JP4196016B2 - 交差する円柱形の光学素子を用いた表面走査装置および方法 - Google Patents

交差する円柱形の光学素子を用いた表面走査装置および方法 Download PDF

Info

Publication number
JP4196016B2
JP4196016B2 JP51541496A JP51541496A JP4196016B2 JP 4196016 B2 JP4196016 B2 JP 4196016B2 JP 51541496 A JP51541496 A JP 51541496A JP 51541496 A JP51541496 A JP 51541496A JP 4196016 B2 JP4196016 B2 JP 4196016B2
Authority
JP
Japan
Prior art keywords
light beam
scanning
substrate
optical
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51541496A
Other languages
English (en)
Other versions
JPH09512343A (ja
Inventor
グロス,ケネス・ピィ
Original Assignee
ケイ・エル・エイ−テンコール・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイ・エル・エイ−テンコール・コーポレイション filed Critical ケイ・エル・エイ−テンコール・コーポレイション
Publication of JPH09512343A publication Critical patent/JPH09512343A/ja
Application granted granted Critical
Publication of JP4196016B2 publication Critical patent/JP4196016B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

技術分野
本発明は包括的に表面を検査するための装置および方法に関し、より特定的にはそのような装置および方法の光学に関する。
背景技術
集積回路および超小型機械装置の製造における製造歩留りは、回路または装置を製造するもとになる半導体ウェハの主表面の片側または両側を初めに検査することにより向上させることができる。半導体ウェハなどの表面検査を、製造工程の種々の後段階で行なってもよい。典型的な表面検査装置は、対象となる基板の表面を横切る光ビームの走査を生じさせる光学系を含む。表面に関する情報は、表面からの光の反射または散乱に関連するデータを処理することにより決定する。
ニューカーマンズ(Neukermans)らへの米国特許第5,076,692号は、半導体ウェハを走査するためのレーザソースと光学素子とを備える光学系について述べている。偏向鏡はスピンドルを中心として旋回し、走査する方式でレーザソースからのビームをレンズに当てる。偏向鏡からレンズへの走査は、レンズに対するビームの角度が連続的に変化するような走査である。他方、レンズはビームによる「テレセントリックな」走査を生じさせる、すなわちビームは走査が行なわれている際に任意の基準面に平行なままである。ニューカーマンズらは、テレスキャンするビームを、対象となる表面の法線に関しおよそ70°ないし85°の入射角を有するものとして説明している。
テレセントリシティとは、ビームが対象となる表面の一方の端部から対向する端部へと走査する際に、レーザビームの入射角が変動するのを避けるために設計されたものである。テレセントリック走査はまた、ガルブレイス(Galbraith)への米国特許第5,168,386号に述べられている。ガルブレイスの特許によれば、ニューカーマンズらにより教示されているレンズではなく、軸外れの凹球面鏡を用いてテレセントリック走査に成功している。球面鏡をその他の補正光学と組合せて、対象となる表面と交差する際に所望の直径を有する一様に焦点調節が行なわれた円形のビームを得ることができる。ガルブレイスは、20μmという典型的な焦点調節されたスポットサイズを、標準的な半導体ウェハの長さすなわち200mmにわたる平らな領域の走査において維持することができると教示している。
前述のように、ニューカーマンズらの教示によれば、円形ビームの入射角は対象の表面の法線に関し70°ないし85°の範囲内である。当該技術では斜角の入射は一般的である。ガルブレイスの教示によれば、走査は実質的に「平らな領域」であるべき、すなわち対象の表面と同一の面において結像すべきものである。
先行技術による表面検査の方法における難点は、この方法では、ビームを歪曲させがちな光学収差の効果を受けやすいことである。ガルブレイスは、非点収差およびコマ収差を最小限にしたり排除したりすることにおける困難性について教示している。特に入射角が対象となる表面に関して浅い場合、非点収差は検査工程を最適化しようとする際に問題となり得る。ガルブレイスの球面鏡は軸外れであるため、入射角にかかわらず歪曲が生じるという問題がある。補正メカニズムがなければ、軸外れの球面鏡からのビームは走査の対向する両極端部では、いくぶん歪曲するだろう。
