturing a photovoltaic device using a semiconductor junction.

近年光起電力素子として、単結晶シリコンや多結晶シリコン等の結晶系シリコンを用いた太陽電池の研究および実用化が盛んに行なわれている。中でも、非晶質シリコンと結晶系シリコンとを組合せることにより構成されたヘテロ接合を有する太陽電池は、その接合を200℃以下の低温プロセスで形成することができ、かつ、高い変換効率が得られることから、注目を集めている。このような光起電力素子において、光電変換効率を向上させるためには、高い短絡電流(Isc)および開放電圧(Voc)を維持しつつ曲線因子(F.F.)を向上させる必要がある。   In recent years, research and practical application of solar cells using crystalline silicon such as single crystal silicon and polycrystalline silicon as photovoltaic elements have been actively conducted. In particular, a solar cell having a heterojunction formed by combining amorphous silicon and crystalline silicon can form the junction by a low-temperature process of 200 ° C. or less, and obtain high conversion efficiency. It attracts attention because it is. In such a photovoltaic device, in order to improve the photoelectric conversion efficiency, it is necessary to improve the fill factor (FF) while maintaining a high short circuit current (Isc) and an open circuit voltage (Voc).

そこで、n型単結晶シリコン基板とp型非晶質シリコン膜との間に、実質的に真性な非晶質シリコン膜(i型非晶質シリコン膜)が挿入された所謂HIT構造を有する太陽電池が開発されている(例えば、特許文献1参照)。   Therefore, a sun having a so-called HIT structure in which a substantially intrinsic amorphous silicon film (i-type amorphous silicon film) is inserted between an n-type single crystal silicon substrate and a p-type amorphous silicon film. A battery has been developed (see, for example, Patent Document 1).

一方、従来の非晶質半導体と結晶系シリコンとを組合せた光起電力素子の製造においては、結晶系シリコンのみからなる光起電力素子と異なり、結晶系シリコン基板上に接合形成のための非晶質シリコン層や導電性薄膜を形成する必要がある。   On the other hand, in the production of a photovoltaic device combining a conventional amorphous semiconductor and crystalline silicon, unlike a photovoltaic device made only of crystalline silicon, non-forming for forming a junction on a crystalline silicon substrate is performed. It is necessary to form a crystalline silicon layer or a conductive thin film.

ここで、従来、基板上にこれらの膜を形成する際には、プラズマCVD法、スパッタ法あるいは蒸着法等の製造法を用いるために、非晶質シリコン層や導電性薄膜が基板の表面のみならず側面あるいは裏面に回り込んでしまい、これらを介して素子の短絡が生じ、リーク発生に伴う出力低下が問題となる。   Here, conventionally, when these films are formed on a substrate, an amorphous silicon layer or a conductive thin film is formed only on the surface of the substrate in order to use a manufacturing method such as plasma CVD, sputtering, or vapor deposition. In other words, it wraps around the side surface or the back surface, causing a short circuit of the element through these, resulting in a problem of a decrease in output due to leakage.

上記した問題点を解決するために、一導電型の結晶系半導体基板の表裏面の全面に、前記基板とヘテロ接合を形成する非晶質半導体層および導電性薄膜を形成した後、レーザーにより非晶質半導体層と導電性薄膜を除去して、リーク電流パスを抑制する方法が提案されている(例えば、特許文献2参照)。
特開平11−224954号公報 特開平9−129904号公報
In order to solve the above-described problems, an amorphous semiconductor layer and a conductive thin film that form a heterojunction with the substrate are formed on the entire front and back surfaces of a one-conductivity-type crystalline semiconductor substrate, and then non-exposed by a laser A method for suppressing a leakage current path by removing a crystalline semiconductor layer and a conductive thin film has been proposed (see, for example, Patent Document 2).
JP-A-11-224954 JP-A-9-129904

上記した特許文献2による方法によれば、レーザーにより非晶質半導体層と導電性薄膜を除去することで、回込みによる光起電力素子の短絡は有効に防止される。しかしながら、非晶質半導体層および導電性薄膜を形成した後に、レーザーで加工した場合には、レーザー加工した端部での非晶質半導体層が変質し、微結晶化され、変質した微結晶ライクの半導体層でのリーク電流が発生し、セル特性が低下するという問題があった。   According to the method according to Patent Document 2 described above, the amorphous semiconductor layer and the conductive thin film are removed by a laser, so that a short circuit of the photovoltaic element due to wraparound is effectively prevented. However, when laser processing is performed after forming an amorphous semiconductor layer and a conductive thin film, the amorphous semiconductor layer at the laser-processed edge is altered, microcrystallized, and altered microcrystal-like. There is a problem that a leak current occurs in the semiconductor layer and cell characteristics deteriorate.

