JP4187352B2 - Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board - Google Patents

Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board Download PDF

Info

Publication number
JP4187352B2
JP4187352B2 JP15449799A JP15449799A JP4187352B2 JP 4187352 B2 JP4187352 B2 JP 4187352B2 JP 15449799 A JP15449799 A JP 15449799A JP 15449799 A JP15449799 A JP 15449799A JP 4187352 B2 JP4187352 B2 JP 4187352B2
Authority
JP
Japan
Prior art keywords
resin
wiring board
printed wiring
multilayer printed
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15449799A
Other languages
Japanese (ja)
Other versions
JP2000349435A (en
Inventor
東冬 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP15449799A priority Critical patent/JP4187352B2/en
Priority to EP00931571A priority patent/EP1194022B1/en
Priority to EP09156837A priority patent/EP2086299A1/en
Priority to EP09156841A priority patent/EP2086300A1/en
Priority to US09/979,388 priority patent/US6828510B1/en
Priority to PCT/JP2000/003377 priority patent/WO2000076281A1/en
Priority to EP06123074A priority patent/EP1744609B1/en
Priority to DE60031680T priority patent/DE60031680T2/en
Priority to MYPI20002406A priority patent/MY125537A/en
Priority to TW089110559A priority patent/TW471244B/en
Publication of JP2000349435A publication Critical patent/JP2000349435A/en
Priority to US10/921,525 priority patent/US7985930B2/en
Priority to US12/171,794 priority patent/US8288664B2/en
Application granted granted Critical
Publication of JP4187352B2 publication Critical patent/JP4187352B2/en
Priority to US12/694,322 priority patent/US8283573B2/en
Priority to US12/887,197 priority patent/US20110024164A1/en
Priority to US12/913,258 priority patent/US8288665B2/en
Priority to US13/089,378 priority patent/US8822828B2/en
Priority to US13/169,736 priority patent/US8782882B2/en
Priority to US13/169,674 priority patent/US8745863B2/en
Priority to US13/432,471 priority patent/US8822830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
ICチップなどの電子部品を載置するパッケージ基板に用い得るビルドアップ多層プリント配線板に関し、特にコア基板に層間樹脂絶縁層をビルドアップしてなるビルドアップ多層プリント配線板及びビルドアップ多層プリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
従来、ビルドアップ多層プリント配線板は、例えば、特開平9−130050号に開示される方法にて製造されている。
すなわち、スルーホールを形成したコア基板の上に層間樹脂絶縁層を積層し、該層間樹脂絶縁層の上に回路パターンを形成する。これを繰り返すことにより、ビルドアップ多層プリント配線板が得られる。
【0003】
【発明が解決しようとする課題】
現在、コア基板にスルーホールを形成する際に、ドリルにより通孔を穿設している。このため、通孔の径として、300μmが最小限界であり、スルーホールの密度をドリル径で決定される値以上高めることができなかった。このため、コア基板にレーザにより通孔を穿設する方法が検討されているが、コア基板は1mm程度の厚みがあるため、微細な通孔を形成することは難しかった。
【0004】
一方、パッケージ基板として用いられる多層プリント配線板では、ICチップに発生する熱を効率良く発散させれる必要がある。ここで、多層プリント配線板は、1mm程度の積層樹脂板からなるコア基板に、数10μmの層間樹脂絶縁層及び配線層を積層してなる。このため、多層プリント配線板の厚みとしては、コア基板が大半を占めることになる。即ち、コア基板が、多層プリント配線板の厚みを厚くし、熱伝導性を下げさせる原因となっていた。
【0005】
本発明は上述した課題を解決するためなされたものであり、その目的とするところは、スルーホールの配設密度を高め得ると共に、厚みを薄くできるビルドアップ多層プリント配線板及び該ビルドアップ多層プリント配線板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上述した課題を解決するため、請求項1では、
表面と裏面に導体回路が形成されたコア基板に層間樹脂絶縁層をビルドアップしてなるビルドアップ多層プリント配線板において、
前記コア基が、回路パターンを2層の樹脂で挟んでなり、当該樹脂に形成された前記回路パターンへ至る非貫通孔をめっきで充填することで、スルーホールとしたことを技術的特徴とする。
【0008】
請求項は、少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法にある:
(A)上面に回路パターンの形成された樹脂絶縁層の上層に、樹脂絶縁層を形成してコア基板とする工程;
(B)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(C)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(D)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
【0009】
請求項は、少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法にある:
(A)樹脂絶縁層に金属層を積層して成る片面金属張り樹脂板の金属層をエッチングして、回路パターンを形成する工程;
(B)前記回路パターン上に、樹脂絶縁層となる樹脂フィルムを貼り付けコア基板とする工程;
(C)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(D)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(E)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
【0010】
請求項は、少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法にある:
(A)樹脂絶縁層に金属層を積層して成る片面金属張り樹脂板の金属層をエッチングして、回路パターンを形成する工程;
(B)前記回路パターン上に、樹脂を塗布した後に研磨して、回路パターンを平坦にする工程;
(C)前記回路パターン上に樹脂絶縁層となる樹脂フィルムを貼り付けコア基板とする工程;
