JP4185515B2 - 試料検査方法、プログラム及び試料検査装置 - Google Patents

試料検査方法、プログラム及び試料検査装置 Download PDF

Info

Publication number
JP4185515B2
JP4185515B2 JP2005247210A JP2005247210A JP4185515B2 JP 4185515 B2 JP4185515 B2 JP 4185515B2 JP 2005247210 A JP2005247210 A JP 2005247210A JP 2005247210 A JP2005247210 A JP 2005247210A JP 4185515 B2 JP4185515 B2 JP 4185515B2
Authority
JP
Japan
Prior art keywords
data
graphic
area
square
occupancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005247210A
Other languages
English (en)
Other versions
JP2007064641A (ja
Inventor
真児 杉原
康子 斉藤
Original Assignee
アドバンスド・マスク・インスペクション・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドバンスド・マスク・インスペクション・テクノロジー株式会社 filed Critical アドバンスド・マスク・インスペクション・テクノロジー株式会社
Priority to JP2005247210A priority Critical patent/JP4185515B2/ja
Publication of JP2007064641A publication Critical patent/JP2007064641A/ja
Application granted granted Critical
Publication of JP4185515B2 publication Critical patent/JP4185515B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、試料検査方法、試料検査装置、或いは、かかる方法をコンピュータに実行させるためのプログラムに係り、例えば、半導体製造に用いる試料となる物体のパターン欠陥を検査するパターン検査技術に関し、半導体素子や液晶ディスプレイ(LCD)を製作する際に使用するリソグラフィ用マスクの欠陥を検査するためのパターン検査で用いることに適した画像補正方法、およびこれを用いたパターン欠陥検査方法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。よって、かかる微細な回路パターンをウェハに転写するためのマスクの製造には、微細な回路パターンを描画することができるパターン描画装置を用いる。かかるパターン描画装置を用いてウェハに直接パターン回路を描画することもある。電子ビーム描画装置については、文献にも記載されている(例えば、特許文献1参照)。或いは、電子ビーム以外にもレーザビームを用いて描画するレーザビーム描画装置の開発が試みられており、文献に開示されている(例えば、特許文献2参照)。
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになろうとしている。歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
一方、マルチメディア化の進展に伴い、LCD(Liquid Crystal Display:液晶ディスプレイ)は、500mm×600mm、またはこれ以上への液晶基板サイズの大型化と、液晶基板上に形成されるTFT(Thin Film Transistor:薄膜トランジスタ)等のパターンの微細化が進んでいる。従って、極めて小さいパターン欠陥を広範囲に検査することが要求されるようになってきている。このため、このような大面積LCDのパターン及び大面積LCDを製作する時に用いられるフォトマスクの欠陥を短時間で、効率的に検査する試料検査装置の開発も急務となってきている。
ここで、従来のパターン検査装置では、拡大光学系を用いてリソグラフィマスク等の試料上に形成されているパターンを所定の倍率で撮像した光学画像と、設計データ、あるいは試料上の同一パターンを撮像した光学画像と比較することにより検査を行うことが知られている(例えば、特許文献3参照)。
例えば、パターン検査方法として、同一マスク上の異なる場所の同一パターンを撮像した光学画像同士を比較する「die to die検査」や、光学画像とマスクパターンを描画する時に使用したCADデータ(設計データ)とを比較する「die to database検査」がある。かかる検査装置における検査方法では、試料はステージ上に載置され、ステージが動くことによって光束が試料上を走査し、検査が行われる。試料には、光源及び照明光学系によって光束が照射される。試料を透過あるいは反射した光は光学系を介して、センサ上に結像される。センサで撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