本発明は、上記した従来の問題点に鑑みなされたものにして、非晶質半導体層の変質を無くすると共に、膜の回り込みを無くしてリーク電流がなくセル特性を向上させた光起電力装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and eliminates the alteration of the amorphous semiconductor layer and eliminates the wraparound of the film, thereby eliminating the leakage current and improving the cell characteristics. The purpose is to provide.

本発明は、一導電型の結晶系半導体基板の表面上に、他導電型の非晶質半導体層と導電性薄膜とからなる積層体を備え、前記基板の裏面上に少なくとも裏面電極膜が設けられた光起電力装置の製造法であって、前記基板の表裏面に設けられる膜の膜厚の総和の内、総和の大きい方の大きさより大きな幅、深さを有する溝を前記基板の側面に形成し、その後、他導電型の非晶質半導体層と導電性薄膜とからなる積層体、前記基板の裏面上に少なくとも裏面電極膜を設けることを特徴とする。   The present invention comprises a laminate composed of an amorphous semiconductor layer of another conductivity type and a conductive thin film on the surface of a crystalline semiconductor substrate of one conductivity type, and at least a back electrode film is provided on the back surface of the substrate. A method of manufacturing a photovoltaic device according to claim 1, wherein a groove having a width and a depth larger than the larger sum of the film thicknesses of the films provided on the front and back surfaces of the substrate is formed on the side surface of the substrate. Thereafter, at least a back electrode film is provided on the back surface of the substrate, which is a laminated body including an amorphous semiconductor layer of another conductivity type and a conductive thin film.

前記基板は単結晶シリコン基板からなり、異方性エッチングにより凹凸が形成される共に、レーザー加工により側面部に、幅は100μmを超えず、深さは10μm以上120μm以内の溝を形成するとよい。   The substrate is formed of a single crystal silicon substrate, and irregularities are formed by anisotropic etching, and a groove having a width not exceeding 100 μm and a depth not less than 10 μm and not more than 120 μm is preferably formed on the side surface by laser processing.

以上説明したように、本発明によれば、基板側面に予め溝をつけることによって、表裏の導電膜が基板側面で確実に分離され、電気的に接続されるような大きなリーク電流パスの発生を抑制でき、太陽電池特性が向上する。   As described above, according to the present invention, by forming a groove on the side surface of the substrate in advance, it is possible to generate a large leakage current path so that the conductive films on the front and back sides are reliably separated on the side surface of the substrate and are electrically connected. It can suppress and a solar cell characteristic improves.

以下、本発明の実施形態につき、図面を参照して説明する。図1は、本発明の実施の形態による光起電力装置の断面図、図2は、本発明の実施の形態による光起電力装置の要部拡大断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a photovoltaic device according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of the photovoltaic device according to the embodiment of the present invention.

約1Ω・cmの抵抗率と約300μmの厚みとを有するとともに、(100)面を有するn型単結晶シリコンウェハを用意し、このシリコンウェハをアルカリ溶液、この実施形態では、水酸化ナトリウム溶液(NaOH)を用いた異方性エッチングにより約10μmの凹凸状のピラミッド構造を形成する。凹凸を形成したシリコンウェハの厚みは240μmである。   An n-type single crystal silicon wafer having a resistivity of about 1 Ω · cm and a thickness of about 300 μm and having a (100) plane is prepared. This silicon wafer is prepared as an alkaline solution, in this embodiment, a sodium hydroxide solution ( An uneven pyramid structure of about 10 μm is formed by anisotropic etching using (NaOH). The thickness of the silicon wafer on which the irregularities are formed is 240 μm.

このピラミッド状の凹凸を設けたn型単結晶シリコン基板1の側面には、YAGレーザーを用いて所望の幅、深さを有する溝11を側面周囲に形成する。この幅、深さは、後工程で表裏に形成される膜厚の総合計の内、どちらか大きい方より大きな幅及び深い深さの矩形状の溝11を形成する。これは後から形成する膜の回り込みを防止するために、溝部11に形成した膜が回り込んで、表裏の膜が繋がらないようにするためである。   On the side surface of the n-type single crystal silicon substrate 1 provided with the pyramidal irregularities, a groove 11 having a desired width and depth is formed around the side surface using a YAG laser. This width and depth form a rectangular groove 11 having a larger width and deeper depth than the larger one of the total thicknesses formed on the front and back surfaces in a subsequent process. This is to prevent the film formed in the groove 11 from wrapping around to prevent the film formed on the front and back sides from being connected to prevent the film formed later.

この実施形態では、後述するように、非晶質シリコン膜がそれぞれ10nm程度、透明導電膜が100nm程度であるから、120nmを超える大きさの幅、並びに深さの溝11を形成すればよい。レーザーを用いた加工の場合、幅は20μmを越える大きさの加工になるので、上記の条件は満足する。また、深さも2μm程度は加工されるので、上記の条件は満足する。溝11の幅及び深さは、あまりに大きくすると強度的な問題もある。240μmの厚さの基板1の場合、幅は100μmを越えず、また深さは120μmを越えない方が良い。   In this embodiment, as will be described later, since the amorphous silicon film is about 10 nm and the transparent conductive film is about 100 nm, the groove 11 having a width and depth exceeding 120 nm may be formed. In the case of processing using a laser, the width exceeds 20 μm, so the above conditions are satisfied. Further, since the depth of about 2 μm is processed, the above condition is satisfied. If the width and depth of the groove 11 are too large, there is a problem of strength. In the case of the substrate 1 having a thickness of 240 μm, the width should not exceed 100 μm and the depth should not exceed 120 μm.

溝11を形成した基板1を通常の手法に従い洗浄して不純物を除去し、公知のRFプラズマCVD(13.56MHz)を用いてn型単結晶シリコン基板1の上面上には、約10nmの厚みを有する実質的に真性のi型非晶質シリコン膜2、i型非晶質シリコン(a−Si)膜2上には、約10nmの厚みを有するp型非晶質シリコン(a−Si)膜3が形成される。この膜の形成条件については、表1に示す。   The substrate 1 in which the grooves 11 are formed is cleaned according to a normal method to remove impurities, and a thickness of about 10 nm is formed on the upper surface of the n-type single crystal silicon substrate 1 using a known RF plasma CVD (13.56 MHz). On the substantially intrinsic i-type amorphous silicon film 2 and the i-type amorphous silicon (a-Si) film 2 having p-type amorphous silicon (a-Si) having a thickness of about 10 nm A film 3 is formed. The conditions for forming this film are shown in Table 1.

また、p型非晶質シリコン(a−Si)膜3上には、約100nmの厚みを有する透明導電膜としてのスパッタ法によりITO膜4が形成されている。このITO膜4は、SnO2を添加したIn23によって形成されている。 An ITO film 4 is formed on the p-type amorphous silicon (a-Si) film 3 by sputtering as a transparent conductive film having a thickness of about 100 nm. The ITO film 4 is made of In 2 O 3 to which SnO 2 is added.

このITO膜4は、次のようにスパッタ法により形成される。SnO2粉末を5wt%として、In23粉末との焼結体をターゲットとし、カソードに設置する。他にSi、Ge、Tiの少なくとも1つをドーパントとして用いても良い。これらの化合物粉末を適量、酸化インジウム粉末に混ぜて焼結し、ターゲットを作成すればよい。SnO2の量を変えることで、ITO膜中のSn量を変化させることが可能であるが、なお、ITOの光の透過率を向上させるために、Inに対するSnの量は1から10at%が好ましく、更に、2から7at%が好ましい。ターゲットの焼結密度は90%以上が好ましい。 The ITO film 4 is formed by sputtering as follows. The SnO 2 powder is set to 5 wt%, and a sintered body with In 2 O 3 powder is used as a target and is set on the cathode. In addition, at least one of Si, Ge, and Ti may be used as a dopant. An appropriate amount of these compound powders may be mixed with indium oxide powder and sintered to prepare a target. It is possible to change the amount of Sn in the ITO film by changing the amount of SnO 2. However, in order to improve the light transmittance of ITO, the amount of Sn with respect to In is 1 to 10 at%. Furthermore, 2 to 7 at% is preferable. The sintered density of the target is preferably 90% or more.

成膜時のプラズマダメージ抑制のために、カソード表面に300〜3000ガウス(Gauss)の強磁場をマグネットより印加できる装置を使用し、素子をカソードと平行に対向配置してから、チャンバーを真空排気する。加熱ヒータにより、基板温度を室温から200℃になるまで加熱する。また、ArとO2の混合ガスを流して圧力を0.4〜1.3Paに保ち、カソードにDC電力を0.5〜2kW投入して放電を開始する。基板をカソードに対して静止した状態で成膜速度は約10〜80nm/分となった。 In order to suppress plasma damage during film formation, use a device that can apply a strong magnetic field of 300 to 3000 Gauss from the magnet to the cathode surface, place the element facing the cathode in parallel, and then evacuate the chamber To do. The substrate temperature is heated from room temperature to 200 ° C. with a heater. Further, a mixed gas of Ar and O 2 is flowed to keep the pressure at 0.4 to 1.3 Pa, and DC power is applied to the cathode at 0.5 to 2 kW to start discharging. The deposition rate was about 10 to 80 nm / min with the substrate stationary relative to the cathode.

このような条件により、ITO膜4を100nmの厚さで形成することで、溝11により、ITO膜4は確実に分離されている。   By forming the ITO film 4 with a thickness of 100 nm under such conditions, the ITO film 4 is reliably separated by the grooves 11.

更に、このITO膜4の上面上の所定領域には、櫛型集電極(ペースト電極)5が形成されている。この櫛型電極5は、銀(Ag)からなる導電性フィラーと熱硬化性樹脂とによって構成され、印刷によりフィンガー部とバスバー部とからなる所定のパターンに形成される。   Further, a comb-shaped collector electrode (paste electrode) 5 is formed in a predetermined region on the upper surface of the ITO film 4. The comb-shaped electrode 5 is composed of a conductive filler made of silver (Ag) and a thermosetting resin, and is formed in a predetermined pattern made up of finger portions and bus bar portions by printing.

また、n型単結晶シリコン基板1の下面上には、公知のRFプラズマCVD(13.56MHz)を用いて約10nmの厚みを有する実質的に真性のi型非晶質シリコン(a−Si)膜6、i型非晶質シリコン(a−Si)膜6上には、10nmの厚みを有するn型非晶質シリコン(a−Si)膜7が形成される。このようにn型単結晶シリコン基板1の下面上に、i型非晶質シリコン(a−Si)膜6およびn型非晶質シリコン(a−Si)膜7が順番に形成されることにより、いわゆるBSF(Back Surface Field)構造が形成されている。   Further, a substantially intrinsic i-type amorphous silicon (a-Si) having a thickness of about 10 nm is formed on the lower surface of the n-type single crystal silicon substrate 1 using a known RF plasma CVD (13.56 MHz). An n-type amorphous silicon (a-Si) film 7 having a thickness of 10 nm is formed on the film 6 and the i-type amorphous silicon (a-Si) film 6. As described above, the i-type amorphous silicon (a-Si) film 6 and the n-type amorphous silicon (a-Si) film 7 are sequentially formed on the lower surface of the n-type single crystal silicon substrate 1. A so-called BSF (Back Surface Field) structure is formed.

また、n型非晶質シリコン(a−Si)膜7上には、100nmの厚みを有する上記表面側と同じ形成方法でITO膜8が形成される。ITO膜8上の所定領域には、櫛型集電極(ペースト電極)9が形成されている。   On the n-type amorphous silicon (a-Si) film 7, an ITO film 8 having a thickness of 100 nm is formed by the same formation method as that for the surface side. A comb-shaped collector electrode (paste electrode) 9 is formed in a predetermined region on the ITO film 8.

表1にRFプラズマCVD法による代表的な太陽電池作成時の非晶質シリコン(a−Si)の形成条件を示す。   Table 1 shows the formation conditions of amorphous silicon (a-Si) at the time of producing a typical solar cell by the RF plasma CVD method.

Figure 0004198079
Figure 0004198079

表2に、マスクにより端面にa−Si膜、ITO膜の非成膜領域を形成した従来構造、有効面積拡大のためにマスクを用いず基板端面までa−Si膜、ITO膜を形成した全面形成構造、更に本発明の実施形態である基板1の側面の中央部に、幅40μm、深さ40μmの溝を形成した太陽電池セルをそれぞれ形成し、各特性を比較した。成膜条件等は上記した方法で全て同じにした。   Table 2 shows a conventional structure in which a non-deposition region of an a-Si film and an ITO film is formed on the end face using a mask, and an entire surface on which the a-Si film and the ITO film are formed up to the end face of the substrate without using a mask for expanding the effective area. Solar cells each having a groove having a width of 40 μm and a depth of 40 μm were formed in the central portion of the side surface of the formation structure and the substrate 1 according to an embodiment of the present invention, and the characteristics were compared. The film forming conditions and the like were all made the same by the method described above.

表2から明らかなように、全面形成構造は従来構造に比べて有効面積拡大により、電流は増加するが、端面でのa−Si膜、ITO膜の回り込みによるリーク電流パス、特にa−Si膜に比べて電気抵抗の小さいITO膜によるリーク電流により、F.F.が大幅に低下し、出力はむしろ低下した。一方、本発明の実施形態は、端面の溝11により、ITO膜は完全に分離され、リーク電流パスの発生が抑制されて高いF.F.と高い電流が両立できた。   As can be seen from Table 2, although the current increases in the entire surface formation structure as the effective area is increased compared to the conventional structure, the a-Si film at the end face, the leakage current path due to the wraparound of the ITO film, particularly the a-Si film The leakage current due to the ITO film having a lower electrical resistance than F. However, the output was rather lowered. On the other hand, according to the embodiment of the present invention, the ITO film is completely separated by the groove 11 on the end face, and the occurrence of a leakage current path is suppressed. F. And high current.

Figure 0004198079
Figure 0004198079

表3は、基板1の側面(厚み240μm)の中央に、溝11の幅40μm一定とし、深さを2〜120μmに変化させた場合の、規格化F.F.の変化である。規格化は、表1の全面形成の値により行った。

Figure 0004198079
Table 3 shows the normalized F.D. when the width of the groove 11 is constant at 40 μm and the depth is changed to 2 to 120 μm at the center of the side surface (thickness: 240 μm) of the substrate 1. F. Is a change. Normalization was performed according to the values for the entire surface formation in Table 1.
Figure 0004198079

表3より、2μmの深さから規格化F.Fは改善しているが、5μmまでは改善効果が小さい。これは基板として、アルカリエッチングにより基板表面に凹凸を設けたものを用いているため、基板側面にも大きさ10μm程度の基板表面と同じ凹凸が形成されている。このため凹凸よりも浅い溝の形成は、制御性が十分でないために、本発明の効果を十分に引き出せていないためと考えられる。しかし、深さが10μmよりも深い場合は、効果が明確となり、本発明で意図したITO膜を介したリークパスの分離に成功した為と考えられる。   From Table 3, the standardized F.D. Although F is improved, the improvement effect is small up to 5 μm. This is because the substrate is provided with irregularities on the substrate surface by alkali etching, and the same irregularities as the substrate surface having a size of about 10 μm are formed on the side surface of the substrate. For this reason, it is considered that the formation of the groove shallower than the concavo-convex is because the controllability is not sufficient and the effect of the present invention cannot be sufficiently obtained. However, when the depth is deeper than 10 μm, the effect becomes clear and it is considered that the leakage path was successfully separated through the ITO film intended in the present invention.

次に、溝11の深さを10μm一定とし、幅を20〜100μmにて変化させた場合の規格化F.F.を表4に示す。規格化は、表1の全面形成の値により行った。表4より、いずれの場合も同レベルの効果が得られた。   Next, the standardized F.D. when the depth of the groove 11 is fixed at 10 μm and the width is changed from 20 to 100 μm F. Is shown in Table 4. Normalization was performed according to the values for the entire surface formation in Table 1. From Table 4, the same level of effect was obtained in any case.

Figure 0004198079
Figure 0004198079

続いて、透明導電膜の形成後にレーザーにより、非晶質シリコン膜/透明導電膜を除去することにより、リーク電流パスを抑制する方法で形成した太陽電池セルと本発明よる太陽電池セルとの比較を行った結果を表5に示す。   Subsequently, after the formation of the transparent conductive film, the amorphous silicon film / transparent conductive film is removed by laser to compare the solar battery cell formed by the method for suppressing the leakage current path with the solar battery cell according to the present invention. Table 5 shows the results of the test.

Figure 0004198079
Figure 0004198079

その結果、レーザーで後加工した場合には、基板端面での結晶シリコンのダメージが透過電子顕微鏡写真より明らかとなり、更にレーザー加工した端部でのシリコンの変質(微結晶化)も確認された。この影響で、シリコン基板端面での再結合中心増加、変質した微結晶ライクシリコンでのリーク電流が発生し、F.F.等が低下していると考えられる。これに対して、後加工に比べてあらかじめ基板1を加工する本発明では、洗浄工程によるダメージ層の除去が可能であり、a−Si膜や透明導電膜の変質等の可能性がなく有効であることが分かる。   As a result, when post-processing with a laser, the damage of the crystalline silicon at the end face of the substrate became clear from the transmission electron micrograph, and the alteration (microcrystallization) of the silicon at the end processed with laser was also confirmed. As a result, recombination centers increase at the end face of the silicon substrate, and leakage current occurs in the modified microcrystalline-like silicon. F. Etc. are thought to have declined. On the other hand, in the present invention in which the substrate 1 is processed in advance as compared with post-processing, it is possible to remove the damaged layer by the cleaning process, and there is no possibility of alteration of the a-Si film or the transparent conductive film, which is effective. I understand that there is.

尚、上記した実施形態においては、基板1にYAGレーザーの加工により、溝11を設けたが、溝11をホトリソグラフィーとエッチングにより形成することもできる。   In the embodiment described above, the groove 11 is provided on the substrate 1 by YAG laser processing. However, the groove 11 may be formed by photolithography and etching.

本発明の実施の形態による光起電力装置の断面図である。1 is a sectional view of a photovoltaic device according to an embodiment of the present invention. 本発明の実施の形態による光起電力装置の要部拡大断面図である。It is a principal part expanded sectional view of the photovoltaic apparatus by embodiment of this invention.

符号の説明Explanation of symbols

1 n型単結晶シリコン基板
2 i型非晶質シリコン層
3 p型非晶質シリコン層
4 ITO膜
5 櫛型集電極
6 i型非晶質シリコン層
7 n型非晶質シリコン層
8 ITO膜
9 櫛型集電極
11 溝
1 n-type single crystal silicon substrate 2 i-type amorphous silicon layer 3 p-type amorphous silicon layer 4 ITO film 5 comb-shaped collector electrode 6 i-type amorphous silicon layer 7 n-type amorphous silicon layer 8 ITO film 9 Comb collector 11 Groove

Claims (3)

一導電型の結晶系半導体基板の表面上に、他導電型の非晶質半導体層と導電性薄膜とからなる積層体を備え、前記基板の裏面上に少なくとも裏面電極膜が設けられた光起電力装置の製造法であって、前記基板の表裏面に設けられる膜の膜厚の総和の内、総和の大きい方の大きさより大きな幅、深さを有する溝を前記基板の側面に形成し、その後、他導電型の非晶質半導体層と導電性薄膜とからなる積層体、前記基板の裏面上に少なくとも裏面電極膜を設けることを特徴とする光起電力装置の製造方法。 A photovoltaic device comprising a laminate comprising an amorphous semiconductor layer of another conductivity type and a conductive thin film on the surface of a crystalline semiconductor substrate of one conductivity type, and at least a back electrode film provided on the back surface of the substrate. A method for manufacturing a power device, wherein a groove having a width and depth larger than the larger sum of the film thicknesses of the films provided on the front and back surfaces of the substrate is formed on the side surface of the substrate, Thereafter, a laminate comprising an amorphous semiconductor layer of another conductivity type and a conductive thin film, and at least a back electrode film is provided on the back surface of the substrate. 前記基板は単結晶シリコン基板からなり、異方性エッチングにより凹凸が形成されると共に、レーザー加工により側面部に、幅は100μmを超えず、深さは10μm以上120μm以内の溝を形成することを特徴とする請求項1記載の光起電力装置の製造方法。 The substrate is made of a single crystal silicon substrate, and irregularities are formed by anisotropic etching, and a groove having a width not exceeding 100 μm and a depth not less than 10 μm and not more than 120 μm is formed on the side surface by laser processing. The method for manufacturing a photovoltaic device according to claim 1, wherein: 前記一導電型の結晶系半導体基板として、単結晶シリコンを用い、少なくとも光入射側に非晶質又は微結晶シリコン半導体からなる半導体層を備えたことを特徴とする請求項1または2に記載の光起電力装置の製造方法。
3. The semiconductor device according to claim 1, wherein single crystal silicon is used as the one conductivity type crystalline semiconductor substrate, and a semiconductor layer made of an amorphous or microcrystalline silicon semiconductor is provided at least on a light incident side. Photovoltaic device manufacturing method.
JP2004072727A 2004-03-15 2004-03-15 Photovoltaic device manufacturing method Expired - Lifetime JP4198079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072727A JP4198079B2 (en) 2004-03-15 2004-03-15 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072727A JP4198079B2 (en) 2004-03-15 2004-03-15 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2005260149A JP2005260149A (en) 2005-09-22
JP4198079B2 true JP4198079B2 (en) 2008-12-17

Family

ID=35085554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072727A Expired - Lifetime JP4198079B2 (en) 2004-03-15 2004-03-15 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4198079B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557772B2 (en) * 2005-03-31 2010-10-06 三洋電機株式会社 Photovoltaic device
JP2010010493A (en) * 2008-06-27 2010-01-14 Sharp Corp Solar cell and method of manufacturing the same
CN103907205B (en) * 2011-10-27 2016-06-29 三菱电机株式会社 Photo-electric conversion device and manufacture method thereof and light-to-current inversion module
EP2682990B2 (en) 2012-07-02 2023-11-22 Meyer Burger (Germany) GmbH Methods of manufacturing hetero-junction solar cells with edge isolation
KR101923728B1 (en) 2013-02-06 2018-11-29 한국전자통신연구원 Solar cell
JP5909662B2 (en) * 2014-04-22 2016-04-27 パナソニックIpマネジメント株式会社 Solar cell module

Also Published As

Publication number Publication date
JP2005260149A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CA2716402C (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8945976B2 (en) Method for making solar cell having crystalline silicon P—N homojunction and amorphous silicon heterojunctions for surface passivation
JP5774204B2 (en) Photovoltaic element, manufacturing method thereof, and solar cell module
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP6612359B2 (en) Method for manufacturing photoelectric conversion device
Li et al. Enhanced electrical and optical properties of boron-doped ZnO films grown by low pressure chemical vapor deposition for amorphous silicon solar cells
CN218788382U (en) High-efficiency heterojunction solar cell
JP6141670B2 (en) Manufacturing method of solar cell
JP2009038064A (en) Photoelectric conversion device, and its manufacturing method
JP2014072406A (en) Solar cell and manufacturing method therefor, solar cell module
JP2019033201A (en) Crystalline silicon type solar cell
JP4198079B2 (en) Photovoltaic device manufacturing method
CN211238272U (en) Crystalline silicon/amorphous silicon heterojunction battery
TWM517422U (en) Heterojunction solar cell with local passivation
JP6502147B2 (en) Method of manufacturing solar cell and method of manufacturing solar cell module
JP2004228281A (en) Photovoltaic device
JP2014072416A (en) Solar cell and manufacturing method therefor, solar cell module
JP6990764B2 (en) Solar cells and their manufacturing methods
JP7237920B2 (en) Solar cell manufacturing method
TW201709541A (en) Photovoltaic power generation element and method for manufacturing same
JP6294694B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
TWI581447B (en) Heterojunction solar cell and fabrication method thereof
CN110957388A (en) Crystalline silicon/amorphous silicon heterojunction battery and preparation method thereof
TWI427809B (en) Manufacturing method for silicon based thin film solar cell module
JP2014232820A (en) Solar cell and method for manufacturing the same, and solar cell module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4