(D)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(E)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(F)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
【0011】
請求項の多層プリント配線板及び請求項の多層プリント配線板の製造方法では、回路パターンを樹脂で挟むことでコア基板の強度を保つため、コア基板を薄く形成することが可能となり、多層プリント配線板の厚みを減らすことができる。また、回路パターンへ至る非貫通孔を樹脂層に形成すればよいため、従来のコア基板と比較してレーザにより穿設する通孔の深さが半分以下になる。従って、レーザにより容易に微細な非貫通孔を穿設でき、小径のスルーホールを形成することが可能になるので、多層プリント配線板の集積度を高めることができる。更に、コア基板が多層になるので、コア基板を構成する樹脂間の回路パターンで配線を取り回すことができ、多層プリント配線板の層数を削減することができる。
【0012】
請求項3、4の多層プリント配線板の製造方法では、回路パターンを樹脂で挟むことでコア基板の強度を保つため、コア基板を薄く形成することが可能となり、多層プリント配線板の厚みを減らすことができる。また、回路パターンへ至る非貫通孔を樹脂層に形成すればよいため、従来のコア基板と比較してレーザにより穿設する通孔の深さが半分以下になる。従って、レーザにより容易に微細な非貫通孔を穿設でき、小径のスルーホールを形成することが可能になるので、多層プリント配線板の集積度を高めることができる。更に、コア基板が多層になるので、コア基板を構成する樹脂間の回路パターンで配線を取り回すことができ、多層プリント配線板の層数を削減することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について図を参照して説明する。
先ず、本発明の第1実施形態に係る多層プリント配線板の構成について、断面図を示す図6を参照して説明する。
図6に示すように、多層プリント配線板10では、コア基板30の表面及び裏面に導体回路34、34が形成され、更に、該導体回路34、34の上に層間樹脂絶縁層40、40が形成されている。該層間樹脂絶縁層40には、ビア52及び導体回路54が配設されており、該層間樹脂絶縁層40、40上の上層にはソルダーレジスト60、60が形成されており、該ソルダーレジスト60の開口部62を介して、ビア52及び導体回路54に半田バンプ68が形成されている。
【0014】
本実施形態の多層プリント配線板においては、コア基板30が、金属層(回路パターン)18を下層絶縁層14及び上層絶縁層20で挟んでなる。ここで、回路パターン18の上下に対応するようにビア32を設けることでスルーホール36としている。一方、回路パターン18の上下のビア32の位置をずらして配置することで、当該回路パターン18を介して配線を取り回している。
【0015】
本実施形態では、金属層(回路パターン)18を樹脂(絶縁層)20,14で挟むことで強度を保つため、コア基板30を薄く形成することが可能となり、多層プリント配線板を厚みを減らし、熱伝導性を高めることができる。
【0016】
本実施形態では、コア基板30の下層絶縁層14及び上層絶縁層20に金属層18へ至る非貫通孔22をレーザ加工にて形成し、めっきで充填することでビア32としている。ここで、金属層18へ至る非貫通孔22を下層絶縁層14及び上層絶縁層20に形成すればよいため、従来のコア基板と比較してレーザにて穿設する通孔の深さが半分以下になる。即ち、従来技術では、スルーホール用の通孔を下層絶縁層14と上層絶縁層20とを加えた厚みに相当する基板に穿設する必要があった。これに対して、本実施形態では、下層絶縁層14と上層絶縁層20とに別々に通孔を穿設すればよいため、通孔の深さは半分になる。従って、レーザにより容易に微細な非貫通孔を穿設でき、小径のスルーホールを形成することが可能になるので、多層プリント配線板の集積度を高めることができる。
【0017】
更に、コア基板30が多層になるので、コア基板を構成する下層絶縁層14及び上層絶縁層20間の金属層(回路パターン)18で配線を取り回すことができ、多層プリント配線板の層数を削減することができる。
【0018】
ひき続き、図6を参照して上述した多層プリント配線板の製造方法について、図1〜図5を参照して説明する。
(1) 厚さ30〜200μmの樹脂からなる基板(下層絶縁層)14の上面に5〜50μmの銅箔122がラミネートされている片面銅張板10を出発材料とする(図1の工程(A))。ここで、下層絶縁層14としては、ガラスクロス又アライミドクロスにエポキシ、BT(ビスマレイミドトリアジン)、ポリイミド、オレフィンを浸漬してなるもの他、ガラスクロス、アライミドクロス等の心材を有さない樹脂、或いは、補強樹脂層をラミネートした樹脂フィルムを用いることができる。
【0019】
まず、この片面銅張板10をパターン状にエッチングすることにより、基板14の上面に回路パターン18を形成する(工程(B))。そして、厚さ30〜200μmの樹脂からなるフィルム20αを、回路パターン18の上にプレスして貼り付ける(工程(C))。ここで、樹脂フィルム20αとしては、上述したガラスクロス又はアライミドクロスにエポキシ、BT、ポリイミド、オレフィンを浸漬したもの、更には、ガラスクロス、アライミドクロス等の心材を有さない樹脂を用いることができる。即ち、下層絶縁層14と上層絶縁層20とを同じ材質で構成することも、また、異なる材質で構成することも可能であるが、多層プリント配線板の特性としては、同じ材質、構成(心材の有無)のものが望ましい。一方、異なる材質・構成の物を用いれば、材料の選択の幅が広がる。なお、ガラスクロス、アライミドクロス等の心材を有する樹脂にて下層絶縁層14及び上層絶縁層20を構成することで、コア基板30の強度を高めることができる。他方、心材を用いないことで、心材を介しての金属マイグレーションが無くなり、スルーホール間の絶縁性を長期に渡り保つことができる。ここでは、樹脂フィルムを貼り付けているが、この代わりに樹脂を塗布してから硬化させることも可能である。
【0020】
その後、樹脂フィルム20αを加熱して硬化させ上層絶縁層20とした後、CO2レーザ、YAGレーザ又はエキシマレーザにより、上層絶縁層20及び下層絶縁層14に、回路18パターンへ至る開口径100〜250μmの非貫通孔22を形成する(工程(D))。本実施形態では、上層絶縁層20及び下層絶縁層14の厚みが30〜200μmと薄いので、レーザで微細な孔を明けることができる。
【0021】
デスミヤ処理を施した後、パラジウム触媒を付与し、無電解めっき液へ浸漬して、コア基板30の表面に均一に厚さ15μmの無電解めっき膜24を析出させる(工程(E))。ここでは、無電解めっきを用いているが、スパッタにより銅、ニッケル等の金属膜を形成することも可能である。スパッタはコスト的には不利であるが、樹脂との密着性を改善できる利点がある。
【0022】
引き続き、コア基板30の表面に感光性ドライフィルムを張り付け、マスクを載置して、露光・現像処理し、厚さ15μmのめっきレジストレジスト26を形成する(図2の工程(F))。そして、コア基板30を無電解めっき液に浸漬し、無電解めっき膜24を介して電流を流してレジスト26の非形成部に電解めっき28を形成する。この際に、非貫通孔22の表面を平坦にするように、電解めっき28を充填する(工程(G))。
【0023】
そして、レジスト26を5%KOH で剥離除去した後、硫酸と過酸化水素混合液でエッチングし、めっきレジスト下の無電解めっき膜24を溶解除去し、無電解めっき24及び電解銅めっき28からなる厚さ18μm(10〜30μm)の導体回路34及びビア32を得る(工程(H))。本実施形態では、回路パターン18の上下に対応するようにビア32を設けることでスルーホール36としている。一方、回路パターン18の上下のビア32の位置をずらして配置することで、当該回路パターン18を介して配線を取り回している。
【0024】
更に、クロム酸に3分間浸漬して、導体回路34間のコア基板30の表面を1μmエッチング処理し、表面のパラジウム触媒を除去する。更に、第2銅錯体と有機酸とを含有するエッチング液により、導体回路34及びビア32の表面に粗化面(図示せず)を形成し、さらにその表面にSn置換を行う。
【0025】
エポキシ、BT、ポリイミド、オレフィン等からなる熱硬化性樹脂36αをコア基板30の表面に塗布し、乾燥(プリベーク)を行う(工程(I))。次いで、該樹脂36αにCO2レーザ、YAGレーザ又はエキシマレーザにより、導体回路34及びビア32へ至る開口径100〜250μmの非貫通孔42を形成した後、加熱して非貫通孔42を有する層間樹脂絶縁層40を形成する(図3の工程(J))。層間樹脂絶縁層を構成する樹脂としては、上述した下層絶縁層14及び上層絶縁層20と同じ樹脂を用いることもでき、異なる樹脂を用いることも可能である。また、熱硬化性樹脂の他、熱硬化性樹脂と熱可塑性樹脂との混合物を用いることができ、更に、シリコン、樹脂等のフィラーを混入することができる。ここで、溶解性フィラーを混合し、該フィラーを薬液で溶解することで、層間樹脂絶縁層の表面を粗化することもできる。なお、ここでは樹脂を塗布しているが、上層絶縁層20と同様に、樹脂フィルムを用いることもできる。
【0026】
デスミヤ処理を施した後、パラジウム触媒を付与し、無電解めっき液へ浸漬して、層間樹脂絶縁層40の表面に均一に厚さ15μmの無電解めっき膜44を析出させる(工程(K))。
【0027】
引き続き、無電解めっき膜44の表面にめっきレジストレジスト46を形成する(工程(L))。そして、レジスト46の非形成部に電解めっき48を形成する(図4の工程(G))。
【0028】
そして、レジスト46を剥離除去した後、エッチングし、めっきレジスト下の無電解めっき膜42を溶解除去し、無電解めっき42及び電解銅めっき48からなる厚さ18μm(10〜30μm)の導体回路54及びビア52を得る(工程(N))。その後、導体回路54及びビア52の表面に粗化層(図示せず)を設ける。
【0029】
上述した多層プリント配線板にはんだバンプを形成する。基板の両面に、ソルダーレジスト組成物を20μmの厚さで塗布し、乾燥処理を行った後、円パターン(マスクパターン)が描画された厚さ5mmのフォトマスクフィルム(図示せず)を密着させて載置し、紫外線で露光し、現像処理する。そしてさらに、加熱処理し、はんだパッド部分(バイアホールとそのランド部分を含む)の開口62を有するソルダーレジスト層(厚み20μm)60を形成する(図5の工程(O))。
【0030】
その後、塩化ニッケル2.3 ×10−1mol/l、次亜リン酸ナトリウム2.8 ×10−1mol/l、クエン酸ナトリウム1.6 ×10−1mol/l、からなるpH=4.5の無電解ニッケルめっき液に、20分間浸漬して、開口部62に厚さ5μmのニッケルめっき層64を形成する。さらに、その基板を、シアン化金カリウム7.6 ×10−3mol/l、塩化アンモニウム1.9 ×10−1mol/l、クエン酸ナトリウム1.2 ×10−1mol/l、次亜リン酸ナトリウム1.7 ×10−1mol/lからなる無電解金めっき液に80℃の条件で7.5分間浸漬して、ニッケルめっき層64上に厚さ0.03μmの金めっき層66を形成する(工程(P))。
【0031】
そして、ソルダーレジスト層60の開口部62に、半田ペーストを充填する(図示せず)。その後、開口部62に充填された半田を 200℃でリフローすることにより、半田バンプ(半田体)68を形成する(図6参照)。
【0032】
フラックス洗浄後、ルーターを持つ装置で、基板を適当な大きさに分割切断した後、プリント配線板の短絡、断線を検査するチェッカー工程を経て、所望の該当するプリント配線板を得る。
【0033】
引き続き、本発明の第2実施形態に係る多層プリント配線板の製造方法について、図7を参照して説明する。
この第2実施形態では、上述した第1実施形態の工程(A)、(B)と同様である。但し、第1実施形態では、工程(C)にて上層絶縁層20となるフィルム20を直接貼り付けた。これに対して、第2実施形態では、図7の工程(A)に示すように、先ず、樹脂19を回路パターン18上に塗布し、樹脂をBステージ状態に成るまで半硬化させた後、フィルム20αをプレスにより圧着させる(工程(B))。この第2実施形態のコア基板は、第1実施形態と比較して表面の平滑性に優れる。
【0034】
引き続き、本発明の第3実施形態に係る多層プリント配線板の製造方法について、図8を参照して説明する。
この第3実施形態では、上述した第2実施形態の工程(A)と同様である。但し、第2実施形態では、工程(B)にて樹脂19の上に上層絶縁層20となるフィルム20を直接貼り付けた。これに対して、第3実施形態では、図8の工程(A)に示すように樹脂19を回路パターン18上に塗布した後、樹脂をBステージ状態に成るまで半硬化させる。その後、該樹脂19を、#600 のベルト研磨紙(三共理化学製)を用いたベルトサンダー研磨により、バフ研磨を行って平滑化させる(工程(B))。次いで、加熱処理を行って樹脂19を硬化させる。その後、フィルム20αをプレスにより圧着させる(工程(C))。この第2実施形態のコア基板は、第2実施形態と比較して表面の平滑性に更に優れる。
【0035】
この第3実施形態においては、コア基板30にビア32及び導体回路34を形成した後(図2の工程(H))、層間樹脂絶縁層となる樹脂40αを塗布する前に(図2の工程(I))、上述した樹脂の塗布及び研磨を行いビア32及び導体回路34の表面の平滑化を行うことができる。
【0036】
引き続き、本発明の第4実施形態に係る多層プリント配線板の製造方法について、図9、図10を参照して説明する。
この第4実施形態では、片面銅張り板110として、第1実施形態のものより銅箔12の厚みの厚いもの(100μm)を用いる(図9の工程(A))。先ず、当該片面銅張り板110に外周にマスクを貼り、エッチングを行うことで、中央部分の銅箔の厚さを30μm程度まで薄くする(工程(B))。図10(A)は、工程(B)に示す該片面銅張り板110の平面図を示している。ここで、図9の工程(B)の図は、図10(A)中のX−X断面、即ち、右端部近傍に相当している。
【0037】
次に、銅箔12をパターンエッチングして、中央部に回路パターン18を形成し、外周部には銅箔12を厚み100μmのまま残す(工程(C))。図10(B)は、工程(C)の該片面銅張り板110の平面図を示している。図中に示すように、片面銅張り板110の外周には、銅箔12が残り、銅箔12の内側には、9個の回路パターン70が形成されている。この回路パターン70は、図9(C)に示す回路パターン18の集合したものを表している。
【0038】
本実施形態の片面銅張り板110は、9個取り用であり、以下の工程で第1実施形態と同様に層間樹脂絶縁層及び回路等が形成された後、裁断されて9個の多層プリント配線板が形成されることになる。この裁断の際に、銅箔12の残された外周部は廃棄されることになる。
【0039】
この第4実施形態に係る多層プリント配線板では、下層絶縁層14の外周に厚みの厚い銅箔12を強度保持のため残しておくので、薄い回路パターン(金属層)18、下層絶縁層14及び上層絶縁層20(コア基板)を用いても、製造工程に置いてコア基板に反りが発生することがない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る多層プリント配線板の製造工程図である。
【図2】本発明の第1実施形態に係る多層プリント配線板の製造工程図である。
【図3】本発明の第1実施形態に係る多層プリント配線板の製造工程図である。
【図4】本発明の第1実施形態に係る多層プリント配線板の製造工程図である。
【図5】本発明の第1実施形態に係る多層プリント配線板の製造工程図である。
【図6】本発明の第1実施形態に係る多層プリント配線板の断面である。
【図7】本発明の第2実施形態に係る多層プリント配線板の製造工程図である。
【図8】本発明の第3実施形態に係る多層プリント配線板の製造工程図である。
【図9】本発明の第4実施形態に係る多層プリント配線板の製造工程図である。
【図10】図10(A)、図10(B)は、本発明の第4実施形態に係る多層プリント配線板を構成する銅張り積層板の平面図である。
【符号の説明】
10 片面銅張り板
12 銅箔(金属層)
14 基板
18 回路パターン
20 上層絶縁層
22 非貫通孔
24 無電解めっき膜
26 レジスト
28 電解めっき
30 コア基板
32 ビア
34 導体回路
36 スルーホール
40 層間樹脂絶縁層
42 非貫通孔
44 無電解めっき膜
46 レジスト
48 電解めっき
52 ビア
54 導体回路
60 ソルダーレジスト
62 開口部
64 ニッケルめっき膜
66 金めっき膜
68 半田バンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a build-up multilayer printed wiring board that can be used for a package substrate on which an electronic component such as an IC chip is placed. In particular, a build-up multilayer printed wiring board and a build-up multilayer printed wiring board formed by building up an interlayer resin insulation layer on a core substrate. the method of manufacturing the present invention relates.
[0002]
[Prior art]
Conventionally, a build-up multilayer printed wiring board is manufactured by, for example, a method disclosed in JP-A-9-130050.
That is, an interlayer resin insulation layer is laminated on a core substrate in which through holes are formed, and a circuit pattern is formed on the interlayer resin insulation layer. By repeating this, a build-up multilayer printed wiring board is obtained.
[0003]
[Problems to be solved by the invention]
Currently, when a through hole is formed in a core substrate, a through hole is formed by a drill. For this reason, 300 μm is the minimum limit as the diameter of the through hole, and the density of the through hole could not be increased by more than the value determined by the drill diameter. For this reason, a method of drilling a through hole with a laser in the core substrate has been studied. However, since the core substrate has a thickness of about 1 mm, it is difficult to form a fine through hole.
[0004]
On the other hand, in a multilayer printed wiring board used as a package substrate, it is necessary to efficiently dissipate heat generated in the IC chip. Here, the multilayer printed wiring board is formed by laminating an interlayer resin insulating layer and a wiring layer of several tens of μm on a core substrate made of a laminated resin board of about 1 mm. For this reason, the core substrate occupies most of the thickness of the multilayer printed wiring board. That is, the core substrate is a cause of increasing the thickness of the multilayer printed wiring board and lowering the thermal conductivity.
[0005]
The present invention has been made to solve the above problems, it is an object with can enhance the arrangement density of the through-hole build-up can be thinned multilayer printed wiring board and the build-up multilayer printed It is providing the manufacturing method of a wiring board.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, in claim 1,
In a build-up multilayer printed wiring board formed by building up an interlayer resin insulation layer on a core substrate having conductor circuits formed on the front and back surfaces ,
The core board is made by sandwiching a resin of the circuit pattern 2 layers, a non-through hole leading to the circuit pattern formed on the resin Rukoto be filled with plating, technical characterized in that a through hole And
[0008]
A second aspect of the present invention is a manufacturing method of a build-up multilayer printed wiring board, comprising at least the following steps (A) to ( D ):
(A) A step of forming a resin insulating layer on a resin insulating layer having a circuit pattern formed on the upper surface to form a core substrate;
(B) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(C) filling the non-through holes of the resin insulation layer with plating to form through holes ;
(D) A step of building up an interlayer resin insulation layer on the core substrate .
[0009]
A third aspect of the present invention is a method for producing a build-up multilayer printed wiring board, comprising at least the following steps (A) to ( E ):
(A) forming a circuit pattern by etching a metal layer of a single-sided metal-clad resin plate formed by laminating a metal layer on a resin insulating layer ;
(B) on the circuit pattern, the step of the paste core substrate resin film made of a resin insulating layer;
(C) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(D) filling the non-through holes of the resin insulating layer with plating to form through holes ;
(E) A step of building up an interlayer resin insulation layer on the core substrate .
[0010]
A fourth aspect of the present invention is a method for producing a build-up multilayer printed wiring board, comprising at least the following steps (A) to ( F ):
(A) forming a circuit pattern by etching a metal layer of a single-sided metal-clad resin plate formed by laminating a metal layer on a resin insulating layer ;
(B) A step of applying a resin on the circuit pattern and then polishing to flatten the circuit pattern;
(C) A step of attaching a resin film to be a resin insulating layer on the circuit pattern to form a core substrate;
(D) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(E) filling the non-through holes of the resin insulating layer with plating to form through holes ;
(F) A step of building up an interlayer resin insulation layer on the core substrate .
[0011]
In claim 1 of the multilayer printed wiring board and a method for manufacturing a multilayer printed wiring board according to claim 2, in order to maintain the strength of the core substrate by sandwiching the circuit pattern with a resin, it is possible to form a thin core substrate, multilayer The thickness of the printed wiring board can be reduced. Further, since a non-through hole reaching the circuit pattern may be formed in the resin layer, the depth of the through hole drilled by the laser is less than half that of the conventional core substrate. Therefore, a fine non-through hole can be easily formed by a laser, and a small-diameter through hole can be formed, so that the degree of integration of the multilayer printed wiring board can be increased. Furthermore, since the core substrate is a multilayer, it is possible to Torimawasu the wiring circuit pattern between the resin constituting the core substrate, it is possible to reduce the number of layers of the multilayer printed wiring board.
[0012]
In the method for producing a multilayer printed wiring board according to claims 3 and 4 , since the strength of the core substrate is maintained by sandwiching the circuit pattern with resin, the core substrate can be formed thin, and the thickness of the multilayer printed wiring board is reduced. be able to. Further, since a non-through hole reaching the circuit pattern may be formed in the resin layer, the depth of the through hole drilled by the laser is less than half that of the conventional core substrate. Therefore, a fine non-through hole can be easily formed by a laser, and a small-diameter through hole can be formed, so that the degree of integration of the multilayer printed wiring board can be increased. Furthermore, since the core substrate is multilayered, wiring can be routed with a circuit pattern between the resins constituting the core substrate, and the number of layers of the multilayer printed wiring board can be reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the configuration of the multilayer printed wiring board according to the first embodiment of the present invention will be described with reference to FIG. 6 showing a sectional view.
As shown in FIG. 6, in the multilayer printed wiring board 10, conductor circuits 34, 34 are formed on the front and back surfaces of the core substrate 30, and interlayer resin insulation layers 40, 40 are further formed on the conductor circuits 34, 34. Is formed. The interlayer resin insulation layer 40 is provided with vias 52 and conductor circuits 54, and solder resists 60, 60 are formed on the interlayer resin insulation layers 40, 40. Solder bumps 68 are formed on the via 52 and the conductor circuit 54 through the opening 62.
[0014]
In the multilayer printed wiring board of the present embodiment, the core substrate 30 includes a metal layer (circuit pattern) 18 sandwiched between the lower insulating layer 14 and the upper insulating layer 20. Here, the through holes 36 are formed by providing the vias 32 so as to correspond to the upper and lower sides of the circuit pattern 18. On the other hand, the wirings are routed through the circuit pattern 18 by shifting the positions of the upper and lower vias 32 of the circuit pattern 18.
[0015]
In this embodiment, since the strength is maintained by sandwiching the metal layer (circuit pattern) 18 between the resins (insulating layers) 20 and 14, the core substrate 30 can be formed thin, and the thickness of the multilayer printed wiring board is reduced. , Heat conductivity can be increased.
[0016]
In the present embodiment, a non-through hole 22 reaching the metal layer 18 is formed in the lower insulating layer 14 and the upper insulating layer 20 of the core substrate 30 by laser processing, and the via 32 is formed by filling with plating. Here, since the non-through hole 22 reaching the metal layer 18 may be formed in the lower insulating layer 14 and the upper insulating layer 20, the depth of the through hole drilled by the laser is half that of the conventional core substrate. It becomes the following. That is, in the prior art, it was necessary to drill through holes for through holes in a substrate corresponding to the thickness of the lower insulating layer 14 and the upper insulating layer 20 added. On the other hand, in the present embodiment, since the through holes may be separately formed in the lower insulating layer 14 and the upper insulating layer 20, the depth of the through holes is halved. Therefore, a fine non-through hole can be easily formed by a laser, and a small-diameter through hole can be formed, so that the degree of integration of the multilayer printed wiring board can be increased.
[0017]
Furthermore, since the core substrate 30 is multilayered, wiring can be routed by the metal layer (circuit pattern) 18 between the lower insulating layer 14 and the upper insulating layer 20 constituting the core substrate, and the number of layers of the multilayer printed wiring board Can be reduced.
[0018]
Next, a method for manufacturing the multilayer printed wiring board described above with reference to FIG. 6 will be described with reference to FIGS.
(1) A single-sided copper-clad board 10 in which a copper foil 122 having a thickness of 5 to 50 μm is laminated on the upper surface of a substrate (lower insulating layer) 14 made of a resin having a thickness of 30 to 200 μm is used as a starting material (step of FIG. A)). Here, the lower insulating layer 14 does not have a core material such as glass cloth or aramid cloth other than a glass cloth or an aramid cloth dipped in epoxy, BT (bismaleimide triazine), polyimide or olefin. A resin or a resin film laminated with a reinforcing resin layer can be used.
[0019]
First, the circuit pattern 18 is formed on the upper surface of the substrate 14 by etching the single-sided copper-clad plate 10 into a pattern (step (B)). Then, a film 20α made of a resin having a thickness of 30 to 200 μm is pressed and pasted on the circuit pattern 18 (step (C)). Here, as the resin film 20α, epoxy resin, BT, polyimide, olefin soaked in the above-described glass cloth or araimide cloth, and further, a resin having no core material such as glass cloth, araimide cloth, or the like is used. Can do. That is, the lower insulating layer 14 and the upper insulating layer 20 can be made of the same material or different materials, but the characteristics of the multilayer printed wiring board are the same material and structure (core material). Or not) is desirable. On the other hand, if materials of different materials / configurations are used, the range of materials selection is expanded. In addition, the intensity | strength of the core board | substrate 30 can be raised by comprising the lower insulating layer 14 and the upper insulating layer 20 with resin which has core materials, such as glass cloth and an aramid cloth. On the other hand, by not using the core material, metal migration through the core material is eliminated, and insulation between the through holes can be maintained for a long time. Here, although the resin film is affixed, it is also possible to harden after apply | coating resin instead of this.
[0020]
Thereafter, the resin film 20α is heated and cured to form the upper insulating layer 20, and then an opening diameter of 100 to 250 μm reaching the circuit 18 pattern in the upper insulating layer 20 and the lower insulating layer 14 by a CO 2 laser, a YAG laser or an excimer laser. The non-through hole 22 is formed (step (D)). In the present embodiment, since the upper insulating layer 20 and the lower insulating layer 14 are as thin as 30 to 200 μm, fine holes can be formed with a laser.
[0021]
After the desmear treatment, a palladium catalyst is applied and immersed in an electroless plating solution to deposit an electroless plating film 24 having a thickness of 15 μm uniformly on the surface of the core substrate 30 (step (E)). Here, electroless plating is used, but a metal film such as copper or nickel can be formed by sputtering. Sputtering is disadvantageous in terms of cost, but has an advantage of improving adhesion with the resin.
[0022]
Subsequently, a photosensitive dry film is pasted on the surface of the core substrate 30, a mask is placed, exposure and development are performed, and a plating resist 26 having a thickness of 15 μm is formed (step (F) in FIG. 2). Then, the core substrate 30 is immersed in an electroless plating solution, and an electric current is passed through the electroless plating film 24 to form the electrolytic plating 28 on the non-formed portion of the resist 26. At this time, the electrolytic plating 28 is filled so as to flatten the surface of the non-through hole 22 (step (G)).
[0023]
Then, the resist 26 is stripped and removed with 5% KOH, and then etched with a mixed solution of sulfuric acid and hydrogen peroxide to dissolve and remove the electroless plating film 24 under the plating resist, and consists of the electroless plating 24 and the electrolytic copper plating 28. A conductor circuit 34 and a via 32 having a thickness of 18 μm (10 to 30 μm) are obtained (step (H)). In the present embodiment, the through hole 36 is formed by providing the via 32 so as to correspond to the upper and lower sides of the circuit pattern 18. On the other hand, the wirings are routed through the circuit pattern 18 by shifting the positions of the upper and lower vias 32 of the circuit pattern 18.
[0024]
Further, it is immersed in chromic acid for 3 minutes, and the surface of the core substrate 30 between the conductor circuits 34 is etched by 1 μm to remove the palladium catalyst on the surface. Further, a roughened surface (not shown) is formed on the surface of the conductor circuit 34 and the via 32 by an etching solution containing a second copper complex and an organic acid, and Sn substitution is performed on the surface.
[0025]
A thermosetting resin 36α made of epoxy, BT, polyimide, olefin, or the like is applied to the surface of the core substrate 30 and dried (prebaked) (step (I)). Next, a non-through hole 42 having an opening diameter of 100 to 250 μm reaching the conductor circuit 34 and the via 32 is formed in the resin 36α by a CO 2 laser, a YAG laser or an excimer laser, and then heated to heat the interlayer resin having the non-through hole 42 The insulating layer 40 is formed (step (J) in FIG. 3). As the resin constituting the interlayer resin insulating layer, the same resin as that of the lower insulating layer 14 and the upper insulating layer 20 described above can be used, or a different resin can be used. In addition to a thermosetting resin, a mixture of a thermosetting resin and a thermoplastic resin can be used, and a filler such as silicon or resin can be further mixed therein. Here, the surface of an interlayer resin insulation layer can also be roughened by mixing a soluble filler and dissolving the filler with a chemical solution. In addition, although resin is apply | coated here, a resin film can also be used similarly to the upper insulating layer 20. FIG.
[0026]
After the desmear treatment, a palladium catalyst is applied and immersed in an electroless plating solution to deposit an electroless plating film 44 having a thickness of 15 μm uniformly on the surface of the interlayer resin insulation layer 40 (step (K)). .
[0027]
Subsequently, a plating resist resist 46 is formed on the surface of the electroless plating film 44 (step (L)). Then, electrolytic plating 48 is formed on the portion where the resist 46 is not formed (step (G) in FIG. 4).
[0028]
Then, after the resist 46 is peeled and removed, etching is performed to dissolve and remove the electroless plating film 42 under the plating resist, and a conductor circuit 54 having a thickness of 18 μm (10 to 30 μm) made of the electroless plating 42 and the electrolytic copper plating 48. And the via | veer 52 is obtained (process (N)). Thereafter, a roughened layer (not shown) is provided on the surfaces of the conductor circuit 54 and the via 52.
[0029]
Solder bumps are formed on the multilayer printed wiring board described above. A solder resist composition is applied to both sides of the substrate in a thickness of 20 μm, dried, and then a 5 mm thick photomask film (not shown) on which a circular pattern (mask pattern) is drawn is adhered. And exposed to ultraviolet light for development. Further, heat treatment is performed to form a solder resist layer (thickness 20 μm) 60 having openings 62 in solder pad portions (including via holes and land portions thereof) (step (O) in FIG. 5).
[0030]
Thereafter, an electroless nickel plating solution having a pH of 4.5 comprising nickel chloride 2.3 × 10 −1 mol / l, sodium hypophosphite 2.8 × 10 −1 mol / l, sodium citrate 1.6 × 10 −1 mol / l The nickel plating layer 64 having a thickness of 5 μm is formed in the opening 62 by dipping for 20 minutes. Furthermore, the substrate was made of potassium gold cyanide 7.6 × 10-3 mol / l, ammonium chloride 1.9 × 10-1 mol / l, sodium citrate 1.2 × 10-1 mol / l, sodium hypophosphite 1.7 × 10-1 mol / l. A gold plating layer 66 having a thickness of 0.03 μm is formed on the nickel plating layer 64 by immersing in an electroless gold plating solution of 1 for 7.5 minutes at 80 ° C. (step (P)).
[0031]
Then, a solder paste is filled in the opening 62 of the solder resist layer 60 (not shown). Thereafter, the solder filled in the opening 62 is reflowed at 200 ° C. to form solder bumps (solder bodies) 68 (see FIG. 6).
[0032]
After flux cleaning, the substrate is divided and cut into an appropriate size with an apparatus having a router, and then a check circuit for inspecting a short circuit and disconnection of the printed wiring board is performed to obtain a desired printed wiring board.
[0033]
Next, a method for manufacturing a multilayer printed wiring board according to the second embodiment of the present invention will be described with reference to FIG.
This second embodiment is the same as steps (A) and (B) of the first embodiment described above. However, in the first embodiment, the film 20 to be the upper insulating layer 20 is directly attached in the step (C). On the other hand, in the second embodiment, as shown in the step (A) of FIG. 7, first, the resin 19 is applied on the circuit pattern 18, and the resin is semi-cured until it reaches the B stage state. The film 20α is pressure-bonded by a press (step (B)). The core substrate of the second embodiment is excellent in surface smoothness as compared with the first embodiment.
[0034]
Next, a method for manufacturing a multilayer printed wiring board according to the third embodiment of the present invention will be described with reference to FIG.
This third embodiment is the same as step (A) of the second embodiment described above. However, in 2nd Embodiment, the film 20 used as the upper-layer insulating layer 20 was directly affixed on the resin 19 at the process (B). On the other hand, in the third embodiment, as shown in step (A) of FIG. 8, after the resin 19 is applied on the circuit pattern 18, the resin is semi-cured until it reaches the B stage state. Thereafter, the resin 19 is smoothed by buffing by belt sander polishing using # 600 belt polishing paper (manufactured by Sankyo Rikagaku) (step (B)). Next, heat treatment is performed to cure the resin 19. Thereafter, the film 20α is pressure-bonded by a press (step (C)). The core substrate of the second embodiment is further excellent in surface smoothness as compared with the second embodiment.
[0035]
In the third embodiment, after forming the via 32 and the conductor circuit 34 in the core substrate 30 (step (H) in FIG. 2), before applying the resin 40α to be an interlayer resin insulating layer (step in FIG. 2). (I)), the surface of the via 32 and the conductor circuit 34 can be smoothed by applying and polishing the resin described above.
[0036]
Next, a method for manufacturing a multilayer printed wiring board according to the fourth embodiment of the present invention will be described with reference to FIGS.
In the fourth embodiment, as the single-sided copper-clad plate 110, a copper foil 12 having a thickness (100 μm) thicker than that of the first embodiment is used (step (A) in FIG. 9). First, a mask is attached to the outer periphery of the single-sided copper-clad plate 110, and etching is performed to reduce the thickness of the copper foil at the central portion to about 30 μm (step (B)). FIG. 10A shows a plan view of the single-sided copper-clad plate 110 shown in step (B). Here, the figure of the process (B) of FIG. 9 is equivalent to the XX cross section in FIG. 10 (A), ie, the right end part vicinity.
[0037]
Next, the copper foil 12 is pattern-etched to form a circuit pattern 18 at the center, and the copper foil 12 is left at a thickness of 100 μm at the outer periphery (step (C)). FIG. 10B shows a plan view of the single-sided copper-clad plate 110 in the step (C). As shown in the figure, the copper foil 12 remains on the outer periphery of the single-sided copper-clad plate 110, and nine circuit patterns 70 are formed on the inner side of the copper foil 12. This circuit pattern 70 represents a set of circuit patterns 18 shown in FIG.
[0038]
The single-sided copper-clad board 110 of this embodiment is for 9 pieces, and after the formation of an interlayer resin insulation layer and a circuit in the following steps as in the first embodiment, it is cut and nine multilayer prints are made. A wiring board is formed. At the time of this cutting, the remaining outer peripheral portion of the copper foil 12 is discarded.
[0039]
In the multilayer printed wiring board according to the fourth embodiment, the thick copper foil 12 is left on the outer periphery of the lower insulating layer 14 to maintain strength, so that a thin circuit pattern (metal layer) 18, the lower insulating layer 14, and Even when the upper insulating layer 20 (core substrate) is used, the core substrate is not warped in the manufacturing process.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a multilayer printed wiring board according to a first embodiment of the present invention.
FIG. 2 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.
FIG. 3 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.
FIG. 4 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.
FIG. 5 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.
FIG. 6 is a cross section of the multilayer printed wiring board according to the first embodiment of the present invention.
FIG. 7 is a manufacturing process diagram of the multilayer printed wiring board according to the second embodiment of the present invention.
FIG. 8 is a manufacturing process diagram of the multilayer printed wiring board according to the third embodiment of the present invention.
FIG. 9 is a manufacturing process diagram of the multilayer printed wiring board according to the fourth embodiment of the present invention.
FIGS. 10A and 10B are plan views of a copper-clad laminate constituting a multilayer printed wiring board according to a fourth embodiment of the present invention.
[Explanation of symbols]
10 Single-sided copper-clad plate 12 Copper foil (metal layer)
14 Substrate 18 Circuit Pattern 20 Upper Insulating Layer 22 Non-Through Hole 24 Electroless Plating Film 26 Resist 28 Electroplating 30 Core Substrate 32 Via 34 Conductor Circuit 36 Through Hole 40 Interlayer Resin Insulating Layer 42 Non-Through Hole 44 Electroless Plating Film 46 Resist 48 Electrolytic plating 52 Via 54 Conductor circuit 60 Solder resist 62 Opening 64 Nickel plating film 66 Gold plating film 68 Solder bump

Claims (11)

表面と裏面に導体回路が形成されたコア基板に層間樹脂絶縁層をビルドアップしてなるビルドアップ多層プリント配線板において、
前記コア基板が、回路パターンを2層の樹脂で挟んでなり、当該樹脂に形成された前記回路パターンへ至る非貫通孔をめっきで充填することで、スルーホールとしたことを特徴とするビルドアップ多層プリント配線板。
In a build-up multilayer printed wiring board formed by building up an interlayer resin insulation layer on a core substrate having conductor circuits formed on the front and back surfaces ,
Build the core board is made by sandwiching a resin of the circuit pattern two layers, which in Rukoto to fill the non-through hole leading to the circuit pattern formed on the resin by plating, characterized in that the through hole Up multilayer printed wiring board.
少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法:
(A)上面に回路パターンの形成された樹脂絶縁層の上層に、樹脂絶縁層を形成してコア基板とする工程;
(B)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(C)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(D)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
A method for producing a build-up multilayer printed wiring board comprising at least the following steps (A) to ( D ):
(A) A step of forming a resin insulating layer on a resin insulating layer having a circuit pattern formed on the upper surface to form a core substrate;
(B) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(C) filling the non-through holes of the resin insulation layer with plating to form through holes ;
(D) A step of building up an interlayer resin insulation layer on the core substrate .
少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法:
(A)樹脂絶縁層に金属層を積層して成る片面金属張り樹脂板の金属層をエッチングして、回路パターンを形成する工程;
(B)前記回路パターン上に、樹脂絶縁層となる樹脂フィルムを貼り付けコア基板とする工程;
(C)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(D)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(E)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
A method for producing a build-up multilayer printed wiring board comprising at least the following steps (A) to ( E ):
(A) forming a circuit pattern by etching a metal layer of a single-sided metal-clad resin plate formed by laminating a metal layer on a resin insulating layer ;
(B) A step of attaching a resin film to be a resin insulating layer on the circuit pattern to form a core substrate;
(C) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(D) filling the non-through holes of the resin insulating layer with plating to form through holes ;
(E) A step of building up an interlayer resin insulation layer on the core substrate .
少なくとも以下の(A)〜()の工程を備えることを特徴とするビルドアップ多層プリント配線板の製造方法:
(A)樹脂絶縁層に金属層を積層して成る片面金属張り樹脂板の金属層をエッチングして、回路パターンを形成する工程;
(B)前記回路パターン上に、樹脂を塗布した後に研磨して、回路パターンを平坦にする工程;
(C)前記回路パターン上に樹脂絶縁層となる樹脂フィルムを貼り付けコア基板とする工程;
(D)前記コア基板の樹脂絶縁層に、レーザで前記回路パターンへ至る非貫通孔を形成する工程;
(E)前記樹脂絶縁層の非貫通孔をめっきで充填してスルーホールとする工程
(F)前記コア基板上に層間樹脂絶縁層をビルドアップする工程
A method for producing a build-up multilayer printed wiring board comprising at least the following steps (A) to ( F ):
(A) forming a circuit pattern by etching a metal layer of a single-sided metal-clad resin plate formed by laminating a metal layer on a resin insulating layer ;
(B) A step of applying a resin on the circuit pattern and then polishing to flatten the circuit pattern;
(C) A step of attaching a resin film to be a resin insulating layer on the circuit pattern to form a core substrate;
(D) forming a non-through hole in the resin insulating layer of the core substrate that reaches the circuit pattern with a laser;
(E) filling the non-through holes of the resin insulating layer with plating to form through holes ;
(F) A step of building up an interlayer resin insulation layer on the core substrate .
前記樹脂は心材を有していることを特徴とする請求項1に記載のビルドアップ多層プリント配線板。The build-up multilayer printed wiring board according to claim 1, wherein the resin has a core material. 前記層間樹脂絶縁層は心材を有しない樹脂であることを特徴とする請求項1に記載のビルドアップ多層プリント配線板。The build-up multilayer printed wiring board according to claim 1, wherein the interlayer resin insulation layer is a resin having no core material. 前記樹脂の厚みは30〜200μmであることを特徴とする請求項1に記載のビルドアップ多層プリント配線板。The build-up multilayer printed wiring board according to claim 1, wherein the resin has a thickness of 30 to 200 μm. 前記コア基板は回路パターンの上下で位置がずれているビアを有している請求項1に記載のビルドアップ多層プリント配線板。The build-up multilayer printed wiring board according to claim 1, wherein the core substrate has vias that are displaced in positions above and below the circuit pattern. 前記層間樹脂絶縁層は心材を有していることを特徴とする請求項5に記載のビルドアップ多層プリント配線板。The buildup multilayer printed wiring board according to claim 5, wherein the interlayer resin insulation layer has a core material. 前記樹脂絶縁層は心材を有していることを特徴とする請求項2に記載のビルドアップ多層プリント配線板の製造方法。The method for manufacturing a build-up multilayer printed wiring board according to claim 2, wherein the resin insulating layer has a core material. 前記層間樹脂絶縁層は心材を有していることを特徴とする請求項10に記載のビルドアップ多層プリント配線板の製造方法。The method for manufacturing a buildup multilayer printed wiring board according to claim 10, wherein the interlayer resin insulation layer has a core material.
JP15449799A 1999-06-02 1999-06-02 Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board Expired - Lifetime JP4187352B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP15449799A JP4187352B2 (en) 1999-06-02 1999-06-02 Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board
EP00931571A EP1194022B1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
EP09156837A EP2086299A1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
EP09156841A EP2086300A1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US09/979,388 US6828510B1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
PCT/JP2000/003377 WO2000076281A1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
EP06123074A EP1744609B1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
DE60031680T DE60031680T2 (en) 1999-06-02 2000-05-25 MULTILAYER, PRINTED PCB AND MANUFACTURING METHOD FOR A MULTILAYER, PRINTED PCB
MYPI20002406A MY125537A (en) 1999-06-02 2000-05-30 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board.
TW089110559A TW471244B (en) 1999-06-02 2000-05-31 Multilayer printed circuit board and method of manufacturing multilayer printed circuit board
US10/921,525 US7985930B2 (en) 1999-06-02 2004-08-19 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US12/171,794 US8288664B2 (en) 1999-06-02 2008-07-11 Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board
US12/694,322 US8283573B2 (en) 1999-06-02 2010-01-27 Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board
US12/887,197 US20110024164A1 (en) 1999-06-02 2010-09-21 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US12/913,258 US8288665B2 (en) 1999-06-02 2010-10-27 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US13/089,378 US8822828B2 (en) 1999-06-02 2011-04-19 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US13/169,736 US8782882B2 (en) 1999-06-02 2011-06-27 Method of manufacturing multi-layer printed circuit board
US13/169,674 US8745863B2 (en) 1999-06-02 2011-06-27 Method of manufacturing multi-layer printed circuit board
US13/432,471 US8822830B2 (en) 1999-06-02 2012-03-28 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15449799A JP4187352B2 (en) 1999-06-02 1999-06-02 Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2000349435A JP2000349435A (en) 2000-12-15
JP4187352B2 true JP4187352B2 (en) 2008-11-26

Family

ID=15585547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15449799A Expired - Lifetime JP4187352B2 (en) 1999-06-02 1999-06-02 Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4187352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277980B1 (en) * 2010-03-29 2013-06-27 니혼도꾸슈도교 가부시키가이샤 Multilayer wiring board
US9788409B2 (en) 2015-04-08 2017-10-10 Samsung Electro-Mechanics Co., Ltd. Circuit board and method of manufacturing the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252446A (en) * 2001-02-23 2002-09-06 Sony Chem Corp Manufacturing method of flexible wiring board
JP2003046249A (en) * 2001-08-02 2003-02-14 Ibiden Co Ltd Lamination wiring board and its manufacturing method
JP2006066458A (en) * 2004-08-24 2006-03-09 Sharp Corp Multilayer printed wiring board and its manufacturing process
WO2007052674A1 (en) * 2005-11-02 2007-05-10 Ibiden Co., Ltd. Multilayer printed wiring board for semiconductor device and process for producing the same
JP4473935B1 (en) * 2009-07-06 2010-06-02 新光電気工業株式会社 Multilayer wiring board
JP4503698B2 (en) * 2009-12-15 2010-07-14 新光電気工業株式会社 Wiring board manufacturing method
JP4576480B1 (en) * 2010-01-18 2010-11-10 新光電気工業株式会社 Multilayer wiring board
JP4669908B2 (en) * 2010-07-12 2011-04-13 新光電気工業株式会社 Multilayer wiring board
JP2013153045A (en) * 2012-01-25 2013-08-08 Kyocer Slc Technologies Corp Method for manufacturing aggregate substrate
JP5992788B2 (en) * 2012-05-24 2016-09-14 京セラ株式会社 Wiring board manufacturing method
JP2015211194A (en) 2014-04-30 2015-11-24 イビデン株式会社 Printed wiring board, semiconductor package and printed wiring board manufacturing method
JP2015225895A (en) 2014-05-26 2015-12-14 イビデン株式会社 Printed wiring board, semiconductor package and printed wiring board manufacturing method
JP2016063130A (en) 2014-09-19 2016-04-25 イビデン株式会社 Printed wiring board and semiconductor package
KR102253473B1 (en) 2014-09-30 2021-05-18 삼성전기주식회사 Circuit board
KR102268386B1 (en) 2014-09-30 2021-06-23 삼성전기주식회사 Circuit board
KR102262906B1 (en) 2014-11-13 2021-06-09 삼성전기주식회사 Circuit board
KR102295105B1 (en) 2014-12-29 2021-08-31 삼성전기주식회사 Circuit board and manufacturing method thereof
KR102295104B1 (en) 2015-02-23 2021-09-01 삼성전기주식회사 Circuit board and manufacturing method thereof
KR102374256B1 (en) 2015-02-23 2022-03-15 삼성전기주식회사 Circuit board and manufacturing method thereof
KR102411999B1 (en) 2015-04-08 2022-06-22 삼성전기주식회사 Circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277980B1 (en) * 2010-03-29 2013-06-27 니혼도꾸슈도교 가부시키가이샤 Multilayer wiring board
US9788409B2 (en) 2015-04-08 2017-10-10 Samsung Electro-Mechanics Co., Ltd. Circuit board and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000349435A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4187352B2 (en) Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board
JPH0575269A (en) Manufacture of multilayer printed-wiring board
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
JP2006196785A (en) Printed-wiring board having built-in electronic component and manufacturing method thereof
JP4592891B2 (en) Multilayer circuit board and semiconductor device
JP3492467B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
JPH1027960A (en) Manufacture of multi-layer printed wiring board
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
KR100722599B1 (en) All layer inner via hall printed circuit board and the manufacturing method that utilize the fill plating
JP3942535B2 (en) Manufacturing method of multilayer wiring board
JP4292638B2 (en) Wiring board manufacturing method
JP2001094252A (en) Method for manufacturing of multilayer semiconductor board
JP4282161B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JPH1154926A (en) One-sided circuit board and its manufacture
JPS63241995A (en) Multilayer printed circuit board and manufacture of the same
JP2001015919A (en) Multilayer printed wiring board, circuit-board therefor and its manufacture
JPH1041635A (en) Single-sided circuit board for multilayer printed wiring board, its manufacture, and multilayer printed wiring board
JP3253886B2 (en) Single-sided circuit board for multilayer printed wiring board, method for manufacturing the same, and multilayer printed wiring board
JP2001257476A (en) Multilayer wiring board and manufacturing method thereof
JP2020150094A (en) Printed wiring board and manufacturing method thereof
JP4545866B2 (en) Method for manufacturing circuit board for multilayer printed wiring board
JP4975913B2 (en) Multilayer printed circuit board
JP4545865B2 (en) Method for manufacturing circuit board for multilayer printed wiring board
JPH09321430A (en) Manufacture of multilayer printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term