ここで、近年、設計データの線幅の微細化等に伴い、設計データから作成された参照画像と測定データとなる光学画像とを一致させることが困難になってきた。従来、検査領域が同じ検査基準で検査されているため、例えば、寸法精度が要求されず、本来欠陥と判定してほしくないものも欠陥と判定してしまう(擬似欠陥)ケースが散見されるようになってきた。そのため、描画パターンを複数の検査精度に分けて比較検査することが求められてきている。
例えば、描画パターンを複数のランクに分類して比較検査するという技術が文献に開示されている(例えば、特許文献4参照)。しかし、かかる文献には、どのようにして描画パターンを複数のランクに分類して装置に具現化するのかその手法が具体的でなく、実用性の観点から不十分であり、その解決手法が望まれている。
特開2002−237445号公報 米国特許5386221号公報 特開平8−76359号公報 特開2004−191957号公報
パターン検査は、測定データとなる光学画像と基準データとなる設計データから作成された参照画像とを比較することによって行われる。その場合に、設計データから得られる様々な付加情報を用いることにより、高精度な比較を行うことができる。さらに、付加情報の種類や位置の分解能を高めることにより、精度を高めることができる。例えば、付加情報を用いて、上述したような描画パターンを複数の検査精度に分けて比較検査することができる。
しかしながら、付加情報の種類や位置分解能の増加は、データ量の増加に繋がり、付加情報の伝送を困難にする問題がある。
本発明は、上述した問題点を克服し、付加情報を用いたパターン検査を行う方法および装置を提供することを目的とする。
本発明の一態様の試料検査方法は、
試料の検査領域中に形成されるパターンの光学画像と前記光学画像の比較対象となる参照画像とを比較検査する試料検査方法において、
前記検査領域中に予め設定された1つ以上の領域を示す領域データを入力する入力工程と、
前記検査領域を所定の寸法を単位とするマス目に仮想分割し、仮想分割されたマス目ごとに前記1つ以上の領域のうち含まれている領域種別を判定する判定工程と、
前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された前記マス目の占有率を、判定された結果含まれるすべての領域種別について前記マス目ごとに加算する加算工程と、
前記加算工程により加算された合計値に基づくデータを前記マス目ごとにnビットデータに変換する変換工程と、
変換された前記nビットデータに基づいて、前記参照画像と前記光学画像とを比較する比較工程と、
を備えたことを特徴とする。
また、かかる方法を、コンピュータを実行させるためのプログラムにより構成する場合には、
試料の検査領域中に予め設定された1つ以上の領域を示す領域データを記憶装置に記憶する記憶処理と、
前記検査領域を所定の寸法を単位とするマス目に仮想分割された各マス目ごとに前記1つ以上の領域のうち含まれている領域種別を判定する判定処理と、
前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された前記マス目の占有率を、判定された結果含まれるすべての領域種別について前記マス目ごとに加算する加算処理と、
前記加算処理により加算された合計値に基づくデータを前記マス目ごとにnビットデータに変換する変換処理と、
前記試料の検査領域中に形成されるパターンの光学画像と前記光学画像の比較対象となる参照画像とを入力し、変換された前記図形データにおけるnビットデータに基づいて、前記参照画像と前記光学画像とを比較する比較処理と、
を備えればよい。
そして、本発明の一態様の試料検査装置は、
第1の図形データが含まれる設計データと前記第1の図形データが示す図形が配置される検査領域中に1つ以上の領域を設定した領域データとを記憶する記憶部と、
前記設計データを読み込み、前記検査領域を所定の寸法を単位とするマス目として仮想分割してできた各マス目ごとに前記第1の図形データが示す図形が占める占有率を演算し、nビットの占有率データを出力する第1の占有率演算部と、
前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された占有率を、前記マス目に含まれるすべての領域種別について前記マス目ごとに加算した合計値を該当するマス目の占有率とした図形を示す第2の図形データを作成する図形データ作成部と、
前記図形データ作成部により作成された第2の図形データを読み込み、前記マス目ごとに前記第2の図形データが示す図形が占める占有率を演算し、nビットの占有率データを出力する第2の占有率演算部と、
前記設計データに基づいて前記第1の図形データが示す図形が描画された試料における光学画像を取得する取得部と、
前記第1の占有率演算部により出力された各マス目ごとのnビットの占有率データに基づいて作成された参照画像と前記光学画像とを、前記第2の占有率演算部により出力された各マス目ごとのnビットの占有率データに基づいて比較する比較部と、
を備えたことを特徴とする。
本発明によれば、付加情報としての前記1つ以上の領域を設定した領域データを、試料の参照画像と光学画像との比較検査に用いることができる。特に、nビットデータの各位のビット値により各マス目ごとに含まれる領域種別を識別可能になるように各領域種別ごとの占有率を設定すれば、比較検査する場合に各マス目ごとに所望する検査精度に変更することができる。よって、擬似欠陥を低減させることができる。
実施の形態1.
図1は、実施の形態1における試料検査装置の構成を示す概念図である。
図1において、マスクやウェハ等の基板を試料として、かかる試料の欠陥を検査する試料検査装置100は、光学画像取得部150と制御系回路160を備えている。光学画像取得部150は、XYθテーブル102、光源103、拡大光学系104、フォトダイオードアレイ105、センサ回路106、レーザ測長システム122、オートローダ130、照明光学系170を備えている。制御系回路160では、コンピュータとなる制御計算機110が、データ伝送路となるバス12を介して、位置回路107、比較回路108、展開回路111、展開回路140、参照回路112、オートローダ制御回路113、テーブル制御回路114、磁気ディスク装置109、磁気テープ装置115、フレシキブルディスク装置(FD)116、CRT117、パターンモニタ118、プリンタ119に接続されている。また、XYθテーブル102は、X軸モータ、Y軸モータ、θ軸モータにより駆動される。図1では、本実施の形態1を説明する上で必要な構成部分以外については記載を省略している。試料検査装置100にとって、通常、必要なその他の構成が含まれることは言うまでもない。
図2は、実施の形態1における試料検査方法の要部工程を示すフローチャート図である。
図2において、試料検査方法は、光学画像取得工程(S202)、設計データ入力工程(S212)、展開工程(S214)、フィルタ処理工程(S216)、領域データ入力工程(S222)、判定工程(S224)、加算工程(S226)、図形データ作成工程(S228)、展開工程(S230)、比較工程(S240)という一連の工程を実施する。
S(ステップ)202において、光学画像取得工程として、光学画像取得部150は、設計データに基づいて設計データに含まれる図形データが示す図形が描画された試料となるフォトマスク101における光学画像を取得する。具体的には、光学画像は、以下のように取得される。
被検査試料となるフォトマスク101は、XYθ各軸のモータによって水平方向及び回転方向に移動可能に設けられたXYθテーブル102上に載置され、フォトマスク101に形成されたパターンには、XYθテーブル102の上方に配置されている適切な光源103によって光が照射される。光源103から照射される光束は、照明光学系170を介して試料となるフォトマスク101を照射する。フォトマスク101の下方には、拡大光学系104、フォトダイオードアレイ105及びセンサ回路106が配置されており、露光用マスクなどの試料となるフォトマスク101を透過した光は拡大光学系104を介して、フォトダイオードアレイ105に光学像として結像し、入射する。拡大光学系104は図示しない自動焦点機構により自動的に焦点調整がなされていてもよい。
図3は、光学画像の取得手順を説明するための図である。
被検査領域は、図3に示すように、Y方向に向かって、スキャン幅Wの短冊状の複数の検査ストライプに仮想的に分割され、更にその分割された各検査ストライプが連続的に走査されるようにXYθテーブル102の動作が制御され、X方向に移動しながら光学画像が取得される。フォトダイオードアレイ105では、図3に示されるようなスキャン幅Wの画像を連続的に入力する。そして、第1の検査ストライプにおける画像を取得した後、第2の検査ストライプにおける画像を今度は逆方向に移動しながら同様にスキャン幅Wの画像を連続的に入力する。そして、第3の検査ストライプにおける画像を取得する場合には、第2の検査ストライプにおける画像を取得する方向とは逆方向、すなわち、第1の検査ストライプにおける画像を取得した方向に移動しながら画像を取得する。このように、連続的に画像を取得していくことで、無駄な処理時間を短縮することができる。
フォトダイオードアレイ105上に結像されたパターンの像は、フォトダイオードアレイ105によって光電変換され、更にセンサ回路106によってA/D(アナログデジタル)変換される。フォトダイオードアレイ105には、TDI(タイムディレイインテグレータ)センサのようなセンサが設置されている。ステージとなるXYθテーブル102をX軸方向に連続的に移動させることにより、TDIセンサは試料となるフォトマスク101のパターンを撮像する。これらの光源103、拡大光学系104、フォトダイオードアレイ105、センサ回路106により高倍率の検査光学系が構成されている。
XYθテーブル102は、制御計算機110の制御の下にテーブル制御回路114により駆動される。X方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系によって移動可能となっている。これらの、Xモータ、Yモータ、θモータは、例えばステップモータを用いることができる。そして、XYθテーブル102の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。また、XYθテーブル102上のフォトマスク101はオートローダ制御回路113により駆動されるオートローダ130から自動的に搬送され、検査終了後に自動的に排出されるものとなっている。
センサ回路106から出力された測定パターンデータ(被検査パターン画像データ(光学画像))は、位置回路107から出力されたXYθテーブル102上におけるフォトマスク101の位置を示すデータとともに比較回路108に送られる。測定パターンデータは例えば8ビットの符号なしデータであり、各画素の明るさの階調を表現している。
一方、フォトマスク101のパターン形成時に用いた設計データは、記憶装置(記憶部)の一例である磁気ディスク装置109に記憶される。
そして、S212において、設計データ入力工程として、磁気ディスク装置109から制御計算機110を通して展開回路111に読み出される。
S214において、展開工程として、展開回路111は、読み出された被検査試料となるフォトマスク101の設計図形データを2値ないしは多値のイメージデータに変換して、このイメージデータが参照回路112に送られる。
図4は、展開回路の構成の一例を示す図である。
図4において、展開回路111は、階層構造展開回路202、調停回路204、パターン発生回路206、パターンメモリ208、パターン読み出し回路210を有している。そして、パターン発生回路206とパターンメモリ208とで1つの組となって、複数段配置されている。
ここで、設計データは長方形や三角形を基本図形としたもので、例えば、図形の2つの頂点位置における座標(x、y)や、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。かかる図形データとなる設計データが展開回路111に入力されると、階層構造展開回路202は、図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、パターン発生回路206において、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の図形パターンデータを展開する。そして、展開された図形パターンデータは、パターンメモリ208に一時的に蓄積される。言い換えれば、占有率演算部の一例となるパターン発生回路206では、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできた各マス目ごとに設計データにおける図形データが示す図形が占める占有率を演算し、nビットの占有率データをパターンメモリ208に出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとしてパターンメモリ208に出力する。
ここで、効率よく複数のパターン発生回路206で並列処理動作を行なわせるため、調停回路204が、各パターン発生回路206への入力データ(図形データ)を配分する。そして、パターン読み出し回路210がパターンメモリ208に記憶された占有率データを読み出す。パターン読み出し回路210では、同一画素内の占有率データが存在すれば、かかる占有率データを加算して読み出す。これにより各画素内の図形占有率(階調値)がわかる。
S216において、フィルタ処理工程として、参照回路112は、送られてきた図形のイメージデータに適切なフィルタ処理を施す。
センサ回路106から得られた光学画像としての測定パターンデータは、拡大光学系104の解像特性やフォトダイオードアレイ105のアパーチャ効果等によってフィルタが作用した状態にあると言える。この状態では両者の特性に差異があるので、設計側のイメージデータにもフィルタ処理を施すことにより、測定パターンデータに合わせることができる。このようにして光学画像と比較する参照画像を作成する。
ここで、このまま参照画像と光学画像とを比較すると、上述したように擬似欠陥が生じてしまう。そこで、本実施の形態1では、かかる参照画像と光学画像とを比較する場合に付加情報を用いて例えば擬似欠陥を低減させる。付加情報として、フォトマスク101のパターン形成時に用いた設計データにおける図形データが示す図形が配置される検査領域中に1つ以上の領域を設定した領域データをユーザ側にて用意する。領域データは、それぞれが異なる特徴を表す幾つかの領域を定義している。そして、領域情報を記憶装置(記憶部)の一例である磁気ディスク装置109や磁気テープ装置115といった記憶装置に記憶しておく。
S222において、領域データ入力工程として、入力部の一例となる制御計算機110は、磁気ディスク装置109や磁気テープ装置115といった記憶装置から領域データを読み出して入力する。
S224において、判定工程として、判定部の一例となる制御計算機110は、領域データにおける検査領域を所定の寸法を単位とするマス目に仮想分割し、仮想分割されたマス目ごとに前記1つ以上の領域のうち含まれている領域種別を判定する。
図5は、仮想分割されたマス目の一例を示す図である。
図5では、上述したように、検査領域を所定の量子化寸法のグリッドを単位とするマス目に仮想分割した様子を示す概念図である。ここでは、TDIセンサの画素サイズに区切り、1つのマス目を1画素として設定する。
図6は、所定の画素領域付近の状態の一例を示す図である。
ここでは、例えば、領域データとして、8つの領域種別を定義した場合を示している。そして、図6では、ある所定の画素領域について見た場合に、かかる画素領域には、8つの領域種別のうち、領域2と領域4と領域8との一部と領域6とが含まれている。よって、図6では、領域2と領域4と領域6と領域8とが含まれていると判定されることになる。
図7は、各領域に設定された占有率の一例を示す図である。
領域データは、パターンの重要度や特定の図形の存在を現すn個の層からなっている。この領域データは、後述するように制御計算機110において単層の図形データへと変換される。
図7では、画素領域を2、すなわち、256の小領域に分割した場合を一例として示している。そして、各領域は、予め、種別ごと(領域1、領域2、・・・)に2のべき乗値を2で除した値を設定しておく。図7の例では、領域1について2/2(=1/256)、領域2について2/2(=2/256)、領域3について2/2(=4/256)、領域4について2/2(=8/256)、領域5について2/2(=16/256)、領域6について2/2(=32/256)、領域7について2/2(=64/256)、領域8について2/2(=128/256)に設定している。すなわち、言い換えれば、各領域について、領域iに対してそれぞれ2i−1/2に設定する。ここでは、便宜上、領域番号順に大きな値としているが、これに限るものではない。順序は、後々把握できれば任意に設定しても構わない。図7では、かかる設定された値を画素領域を占有する占有率として示している。そして、図7の例では、図6に示す画素領域に含まれる領域2と領域4と領域6と領域8とについて斜線で示している。
S226において、加算工程として、加算部の一例となる制御計算機110は、上述した判定工程にて判定された結果含まれるすべての領域種別についてそれぞれ予め設定された画素領域に対する占有率を前記マス目ごとに加算する。例えば、図6の例では、領域2と領域4と領域6と領域8とが対象となる画素領域に含まれているので、領域2についての2/2(=2/256)と、領域4についての2/2(=8/256)と、領域6についての2/2(=32/256)と、領域8についての2/2(=128/256)とを加算する。
図8は、領域の占有率を加算する加算式を示す図である。
図8に示すように、領域iが対象となる画素領域に含まれる場合、a(i)=1、それ以外の場合、a(i)=0として、領域i(1〜k)までについて、上述した2i−1/2を加算する。ただし、画素領域を2個の小領域に分解している場合の占有率であるので、k≦nとなればよい。すなわち、領域種別数が1以上n以下であればよい。
図9は、図6及び図7の例での占有率加算値を示す図である。
図9に示すように、図6及び図7の例では、n=k=8の場合で、領域2と領域4と領域6と領域8とが対象となる画素領域に含まれているので、加算した合計値は、2/2+2/2+2/2+2/2=170/256となる。
S228において、図形データ作成工程として、図形データ作成部の一例となる制御計算機110は、上述した加算工程により加算された合計値に基づいて、合計値を該当する画素領域の占有率とした図形データを作成する。
図10は、合計値を占有率とした図形データの一例を示す図である。
図6及び図7の例では、加算工程により加算された結果、合計値が170/256となったので、占有率が170/256となる例えば四角形の図形データを作成する。図7に示すような画素領域中に含まれる領域ごとの図形をそれぞれ図形データとして用いる場合に比べ、図10に示すように1つの図形として処理した方が、データ量を小さくすることができる。例えば、各領域の占有率の図形に対し、それぞれその座標や図形コードを定義するために、例えば、2点の位置の座標を特定するために32ビットずつ、図形コードに8ビットのデータ量が必要になるとすると1つの図形に72ビット分のデータ量が必要となる。そして、図7の例では、領域2と領域4と領域6と領域8とが対象となる画素領域に含まれているので、72×4=288ビット分のデータ量が必要となってしまう。しかしながら、図形データ作成工程により4つの図形を1つの図形として処理することができるため、例えば、上述した例では図形データとして72ビット分のデータ量で済ますことができる。その結果、処理速度を向上させることができる。
S230において、展開工程として、図形データ作成工程により作成された図形データが制御計算機110を介して展開回路140に読み出され、展開回路140は、読み出された領域データに基づく図形データを多値のイメージデータに変換して、このイメージデータが比較回路108に送られる。言い換えれば、占有率演算部の一例となる展開回路140は、図形データ作成工程により作成された図形データを読み込み、画素領域ごとに図形データが示す図形が占める占有率を演算し、nビットの占有率データを出力する。ここで、展開回路140は、展開回路111と同様の回路構成により構成することができる。すなわち、図4に示す構成でよい。図形データ作成工程により設計データにおける図形データと同様なフォーマットでデータが作成されているため、既存の回路と同じ回路を用いることができる。すなわち、展開回路140は、図4に示すように、階層構造展開回路202、調停回路204、パターン発生回路206、パターンメモリ208、パターン読み出し回路210を有している。そして、パターン発生回路206とパターンメモリ208とで1つの組となって、複数段配置されている。
ここで、領域データに基づく図形データは、設計データと同様、長方形や三角形を基本図形としたもので、例えば、図形の2つの頂点位置における座標(x、y)や、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。かかる図形データとなる設計データが展開回路140に入力されると、階層構造展開回路202は、図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、パターン発生回路206において、所定の量子化寸法のグリッドを単位とするマス目、ここでは画素領域内に配置されるパターンとして多値の図形パターンデータを展開する。そして、展開された図形パターンデータは、パターンメモリ208に一時的に蓄積される。言い換えれば、占有率演算部の一例となるパターン発生回路206では、設計データを読み込み、検査領域を所定の寸法を単位とするマス目(画素領域)として仮想分割してできた各画素領域ごとに領域データにおける図形データが示す図形が占める占有率を演算し、nビットの占有率データをパターンメモリ208に出力する。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとしてパターンメモリ208に出力する。そして、パターン読み出し回路210がパターンメモリ208に記憶された占有率データを読み出す。
ここでは、展開回路140が、展開回路111と同様の回路を用いているために、複数段のパターン発生回路206とパターンメモリ208との組と調停回路204とが配置されているが、これに限るものではない。
図11は、展開後の8ビット占有率データの一例を示す図である。
図11では、上述した図6の例について示している。図7に示したように、各領域を予め、種別ごと(領域1、領域2、・・・)に2のべき乗値を2で除した値を設定しておくことにより、nビットデータの各位の値により各領域の有無を判断することができる。言い換えれば、8ビットデータの1番目の位の値が領域1の有無、8ビットデータの2番目の位の値が領域2の有無、8ビットデータの3番目の位の値が領域3の有無、8ビットデータの4番目の位の値が領域4の有無、8ビットデータの5番目の位の値が領域5の有無、8ビットデータの6番目の位の値が領域6の有無、8ビットデータの7番目の位の値が領域7の有無、8ビットデータの8番目の位の値が領域8の有無を示している。「1」が立っている位に定義された領域が対象となる画素領域に含まれていることがわかる。図11では、上述した図6の例について示しているので、8ビットデータの2番目と4番目と6番目と8番目の位の値に「1」が立っている。すなわち、対象となる画素領域に領域2と領域4と領域6と領域8とが含まれていることが識別できる。また、ここでは、n=8とした8ビットデータで示しているがこれに限るものではなく、識別したい領域種別数kより大きなビット数nのデータであればよい。
以上のように、図形データ作成工程により領域データを図形データに変換することにより展開回路で処理することができる。そして、展開回路で展開させることによりデータ量を低減させることができる。ここでは、展開前の1つの図形に72ビット分のデータ量が必要となるとすると、展開することにより8ビット分のデータ量で済ますことができる。その結果、データ量の増加を抑制し、付加情報の伝送を効率的に行なうことができる。その結果、装置に実用性ある付加情報機能を持たせることができる。
S240において、比較工程として、比較回路108は、試料となるフォトマスク101から得られる透過画像に基づいてセンサ回路106で生成された被検査パターン画像となる光学画像と、展開回路111と参照回路112で生成した検査基準パターン画像となる参照画像と、展開回路140で生成された画素データなるnビットデータに変換された領域データを取り込み、nビットデータに変換された領域データに基づいて、所定のアルゴリズムに従って比較し、欠陥の有無を判定する。nビットデータに変換された領域データは、例えばその画素の重要度を示し、その区分に応じて比較処理の内容を変更することができる。例えば、上述したように検査精度(検査閾値(感度))を変更することができる。例えば、画素領域ごとに、領域1が含まれる場合には、高精度(検査閾値を厳しくする)に比較し、領域2が含まれる場合で、高精度(検査閾値を厳しくする)な領域(例えば領域1)が含まれない場合には、検査閾値を緩くして比較するといった検査が可能となる。また、特定の領域、例えば、コンタクト領域を識別することができる。このような処理を行うことにより欠陥の誤検出を抑制して擬似欠陥を低減し、高精度の検査を行うことができる。
以上のように構成することで、検査付加情報を高い位置分解能と情報量で伝送することができ、信頼性の高いパターン検査方法を実現することができる。
実施の形態2.
実施の形態1では、画素領域に含まれる領域データについて、各画素領域ごとに1つの図形データを作成していたが、実施の形態2では、隣接する画素領域同士の図形データを繋げて1つの図形データを作成する場合について説明する。装置構成等は、実施の形態1と同様で構わないため説明を省略する。
図12は、隣り合う図形データの一例を示す図である。
図12(a)には、画素領域(1)について含まれる領域の占有率を合計した値を占有率とした四角形の図形データ(1)と、画素領域(1)に隣接した画素領域(2)について含まれる領域の占有率を合計した値を占有率とした四角形の図形データ(2)とが示されている。1つの図形に例えば72ビット分のデータ量が必要となるとすると、このままでは、図形データ(1)用に72ビット分のデータ量と図形データ(2)用に72ビット分のデータ量とが必要となる。そこで、図12(b)に示すように、図形データ(2)をその占有率を変えずに図形データ(1)が示す四角形に寸法を合わせて繋げることで、2つの画素領域に対して1つの図形データ(1+2)にすることができる。その結果、1つの図形に例えば72ビット分のデータ量が必要となるとすると、2つの画素領域に対して72ビット分のデータ量で済ますことができ、データ量を低減させることができる。そして、かかる2つの画素領域に対して1つの図形データを展開回路140で展開する際に、それぞれの画素ごとのnビットデータに変換すればよい。ここでは、隣接する2つの画素領域について図形データを繋げているが、これに限るものではなく、隣接する3つ以上の画素領域について図形データを繋げても構わない。
以上の説明において、領域データは、制御計算機110によりS202〜S228までの処理が実行されているが、ハードウェアにより処理されても構わない。
図13は、制御処理部の構成を示すブロック図である。
図13において、制御計算機110の代わりとなる制御処理部300は、インターフェース(I/F)回路302、判定回路304、加算回路306、図形データ作成回路308を有している。そして、それぞれの回路が、制御計算機110の代わりS202〜S228までの各処理を行なってもよい。
図14は、別の光学画像取得手法を説明するための図である。
図1の構成では、スキャン幅Wの画素数(例えば2048画素)を同時に入射するフォトダイオードアレイ105を用いているが、これに限るものではなく、図14に示すように、XYθテーブル102をX方向に定速度で送りながら、レーザ干渉計で一定ピッチの移動を検出した毎にY方向に図示していないレーザスキャン光学装置でレーザビームをY方向に走査し、透過光を検出して所定の大きさのエリア毎に二次元画像を取得する手法を用いても構わない。
以上の説明において、「〜回路」或いは「〜工程」と記載したものは、コンピュータで動作可能なプログラムにより構成することができる。或いは、ソフトウェアとなるプログラムだけではなく、ハードウェアとソフトウェアとの組合せにより実施させても構わない。或いは、ファームウェアとの組合せでも構わない。また、プログラムにより構成される場合、プログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録される。例えば、演算制御部を構成するテーブル制御回路114、展開回路111、展開回路140、参照回路112、比較回路108等は、電気的回路で構成されていても良いし、制御計算機110によって処理することのできるソフトウェアとして実現してもよい。また電気的回路とソフトウェアの組み合わせで実現しても良い。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、各実施の形態では、透過光を用いているが、反射光あるいは、透過光と反射光を同時に用いてもよい。検査基準パターンデータとなる参照画像は設計データから生成しているが、フォトダイオードアレイ等のセンサにより撮像した同一パターンのデータを用いても良い。言い換えれば、die to die検査でもdie to database検査でも構わない。また、各実施の形態では、領域データの展開用に設計データの展開用の展開回路111とは別系統の展開回路140を備えているが、これに限るものではなく、検査時間を延ばしても構わなければ設計データの展開用の展開回路111を流用しても構わない。また、単層データの場合やdie to die検査では、特に、新たに別系統の展開回路140を備えなくても、設計データの展開用の展開回路111を流用することができる。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての検査装置或いは検査方法は、本発明の範囲に包含される。
実施の形態1における試料検査装置の構成を示す概念図である。 実施の形態1における試料検査方法の要部工程を示すフローチャート図である。 光学画像の取得手順を説明するための図である。 展開回路の構成の一例を示す図である。 仮想分割されたマス目の一例を示す図である。 所定の画素領域付近の状態の一例を示す図である。 各領域に設定された占有率の一例を示す図である。 領域の占有率を加算する加算式を示す図である。 図6及び図7の例での占有率加算値を示す図である。 合計値を占有率とした図形データの一例を示す図である。 展開後の8ビット占有率データの一例を示す図である。 隣り合う図形データの一例を示す図である。 制御処理部の構成を示すブロック図である。 別の光学画像取得手法を説明するための図である。
符号の説明
100 試料検査装置
101 フォトマスク
102 XYθテーブル
103 光源
104 拡大光学系
105 フォトダイオードアレイ
106 センサ回路
107 位置回路
108 比較回路
109 磁気ディスク装置
110 制御計算機
111,140 展開回路
112 参照回路
115 磁気テープ装置
150 光学画像取得部
300 制御処理部
302 I/F回路
304 判定回路
306 加算回路
308 図形データ作成回路

Claims (9)

  1. 試料の検査領域中に形成されるパターンの光学画像と前記光学画像の比較対象となる参照画像とを比較検査する試料検査方法において、
    前記検査領域中に予め設定された1つ以上の領域を示す領域データを入力する入力工程と、
    前記検査領域を所定の寸法を単位とするマス目に仮想分割し、仮想分割されたマス目ごとに前記1つ以上の領域のうち含まれている領域種別を判定する判定工程と、
    前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された前記マス目の占有率を、判定された結果含まれるすべての領域種別について前記マス目ごとに加算する加算工程と、
    前記加算工程により加算された合計値に基づくデータを前記マス目ごとにnビットデータに変換する変換工程と、
    変換された前記nビットデータに基づいて、前記参照画像と前記光学画像とを比較する比較工程と、
    を備えたことを特徴とする試料検査方法。
  2. 前記加算工程において、前記1つ以上の領域に対して2の値以下で領域種別ごとにそれぞれ予め設定された2のべき乗値を2で除した値を、判定された結果含まれるすべての領域種別について前記マス目ごとに加算することを特徴とする請求項1記載の試料検査方法。
  3. 前記試料検査方法は、さらに、前記加算工程により加算された合計値に基づいて図形データを作成する図形データ作成工程を備え、
    前記変換工程において、前記図形データ作成工程により作成された図形データを前記マス目ごとにnビットデータに変換することを特徴とする請求項2記載の試料検査方法。
  4. 前記図形データ作成工程において、前記合計値を該当するマス目の占有率とした前記図形データを作成することを特徴とする請求項3記載の試料検査方法。
  5. 前記図形データ作成工程において、隣接するマス目同士で図形を繋げて前記隣接するマス目同士に対して1つの前記図形データを作成することを特徴とする請求項4記載の試料検査方法。
  6. 前記マス目として、画素を用いることを特徴とする請求項1〜5いずれか記載の試料検査方法。
  7. 試料の検査領域中に予め設定された1つ以上の領域を示す領域データを記憶装置に記憶する記憶処理と、
    前記検査領域を所定の寸法を単位とするマス目に仮想分割された各マス目ごとに前記1つ以上の領域のうち含まれている領域種別を判定する判定処理と、
    前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された前記マス目の占有率を、判定された結果含まれるすべての領域種別について前記マス目ごとに加算する加算処理と、
    前記加算処理により加算された合計値に基づくデータを前記マス目ごとにnビットデータに変換する変換処理と、
    前記試料の検査領域中に形成されるパターンの光学画像と前記光学画像の比較対象となる参照画像とを入力し、変換された前記図形データにおけるnビットデータに基づいて、前記参照画像と前記光学画像とを比較する比較処理と、
    をコンピュータに実行させるためのプログラム。
  8. 第1の図形データが含まれる設計データと前記第1の図形データが示す図形が配置される検査領域中に1つ以上の領域を設定した領域データとを記憶する記憶部と、
    前記設計データを読み込み、前記検査領域を所定の寸法を単位とするマス目として仮想分割してできた各マス目ごとに前記第1の図形データが示す図形が占める占有率を演算し、nビットの占有率データを出力する第1の占有率演算部と、
    前記1つ以上の領域に対して領域種別ごとにそれぞれ予め設定された占有率を、前記マス目に含まれるすべての領域種別について前記マス目ごとに加算した合計値を該当するマス目の占有率とした図形を示す第2の図形データを作成する図形データ作成部と、
    前記図形データ作成部により作成された第2の図形データを読み込み、前記マス目ごとに前記第2の図形データが示す図形が占める占有率を演算し、nビットの占有率データを出力する第2の占有率演算部と、
    前記設計データに基づいて前記第1の図形データが示す図形が描画された試料における光学画像を取得する取得部と、
    前記第1の占有率演算部により出力された各マス目ごとのnビットの占有率データに基づいて作成された参照画像と前記光学画像とを、前記第2の占有率演算部により出力された各マス目ごとのnビットの占有率データに基づいて比較する比較部と、
    を備えたことを特徴とする試料検査装置。
  9. 前記第2の占有率演算部は、前記第1の占有率演算部と同様の回路を用いることを特徴とする請求項8記載の試料検査装置。
JP2005247210A 2005-08-29 2005-08-29 試料検査方法、プログラム及び試料検査装置 Active JP4185515B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247210A JP4185515B2 (ja) 2005-08-29 2005-08-29 試料検査方法、プログラム及び試料検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247210A JP4185515B2 (ja) 2005-08-29 2005-08-29 試料検査方法、プログラム及び試料検査装置

Publications (2)

Publication Number Publication Date
JP2007064641A JP2007064641A (ja) 2007-03-15
JP4185515B2 true JP4185515B2 (ja) 2008-11-26

Family

ID=37927032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247210A Active JP4185515B2 (ja) 2005-08-29 2005-08-29 試料検査方法、プログラム及び試料検査装置

Country Status (1)

Country Link
JP (1) JP4185515B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791207B2 (ja) * 2006-02-16 2011-10-12 富士通セミコンダクター株式会社 位相シフトレチクルとその製造方法とその欠陥検査方法
JP4870704B2 (ja) * 2008-03-21 2012-02-08 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08305835A (ja) * 1995-05-11 1996-11-22 Canon Inc 画像処理装置およびその方法
JP2984633B2 (ja) * 1997-08-29 1999-11-29 日本電気株式会社 参照画像作成方法およびパターン検査装置
JP2001266126A (ja) * 2000-03-21 2001-09-28 Toshiba Corp 欠陥検出方法及びその装置並びにマスクの製造方法
JP2002244275A (ja) * 2001-02-15 2002-08-30 Toshiba Corp フォトマスクの欠陥検査方法、フォトマスクの欠陥検査装置及び記録媒体
JP3647416B2 (ja) * 2002-01-18 2005-05-11 Necエレクトロニクス株式会社 パターン検査装置及びその方法
JP4073265B2 (ja) * 2002-07-09 2008-04-09 富士通株式会社 検査装置及び検査方法
JP2005215400A (ja) * 2004-01-30 2005-08-11 Toppan Printing Co Ltd フォトマスクの外観検査方法

Also Published As

Publication number Publication date
JP2007064641A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4336672B2 (ja) 試料検査装置、試料検査方法及びプログラム
JP4185516B2 (ja) 試料検査装置、試料検査方法及びプログラム
JP4174504B2 (ja) 試料検査装置、試料検査方法及びプログラム
US10460435B2 (en) Pattern inspection method and pattern inspection apparatus
JP4323475B2 (ja) 試料検査装置、試料検査方法及びプログラム
JP2007071629A (ja) 試料検査装置の支援装置、試料検査方法及びプログラム
JP2014228375A (ja) 検査感度評価方法
JP4970569B2 (ja) パターン検査装置およびパターン検査方法
JP4870704B2 (ja) パターン検査装置及びパターン検査方法
US9659361B2 (en) Measuring apparatus that generates positional deviation distribution of a pattern on a target object
US9811896B2 (en) Measuring apparatus
JP4185515B2 (ja) 試料検査方法、プログラム及び試料検査装置
JP2017058190A (ja) 参照画像作成用の基準データ作成方法及びパターン検査装置
JP2020085454A (ja) パターン検査装置及びパターン検査方法
JP4977123B2 (ja) 試料検査装置、試料検査方法及びプログラム
JP2014211417A (ja) パターン検査装置及びパターン検査方法
JP4199759B2 (ja) インデックス情報作成装置、試料検査装置、レビュー装置、インデックス情報作成方法及びプログラム
JP4922381B2 (ja) パターン検査装置及びパターン検査方法
JP4266217B2 (ja) パターン検査装置、パターン検査方法及びプログラム
JP4960404B2 (ja) パターン検査装置及びパターン検査方法
JP2014232071A (ja) パターン検査方法及びパターン検査装置
JP6533062B2 (ja) パターン検査方法
JP4554663B2 (ja) パターン検査装置及びパターン検査方法
JP2019184461A (ja) パターン検査装置
JP2006266747A (ja) 画像作成方法、画像作成装置及びパターン検査装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4185515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350