潜在的に、オカダ(Okada)らへの米国特許第5,125,741号に教示されているように、放物面円柱鏡を用いて表面を横切るテレセントリックな走査ビームを形成すると、信頼性はさらに低下する。オカダらの放物面円柱鏡は、入来するビームの経路が鏡の曲率に従うように整列する。曲率により所望のテレセントリック走査がもたらされるが、ビームを走査方向において焦点調節することになる。結果として、対象となる表面に当るビームは非常に非点収差が大きく、走査方向に垂直な方向における寸法が長くなる。楕円形ビームは浅い入射角で表面に当るため、ビームはさらに引伸ばされる。オカダらの特許は、自動車および器具などの産業分野において使用するために設計された。オカダらの装置は設計の対象となる分野においては十分な働きをするが、ミクロンまたはサブミクロンで測定される欠陥および/または粒子を検出するなどのアプリケーションにおいて使用するには不十分である。
本発明の目的は、半導体基板の製造における品質管理測定のための器具などの検査計器の検査特性を向上させる態様で、対象となる表面をテレセントリック走査するための装置および方法を提供することである。
発明の概要
上記の目的は、第1および第2の光学素子によってビームの寸法が調節されている装置および方法によって達成され、その一方の光学素子はビームの走査の方向のみに実質的に焦点調節を行ない、他方の光学素子は直交方向のみの焦点をもたらす。直交する光パワーは分割されるため、光学素子は入来するビームに対して軸外れかもしれない、すなわち同軸でないかもしれないが、ビームの走査中の歪曲は生じない。軸外れの配置により、不明瞭さが減じられる。
1つの実施形態は、基板の表面を検査する方法であり、光ビームを発生することと、光ビームを偏向して角度的に変化するビームの走査ビームパターンを形成することと、角度的に変化する光ビームを偏向して、光ビームが任意の基準面に対して固定された角度を保つように第2の走査ビームパターンを形成し、実質的にテレセントリックな走査ビームを形成することとを含み、この偏向するステップは、表面に沿いビームを偏向することを含み、走査ビームパターンはビームの走査経路に沿う面と交差し、偏向するステップは表面を横切る前記ビームの走査経路と平行な方向のみに実質的にビームの焦点調節を行なうことを含み、この方法はさらに、レフレクタの表面を横切るビームの走査経路に垂直な方向のみに実質的にビームの焦点調節を行なうことを含むさらなる焦点調節ステップと、ビームを基板の表面に投射することとを含む。
好ましい実施形態では、光学素子を組合せて、小さい方の寸法が走査方向に垂直である楕円形ビームが形成される。楕円形ビームは対象である表面に斜角で当るようにされるため、ビームの断面(footprint)は入射角の三角関数として伸張する。すなわち、楕円形ビームの小さい方の寸法は、対象の表面に当った際に伸ばされることになる。しかしながら、アプリケーションによっては小さい方の寸法は走査方向に平行である。
この装置および方法は、半導体ウェハの表面を検査するのに最適である。ウェハは、好ましくは光学素子に関し移動させることができるサポートに位置決めされる。楕円形ビームは斜角でウェハに当る。光学素子の一方は、角度的に走査するビームを並列の方式で走査するすなわちテレセントリックに走査する光ビームに変換する、好ましくは円柱鏡である軸外れのレフレクタである。2つの光学素子のうち他方のものは、直交する焦点調節を行なう円柱レンズである。レフレクタおよびレンズは、好ましい実施形態では交差する円柱である。すなわち、円柱レンズは、レフレクタの曲率に対し実質的に90°である曲率を有する。
1つの実施形態では、円形ビームの断面を生じさせることができ、並列する走査ビームは、ウェハの表面の法線に関しおよそ70°の入射角を有する。ビームは当る前にはスポットサイズは40μm×20μmであり、大きい方の寸法はウェハを横切るビームのスポット走査の方向に平行である。表面の法線に関し70°で当るため、当る際のビームの断面は、ビームのスポット走査の方向に直交する方向において2.92のファクタで増大する。したがって、所望の楕円率は、入射角を含む数多くのファクタ次第である。なお、およそ40μm×14μmというビームスポットは、円形のビームの断面をもたらすだろう。
レフレクタおよび円柱レンズは共通の焦点を有するが、これは重要なことではない。好ましくはレフレクタは、角度的に偏向する走査ビームを規定するスキャナから1つの焦点距離分離れている。
本発明の利点は、交差した円柱の配置により、表面検査装置の回折が制限された性能に近いテレセントリックな平らな領域の走査がもたらされることである。本発明は、ビームの焦点調節を別々の直交する光パワーに分割することにより、ガルブレイスへの米国特許第5,168,386号に特定された歪曲に対する補償をもたらす。
【図面の簡単な説明】
図1は、本発明に従う表面スキャナの好ましい実施形態の斜視図である。
図2は、図1の表面スキャナを用いて形成される一連のビームの断面である。
図3は、本発明に従うビームスキャナの第2の実施形態の斜視図である。
発明の実行のためのベストモード
図1を参照すると、半導体ウェハ14のためのサポート12を含む表面スキャナ10が示されている。表面スキャナは、ウェハの上表面の粒子を検出するために用いてもよく、または膜の厚み、表面のヘーズ、もしくはウェハの反射率を測定するために用いてもよい。このスキャナは、半導体ウェハを特徴づける際に使用するのに特に適しているが、このスキャナを同様の基板に対して用いてもよい。
サポート12は、以下に述べる光学素子に関してウェハ14を選択的に移動させるためのロボット式グリッパ(図示せず)を含んでもよい。典型的には、矢印16で示すように移動は線形的である。サポートの位置はコンピュータによりモニタされ、モータによって正確に制御される。本発明では、具体的な搬送形式は重要ではない。
単波長レーザ18は、ビーム折返し鏡20により反射される光ビームを発生する。好ましくは、レーザは、アルゴンまたはヘリウム・カドミウムガスレーザなどのハイパワーな波長の短い放射源である。適切な出力パワーは30ミリワット以上である。ビーム折返し鏡20に到達する前に、レーザ18からのビームは、光学偏光子モジュール22および拡大・フィルタリング光学装置24を通過する。偏光子モジュールは、光ビームの所望の偏光状態を確立するいくつかの光学素子を含む。モジュールの素子は、素子を光ビームへまたは光ビーム内で回転または移動させて所望の偏光状態を生じさせるモータおよび/またはアクチュエータを用いて、調整可能でもよい。特に興味ある3つの入力偏光は、入射の面に平行なP−偏光アライメント、入射の面に垂直にアライメントされたS−偏光、および光の波の周波数でP−偏光とS−偏光との間で絶え間なく変動することを特徴とする円形の偏光である。
適切に偏光されたビームは次に、光学装置24で拡張され、空間的にフィルタリングされる。その結果、円形に成形されたビームはビーム折返し鏡20に当り、スキャナ鏡に導かれる。この鏡は矢印28で示すように軸30の周りで振動する。図示しないが、検流計モータを用いて、当該技術では既知の態様でスキャナ鏡を振動させてもよい。
従来スキャナ鏡26は、交差した撓みにより支持され誘導トルクドライバにより駆動される。スキャナ鏡は、固定された経路32からの円形にされた光ビームを、浅い円錐形を描く角度的に偏向するビーム34に変換する。走査ビーム34は、軸外れの円柱レフレクタ38の湾曲した表面36に沿う湾曲した経路をたどる。スキャナ鏡26が軸30の周りで振動することにより、角度的に偏向するビーム34は、円柱レフレクタの湾曲した下側の面から反射した後、概しては平行、すなわちほぼテレセントリックに走査する。ガルブレイスへの米国特許第5,168,386号の球面鏡と同じ態様で、図1の円柱レフレクタ38は軸外れであり、角度的に偏向するビーム34をテレセントリックビーム40に変換するように形成される。しかしながら、円柱レフレクタ38とガルブレイスの球面鏡との大きな相違は、図1の円柱レフレクタは、テレセントリックビーム40のビームのスポット走査の方向に平行である面においてのみ焦点調節を行なうことである。このことは図2に示されている。円柱レフレクタには円形のビーム34が当るが、矢印42が示す走査方向に平行なテレセントリックビーム40の寸法を減じるように作用する焦点調節力を円柱レフレクタは有している。
円柱レフレクタ38の湾曲した表面36は、テレセントリック走査を可能にするために選択された曲率半径を有する。スキャナ鏡26と湾曲した表面36との間の距離は、テレセントリック光学部材の焦点距離に等しくなければならない。実際、焦点距離は湾曲した表面の曲率半径のおよそ2分の1であり、典型的には約500mmである。
円柱レフレクタ38は、湾曲した表面36に到達する角度的に偏向するビーム34に軸外れとなるように位置決めされる。このように軸外れに構成することにより、テレセントリックビーム40は、不明瞭さを伴うことなく進行することができる。
第2の円柱素子44は、円柱レフレクタ38による焦点調節に直交する方向における焦点調節をもたらす。第2の円柱素子は、単一方向における焦点調節力を規定する湾曲した上面46を有するレンズ44である。焦点調節力は、テレセントリックビーム走査に垂直である。レンズ44は平凸なものとして示されているが、所望の焦点調節特性を備える光学素子におけるその他の実施形態を利用してもよい。図2に示すように、円柱レンズ44は、ビーム走査42に垂直に測定される寸法が楕円形ビームの小さい方の寸法となる楕円形ビーム48を基板で与えるように作用する。
テレセントリック走査楕円形ビーム48は、平面鏡50により半導体ウェハ14の表面に向かって導かれる。任意的に、ビームはまた、ビームの位置を確立するために正確に位置決めされた数多くのマーカーペンを支持するバー52を通過する。この目的のためにマーカーペンを使用することは当該技術では既知である。
円柱レンズ44と円柱レフレクタ38との間の距離は、半導体ウェハ14の表面に当る前の楕円形ビーム48の小さい方の寸法の大きさを決定する。選択的に小さい方の寸法を変化させる能力が利点をもたらすアプリケーションもある。たとえば、スポットが大きくなると走査ごとの領域カバレージが増大するため、スポットサイズを増大させることにより品質管理工程に対するスループットを増大させることができる。別の例では、より厳しい検査が適切であるかどうかを判断するために、基板の予備段階の検査を行なうことができる。しかしながら、一般的にはスポットサイズを増大させると精度が犠牲になるだろう。「焦点調節された」位置からの所与の焦点距離にある円柱レンズが、円柱レフレクタに向かい、または円柱レフレクタから離れるように移動すると、ビームのスポット走査の方向に垂直なビーム寸法の大きさが増大するだろう。好ましい実施形態では、レンズ44の焦点距離は、ウェハ表面で、焦点調節されたスポットの寸法(ビームの寸法走査方向に垂直)がおよそ20μmとなるように選択される。レンズの位置は、円柱鏡38の焦点距離および鏡とウェハ表面14との間で選択される光学経路距離次第である。実際、円柱レンズと半導体ウェハ表面との間の距離は、レンズの焦点距離よりもいくぶん長い。
好ましい実施形態では、入射角は半導体ウェハ14の表面の法線に関し約70°である。当該技術ではよく知られているように、ウェハ表面から拡散または正反射した光をモニタして、ウェハ表面に関する特性を判断するのに使用されるデータを与えることができる。たとえば、散乱したエネルギに関するデータを用いて微粒子の物質が存在するかを検出することができる。こういった粒子の検出については、本発明の譲受人に譲渡されるニューカーマンズらへの上記の特許においてより詳しく述べられている。
図2では、楕円形ビーム48がウェハに当る前の短い方の寸法は、好ましくは20μmである。走査方向42に平行である大きい方の寸法は40μmであろう。しかしながら、ビームは表面に斜めに当るため、ウェハ表面におけるビームの断面は、ビームのスポット走査方向に垂直な方向に伸張される。ウェハ表面に対する角度が20°の場合、断面は法線に対する角度の余弦関数として、すなわち1/cos(70°)=2.92として伸張される。
本発明では、直交する光パワーを分割することにより非点収差および像面湾曲などのビームの歪曲を減じさせる。典型的にこのようなビームの歪曲は、ガルブレイスの特許で述べられているような、軸外れであり、かつ20μmないし40μm近辺の直径を備える円形にされたスポットを得るのに必要な適度に高い開口数と関連付けられる、単一の固定された球面から光パワーが導かれる走査システムにおいて見うけられる。
楕円形ビーム48が当る前の好ましい寸法はしたがって、入射角などのファクタ次第である。好ましくは、スポットサイズの楕円率は1.5と3.0との間である。
次に図3を参照すると、本発明の第2の実施形態では円柱レンズ54を円柱レフレクタ38の前に設置している。レフレクタの前に円柱レンズ54を設けることにより、光学素子は、小さい方の寸法が半導体ウェハ14に沿う走査方向に平行である楕円形ビームを容易に形成することができる。すなわち、楕円形ビームの方向は、図1の実施形態により生成されるビームに関して90°回転したものとなる。
図3の円柱レンズ54は、上記の平凸レンズよりも複雑である。円柱レンズ54は、スキャナ鏡26が回転させられる際に走査ビームに対する直角な入射角を維持するために湾曲している。円柱レンズは、走査方向においては正味の焦点調節力が約0であり、直交方向においては焦点調節力が十分なものとなるように、適切な円柱表面を備えた輪環状(ドーナツ形状)のものでもよい。すなわち、円柱レンズは、スキャナ鏡26から円柱レフレクタ38への進行方向にも、走査方向における焦点にも大きな影響を与えない。
図3の表面スキャナ60の構成要素のうち、図1のスキャナ10と同一のものには同じ参照番号を付す。レーザ18は、光ビームを偏光子モジュール22および拡大・フィルタリング光学装置24を通して導き、ビーム折返し鏡20に衝突させる。ビーム折返し鏡からの反射により、スキャナ鏡への固定された光経路32が規定される。スキャナ鏡が軸30の周りを振動することにより、角度をもって伝搬するビーム経路34が規定される。経路34に沿うビームは、円柱レンズ54により1つの方向において焦点調節される。直交方向における焦点調節は、角度をもって伝搬するビームをテレセントリックに伝搬するビーム62に変換する働きをする円柱レフレクタ38によりもたらされる。平面鏡50を用いて、ビーム62を半導体ウェハ14の表面に対し斜角で導く。バー52は、ビーム62の位置をモニタするために使用され得るアライメントマークを含む。
図3の実施形態はアプリケーションによっては望ましいこともあるが、図1の表面スキャナ10が好ましい。図1のテレセントリックビーム48の楕円率は、表面におけるビームの断面の大きさをウェハの移動に平行な方向において制限するように設計され、先行技術において現れる問題の多いビームの歪曲を克服するものである。好ましくは、半導体ウェハ14に当るところにごく近接するビーム48のスポットサイズの楕円率は、1.5ないし3.0の範囲である。望ましい楕円率は、半導体ウェハへの入射角などのファクタ次第であろう。

Claims (16)

  1. 基板を検査するための装置であって、
    前記基板を支持し位置決めするためのサポートと、
    テレセントリックな光ビームを前記基板の表面に前記表面に関し実質的に固定された斜角の入射角で導き、前記光ビームのスポット走査が前記表面を横切る概して線形的な光ビーム走査となるよう構成した光学手段とを含み、前記光学手段は実質的に前記基板の表面において前記光ビームの走査方向に垂直な第1の方向においてのみ焦点調節力を有する円柱光学部材を有し、さらに、
    投射方向の角度を連続的に変化させて走査する光ビームを前記テレセントリックな光ビームに変換するためのレフレクタ手段を含み、前記レフレクタ手段は前記光学手段に関して位置決めされて前記テレセントリックな光ビームを前記光学手段に導き、前記レフレクタ手段は前記基板の表面において前記光ビームの走査方向に平行な第2の方向にのみ焦点調節力を有し、さらに、
    前記投射方向の角度を連続的に変化させて走査する光ビームを前記レフレクタ手段に与えるためのソース手段を含み、
    前記レフレクタ手段は、前記投射方向の角度を連続的に変化させて走査する光ビームを、前記光学手段によって導かれる前記テレセントリックな光ビームに変換し、前記レフレクタ手段は前記第2の方向の前記光ビームの大きさを減じ、前記光学手段は前記第1の方向の前記光ビームの大きさを減じ、
    前記円柱光学部材および前記レフレクタ手段は、前記第1の方向における焦点調節力が前記第2の方向における焦点調節力よりも大きい、それぞれの湾曲面の曲率中心軸が互いに交差する配置関係を形成することにより、前記基板の表面において前記光ビームの短軸方向が基板の表面における光ビームの走査方向に垂直な方向となる楕円形光ビームが与えられる、基板を検査するための装置。
  2. 前記円柱光学部材および前記レフレクタ手段の相対的位置を調節するための手段をさらに含み、相対的位置を調節することにより前記楕円形光ビームの楕円率が変化する、請求項1に記載の装置。
  3. 前記レフレクタ手段は、前記光学手段の前記円柱光学部材が有する曲面の曲がり方向に垂直な方向に曲る曲面を備える円柱鏡である、請求項1に記載の装置。
  4. 前記ソース手段は光軸を規定する光ソースを含み、前記ソース手段はさらに前記光軸を中心として振動する偏向装置を含む、請求項1に記載の装置。
  5. 前記装置はさらに前記サポートを前記光ビームの走査方向に垂直な方向に移動させるための手段を含む、請求項1に記載の装置。
  6. 前記レフレクタ手段は凹面円柱鏡であり、前記円柱光学部材は前記凹面円柱鏡の曲率に垂直な曲率を有する凸面円柱レンズである、請求項1に記載の装置。
  7. 基板の表面を検査するための装置であって、
    光軸を有する光ビームのソースを含み、前記光ビームは前記光軸に垂直な断面が実質的に円形であり、さらに、
    前記光ビームを、その投射方向の角度を連続的に変化させて第1の光ビーム伝搬経路に沿い進行するようにするための前記光軸に位置決めされる走査手段と、
    前記走査手段からの前記光ビームを、走査する楕円形光ビームに変換するための光学手段とを含み、前記走査する楕円形光ビームは、前記光ビームの基板走査時に任意の基準面に対して固定された角度を保ち、前記光学手段は円柱レンズおよび円柱鏡を備え、前記円柱レンズは前記円柱鏡の曲面の曲がり方向に対し90°の角度の曲り方向の曲面を有し、前記円柱レンズは前記基板の表面において前記楕円形光ビームの走査方向に垂直な方向の前記光ビームの寸法を減じる方向に焦点調節するように実質的に制限された焦点調節力を有し、前記円柱鏡は前記基板の表面において前記走査方向に平行な方向の前記光ビームの寸法を減じる方向に焦点調節するように実質的に制限された焦点調節力を有し、
    前記光学手段は、前記走査方向に垂直な前記方向における焦点調節力が前記走査方向に平行な前記方向おける焦点調節力よりも大きいため、前記基板の表面で楕円形光ビームを与え、前記楕円形光ビームの短軸方向が前記基板の表面において前記走査方向に垂直な方向となるよう構成され、さらに、
    前記基板を前記楕円形光ビームに対して斜角で支持するためのサポート手段を含む、基板の表面を検査するための装置。
  8. 前記円柱レンズは前記円柱鏡と前記サポート手段との間に配置される、請求項7に記載の装置。
  9. 前記走査手段は振動する偏向装置である、請求項7に記載の装置。
  10. 基板の表面を検査する方法であって、
    (a)光ビームを発生するステップと、
    (b)前記光ビームを偏向して第1の走査光ビームを形成する第1偏向ステップと、
    (c)前記第1の走査光ビームを偏向して第2の走査光ビームを形成する第2偏向ステップとを含み、前記第2の走査光ビームは、任意の基準面に対して固定された角度を保つため、実質的にテレセントリックな走査光ビームを形成し、前記第2偏向ステップ(c)により、前記光ビームで前記基板の表面上の光ビーム走査経路に沿う走査を行ない、前記第2偏向ステップ(c)は、実質的に前記表面を横切る前記光ビーム走査経路に平行な方向にのみ光ビームを焦点調節することを含み、さらに、
    実質的に前記表面を横切る前記光ビーム走査経路に垂直な方向にのみ光ビームを焦点調節することを含むさらなる焦点調節ステップと、
    前記第1および第2偏向ステップにより2度偏向された光ビームを基板の表面に投射するステップとを含み、
    前記焦点調節およびさらなる焦点調節ステップでは、前記走査経路に垂直な前記方向における焦点調節力が前記光ビーム走査経路に平行な前記方向おける焦点調節力よりも大きいため、前記基板の表面に楕円形光ビームが与えられ、前記楕円形光ビームの短軸方向が前記基板の表面において前記光ビーム走査経路に垂直な方向となるよう構成される、基板の表面を検査する方法。
  11. 前記さらなる焦点調節ステップは、実質的に前記表面を横切る前記光ビーム走査経路に平行な方向にのみ光ビームの焦点調節を行なうステップの後に行なわれる、請求項10に記載の方法。
  12. テレセントリックな走査光ビームを生成する前記第2偏向ステップ(c)は、前記第2の走査光ビームパターンの前記走査方向に平行にのみ焦点調節力を有する円柱鏡に前記第1の走査光ビームを投射することを含む、請求項10に記載の方法。
  13. 基板の表面を検査する方法であって、
    (a)光ビームを発生するステップと、
    (b)前記光ビームを偏向して第1の走査光ビームを形成する第1偏向ステップと、
    (c)前記第1の走査光ビームを偏向して、基板の表面上の光ビーム走査経路に沿う第2の走査光ビームを形成する第2偏向ステップとを含み、前記第2偏向ステップは、実質的に前記表面を横切る前記光ビーム走査経路に平行な方向にのみ光ビームの焦点調節をすることを含み、さらに、
    実質的に前記表面を横切る前記光ビーム走査経路に垂直な方向にのみ光ビームの焦点調節をすることを含む更なる焦点調節ステップと、
    第1および第2偏向ステップにより2度偏向された光ビームを基板の表面に投射するステップとを含み、
    前記焦点調節およびさらなる焦点調節ステップでは、前記光ビーム走査経路に垂直な前記方向における焦点調節力が前記光ビーム走査経路に平行な前記方向おける焦点調節力よりも大きいため、前記基板の表面に楕円形光ビームが与えられ、前記楕円形光ビームの短軸方向が前記基板の表面において前記光ビーム走査経路に垂直な方向となるよう構成されであり、さらに、
    基板からの光をモニタしてデータを得るモニタステップと、
    前記モニタステップにより得た前記データから基板の表面に関する特徴を求めるデータ処理ステップとを含む、基板の表面を検査する方法。
  14. 前記モニタステップは、基板の表面から乱反射または鏡面反射する光をモニタしてデータを得る、請求項13に記載の方法。
  15. 前記データ処理ステップは、基板の表面に関連する粒子状物質の存在、膜厚および表面反射率を求める、請求項13に記載の方法。
  16. 前記第1の走査光ビームを偏向して第2の走査光ビームを形成する第2偏向ステップでは、前記第2の走査光ビームは任意の基準面に対して固定された角度を保つため、実質的にテレセントリックな走査光ビームを形成する、請求項13に記載の方法。
JP51541496A 1994-11-04 1995-11-03 交差する円柱形の光学素子を用いた表面走査装置および方法 Expired - Fee Related JP4196016B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/334,522 1994-11-04
US08/334,522 US5565979A (en) 1994-11-04 1994-11-04 Surface scanning apparatus and method using crossed-cylinder optical elements
PCT/US1995/014223 WO1996014566A1 (en) 1994-11-04 1995-11-03 Surface scanning apparatus and method using crossed-cylinder optical elements

Publications (2)

Publication Number Publication Date
JPH09512343A JPH09512343A (ja) 1997-12-09
JP4196016B2 true JP4196016B2 (ja) 2008-12-17

Family

ID=23307617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51541496A Expired - Fee Related JP4196016B2 (ja) 1994-11-04 1995-11-03 交差する円柱形の光学素子を用いた表面走査装置および方法

Country Status (5)

Country Link
US (1) US5565979A (ja)
EP (1) EP0742895A4 (ja)
JP (1) JP4196016B2 (ja)
KR (1) KR970700315A (ja)
WO (1) WO1996014566A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US5870187A (en) * 1997-08-08 1999-02-09 Applied Materials, Inc. Method for aligning semiconductor wafer surface scans and identifying added and removed particles resulting from wafer handling or processing
US7630086B2 (en) * 1997-09-22 2009-12-08 Kla-Tencor Corporation Surface finish roughness measurement
US7688435B2 (en) * 1997-09-22 2010-03-30 Kla-Tencor Corporation Detecting and classifying surface features or defects by controlling the angle of the illumination plane of incidence with respect to the feature or defect
KR100301067B1 (ko) 1999-08-23 2001-11-01 윤종용 마이크로 스크래치 검사방법 및 이를 적용한 장치
US6694284B1 (en) 2000-09-20 2004-02-17 Kla-Tencor Technologies Corp. Methods and systems for determining at least four properties of a specimen
US6919957B2 (en) 2000-09-20 2005-07-19 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
US7106425B1 (en) 2000-09-20 2006-09-12 Kla-Tencor Technologies Corp. Methods and systems for determining a presence of defects and a thin film characteristic of a specimen
US6673637B2 (en) 2000-09-20 2004-01-06 Kla-Tencor Technologies Methods and systems for determining a presence of macro defects and overlay of a specimen
US20020190207A1 (en) 2000-09-20 2002-12-19 Ady Levy Methods and systems for determining a characteristic of micro defects on a specimen
US7130029B2 (en) 2000-09-20 2006-10-31 Kla-Tencor Technologies Corp. Methods and systems for determining an adhesion characteristic and a thickness of a specimen
US6812045B1 (en) 2000-09-20 2004-11-02 Kla-Tencor, Inc. Methods and systems for determining a characteristic of a specimen prior to, during, or subsequent to ion implantation
US6891627B1 (en) 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
US6782337B2 (en) 2000-09-20 2004-08-24 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension an a presence of defects on a specimen
US7072034B2 (en) * 2001-06-08 2006-07-04 Kla-Tencor Corporation Systems and methods for inspection of specimen surfaces
US6922236B2 (en) * 2001-07-10 2005-07-26 Kla-Tencor Technologies Corp. Systems and methods for simultaneous or sequential multi-perspective specimen defect inspection
US20040032581A1 (en) * 2002-01-15 2004-02-19 Mehrdad Nikoonahad Systems and methods for inspection of specimen surfaces
US7236847B2 (en) * 2002-01-16 2007-06-26 Kla-Tencor Technologies Corp. Systems and methods for closed loop defect reduction
US20030206337A1 (en) * 2002-05-06 2003-11-06 Eastman Kodak Company Exposure apparatus for irradiating a sensitized substrate
US7161669B2 (en) 2005-05-06 2007-01-09 Kla- Tencor Technologies Corporation Wafer edge inspection
US7554654B2 (en) * 2007-01-26 2009-06-30 Kla-Tencor Corporation Surface characteristic analysis
IL185355A (en) * 2007-08-19 2012-05-31 Sason Sourani Optical device for projection of light beams
JP6067083B2 (ja) * 2015-10-06 2017-01-25 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2202627A (en) * 1987-03-23 1988-09-28 Sick Optik Elektronik Erwin Optical arrangement in web monitoring device
US4908708A (en) * 1988-05-27 1990-03-13 Minolta Camera Kabushiki Kaisha Light beam scanning optical system
JPH0695075B2 (ja) * 1990-03-16 1994-11-24 工業技術院長 表面性状検出方法
US5076692A (en) * 1990-05-31 1991-12-31 Tencor Instruments Particle detection on a patterned or bare wafer surface
US5168386A (en) * 1990-10-22 1992-12-01 Tencor Instruments Flat field telecentric scanner
US5416594A (en) * 1993-07-20 1995-05-16 Tencor Instruments Surface scanner with thin film gauge

Also Published As

Publication number Publication date
US5565979A (en) 1996-10-15
JPH09512343A (ja) 1997-12-09
EP0742895A4 (en) 1999-09-29
KR970700315A (ko) 1997-01-08
EP0742895A1 (en) 1996-11-20
WO1996014566A1 (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP4196016B2 (ja) 交差する円柱形の光学素子を用いた表面走査装置および方法
JP6816192B2 (ja) 深紫外線連続波レーザー、システム、及び方法
KR101805968B1 (ko) 회절 한계의 성능을 갖는 플랫 필드 텔레센트릭 스캐너
EP1393115B1 (en) Systems and methods for scanning a beam of light across a specimen
KR100475658B1 (ko) 광학장치의 실시간 사용 중에 원 대칭을 달성함과 아울러광학결함 및 일탈의 영향을 감소시키는 방법 및 장치
JPH0917024A (ja) 対物レンズの位置合せ方法及び装置
CN116931245A (zh) 一种红外共聚焦成像系统
US11914282B2 (en) System of measuring image of pattern in scanning type EUV mask
US4464011A (en) Light beam scanning apparatus and the method
JPH10111217A (ja) 非球面鏡用の光軸調整装置
WO2002044789A1 (en) Refractive optical deflector
JPH06249632A (ja) 3次元形状計測装置
US6665112B2 (en) Optical reticle substrate inspection apparatus and beam scanning method of the same
JP2001174217A (ja) 光学検査装置のアライメント方法およびその機構
US20040169849A1 (en) Surface foreign matter inspecting device
WO2021205650A1 (ja) 照明光学系および基板検査装置
JPH05297278A (ja) レーザー光照射用光学装置
WO2023238175A1 (ja) 集光光学系、fθ光学系、光加工装置、および光計測装置
KR20210042230A (ko) 레이저 스캐너의 빔 집속도 조절을 위한 탈부착식 광학장치
Böttnera et al. Active mirrors for plane field correction in laser material processing
JPH04269609A (ja) トロイダル面の測定方法及び測定装置
JPH0587549A (ja) 基板表面の光学的検査装置
JPH01129226A (ja) 光走査装置
JPH06201657A (ja) 送電線路用碍子の振動検出装置
JPH0473709A (ja) 携帯顕微鏡

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20080910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees