JP4195276B2 - 超音波送信装置、超音波送受信装置およびソナー装置 - Google Patents

超音波送信装置、超音波送受信装置およびソナー装置 Download PDF

Info

Publication number
JP4195276B2
JP4195276B2 JP2002343913A JP2002343913A JP4195276B2 JP 4195276 B2 JP4195276 B2 JP 4195276B2 JP 2002343913 A JP2002343913 A JP 2002343913A JP 2002343913 A JP2002343913 A JP 2002343913A JP 4195276 B2 JP4195276 B2 JP 4195276B2
Authority
JP
Japan
Prior art keywords
signal
transmission
drive
reception
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343913A
Other languages
English (en)
Other versions
JP2004177276A (ja
Inventor
靖 西森
実 半田
史郎 小篠
優 西田
寛宗 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2002343913A priority Critical patent/JP4195276B2/ja
Priority to GB0326946A priority patent/GB2395788B/en
Priority to US10/720,226 priority patent/US7215599B2/en
Publication of JP2004177276A publication Critical patent/JP2004177276A/ja
Application granted granted Critical
Publication of JP4195276B2 publication Critical patent/JP4195276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/101Particularities of the measurement of distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52003Techniques for enhancing spatial resolution of targets

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超音波を水中等に送信する超音波送信装置、この送信された超音波のエコーを受信する超音波送受信装置およびこれらを用いて、物標の探知を行うソナー装置に関するものである。
【0002】
【従来の技術】
現在、一般に水中にある物標を探知するためにソナー装置(スキャニングソナー)が用いられている。スキャニングソナーは、周囲の全方位の物標を探知するため、略円筒形のトランスデューサを備えており、このトランスデューサに配列形成された振動子を駆動させることによって、全周に向けて超音波の送信ビームを形成する。また、トランスデューサの円周方向(方位方向)に並ぶ所定数の振動子を用いて、所定方位に受信ビームを形成し、用いる振動子列の組の選択を切り換えることによって、受信ビームの方位を順次回転させる。このことによって全方位に亘る探知を行う。
【0003】
このようなスキャニングソナーの超音波送受信装置では、振動子を駆動する駆動パルス信号を生成する回路として、トランスを用いたプッシュプル型回路が用いられており、スイッチング方式またはリニア方式で駆動パルス信号を生成している。スイッチング方式は、図13に示すような回路を用いて、図14に示すような駆動パルス信号を生成する。また、リニア方式は、図15に示すような回路を用いて駆動パルス信号を生成する。
【0004】
図13は、スイッチング方式の駆動パルス信号生成回路の概要を示す等価回路図であり、1は振動子、Tr1,Tr2はトランジスタ、VBは該回路の駆動電圧である。
図14は、図13に示す駆動パルス信号生成回路における信号の状態を示す図である。
また、図15は、リニア方式の駆動パルス信号生成回路の概要を示す等価回路図であり、1は振動子、2はD/A変換回路、3は増幅回路、4は反転増幅回路Tr1,Tr2はトランジスタ、VBは該回路の駆動電圧である。
【0005】
スイッチング方式では、図13,14に示すように、トランジスタTr1,Tr2にそれぞれが逆位相の関係にある所定周波数の矩形波が入力されている。これらトランジスタを所定のタイミングで切り換えることで、振動子1の両端に図10の「OUT」における破線に示すような波形の駆動パルス信号を生成する(例えば、特願2001−401798号参照。)。
【0006】
また、リニア方式では、図15に示すように、D/A変換回路2で矩形波から変換されたアナログ信号をそれぞれ増幅回路3および反転増幅回路4に入力し増幅するとともに、反転増幅回路4では入力されたアナログ信号の位相を反転させる。このように、互いに逆位相の関係にある二つのアナログ信号をトランジスタTr1,Tr2のそれぞれに入力し、これらトランジスタTr1,Tr2を所定のタイミングで切り換えることで、振動子1の両端に任意波形の駆動パルス信号を生成する。
【0007】
【発明が解決しようとする課題】
ところが、前述のようなスキャニングソナーの超音波送受信装置においては、次に示す解決すべき課題が存在した。
【0008】
駆動パルス信号生成回路において、前述のスイッチング方式では、常に一定の矩形波で駆動パルス信号を構成するため、該駆動パルス信号も図14に示すように矩形波の形状となる。
【0009】
このような矩形エンベロープの駆動パルス信号で振動子を駆動すると、振動子から外部に送信される超音波は、予め設定しておいた所望の周波数(送信周波数)の他に、図16(a)に示すような高い振幅レベルの不要波成分を有することとなる。
【0010】
このように不要波成分が存在すると、自船から水中に所定周波数の超音波を送信する際に、このような不要波成分も水中に送信される。一方、図16(b)に示すように、自船付近で他船が同様に水中に自船が送受信する超音波の周波数f0 とは異なる比較的近い周波数f1 の超音波で送受信を行っている場合、自船の発する不要波成分が他船に受信される。このため、他船では、自船の不要波成分の影響を受けた信号を受信し、干渉縞や偽像が表示されてしまう。同様に、自船においても、他船が発生する不要波成分の影響を受け、干渉縞や偽像が表示されてしまう。
【0011】
また、駆動パルス信号を振動子に低損失に伝送する場合には、振動子と送信ビーム生成回路との整合を行わなければならなず、この間に整合回路を挿入する必要がある。しかしながら、このような整合回路の周波数応答(伝達関数)には、中心周波数とは別の周波数に応答する成分(スプリアス)が存在することがあり、矩形エンベロープの駆動パルス信号を伝送すると、伝達関数の上記成分も駆動パルス信号に重畳してしまう。その結果、図17に示すような信号がレベル遷移する点付近にエンベロープ(包絡線)が突出する部分(リンギング)ができてしまう。このようなリンギングが生じると、単一の物標に対して複数のエコー反応が現れてしまい、実際には存在しない物標を探知してしまう。また、矩形波の駆動パルス信号に引き続いて発生するリンギングは、駆動パルス信号送信直後の受信信号に重畳してしまい、自船直近のエコー(例えば浅海のエコー等)を受信することができなくなってしまう。
【0012】
このような問題を解決するためには、矩形エンベロープの駆動パルス信号における立ち上がり部および立ち下がり部を緩やかな形状にしたエンベロープに整形しなければならない。しかしながら、単一矩形波のみを入力して駆動パルス信号を生成する従来のスイッチング方式では、上述のように緩やかに振幅が変化するようにエンベロープ制御することができないため、駆動パルス信号を任意の波形にすることができなかった。
【0013】
また、トランスデューサから送信する超音波の指向性を制御するためには、各振動子から送信されるそれぞれの超音波の空間的ウェイトを設定しなければならない。すなわち、配列された各振動子から送信される超音波の振幅を前記指向性を実現できるように設定しなければならない。ところが、従来の単一矩形波を用いた駆動パルス信号の生成方法では、電源電圧の振幅を変更しなければ、前記のような超音波の振幅を変更することができない。しかしながら、電源電圧の振幅を変更する可変電源電圧回路では、電源回路に設けられている大容量のコンデンサが必要に対する充電、放電に時間を要する。すなわち、トランスデューサに配設された複数の振動子を駆動する信号を高速で切り換えて生成することができない。
【0014】
一方、リニア方式では、駆動パルス信号の波形整形および振幅の変更を任意に行うことができるが、各振動子の駆動回路毎にD/A変換回路を設けなければならず、消費電力が大きくなるとともに小さくすることができない。また、部品点数が多い分、装置全体も大きくなってしまう。さらには、トランジスタTr1,Tr2を非飽和領域で使用するため、損失が大きくなり、高効率を得ることができない。
【0015】
この発明の目的は、振動子を駆動する駆動パルス信号を任意の波形にエンベロープ制御して不要波成分の発生を抑制するとともに、振幅変調を行って超音波の空間的ウェイトを任意に瞬時設定することができる低損失で小型の超音波送信装置、超音波送受信装置およびこれらを備えたソナー装置を提供することにある。
【0016】
【課題を解決するための手段】
この発明に示す超音波送信装置の送信ビーム形成手段は、所定周波数の矩形信号を生成するとともに、送信ビームを形成するためのウェイトデータに基づいて駆動パルス信号を形成する駆動信号の元となる基準信号の波形を制御する制御信号を演算により複数の振動子毎に生成して矩形信号とともに出力するプログラマブル送信ビーム形成制御手段と、複数の振動子毎に設けられ、矩形信号に基づいて制御信号から基準信号を生成し、該基準信号をパルス幅変調することで駆動パルス信号のエンベロープおよび振幅を制御する駆動信号を生成する駆動信号生成手段と、を備えたことを特徴としている。
【0017】
この構成では、駆動パルス信号を構成する各駆動信号をパルス幅変調(PDM:Pulse Duration Modulation )することで、駆動パルス信号の波形を図18に示すようにエンベロープ制御する。駆動パルス信号を図18(a)に示すような波形にエンベロープ制御することで、図18(b)に示すように、目的とする周波数成分が維持されたまま、不要波成分が抑制される。すなわち、互いに近接する周波数で探知を行っている2船間で送受信される超音波信号同士の干渉が防止される。
【0019】
この構成では、図5に示すように、常に一定の周期の矩形信号と、該矩形信号のレベル遷移のタイミングで基準信号のレベル遷移点を指定する制御信号とを用いてパルス幅変調することにより、基準信号が生成される。そして生成された基準信号を整合回路に通すことにより、目的とする駆動信号および該駆動信号からなる駆動パルス信号が得られる。
【0020】
また、この発明に示す超音波送信装置の駆動パルス信号生成手段は、制御信号を[0,1]の2値からなる信号で構成する。
【0021】
この構成では、[0,1]の2値のみからなる単純で簡素な信号で基準信号が生成される。
【0022】
この発明に示す超音波送信装置のプログラマブル送信ビーム形成制御手段は、送信ビームを形成するために遅延データまたは位相データに基づいて制御信号を生成することを特徴としている。
【0023】
この構成では、トランスデューサに配設された振動子毎に、異なる振幅と遅延量または位相量とになるように駆動パルス信号をパルス幅変調して制御することで、すなわち、振動子毎に空間的ウェイトと、遅延量または位相量とを設定することで、所定の指向性を有する送信ビームが形成される。
【0024】
また、この発明に示す超音波送信装置において、駆動信号の周波数が駆動パルス信号毎に異なることを特徴としている。
【0025】
この構成では、各振動子を駆動する駆動信号の周波数を、駆動パルス信号毎に異ならせることで、探知を行う方位に応じて異なる周波数の駆動信号からなる駆動パルス信号を送信することができ、略同時に複数の方位に異なる周波数からなる超音波の送信ビームが形成される。
【0026】
また、この発明に示す超音波送受信装置は、前記超音波送信装置と、該超音波送信装置により送信された送信ビームのエコーをトランスデューサの複数の振動子で受信して、該振動子が発生する信号を制御することで受信ビームを形成する受信ビーム形成手段とを備えたことを特徴としている。
【0027】
この構成では、送信期間にトランスデューサの複数の振動子から超音波送信ビームを水中等に送信し、受信期間にこのトランスデューサの複数の振動子により送信ビームのエコーを受信して、該振動子が発生する信号を制御することで受信ビームを形成する。
【0028】
また、この発明に示すソナー装置は、前記超音波送受信装置と、該超音波送受信装置の受信ビーム形成手段の制御により、送信ビーム内での探知すべき方位を順次走査して、各方位の受信信号から、送信ビームが形成する方向の探知画像データを求め、探知画像データを表示する手段とを備えたことを特徴としている。
【0029】
【発明の実施の形態】
本発明の実施形態に係る超音波送受信装置を備えたスキャニングソナーについて、図を参照して説明する。
【0030】
図1は、スキャニングソナーの送受信チャンネルの構成を示すブロック図である。図1において、ドライバI/F11は、後述するプログラマブル送信ビーム形成制御部26から与えられるCLOCK信号と制御信号と駆動コードデータに基づいて、パルス幅変調されて駆動信号となる基準信号を生成するためのドライブ信号を生成する。このドライバIF11はPLD(Programable Logic Device)からなる。ドライバ回路12は、ドライバI/F11から出力された基準信号をパルス幅変調してアナログ信号である駆動信号に変換し、駆動パルス信号を生成する。TX増幅回路13は、その駆動信号(駆動パルス信号)を増幅し、送信側整合回路19a、送受切替回路14を介して振動子10を駆動する。送受切替回路14は、送信期間に、送信側整合回路19aを介して入力したTX増幅回路13の出力信号を振動子10へ導き、受信期間に振動子10が出力した信号を、受信側整合回路19bを介してプリアンプ15へ受信信号として導く。プリアンプ15は、この受信信号を増幅し、バンドパスフィルタ16は、受信信号の周波数帯域以外のノイズ成分を除去する。A/Dコンバータ17は、その受信周波数帯域の信号を所定のサンプリング周期でサンプリングし、ディジタルデータ列に変換する。
【0031】
上記の部分で送受信チャンネル100を構成する。この送受信チャンネルを、100a,100b,・・・100nで示すように、振動子10の数だけ設けている。
【0032】
これら振動子10は、円筒形または球形等のトランスデューサ表面に配列して設置されている。
【0033】
図2は、図1に示した複数の送受信チャンネル100を用いて送信ビームおよび受信ビームを形成するとともに、所定探知範囲の探知画像を生成する制御部のブロック図である。図2におけるインターフェース20は、図1に示したインターフェース20のことである。
【0034】
(1)送信系
図2において、26はプログラマブル送信ビーム形成制御部である。このプログラマブル送信ビーム形成制御部26は、駆動信号生成回路21、波形メモリ24およびTX−DSP25を含んでいる。駆動信号生成回路21には、タイミングジェネレータ22と係数テーブル23とを設けている。この駆動信号生成回路21は、FPGA(Field Programable Gate Array)からなる。タイミングジェネレータ22は、駆動パルス信号の生成タイミングを与える信号を発生する。係数テーブル23は振動子各チャンネルに与える遅延量,ウェイト値(これらはTX−DSP25が計算して求める。)を予め書き込んだものである。波形メモリ24は、駆動パルス信号の基本となる、予め振幅等が設定された波形を一時記憶するメモリである。図3にメモリマップの例を示す。アドレス領域は8分割され、各駆動パルス信号の振幅値のみの異なる駆動コードが所定種類(図3の場合は8種類)記憶されている。TX−DSP25は、ドライバ信号の遷移状態を制御する[0,1]の2値からなる制御信号を生成し、これを波形メモリ24に書き込む。また、TX−DSP25は、送信毎に係数テーブル23の内容を計算し、更新する。
【0035】
駆動信号生成回路21は、チャンネル毎に係数テーブル23からウェイト値を読み出し、そのウェイト値に対応する振幅値の駆動コードを波形メモリ24から読み出すための上位アドレッシングを行う。そして、この設定されたアドレスに基づき、振動子毎のウェイト付けが行われる。同時に、駆動信号生成回路21は、係数テーブル23から読み出した遅延データに基づいて、波形メモリ24の下位アドレスのオフセット制御を行う。これにより振動子毎の粗遅延が行われる。そして、駆動信号生成回路21は、波形メモリ24から読み込まれたウェイト制御、粗遅延制御のなされた駆動コードデータ(16ビット:16時刻分)に対し、1ビット毎の精密遅延制御を行う。この精密遅延制御は、前記粗遅延制御と同様に、係数テーブル23に記憶された遅延データ(精密遅延データ)に基づいて行われる。このように一連の動作を行うことで、振動子毎にウェイト、遅延制御のなされた駆動コードデータを生成する。
【0036】
なお、前述の説明では遅延制御を行った例を示したが、位相データに基づき位相制御を行い駆動コードデータを生成してもよい。
【0037】
さらに、駆動信号生成回路21は、波形メモリ24から制御信号を読み出し、係数テーブル23を参照し、インターフェース20を介して、CLOCK信号とともに送受信チャンネル100に与える。
【0038】
なお、ウェイト制御に関しては、図4に示すようなハードウェアの構成によっても実現することができる。
図4はウェイト制御を行うブロックの主要部を示すブロック図である。
【0039】
図4に示すように、ウェイト制御されていない駆動コードがパルス幅デコーダ51に入力すると、パルス幅デコーダ51は入力された駆動コードからカウンタを用いてパルス幅を計算し、駆動コードデータパルス幅計算ブロック52に出力される。駆動コードデータパルス幅計算部52は、入力されたパルス幅と、係数テーブル23から読み出されたウェイトデータとに基づいて、駆動コードデータのパルス幅を計算し、駆動コードエンコーダ53に出力される。駆動コードエンコーダ53は、入力された駆動コードのパルス幅データに基づいて、カウンタを用いてウェイト付き駆動コードデータを生成する。
【0040】
このような構成とすることで、波形メモリはウェイト値のない駆動コードを記憶しておけばよいので記憶するデータ量を低減することができる。さらに、このようなウェイト付けをハードウェアで行うことにより、ソフトで処理する量(DSPの演算量)を低減することができ、DSPの負荷を低減することができる。
【0041】
2)受信系
図2において、バッファメモリ27は、インターフェース20を介して各チャンネルからの受信データを一時記憶するメモリである。28はプログラマブル受信ビーム形成制御部であり、RX−DSP29、係数テーブル30、および受信ビーム形成演算部31とから構成されている。RX−DSP29は、各受信ビーム毎に各振動子による受信信号の位相とウェイトを計算し、係数テーブル30へ書き込む。受信ビーム形成演算部31は、各振動子の受信信号に対して係数テーブル30に書き込まれた位相とウェイトの計算を行って合成することにより合成受信信号を得る。この合成受信信号をビーム毎の時系列データとして求め、これをバッファメモリ32へ書き込む。この受信ビーム形成演算部31はFPGAからなる。
【0042】
33はプログラマブルフィルタであり、フィルタDSP34、係数テーブル35、およびフィルタ演算部36から構成されている。フィルタ演算部36はFPGAからなる。フィルタDSP34は、ビーム毎に所定の帯域通過フィルタ特性を得るためのフィルタ係数を計算し、それを係数テーブル35へ書き込む。フィルタ演算部36は係数テーブル35の係数を基にFIR(Finite Impulse Respose)フィルタとしての演算を行い、帯域処理済受信信号を求める。
【0043】
エンベロープ検出部40は、各受信ビームの帯域処理済受信信号のエンベロープを検出する。具体的には、時間波形の実数成分の二乗と虚数成分の二乗との和の平方根を求めることにより検出する。
【0044】
イメージ処理部41は、各受信ビームの各距離における受信信号強度をイメージ情報化してディスプレイ42に出力する。これにより、ディスプレイ42に所定探知範囲の探知画像を表示する。
【0045】
探知操作部39は、探知範囲の指示等を行う入力部である。ホストCPU37は、インターフェース38を介して探知操作部39の指示内容を読み取り、上述した各部の制御を行う。
【0046】
(3)駆動信号、駆動パルス信号の生成方法
図5は各信号間の関係を示すタイミングチャートである。
【0047】
上述のように、TX−DSP25は、所定周期Tの矩形信号であるCLOCK信号(図5(a))と、パルス幅変調されて駆動信号となる基準信号を生成するための制御信号(図5(b))とを生成する。制御信号は[0,1]の2値の信号であり、CLOCK信号に同期して発信することで、ドライブ信号のレベルを遷移するか保持するかを与える信号である。制御信号が「1」であればドライブ信号はレベルを遷移し、制御信号が「0」であればドライブ信号はレベルを保持する。
【0048】
また、TX−DSP25は、次に示す(1)式に基づいて、ドライブ信号のレベルがHi状態である時間的割合、すなわちオンデューティ比を決定する。
【0049】
【数1】
Figure 0004195276
【0050】
(1)式において、D(t)はオンデューティ比、A(t)はエンベロープ波形の振幅である。
例えば、A(t)=0のときD(t)=0となり、A(t)=1のときD(t)=1/2となる。
【0051】
ドライバI/F11は、CLOCK信号と制御信号とに基づいて、ドライブ信号1H(図5(c)),2H(図5(d))を生成する。ここで、ドライバI/F11は次の二つの条件を満たすようにドライブ信号1H,2Hを生成している。
(1)1Hと2Hのパルス列は、時系列上必ず交互にパルス(レベルがHiの部分)が発生し、一方のパルスが連続することはない。
(2)1Hのパルスと2Hのパルスとは、時系列上、少なくとも1CLOCK分の間隔を置く。
【0052】
このようにドライバI/F11で生成されたドライブ信号1H,2Hはドライバ回路12に入力されて、基準信号(図5(e))を生成する。
【0053】
図6はドライバ回路12の構成を示す回路図であり、図7はその各部の波形図である。
図6において、Qa〜QdはそれぞれMOSトランジスタ、LsはトランジスタQa,Qbのゲートに対して所定のレベルのゲート電圧を出力するレベルシフト回路、IはトランジスタQc,Qdのゲートに対するゲート電圧を出力するインバータ回路(NOTゲート)である。また、Diは各トランジスタQa〜Qdのターンオフ時にドレインとソースとの間に生じるサージ電圧を吸収するためのダイオードである。
【0054】
入力端子IN1,IN2のそれぞれにドライブ信号1H,2Hが入力すると、図6中のA〜Dで示す各点の電圧信号は、図7に示すようになる。信号A〜Dがハイレベルの時、それをゲート電圧とするトランジスタQa〜Qdが導通し、信号A〜Dがローレベルの時、トランジスタQa〜Qdは遮断状態となる。従って、出力端子OUT1,OUT2からは、図7に示すような電圧信号が出力される。この2つの出力電圧OUT1,OUT2の差の電圧(OUT1−OUT2)が図5(e)に示した基準信号として得られる。
【0055】
入力端子IN1,IN2に入力するドライブ信号1H,2Hのオンデューティ比を大きくすれば、トランジスタQa,Qbのオン期間が長くなり、基準信号の正電圧期間および負電圧期間、すなわち0ボルト以外の期間が長くなる。
【0056】
この正電圧期間および負電圧期間の長さに基づいて、パルス幅変調された基準信号を送信側整合回路に通すことにより、図5(f)に示すような形状にエンベロープ制御がされたアナログ信号の駆動信号からなる駆動パルス信号が生成される。
【0057】
このように生成された、図5(f)および図18(a)に示すように、立ち上がりおよび立ち下がり部をなだらかな曲線状態とした駆動パルス信号を用いて、振動子を駆動することで、図18(b)に示すように不要波成分を抑制することができる。これにより、図8に示すように、自船の送受信信号の周波数f0 と他船の送受信信号の周波数f1 とが近接している場合でも、一方の船からの送信信号の不要波成分が、他方の船の受信信号に与える影響を抑制できる。すなわち、一方の船からの送信信号の不要波成分を、他方の船が物標のエコーとして受信するという現象を防止することができる。これにより、互いにエコーの誤受信を防止することができ、正確な探知結果を得ることができる。
【0058】
また、振動子の前段に挿入される整合回路の周波数応答(伝達関数)のスプリアスの影響を抑制することができる。すなわち、図18(a)に示す駆動パルス信号は、図18(b)に示すように中心周波数以外の周波数成分が小さいので、上記スプリアスとの干渉を抑制することができる。
【0059】
これにより、リンギングの発生が抑制され、物標に対する正確なエコーを得ることができ、船近傍の物標(浅海等)のエコーも正確に得ることができる。
【0060】
なお、駆動信号の振幅の大きさは、TX−DSP25から入力するウェイト情報に基づいて、駆動信号生成回路21で各振動子毎に固有の振幅となるように遅延量とともに制御される。このように、振動子毎に振幅を変えることで(ウェイト付けを行うことで)、トランスデューサに配設された振動子全体で形成される送信ビームの指向性を制御することができる。
【0061】
これにより、トランスデューサから発信される超音波送信信号に強い指向性を持たせることができ、同時にサイドローブの発生を抑制することができる。すなわち、単一の物標に対して、明確に一つのエコーを得ることができ、良好な探知結果を得ることができる。
【0062】
上述の説明では、トランスデューサから発信する超音波送信信号の周波数が1種類の場合を説明したが、複数の周波数を発信する場合にも、上述の方法は適用することができる。
【0063】
例えば、2種の周波数の超音波送信信号を発信する場合、一方の周波数の送信信号を水平モードのための送信信号とし、他方の周波数の送信信号を垂直モードのための送信信号とする。そして、水平モードの送信信号と垂直モードの送信信号とを、図9(a)に示すように駆動パルス信号毎に切り換えて送信することで、略同時に水平方向と垂直方向の探知を行うことができる。
【0064】
このような構成とした場合、図3に示したメモリマップを図10に示すようにすることで、モード毎に周波数、チャンネル毎に遅延量を制御した駆動コードデータを生成することができる。
【0065】
また、上記二つの周波数の送信信号すなわち駆動信号を図9(b)に示すように合成して送信することもできる。このような波形を生成するには、単一の駆動パルス信号のエンベロープに複数の山および谷が発生し、この谷部はゼロクロスしない。この場合、上述のドライブ信号1H,2Hそれぞれのパルスの間隔を少なくとも2CLOCK分と置く条件で、制御信号を設定し、前述のドライバI/F11にパルスの立ち上がり1CLOCK分を削除する回路を付加する。このような構成とすることで、図11(a),(b)のそれぞれに示すようなドライブ信号1H,2Hを生成することができる。なお、図11(a),(b)に示す破線は上記削除を行う前の波形、実線は上記削除を行った後の波形である。
【0066】
そして、これらのドライブ信号に基づいて、図11(c),(d)のそれぞれに示すような基準波形および駆動波形を生成することができ、これを適用することで、上述のような2種の周波数の信号を合成した信号からなる駆動パルス信号についてもエンベロープ制御することができる。
【0067】
なお、本実施形態では、図5に示したように基準信号の一つのパルスの幅に応じて駆動信号の振幅を設定するようにパルス幅変調を行ったが、図12に示すようなパルス幅変調の方法を用いてもよい。
【0068】
図12は、CLOCK信号と、制御信号と、制御信号のデコード値と、キャリア信号と、ドライブ信号1H,2Hと、基準信号と、駆動信号とを示すタイミングチャートであり、(a),(b)とでは制御信号が異なり、これに応じて駆動信号の振幅が異なる。
【0069】
図12(a),(b)に示すように、所定周期のCLOCK信号と、所定値の制御信号とに基づいて、ドライブ信号1H,2Hが生成される。ここで、所定波数のCLOCK信号を一つの固定周期とするキャリア信号の1周期において、制御信号の[0,1]の比率を変化させることにより、ドライブ信号1H,2Hの[1]区間の幅を制御する。
【0070】
このようにドライブ信号1H,2Hを制御することで、基準信号におけるVb区間の幅と、−Vb区間の幅を制御する。そして、図9に示すように、Vb区間の幅が広い部分が駆動信号の正の振幅が大きい部分に相当し、−Vb区間の幅が広い部分が駆動信号の負の振幅が大きい部分に相当し、さらに、Vb、−Vb区間の幅がほぼ同じ部分が駆動信号の振幅「0」の部分に相当するようにパルス幅変調が行われる。
【0071】
図12(a)は、キャリア信号の周期毎に制御信号の[0,1]の比率を大きく変化させた場合、図12(b)は、キャリア信号の周期毎に制御信号の[0,1]の比率をあまり変化させていない場合を示しており、このように制御信号を設定することで、駆動信号の振幅を制御(パルス幅変調)することができる。
【0072】
【発明の効果】
この発明によれば、パルス幅変調により駆動信号を生成し、該駆動信号に基づいて駆動パルス信号のエンベロープ制御を行うことで、目的とする周波数成分(送信周波数)を維持したまま、不要波成分を抑制することができる。これにより、互いに近接する周波数で探知を行っている2船間で、それぞれの船で送受信される超音波信号同士が干渉することを防止することができる。また、パルス幅変調により駆動パルス信号の振幅を制御するとともに遅延量または位相量を制御することで、トランスデューサから送信される超音波信号の空間的ウェイトと遅延量または位相量とを任意に設定することができる。これにより、サイドローブの発生が抑制され、不要波成分の抑制された良好な超音波送信信号を生成することができる。また、図17に示すように、立ち上がり立ち下がりが緩やかな曲線形状の駆動パルス波形にエンベロープ制御することにより、伝送時の不要波成分の重畳が抑制され、各振動子に駆動パルス信号を低損失に伝送することができる。また、振動子毎にD/A変換回路を用いることなく駆動パルス波形を任意の波形にすることができるので、装置本体を小型化することができる。
【0073】
また、この発明によれば、常に一定周期の矩形信号と、該矩形信号のレベル遷移のタイミングで基準信号のレベル遷移点を指定する制御信号とを用いて基準信号を生成し、この基準信号により所望の波形の駆動信号をパルス幅変調で得ることができる。また、前記制御信号を[0,1]の2値からなる信号で構成することにより、単純で容易な信号で任意の基準信号が生成できる。これにより、任意の波形の駆動パルス信号を生成できる。
【0074】
また、この発明によれば、各振動子を駆動する駆動パルス信号を構成する駆動信号の周波数を異ならせることで、略同時に複数の方位に不要波成分を生じない超音波の送信ビームを形成することができる。
【0075】
また、この発明によれば、超音波送信装置に受信ビーム形成手段を備えた超音波送受信装置と、該超音波送受信装置の送信制御手段および受信制御手段とを備え、各手段の制御により、探知すべき方位を順次走査して、各方位の受信信号から探知範囲の探知画像データを求め、表示することにより、略同時刻に複数の探知方向の探知画像を正確に把握できる。
【図面の簡単な説明】
【図1】本発明に係るスキャニングソナーの送受信チャンネルの構成を示すブロック図
【図2】図1に示した複数の送受信チャンネルの制御を行う制御部のブロック図
【図3】図1,2に示す各部分で生成、伝送される信号間の関係を示すタイミングチャート
【図4】波形メモリのメモリマップの一例を示す概念図
【図5】駆動信号生成回路のウェイト制御部を示すブロック図
【図6】ドライバ回路12の構成を示す回路図
【図7】ドライバ回路12における各部の波形図
【図8】二つの船で送受信される超音波信号の周波数成分を示した図
【図9】駆動パルス信号の波形を示した図
【図10】波形メモリのメモリマップの他の一例を示す概念図
【図11】二つの周波数の信号を合成する場合の基準信号および駆動信号の波形を示した図
【図12】図1,2に示す各部分で生成、伝送される信号間の関係を示すタイミングチャート
【図13】スイッチング方式の駆動パルス信号生成回路の概要を示す等価回路図
【図14】図9に示す駆動パルス信号生成回路における信号の状態を示す図
【図15】リニア方式の駆動パルス信号生成回路の概要を示す等価回路図
【図16】矩形の駆動パルス信号の周波数スペクトル図
【図17】矩形の駆動パルス信号を入力した場合の超音波送信信号の波形を示す図
【図18】本発明に示すエンベロープ制御を行った駆動パルス波形とその周波数スペクトル図
【符号の説明】
1,10−振動子
2−D/A変換回路
3−増幅回路
4−反転増幅回路
11−PLD
12−ドライバ回路
13−TX増幅回路
14−送受切替回路
18,20−I/F
19−整合回路
21−FPGA
22−タイミングジェネレータ
23−係数テーブル
24−波形メモリ
25−TX−DSP
26−プログラマブル送信ビーム形成制御部
51−パルス幅デコーダ
52−駆動コードデータパルス幅計算部
53−駆動コードデータエンコーダ
100送受信チャンネル

Claims (7)

  1. 複数の振動子を配列したトランスデューサと、該トランスデューサの複数の振動子を駆動パルス信号で駆動して超音波の送信ビームを形成する送信ビーム形成手段と、を備えた超音波送信装置において、
    前記送信ビーム形成手段は、
    所定周波数の矩形信号を生成するとともに、前記送信ビームを形成するためのウェイトデータに基づいて前記駆動パルス信号を形成する駆動信号の元となる基準信号の波形を制御する制御信号を演算により前記複数の振動子毎に生成して、前記矩形信号とともに出力するプログラマブル送信ビーム形成制御手段と、
    前記複数の振動子毎に設けられ、前記矩形信号に基づいて前記制御信号から基準信号を生成し、該基準信号をパルス幅変調することで前記駆動パルス信号のエンベロープおよび振幅を制御する駆動信号を生成する駆動信号生成手段と、を備えた超音波送信装置。
  2. 前記制御信号は、[0,1]の2値からなる信号である請求項1に記載の超音波送信装置。
  3. 前記プログラマブル送信ビーム形成制御手段は、前記送信ビームを形成するための遅延データまたは位相データに基づいて前記制御信号を生成する請求項1または請求項2に記載の超音波送信装置。
  4. 前記プログラマブル送信ビーム形成制御手段は、前記送信ビーム形成のための粗遅延に関する粗遅延データと、該粗遅延データおよび前記ウェイトデータによる粗遅延後の精密遅延の元となる精密遅延データとから、前記遅延データを構成する請求項3に記載の超音波送信装置。
  5. 前記駆動信号の周波数が前記駆動パルス信号毎に異なる請求項1〜4のいずれかに記載の超音波送信装置。
  6. 請求項1〜5のいずれかに記載の超音波送信装置と、トランスデューサの複数の振動子が超音波を受信することにより発生する信号を制御して、受信ビームを形成する受信ビーム形成手段とを備えた超音波送受信装置。
  7. 請求項6に記載の超音波送受信装置と、該超音波送受信装置の受信ビーム形成手段の制御により、前記送信ビーム内での探知すべき方位を順次走査して、各方位の受信信号から、前記送信ビームが形成する方向の探知画像データを求め、該探知画像データを表示する手段とを備えたソナー装置。
JP2002343913A 2002-11-27 2002-11-27 超音波送信装置、超音波送受信装置およびソナー装置 Expired - Fee Related JP4195276B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002343913A JP4195276B2 (ja) 2002-11-27 2002-11-27 超音波送信装置、超音波送受信装置およびソナー装置
GB0326946A GB2395788B (en) 2002-11-27 2003-11-19 Ultrasonic transmitter, ultrasonic transceiver and sonar apparatus
US10/720,226 US7215599B2 (en) 2002-11-27 2003-11-25 Ultrasonic transmitter, ultrasonic transceiver and sonar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343913A JP4195276B2 (ja) 2002-11-27 2002-11-27 超音波送信装置、超音波送受信装置およびソナー装置

Publications (2)

Publication Number Publication Date
JP2004177276A JP2004177276A (ja) 2004-06-24
JP4195276B2 true JP4195276B2 (ja) 2008-12-10

Family

ID=29774706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343913A Expired - Fee Related JP4195276B2 (ja) 2002-11-27 2002-11-27 超音波送信装置、超音波送受信装置およびソナー装置

Country Status (3)

Country Link
US (1) US7215599B2 (ja)
JP (1) JP4195276B2 (ja)
GB (1) GB2395788B (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216647B2 (ja) 2003-05-29 2009-01-28 古野電気株式会社 超音波送信装置、超音波送受信装置、および探知装置
JP4683888B2 (ja) * 2004-09-27 2011-05-18 古野電気株式会社 水中探知システム
JP2007255990A (ja) * 2006-03-22 2007-10-04 Furuno Electric Co Ltd 超音波送信装置および水中探知装置
JP5411417B2 (ja) 2007-09-11 2014-02-12 古野電気株式会社 パルス信号の送受信装置および送受信方法
JP5260068B2 (ja) * 2008-01-31 2013-08-14 古野電気株式会社 探知装置および探知方法
JP2010071967A (ja) * 2008-09-19 2010-04-02 Port & Airport Research Institute 超音波送受波装置
US8289811B2 (en) * 2009-09-01 2012-10-16 The Johns Hopkins University System and method for determining location of submerged submersible vehicle
JP5263834B2 (ja) * 2009-06-09 2013-08-14 独立行政法人港湾空港技術研究所 水中映像取得装置
US8701484B2 (en) 2010-06-29 2014-04-22 Orthosensor Inc. Small form factor medical sensor structure and method therefor
US8720270B2 (en) 2010-06-29 2014-05-13 Ortho Sensor Inc. Prosthetic component for monitoring joint health
US9462964B2 (en) 2011-09-23 2016-10-11 Orthosensor Inc Small form factor muscular-skeletal parameter measurement system
US8421479B2 (en) 2009-06-30 2013-04-16 Navisense Pulsed echo propagation device and method for measuring a parameter
US8826733B2 (en) 2009-06-30 2014-09-09 Orthosensor Inc Sensored prosthetic component and method
US8714009B2 (en) 2010-06-29 2014-05-06 Orthosensor Inc. Shielded capacitor sensor system for medical applications and method
US9259179B2 (en) 2012-02-27 2016-02-16 Orthosensor Inc. Prosthetic knee joint measurement system including energy harvesting and method therefor
US9839390B2 (en) 2009-06-30 2017-12-12 Orthosensor Inc. Prosthetic component having a compliant surface
US8679186B2 (en) 2010-06-29 2014-03-25 Ortho Sensor Inc. Hermetically sealed prosthetic component and method therefor
US8707782B2 (en) 2009-06-30 2014-04-29 Orthosensor Inc Prosthetic component for monitoring synovial fluid and method
US8305840B2 (en) 2009-07-14 2012-11-06 Navico, Inc. Downscan imaging sonar
US8300499B2 (en) 2009-07-14 2012-10-30 Navico, Inc. Linear and circular downscan imaging sonar
US8926530B2 (en) 2011-09-23 2015-01-06 Orthosensor Inc Orthopedic insert measuring system for having a sterilized cavity
JP5458039B2 (ja) * 2011-02-23 2014-04-02 日本放送協会 Fmcwレーダーシステム
US9142206B2 (en) 2011-07-14 2015-09-22 Navico Holding As System for interchangeable mounting options for a sonar transducer
US8911448B2 (en) 2011-09-23 2014-12-16 Orthosensor, Inc Device and method for enabling an orthopedic tool for parameter measurement
US9839374B2 (en) 2011-09-23 2017-12-12 Orthosensor Inc. System and method for vertebral load and location sensing
US9414940B2 (en) 2011-09-23 2016-08-16 Orthosensor Inc. Sensored head for a measurement tool for the muscular-skeletal system
US11624822B2 (en) * 2011-10-26 2023-04-11 Teledyne Flir, Llc Pilot display systems and methods
US9182486B2 (en) 2011-12-07 2015-11-10 Navico Holding As Sonar rendering systems and associated methods
US9268020B2 (en) 2012-02-10 2016-02-23 Navico Holding As Sonar assembly for reduced interference
US9622701B2 (en) 2012-02-27 2017-04-18 Orthosensor Inc Muscular-skeletal joint stability detection and method therefor
US9271675B2 (en) 2012-02-27 2016-03-01 Orthosensor Inc. Muscular-skeletal joint stability detection and method therefor
US9844335B2 (en) 2012-02-27 2017-12-19 Orthosensor Inc Measurement device for the muscular-skeletal system having load distribution plates
US9354312B2 (en) 2012-07-06 2016-05-31 Navico Holding As Sonar system using frequency bursts
US20140135744A1 (en) 2012-11-09 2014-05-15 Orthosensor Inc Motion and orientation sensing module or device for positioning of implants
US9492238B2 (en) 2013-03-18 2016-11-15 Orthosensor Inc System and method for measuring muscular-skeletal alignment to a mechanical axis
US11793424B2 (en) 2013-03-18 2023-10-24 Orthosensor, Inc. Kinetic assessment and alignment of the muscular-skeletal system and method therefor
WO2017070386A1 (en) * 2015-10-21 2017-04-27 Chirp Microsystems, Inc. Quadrature amplitude modulation circuitry for ultrasonic transducer
US10151829B2 (en) 2016-02-23 2018-12-11 Navico Holding As Systems and associated methods for producing sonar image overlay
EP3681381A1 (en) 2017-09-14 2020-07-22 Orthosensor Inc. Non-symmetrical insert sensing system and method therefor
US11367425B2 (en) 2017-09-21 2022-06-21 Navico Holding As Sonar transducer with multiple mounting options
US11812978B2 (en) 2019-10-15 2023-11-14 Orthosensor Inc. Knee balancing system using patient specific instruments

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443113B1 (fr) * 1978-06-30 1985-12-06 Deutsch Pruef Messgeraete Procede et dispositif d'emission d'impulsions acoustiques, particulierement dans le domaine des ultra-sons, et application de ces impulsions notamment au controle non destructif de materiaux
WO1996004589A1 (en) * 1994-08-05 1996-02-15 Acuson Corporation Method and apparatus for transmit beamformer system
US6005827A (en) * 1995-03-02 1999-12-21 Acuson Corporation Ultrasonic harmonic imaging system and method
US5833614A (en) 1997-07-15 1998-11-10 Acuson Corporation Ultrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
US6123671A (en) * 1998-12-31 2000-09-26 General Electric Company Method and apparatus for distributed, agile calculation of beamforming time delays and apodization values
US6157593A (en) * 1999-01-14 2000-12-05 The United States Of America As Represented By The Secretary Of The Navy Power envelope shaper
US6243323B1 (en) * 1999-01-27 2001-06-05 Delphi Technologies, Inc. System and method for eliminating audible noise for ultrasonic transducer
US6117082A (en) * 1999-03-31 2000-09-12 Acuson Corporation Medical diagnostic ultrasound imaging system and method with fractional harmonic seed signal
US6709395B2 (en) * 2002-06-25 2004-03-23 Koninklijke Philips Electronics N.V. System and method for electronically altering ultrasound scan line origin for a three-dimensional ultrasound system

Also Published As

Publication number Publication date
GB2395788A8 (en) 2006-07-03
US7215599B2 (en) 2007-05-08
GB2395788A (en) 2004-06-02
JP2004177276A (ja) 2004-06-24
GB0326946D0 (en) 2003-12-24
US20040184351A1 (en) 2004-09-23
GB2395788B (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4195276B2 (ja) 超音波送信装置、超音波送受信装置およびソナー装置
JP4116930B2 (ja) 超音波送信装置、超音波送受信装置、および探知装置
US9202457B2 (en) Apparatus for driving two-dimensional transducer array, medical imaging system, and method of driving two-dimensional transducer array
US7393324B2 (en) Ultrasonic transmitting and receiving apparatus
JP5238438B2 (ja) 超音波診断装置
CN102449499A (zh) 使用自适应数据减少的超声波成像测量装置
JP4057812B2 (ja) 超音波送受信装置およびスキャニングソナー
JP2012249928A (ja) 超音波診断装置および超音波画像生成方法
US11480674B2 (en) Ultrasound imaging system with transmit apodization
US20220416910A1 (en) Ultrasound imaging system with transmit apodization
JP2002058671A (ja) 超音波診断装置
JP2008167876A (ja) 超音波診断装置
KR101123008B1 (ko) 컬러 플로우 영상 촬상 방법과 그를 위한 초음파 장치
JP6459744B2 (ja) 超音波検査装置及び超音波検査装置の制御方法
JP4184219B2 (ja) 超音波送受信装置およびスキャニングソナー
US11719794B2 (en) Ultrasound probe and processing method
JP4527999B2 (ja) 超音波診断装置
JPH08173431A (ja) 超音波診断装置
WO2020020867A1 (en) Ultrasound imaging system with selectable transmit aperture waveforms
JPH0678922A (ja) 超音波診断装置
JPH0249104B2 (ja)
JP2006000287A (ja) 超音波送受信装置
EP2290394B1 (en) Adaptively Setting a Transmit Frequency in an Ultrasound System
JP2000300564A (ja) 超音波診断装置
JP2005296206A (ja) 超音波診断装置及び送信波形の設計方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

R150 Certificate of patent or registration of utility model

Ref document number: 4195276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees