TWI427809B - Manufacturing method for silicon based thin film solar cell module - Google Patents

Manufacturing method for silicon based thin film solar cell module Download PDF

Info

Publication number
TWI427809B
TWI427809B TW099143359A TW99143359A TWI427809B TW I427809 B TWI427809 B TW I427809B TW 099143359 A TW099143359 A TW 099143359A TW 99143359 A TW99143359 A TW 99143359A TW I427809 B TWI427809 B TW I427809B
Authority
TW
Taiwan
Prior art keywords
laser
solar cell
thin film
cell module
film solar
Prior art date
Application number
TW099143359A
Other languages
Chinese (zh)
Other versions
TW201225323A (en
Inventor
ru yuan Yang
Yu Chi Chang
Chang Sin Ye
Original Assignee
Univ Nat Pingtung Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Pingtung Sci & Tech filed Critical Univ Nat Pingtung Sci & Tech
Priority to TW099143359A priority Critical patent/TWI427809B/en
Publication of TW201225323A publication Critical patent/TW201225323A/en
Application granted granted Critical
Publication of TWI427809B publication Critical patent/TWI427809B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

矽薄膜太陽能電池模組之製造方法矽 Thin film solar cell module manufacturing method

本發明係有關於一種太陽能電池之製造方法,特別係關於一種矽薄膜太陽能電池模組之製造方法。The invention relates to a method for manufacturing a solar cell, in particular to a method for manufacturing a tantalum thin film solar cell module.

習知技術之矽薄膜太陽能電池透過一系列步驟製成如:形成一前電極於一玻璃基板上,形成一光電轉換層於前電極上,以及形成一後電極於光電轉換層上。此種情況下,由於前電極對應於光線入射面,因此前電極係由一透明之導電材料,例如氧化鋅(ZnO)薄膜製造而成。當使用較大尺寸之基板時,由於透明導電層之電阻因而增加電能損失。因此,一種減少電能損失之方法係將薄膜型太陽能電池被分割為複數個單元電池,該些單元電池彼此串聯以降低因透明導電材料之電阻所產生的電能損失。該串連步驟係採用雷射切割來形成。雷射切割步驟之進行係為以第一道雷射切割基板上之前電極,以第二道雷射切割前電極上之光電轉換層,以及以第三道雷射切割光電轉換層上之後電極。然而,三道雷射切割製程中所造成之雷射切口處,以及三道雷射切口間之區域形成一無法進行光電轉換的無效區域,亦即是無效區的寬度為三道雷射切口之寬度與三道雷射切口間距離之總和,該無效區會減少電流之產生,進而降低模組之功率輸出。另一方面,雷射切割時周圍的熱區可能會造成材料結晶,雖然縮小三道雷射切口間之距離能降低無效區域,然而卻可能造成材料因熱區結晶而產生漏電流。因此,定義無效區之較佳寬度以及與其搭配之雷射切割製程在薄膜太陽能電池製程的開發中已成為迫切的重要技術。The thin film solar cell of the prior art is formed by a series of steps of forming a front electrode on a glass substrate, forming a photoelectric conversion layer on the front electrode, and forming a rear electrode on the photoelectric conversion layer. In this case, since the front electrode corresponds to the light incident surface, the front electrode is made of a transparent conductive material such as a zinc oxide (ZnO) film. When a larger sized substrate is used, power loss is increased due to the resistance of the transparent conductive layer. Therefore, a method for reducing power loss is to divide a thin film type solar cell into a plurality of unit cells which are connected in series to each other to reduce power loss due to resistance of the transparent conductive material. This series of steps is formed using laser cutting. The laser cutting step is performed by cutting the front electrode on the substrate with a first laser, cutting the photoelectric conversion layer on the front electrode with a second laser, and cutting the rear electrode on the photoelectric conversion layer with a third laser. However, the laser incision caused by the three laser cutting processes and the area between the three laser incisions form an ineffective area where photoelectric conversion is impossible, that is, the width of the ineffective area is three laser incisions. The sum of the width and the distance between the three laser cuts, which reduces the current generation, thereby reducing the power output of the module. On the other hand, the surrounding hot zone during laser cutting may cause the material to crystallize. Although reducing the distance between the three laser cuts can reduce the ineffective area, it may cause leakage current due to crystallization of the hot zone. Therefore, defining the preferred width of the ineffective area and the laser cutting process with it has become an urgently important technology in the development of thin film solar cell processes.

參照美國專利公告號第6,384,315號,標題為:太陽能電池模組(Solar cell module),其主要揭示一種矽薄膜太陽能電池模組的封裝方式。該案雖然揭示雷射切割條件,然而無揭示與定義較佳化之無效區寬度以提高產能。另參照美國專利公告號第6,455,347號,標題為:太陽能電池模組製造方法(Method of fabricating thin-film photovoltaic module)。該案主要揭示薄膜太陽能電池模組的雷射切割方式,其中包含雷射波長、雷射模態、雷射行進路徑。然而該案中亦無揭示無效區寬度之較佳化。因此需提出一種對應該案之雷射切割方式並配合定義較佳化無效區寬度以達到最佳化雷射製程之目的。U.S. Patent No. 6,384,315, entitled: Solar Cell Module, which primarily discloses a packaging method for a tantalum thin film solar cell module. Although the case reveals laser cutting conditions, there is no disclosure and definition of the effective area width to improve productivity. See also U.S. Patent No. 6,455,347, entitled: Method of fabricating thin-film photovoltaic module. The case mainly reveals the laser cutting mode of the thin film solar cell module, which includes the laser wavelength, the laser mode, and the laser travel path. However, there is no disclosure in the case of the optimization of the width of the invalid area. Therefore, it is necessary to propose a laser cutting method corresponding to the case and to define the optimized invalid region width to achieve the purpose of optimizing the laser process.

有鑑於此,有需要提出一種可達成最佳化無效區寬度之矽薄膜太陽能電池之雷射切割方法以達到高效能矽薄膜之太陽能電池的量產目標。In view of the above, there is a need to propose a laser cutting method for a thin film solar cell that can achieve an optimized ineffective region width to achieve a high-performance tantalum solar cell mass production target.

職是之故,本發明提出一種矽薄膜太陽能電池模組之製造方法,藉由定義無效區之較佳寬度,可避免面積之浪費以達到雷射切割製程最佳化,具有提升薄膜太陽能電池效能及產能之價值。此外,本發明係引用美國公告號第6,384,315號,標題為“太陽能電池模組(Solar cell module)”以及美國專利公告號第6,455,347號,標題為“太陽能電池模組製造方法(Method of fabricating thin-film photovoltaic module)”作引證參考文獻。For the sake of the job, the present invention provides a method for manufacturing a tantalum thin film solar cell module. By defining a preferred width of the ineffective region, the waste of the area can be avoided to optimize the laser cutting process, and the performance of the thin film solar cell can be improved. And the value of capacity. In addition, the present invention is incorporated by reference to U.S. Patent No. 6,384,315, entitled "Solar Cell Module" and U.S. Patent No. 6,455,347, entitled "Method of Fabricating Thin- Film photovoltaic module)" is cited as a reference.

本發明提供一種矽薄膜太陽能電池模組之製造方法,藉由定義無效區之較佳寬度條件,可避免發電面積之浪費,進而提升矽薄膜太陽能電池之效率,並達成矽薄膜太陽能電池模組之製程最佳化。The invention provides a method for manufacturing a tantalum thin film solar cell module. By defining a preferred width condition of the ineffective region, waste of power generation area can be avoided, thereby improving the efficiency of the tantalum thin film solar cell, and achieving a thin film solar cell module. Process optimization.

本發明主要包含下列步驟:沈積透明導電膜於基板上;執行第一雷射製程,以第一雷射切口將透明導電膜形成複數個導電膜單元;沈積光電轉換層於導電膜單元上;執行第二雷射製程,於距離第一雷射切口之第一距離處,以第二雷射切口將光電轉換層形成複數個轉換層單元;沈積電極層於轉換層單元上;執行第三雷射製程,於距離第二雷射切口之第二距離處,以第三雷射切口將電極層形成複數個電極單元,且單元電級透過第二雷射切口分別與導電膜單元電性連接;執行第四雷射製程,以移除基板外側之部分轉換層單元及電極單元而形成一間隔,且此間隔區分出功率產生區域,功率產生區域中具有複數個串接之太陽能電池,且其中第一雷射切口寬度、第二雷射切口寬度、第三雷射切口寬度、第一距離以及第二距離等之和係小於功率產生區域之寬度的5%。The present invention mainly comprises the steps of: depositing a transparent conductive film on a substrate; performing a first laser process, forming a plurality of conductive film units with a transparent conductive film by a first laser cut; depositing a photoelectric conversion layer on the conductive film unit; a second laser process, at a first distance from the first laser cut, forming a plurality of conversion layer units by the second laser cut with the second laser cut; depositing an electrode layer on the conversion layer unit; performing a third laser a plurality of electrode units are formed by the third laser incision at a second distance from the second laser incision, and the unit electrical level is electrically connected to the conductive film unit through the second laser incision; a fourth laser process for removing a portion of the conversion layer unit and the electrode unit outside the substrate to form an interval, and the interval distinguishes the power generation region, wherein the power generation region has a plurality of tandem solar cells, and wherein the first The sum of the laser slit width, the second laser slit width, the third laser slit width, the first distance, and the second distance is less than 5 of the width of the power generating region %.

雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請了解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。While the invention may be embodied in various forms, the embodiments illustrated in the drawings It is not intended to limit the invention to the particular embodiments illustrated and/or described.

請參照第1圖,為本發明之矽薄膜太陽能電池模組之製造方法流程圖,茲輔以第2A至第2G圖詳加說明如下:Please refer to FIG. 1 , which is a flow chart of a method for manufacturing a tantalum thin film solar cell module according to the present invention, which is further illustrated by the following figures 2A to 2G:

步驟310:沈積透明導電膜。Step 310: depositing a transparent conductive film.

請參照第2A圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(一),本步驟係將透明導電膜120沉積在基板110上,其中基板110係選自玻璃、塑膠基板、透明可撓性基板、半導性基板與絕緣基板之一。於本實施例中,其係採用玻璃基板。透明導電膜120用以取出電能與提昇光電轉換之效率,其材料可選用銦錫氧化物、二氧化錫、氧化鋅、含雜質的二氧化錫、含雜質的氧化鋅、鎳、金、銀、鈦、銅、鈀、及鋁。其中,透明導電膜120之製程方式係選自於蒸鍍法、濺鍍法、電鍍法、化學氣相沈積法與印刷法所組成族群中之任何一種製程。然而為了得到一較佳之表面粗糙度,透明導電膜120係以低壓化學氣相沈積法沈積,或以濺鍍法配合一後蝕刻製程處理形成。在一較佳實施例中,透明導電膜之材料係選用含雜質的二氧化錫,其具有85%以上之透光度,且其片電阻值係介於5Ω/□至10Ω/□之間。於本實施例中,其厚度係介於100奈米至800奈米之間。Please refer to FIG. 2A , which is a schematic diagram of a process of the thin film solar cell module of the present invention. The first step is to deposit a transparent conductive film 120 on the substrate 110 , wherein the substrate 110 is selected from the group consisting of glass, plastic substrate and transparent. One of a flexible substrate, a semiconductive substrate, and an insulating substrate. In this embodiment, a glass substrate is used. The transparent conductive film 120 is used for extracting electric energy and improving the efficiency of photoelectric conversion. The material thereof may be selected from indium tin oxide, tin dioxide, zinc oxide, impurity-containing tin dioxide, impurity-containing zinc oxide, nickel, gold, silver, Titanium, copper, palladium, and aluminum. The process of the transparent conductive film 120 is selected from any one of the group consisting of a vapor deposition method, a sputtering method, a plating method, a chemical vapor deposition method, and a printing method. However, in order to obtain a preferred surface roughness, the transparent conductive film 120 is deposited by low pressure chemical vapor deposition or by a sputtering process followed by a post etching process. In a preferred embodiment, the material of the transparent conductive film is selected from impurity-containing tin dioxide having a transmittance of 85% or more and a sheet resistance value of between 5 Ω/□ and 10 Ω/□. In this embodiment, the thickness is between 100 nm and 800 nm.

步驟320:形成複數個導電膜單元。Step 320: Form a plurality of conductive film units.

請參照第2B圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(二),本步驟藉由執行第一雷射製程,以第一雷射切口130在基板110上形成導電膜單元120a、120b、120c及120d。其中第一雷射切口130之寬度L1較佳係介於30 um到110 um之間,且第一雷射製程之雷射波長係選自YAG雷射之基頻及第二倍頻之一,其波長分別為1064 nm及532 nm以對應透明導電膜所能吸收之光波長。在剝除第一道透明導電膜層(如氧化鋅)時,波長與吸收係數關係如第3圖所示,其顯示氧化鋅對紅外光的吸收率較綠光雷射佳。另外,針對未退火之SnO2 薄膜而言,雷射光束的輻射能量將促使SnO2 轉換成絕緣物質SnO。然而,隨著雷射能量密度的提升,經由透明導電膜穿透至玻璃基板的雷射能量數亦將隨之增加,其將造成基板中之雜質揮發進而沈積於絕緣物質SnO的表面,此雜質即為透明導電膜阻值下降的主要原因。反之,隨著退火處理的步驟,使得絕緣物質SnO以及雜質產生本質上的變化,進而造成阻值曲線與未退火之SnO2 阻值呈現反比的斜率變化。需注意的是,切割後之透明導電膜的阻值需大於1 MΩ。因此,為了達到一具有量好隔絕度之透明導電膜cell,其所使用之X/D以及雷射能量密度只要分別為0.56以及21 J/cm2 即可達到所需的阻絕度。Please refer to FIG. 2B , which is a schematic diagram of the process of the thin film solar cell module of the present invention (2). In this step, the conductive film unit 120a is formed on the substrate 110 by the first laser cut 130 by performing the first laser process. , 120b, 120c and 120d. The width L1 of the first laser cut 130 is preferably between 30 um and 110 um, and the laser wavelength of the first laser process is selected from one of a fundamental frequency and a second frequency of the YAG laser. The wavelengths are 1064 nm and 532 nm, respectively, to correspond to the wavelength of light that the transparent conductive film can absorb. When the first transparent conductive film layer (such as zinc oxide) is stripped, the relationship between the wavelength and the absorption coefficient is as shown in Fig. 3, which shows that the absorption rate of zinc oxide by infrared light is better than that of green light. In addition, for the unannealed SnO 2 film, the radiant energy of the laser beam will cause the SnO 2 to be converted into the insulating material SnO. However, as the laser energy density increases, the amount of laser energy penetrating through the transparent conductive film to the glass substrate will also increase, which will cause the impurities in the substrate to volatilize and deposit on the surface of the insulating material SnO. This is the main reason for the decrease in the resistance of the transparent conductive film. On the contrary, with the step of the annealing treatment, the insulating material SnO and the impurities are substantially changed, thereby causing a slope change in which the resistance curve is inversely proportional to the unannealed SnO 2 resistance. It should be noted that the resistance of the transparent conductive film after cutting needs to be greater than 1 MΩ. Therefore, in order to achieve a transparent conductive film cell having a good degree of isolation, the X/D and the laser energy density used can reach the desired degree of resistance as long as 0.56 and 21 J/cm 2 , respectively.

步驟330:沈積光電轉換層。Step 330: depositing a photoelectric conversion layer.

請參照第2C圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(三),本步驟係沈積光電轉換層140於導電膜單元120a、120b、120c、120d上。其中光電轉換層140係由矽基材料所組成,且光電轉換層140的定義為:包含至少一P型半導體層,至少一本質型(i型)半導體層,以及至少一N型半導體層。其中,P型半導體層之定義:在原本質材料中加入雜質(Impurities)用以產生多餘的電洞,以電洞構成多數載子之半導體層。例:以矽或鍺半導體而言,在其本質半導體中,摻入3價原子的雜質(Impurities)形成多餘的電洞,使電洞作為電流的運作方式。Please refer to FIG. 2C, which is a schematic diagram (3) of the process of the tantalum thin film solar cell module of the present invention. This step deposits the photoelectric conversion layer 140 on the conductive film units 120a, 120b, 120c, and 120d. The photoelectric conversion layer 140 is composed of a germanium-based material, and the photoelectric conversion layer 140 is defined to include at least one P-type semiconductor layer, at least one intrinsic type (i-type) semiconductor layer, and at least one N-type semiconductor layer. Among them, the definition of the P-type semiconductor layer: the inclusion of impurities (Impurities) in the original intrinsic material to generate excess holes, and the holes constitute the semiconductor layer of the majority carrier. Example: In the case of germanium or germanium semiconductors, in their intrinsic semiconductors, impurities doped with trivalent atoms form extra holes, making holes act as currents.

N型半導體層係指在本質材料中加入的雜質可產生多餘的電子,以電子構成多數載子之半導體,即稱之為N型半導體層。舉例來說,就矽或矽鍺半導體而言,若對本質半導體摻入5價原子的雜質時,會形成多餘之電子,並以電子流做為主要的運作方式。本質型(i型)半導體層對於薄膜型太陽能電池之電特性影響最大,其是由於電子與電洞在材料內部傳導時,若本質型(i型)半導體層厚度過厚,兩者重合機率極高,為避免此現象發生,本質型(i型)半導體層不宜過厚。反之,本質型(i型)半導體層厚度過薄時,易造成吸光性不足。The N-type semiconductor layer refers to a semiconductor in which an impurity added to an intrinsic material generates excess electrons and electrons constitute a majority carrier, which is called an N-type semiconductor layer. For example, in the case of germanium or germanium semiconductors, if an intrinsic semiconductor is doped with impurities of a five-valent atom, excess electrons are formed, and electron current is the main mode of operation. The intrinsic (i-type) semiconductor layer has the greatest influence on the electrical characteristics of the thin film type solar cell. When the electron and the hole are conducted inside the material, if the thickness of the intrinsic type (i type) semiconductor layer is too thick, the coincidence probability is extremely high. High, in order to avoid this phenomenon, the intrinsic (i-type) semiconductor layer should not be too thick. On the other hand, when the thickness of the intrinsic type (i type) semiconductor layer is too thin, the light absorption is insufficient.

其中P型半導體層及N型半導體層之摻雜方式於本發明中係採用可選用氣體摻雜、熱擴散法(Thermal diffusion)、固相結晶化(Solid phase crystalline,SPC)或準分子雷射退火(Excimer laser anneal,ELA)等製程作為主要的製程方式。需注意的是,不同的P型半導體層、本質型(i型)半導體層以及N型半導體層的製備來源亦會影響其所具有之光電特性的品質;且P型半導體層、本質型(i型)半導體層、N型半導體層之製備係採用以矽烷氣體與氫氣混合;矽烷氣體、氫氣與氬氣混合;矽烷氣體、鍺烷氣體與氫氣混合;矽烷氣體、鍺烷氣體、氫氣與氬氣混合所組成族群中之任何一種製程。The doping method of the P-type semiconductor layer and the N-type semiconductor layer is selected in the present invention by gas doping, thermal diffusion, solid phase crystallization (SPC) or excimer laser. Processes such as annealing (Excimer laser anneal, ELA) are the main process methods. It should be noted that the preparation sources of different P-type semiconductor layers, intrinsic (i-type) semiconductor layers, and N-type semiconductor layers may also affect the quality of the photoelectric characteristics thereof; and the P-type semiconductor layer, the intrinsic type (i Type) semiconductor layer, N-type semiconductor layer is prepared by mixing decane gas with hydrogen; decane gas, hydrogen mixed with argon; decane gas, decane gas mixed with hydrogen; decane gas, decane gas, hydrogen gas and argon gas Mix any of the processes in the group.

步驟340:形成複數個轉換層單元。Step 340: Form a plurality of conversion layer units.

請參照第2D圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(四),本步驟藉由執行第二雷射製程,於距離第一雷射切口130之第一距離150處,以第二雷射切口160形成轉換層單元140a、140b、140c、140d。其中第一距離150之寬度W1於本發明實施例中較佳係介於50 um到110 um之間,且第二雷射切口160之寬度L2較佳係介於30 um到110 um之間。且因矽基材料之光吸收波長較低,因此第二雷射製程之雷射波長係選自YAG雷射中具有較高能量之第二倍頻及第三倍頻之一,其波長係分別為532 nm及266 nm。需注意的是,隨者雷射切割寬度的不同,其所使用之參數亦有所不同。當雷射切割寬度為50 um至100 um時,使用Q-Switched YAG雷射切割背電極以及光電轉換層之詳細參數如下所述:震盪頻率為3 KHz,平均輸出功率為500 mW,雷射脈衝寬度為10 nsec,玻璃基板與雷射切割之相對移動速度為3.5 um/min。而當雷射切割寬度大於100 um時,其用以切割背電極以及光電轉換層之Q-Switched YAG雷射參數如下所述:震盪頻率為10 KHz,平均輸出功率為1.5 W,雷射脈衝寬度為50 nsec,玻璃基板與雷射切割之相對移動速度為200 mm/sec。Please refer to FIG. 2D, which is a schematic diagram (4) of the process of the tantalum thin film solar cell module of the present invention. This step is performed at a first distance 150 from the first laser incision 130 by performing a second laser process. The second laser cut 160 forms the conversion layer unit 140a, 140b, 140c, 140d. The width W1 of the first distance 150 is preferably between 50 um and 110 um in the embodiment of the invention, and the width L2 of the second laser cut 160 is preferably between 30 um and 110 um. And because the light absorption wavelength of the ruthenium-based material is low, the laser wavelength of the second laser process is selected from one of the second frequency and the third frequency of the higher energy of the YAG laser, and the wavelengths thereof are respectively It is 532 nm and 266 nm. It should be noted that the parameters used vary depending on the width of the laser cutting. When the laser cutting width is 50 um to 100 um, the detailed parameters of the Q-Switched YAG laser-cut back electrode and the photoelectric conversion layer are as follows: oscillation frequency is 3 KHz, average output power is 500 mW, laser pulse With a width of 10 nsec, the relative movement speed of the glass substrate to the laser cutting is 3.5 um/min. When the laser cutting width is greater than 100 um, the Q-Switched YAG laser parameters used to cut the back electrode and the photoelectric conversion layer are as follows: the oscillation frequency is 10 KHz, the average output power is 1.5 W, and the laser pulse width is For 50 nsec, the relative movement speed of the glass substrate to the laser cutting is 200 mm/sec.

步驟350:沈積電極層。Step 350: depositing an electrode layer.

請參照第2E圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(五),本步驟係沈積電極層170於轉換層單元140a、140b、140c、140d上。電極層170可選用鎳、金、銀、鈦、銅、鈀、及鋁金屬以取出電能,且其厚度係介於200奈米至600奈米之間。其中,電極層170之製程方式係選自於蒸鍍法、濺鍍法、電鍍法、化學氣相沈積法與印刷法所組成族群中之任何一種製程。在本發明之較佳實施例中,係使用鋁金屬薄膜,且其厚度係介於500奈米至900奈米之間。Please refer to FIG. 2E , which is a schematic diagram (5) of the process of the tantalum thin film solar cell module of the present invention. This step is to deposit the electrode layer 170 on the conversion layer units 140 a , 140 b , 140 c , 140 d . The electrode layer 170 may be selected from nickel, gold, silver, titanium, copper, palladium, and aluminum to extract electrical energy, and has a thickness of between 200 nm and 600 nm. The process of the electrode layer 170 is selected from any one of the group consisting of a vapor deposition method, a sputtering method, a plating method, a chemical vapor deposition method, and a printing method. In a preferred embodiment of the invention, an aluminum metal film is used and has a thickness between 500 nm and 900 nm.

步驟360:形成複數個電極單元。Step 360: Forming a plurality of electrode units.

請參照第2F圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(六),本步驟係藉由執行第三雷射製程,於距離第二雷射切口160之第二距離180處,以第三雷射切口190形成複數個電極單元170a、170b、170c及170d。其中第二距離180之寬度W2在本實施例中較佳係介於50 um到110 um,第三雷射切口190之寬度L3較佳則為30 um到110 um。且為形成一模組化電池,電極單元170a、170b、170c係透過第二雷射切口180分別與導電膜單元120b、120c、120d電性連接。需注意各個單元電池間之連接方式為可以是串聯或並聯方式。該第三雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一,其中金屬電極對於波長為第二倍頻之YAG雷射之反射較為嚴重,然而其卻具有較低成本,因此於本發明之較佳實施例中採用雷射波長為二倍頻之YAG雷射。由第4圖所示之三種矽薄膜之波長與吸收係數相對關係可判斷出,若要在剝除過程中不能破壞到下層的透明導電膜,需選用倍頻以532 nm綠光固態雷射為佳。需注意過大的雷射能量雖容易將矽薄膜層去除,但會造成透明導電膜光電特性變差,及矽薄膜層側壁的再結晶(Recrystallization),導致漏電流變大,造成元件或模組效率降低。Please refer to FIG. 2F, which is a schematic diagram (6) of the process of the tantalum thin film solar cell module of the present invention. This step is performed by performing a third laser process at a second distance 180 from the second laser incision 160. A plurality of electrode units 170a, 170b, 170c, and 170d are formed by the third laser cut 190. The width W2 of the second distance 180 is preferably between 50 um and 110 um in the embodiment, and the width L3 of the third laser cut 190 is preferably 30 um to 110 um. In order to form a modular battery, the electrode units 170a, 170b, and 170c are electrically connected to the conductive film units 120b, 120c, and 120d through the second laser cuts 180, respectively. It should be noted that the connection between each unit battery can be in series or parallel. The laser wavelength of the third laser process is selected from one of a second frequency and a third frequency of the YAG laser, wherein the metal electrode is more reflective to the YAG laser having the second frequency, but However, at a lower cost, a YAG laser having a double wavelength of laser light is used in the preferred embodiment of the present invention. From the relative relationship between the wavelength and the absorption coefficient of the three kinds of ruthenium films shown in Fig. 4, it can be judged that if the transparent conductive film of the lower layer cannot be destroyed during the stripping process, the 532 nm green solid-state laser should be selected. good. It should be noted that excessive laser energy is easy to remove the ruthenium film layer, but it will cause poor photoelectric properties of the transparent conductive film, and recrystallization of the sidewall of the ruthenium film layer, resulting in large leakage current, resulting in component or module efficiency. reduce.

步驟370:移除基板外側之部分轉換層單元。Step 370: Remove a portion of the conversion layer unit outside the substrate.

請參照第2G圖,為本發明之矽薄膜太陽能電池模組之製程示意圖(七),本步驟藉由執行第四雷射製程,以移除基板110外側之轉換層單元140a、140d及電極單元170a、170d以形成間隔210。其中間隔210區分出功率產生區域230。功率產生區域230中具有複數個串並聯之單元太陽能電池組成。串聯之太陽能電池係由導電膜單元120a、120b、120c、120d、轉換層單元140a、140b、140c、140及、電極單元170a、170b、170c所形成。需注意,對每一個單元電池內,第一雷射切口寬度、第二雷射切口寬度、第三雷射切口寬度、第一距離150、及第二距離180之寬度總和係稱為無效區寬度,該寬度於本發明之實施例中小於每一個單元電池寬度的5%,亦即所有單元電池中之無效區寬度小於整個功率產生區域230寬度的5%,以達到將無效區面積最小化。其中第四雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一,於本發明之實施例中採用雷射波長為二倍頻之YAG雷射。其中間隔210之寬度L4於本實施例中係介於50 um到5000 um。Please refer to FIG. 2G, which is a schematic diagram of the process of the thin film solar cell module of the present invention (7). This step performs the fourth laser process to remove the conversion layer units 140a, 140d and the electrode unit outside the substrate 110. 170a, 170d to form a space 210. The interval 210 distinguishes the power generation area 230. The power generation region 230 is composed of a plurality of unit solar cells in series and parallel. The solar cells connected in series are formed of conductive film units 120a, 120b, 120c, and 120d, conversion layer units 140a, 140b, 140c, and 140, and electrode units 170a, 170b, and 170c. It should be noted that, for each unit cell, the sum of the widths of the first laser slit width, the second laser slit width, the third laser slit width, the first distance 150, and the second distance 180 is referred to as the invalid region width. The width is less than 5% of the width of each unit cell in the embodiment of the present invention, that is, the width of the ineffective area in all of the unit cells is less than 5% of the width of the entire power generating area 230 to minimize the area of the ineffective area. The laser wavelength of the fourth laser process is selected from one of the second frequency and the third frequency of the YAG laser. In the embodiment of the invention, the YAG laser with the laser wavelength of the double frequency is used. The width L4 of the space 210 is between 50 um and 5000 um in this embodiment.

現請參照第5圖,為本發明第一實施例之矽薄膜太陽能電池剖面圖。於本實施例中,集電電極410電性連接導電膜單元120a、120d以取出電能。集電電極410可選自金屬箔片。在一較佳實施例中,集電電極410係採用銅箔片,且藉由焊錫與導電膜單元120a、120d電性連接。Referring to Figure 5, there is shown a cross-sectional view of a tantalum thin film solar cell according to a first embodiment of the present invention. In the present embodiment, the collector electrode 410 is electrically connected to the conductive film units 120a, 120d to take out electrical energy. The collector electrode 410 can be selected from a metal foil. In a preferred embodiment, the collector electrode 410 is a copper foil and is electrically connected to the conductive film units 120a, 120d by solder.

為達到與基板外側絕緣之目的,於本發明實施例中更可包含執行一第五雷射製程,用以移除基板110外側之部分導電膜單元120a、120d、轉換層單元140a、140d、以及電極單元170a、170d以形成圍繞功率產生區域230之邊緣區域,用於使基板110最外側部分絕緣。抑或是以蝕刻製程移除間隔210以外之透明導電膜120、光電轉換層140、電極層170達成相同目的。於本發明之較佳實施例中,第五雷射製程所產生之間隔220之距離L5於本發明實施例中係介於50 um到5000 um之間,其中第五雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一,於一較佳實施例中採用雷射波長為二倍頻之YAG雷射。For the purpose of insulating the outer side of the substrate, the fifth embodiment of the present invention may further include performing a fifth laser process for removing portions of the conductive film units 120a, 120d, the conversion layer units 140a, 140d, and the outside of the substrate 110. The electrode units 170a, 170d are formed to form an edge region surrounding the power generating region 230 for insulating the outermost portion of the substrate 110. Or the transparent conductive film 120, the photoelectric conversion layer 140, and the electrode layer 170 other than the etching process 210 are removed to achieve the same purpose. In a preferred embodiment of the present invention, the distance L5 of the interval 220 generated by the fifth laser process is between 50 um and 5000 um in the embodiment of the present invention, wherein the laser wavelength of the fifth laser process is It is selected from one of the second frequency and the third frequency of the YAG laser. In a preferred embodiment, a YAG laser having a double wavelength of laser light is used.

需注意的是,本發明實施例中所使用之雷射能量密度係介於10 J/cm2 至30 J/cm2 之間,且雷射脈衝寬度係介於10 nsec至30 nsec之間,而基板110與雷射之相對移動速度係介於3.5 um/min至80 mm/sec之間,且其中透明導電膜120a、120b、120c、120d、轉換層單元140a、140b、140c、140d、電極層170a、170b、170c、170d於切割後之隔絕度係介於1 M到1.5 MΩ之間。It should be noted that the laser energy density used in the embodiments of the present invention is between 10 J/cm 2 and 30 J/cm 2 , and the laser pulse width is between 10 nsec and 30 nsec. The relative movement speed of the substrate 110 and the laser is between 3.5 um/min and 80 mm/sec, and the transparent conductive films 120a, 120b, 120c, 120d, the conversion layer units 140a, 140b, 140c, 140d, and the electrodes The isolation of the layers 170a, 170b, 170c, 170d after cutting is between 1 M and 1.5 MΩ.

現請參照第6圖,為本發明第二實施例之矽薄膜太陽能電池之剖面圖。第二實施例所使用之雷射切割方法不同於第一實施例,其相異之處在於將第一實施例中之第四雷射製程省略,以第一實施例中之第五雷射製程取代,藉由其產生之間隔220分出功率產生區域230。且於第二實施例中,功率產生區域230內之所有第一雷射切口寬度、第二雷射切口寬度、第三雷射切口寬度、第一距離、及第二距離之和亦小於功率產生區域230寬度的5%,以達到無效區寬度之最佳化。Referring now to Figure 6, there is shown a cross-sectional view of a tantalum thin film solar cell according to a second embodiment of the present invention. The laser cutting method used in the second embodiment is different from the first embodiment in that the fourth laser process in the first embodiment is omitted, and the fifth laser process in the first embodiment is omitted. Instead, the power generation region 230 is separated by the interval 220 at which it is generated. In the second embodiment, the sum of all the first laser slit width, the second laser slit width, the third laser slit width, the first distance, and the second distance in the power generating region 230 is also smaller than the power generation. The area 230 is 5% wide to achieve an optimum ineffective area width.

需注意,第二實施例與第一實施例另一相異之處在於集電電極410係電性連接於電極單元170a、170c以取出電能,因此第二實施例之矽薄膜太陽能電池500可較第一實施例之矽薄膜太陽能電池400減少一雷射製程,以達到節省製程成本之目的。It should be noted that the second embodiment is different from the first embodiment in that the collector electrode 410 is electrically connected to the electrode units 170a and 170c to extract electric energy, so that the tantalum thin film solar cell 500 of the second embodiment can be compared. The tantalum thin film solar cell 400 of the first embodiment reduces a laser process to save process cost.

需注意的是,本發明實施例中之雷射製程需搭配清洗製程,於雷射製程執行中或執行後,進行去除雷射切割所產生之粉塵之動作,以避免粉塵造成基板之污染,以及於雷射切割路徑中再結晶形成短路的情形。It should be noted that the laser process in the embodiment of the present invention needs to be matched with the cleaning process to perform the action of removing the dust generated by the laser cutting during or after the execution of the laser process to avoid contamination of the substrate caused by dust, and Recrystallization in the laser cutting path to form a short circuit.

綜上所述,根據本發明之矽薄膜太陽能電池模組之製造方法,其具有較佳無效區寬度之規劃以提升模組電流與整體功率產能,因此具有高度的商業化價值,可廣泛應用於矽薄膜太陽能電池產業中。In summary, the manufacturing method of the tantalum thin film solar cell module according to the present invention has a plan of better ineffective area width to improve module current and overall power production capacity, and thus has high commercial value and can be widely applied.矽 Thin film solar cell industry.

雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, various modifications and variations can be made without departing from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

110...基板110. . . Substrate

120...透明導電膜120. . . Transparent conductive film

120a...導電膜單元120a. . . Conductive film unit

120b...導電膜單元120b. . . Conductive film unit

120c...導電膜單元120c. . . Conductive film unit

120d...導電膜單元120d. . . Conductive film unit

130...第一雷射切口130. . . First laser incision

140...光電轉換層140. . . Photoelectric conversion layer

140a...轉換層單元140a. . . Conversion layer unit

140b...轉換層單元140b. . . Conversion layer unit

140c...轉換層單元140c. . . Conversion layer unit

140d...轉換層單元140d. . . Conversion layer unit

150...第一距離150. . . First distance

160...第二雷射切口160. . . Second laser incision

170...電極層170. . . Electrode layer

170a...電極單元170a. . . Electrode unit

170b...電極單元170b. . . Electrode unit

170c...電極單元170c. . . Electrode unit

170d...電極單元170d. . . Electrode unit

180...第二距離180. . . Second distance

190...第三雷射切口190. . . Third laser incision

210...間隔210. . . interval

220...間隔220. . . interval

230...功率產生區域230. . . Power generation area

400...矽薄膜太陽能電池400. . .矽Thick film solar cell

410...集電電極410. . . Collecting electrode

500...矽薄膜太陽能電池500. . .矽Thick film solar cell

第1圖為本發明之矽薄膜太陽能電池模組之製造方法流程圖。1 is a flow chart showing a method of manufacturing a thin film solar cell module of the present invention.

第2A圖為本發明之矽薄膜太陽能電池模組之製程示意圖(一)。2A is a schematic view showing the process of the thin film solar cell module of the present invention (1).

第2B圖為本發明之矽薄膜太陽能電池模組之製程示意圖(二)。2B is a schematic view showing the process of the thin film solar cell module of the present invention (2).

第2C圖為本發明之矽薄膜太陽能電池模組之製程示意圖(三)。2C is a schematic view showing the process of the thin film solar cell module of the present invention (3).

第2D圖為本發明之矽薄膜太陽能電池模組之製程示意圖(四)。2D is a schematic view of the process of the tantalum thin film solar cell module of the present invention (4).

第2E圖為本發明之矽薄膜太陽能電池模組之製程示意圖(五)。FIG. 2E is a schematic view showing the process of the thin film solar cell module of the present invention (5).

第2F圖為本發明之矽薄膜太陽能電池模組之製程示意圖(六)。FIG. 2F is a schematic view showing the process of the thin film solar cell module of the present invention (6).

第2G圖為本發明之矽薄膜太陽能電池模組之製程示意圖(七)。Fig. 2G is a schematic view showing the process of the thin film solar cell module of the present invention (7).

第3圖為透明導電膜材料氧化鋅波長與吸收係數關係圖。Figure 3 is a graph showing the relationship between the wavelength of zinc oxide and the absorption coefficient of a transparent conductive film material.

第4圖為非晶矽、微晶矽及單晶矽吸收係數與波長關係圖。Fig. 4 is a graph showing the relationship between absorption coefficient and wavelength of amorphous germanium, microcrystalline germanium and single crystal germanium.

第5圖為本發明第一實施例之矽薄膜太陽能電池之剖面圖。Fig. 5 is a cross-sectional view showing a tantalum thin film solar cell according to a first embodiment of the present invention.

第6圖為本發明第二實施例之矽薄膜太陽能電池之剖面圖。Figure 6 is a cross-sectional view showing a tantalum thin film solar cell according to a second embodiment of the present invention.

110...基板110. . . Substrate

120a...導電膜單元120a. . . Conductive film unit

120b...導電膜單元120b. . . Conductive film unit

120c...導電膜單元120c. . . Conductive film unit

120d...導電膜單元120d. . . Conductive film unit

130...第一雷射切口130. . . First laser incision

140a...轉換層單元140a. . . Conversion layer unit

140b...轉換層單元140b. . . Conversion layer unit

140c...轉換層單元140c. . . Conversion layer unit

140d...轉換層單元140d. . . Conversion layer unit

150...第一距離150. . . First distance

160...第二雷射切口160. . . Second laser incision

170a...電極單元170a. . . Electrode unit

170b...電極單元170b. . . Electrode unit

170c...電極單元170c. . . Electrode unit

180...第二距離180. . . Second distance

190...第三雷射切口190. . . Third laser incision

210...間隔210. . . interval

220...間隔220. . . interval

230...功率產生區域230. . . Power generation area

400...矽薄膜太陽能電池400. . .矽Thick film solar cell

410...電極單元410. . . Electrode unit

Claims (9)

一種矽薄膜太陽能電池模組之製造方法,包含下列步驟:沈積一透明導電膜於一基板上;執行一第一雷射製程,以一第一雷射切口將該透明導電膜形成複數個導電膜單元;沈積一光電轉換層於該些導電膜單元上;執行一第二雷射製程,於距離該第一雷射切口之一第一距離處以一第二雷射切口將該光電轉換層形成複數個轉換層單元;沈積一電極層於該些轉換層單元上;執行一第三雷射製程,於距離該第二雷射切口之一第二距離處,以一第三雷射切口將該電極層形成複數個電極單元,且該些電極單元透過該第二雷射切口分別與該些導電膜單元電性連接;以及執行一第四雷射製程,以移除該基板外側之部分該些轉換層單元及該些電極單元而形成一間隔,且該間隔區分出一功率產生區域,該功率產生區域中具有複數個串聯之太陽能電池,且其中該第一雷射切口寬度、該第二雷射切口寬度、該第三雷射切口寬度、該第一距離及該第二距離之和小於該功率產生區域之寬度的5%。A method for manufacturing a tantalum thin film solar cell module, comprising the steps of: depositing a transparent conductive film on a substrate; performing a first laser process to form the transparent conductive film into a plurality of conductive films by using a first laser cut a unit; depositing a photoelectric conversion layer on the conductive film units; performing a second laser process to form the plurality of photoelectric conversion layers by a second laser cut at a first distance from the first laser cut a conversion layer unit; depositing an electrode layer on the conversion layer units; performing a third laser process at a second distance from one of the second laser cuts, the electrode being cut by a third laser cut Forming a plurality of electrode units, and the electrode units are electrically connected to the conductive film units respectively through the second laser cut; and performing a fourth laser process to remove portions of the outer side of the substrate Forming a space between the layer unit and the electrode units, and the interval distinguishes a power generating region, wherein the power generating region has a plurality of solar cells connected in series, and wherein the first laser The width of the mouth, the second laser slit width, the slit width of the third laser, the first distance and the second distance is less than 5% of the width of the power generation area. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該光電轉換層係由矽基材料所組成。The method of manufacturing a thin film solar cell module according to claim 1, wherein the photoelectric conversion layer is composed of a germanium-based material. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該第一雷射製程之雷射波長係選自YAG雷射之基頻及第二倍頻之一。The method for manufacturing a thin film solar cell module according to claim 1, wherein the laser wavelength of the first laser process is selected from one of a fundamental frequency of the YAG laser and a second frequency multiplication. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該第二雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一。The method of manufacturing a thin film solar cell module according to claim 1, wherein the laser wavelength of the second laser process is selected from one of a second frequency and a third frequency of the YAG laser. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該第三雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一。The method for manufacturing a thin film solar cell module according to claim 1, wherein the laser wavelength of the third laser process is selected from one of a second frequency and a third frequency of the YAG laser. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該第四雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一。The method of manufacturing a thin film solar cell module according to claim 1, wherein the laser wavelength of the fourth laser process is selected from one of a second frequency and a third frequency of the YAG laser. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,更包含下列步驟:形成一集電電極於該些導電膜單元上,該集電電極電性連接該些導電膜單元。The method for manufacturing a thin film solar cell module according to claim 1, further comprising the steps of: forming a collector electrode on the conductive film units, the collector electrode electrically connecting the conductive film units. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,更包含下列步驟:執行一第五雷射製程,用以移除該基板最外側之部分該導電膜單元、該轉換層單元以及該電極單元,以形成圍繞該功率產生區域之一邊緣區域,用於使該基板最外側部分絕緣。The method for manufacturing a thin film solar cell module according to claim 1, further comprising the steps of: performing a fifth laser process for removing the outermost portion of the substrate, the conductive film unit, the conversion layer unit, and The electrode unit is formed to surround an edge region of the power generating region for insulating the outermost portion of the substrate. 如請求項1所述之矽薄膜太陽能電池模組之製造方法,其中該第五雷射製程之雷射波長係選自YAG雷射之第二倍頻及第三倍頻之一。The method for manufacturing a thin film solar cell module according to claim 1, wherein the laser wavelength of the fifth laser process is selected from one of a second frequency and a third frequency of the YAG laser.
TW099143359A 2010-12-10 2010-12-10 Manufacturing method for silicon based thin film solar cell module TWI427809B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099143359A TWI427809B (en) 2010-12-10 2010-12-10 Manufacturing method for silicon based thin film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099143359A TWI427809B (en) 2010-12-10 2010-12-10 Manufacturing method for silicon based thin film solar cell module

Publications (2)

Publication Number Publication Date
TW201225323A TW201225323A (en) 2012-06-16
TWI427809B true TWI427809B (en) 2014-02-21

Family

ID=46726135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099143359A TWI427809B (en) 2010-12-10 2010-12-10 Manufacturing method for silicon based thin film solar cell module

Country Status (1)

Country Link
TW (1) TWI427809B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201003955A (en) * 2008-07-04 2010-01-16 Sinonar Solar Corp Method for patterning a conductive layer, thin film photovoltaic cell module and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201003955A (en) * 2008-07-04 2010-01-16 Sinonar Solar Corp Method for patterning a conductive layer, thin film photovoltaic cell module and method for manufacturing the same

Also Published As

Publication number Publication date
TW201225323A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
JP5774204B2 (en) Photovoltaic element, manufacturing method thereof, and solar cell module
JP5535709B2 (en) SOLAR CELL, SOLAR CELL MODULE USING THE SOLAR CELL, AND SOLAR CELL MANUFACTURING METHOD
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
EP1198014A2 (en) Photovoltaic module and method of manufacturing the same
JP2003069061A (en) Laminated photovoltaic transducer device
JP2009152222A (en) Manufacturing method of solar cell element
JPH09129904A (en) Photovoltaic element and its manufacture
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
CN114823967A (en) Preparation method of solar cell and solar cell
JP4365636B2 (en) Integrated photoelectric conversion device
WO2015122096A1 (en) Photoelectric conversion apparatus
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
JP2000049369A (en) Thin-film solar battery module
JP4171166B2 (en) Photovoltaic device and manufacturing method thereof
JP2009094198A (en) Manufacturing method of hybrid thin film solar battery
KR101047170B1 (en) Solar cell and manufacturing method
JP2000133828A (en) Thin-film solar cell and manufacture thereof
TWI427809B (en) Manufacturing method for silicon based thin film solar cell module
KR101103706B1 (en) Method for manufacturing of Back junction solar cells
JP4198079B2 (en) Photovoltaic device manufacturing method
US12062728B1 (en) Solar cells
JP5373045B2 (en) Photoelectric conversion device
JP4173692B2 (en) Solar cell element and manufacturing method thereof
KR101072531B1 (en) Solar cell and method for fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees