JP4171270B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4171270B2
JP4171270B2 JP2002266742A JP2002266742A JP4171270B2 JP 4171270 B2 JP4171270 B2 JP 4171270B2 JP 2002266742 A JP2002266742 A JP 2002266742A JP 2002266742 A JP2002266742 A JP 2002266742A JP 4171270 B2 JP4171270 B2 JP 4171270B2
Authority
JP
Japan
Prior art keywords
pattern
hard mask
photoresist
mask layer
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002266742A
Other languages
English (en)
Other versions
JP2004103999A (ja
Inventor
崇 岡川
哲也 山田
敦史 上野
敦美 山口
好一郎 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002266742A priority Critical patent/JP4171270B2/ja
Priority to KR1020030007686A priority patent/KR100544923B1/ko
Priority to US10/360,860 priority patent/US6938238B2/en
Priority to TW092109888A priority patent/TWI223355B/zh
Publication of JP2004103999A publication Critical patent/JP2004103999A/ja
Application granted granted Critical
Publication of JP4171270B2 publication Critical patent/JP4171270B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体装置の製造方法に係る発明であって、特に、微細なパターンと、パターン間に存する微細なスペースとを有する回路パターンの形成方法に関するものである。
【0002】
【従来の技術】
一般的に、半導体装置の製造方法において、下地層(最終的にパターンが施される層)に回路パターンを形成する手法として、リソグラフィ技術が採用されている。
【0003】
このリソグラフィ技術とは、通常、ステッパと共に用いられるレチクルを通して、下地層上に成膜されたフォトレジストに対して縮小投影露光を行うことにより、当該フォトレジストに回路設計に基づくレジストパターンを形成し、当該レジストパターンをマスクとして下地層に回路パターンを形成する技術のことである。
【0004】
ここで、回路パターンとは、配線等のパターンと当該パターン間に存するスペースとを含めた総合的なものを指している。
【0005】
さらに従来の技術として、上記リソグラフィ技術だけで形成されたレジストパターンよりも、さらに微細なパターンを形成する方法として、パターンシュリンク(縮小化)プロセスという製造工程が採用されている。
【0006】
パターンシュリンクプロセスには、パターニングされたフォトレジストをシュリンクさせるシュリンク技術(以下、第一のシュリンク技術と称す)と、パターニングされたハードマスクをシュリンクさせるシュリンク技術(以下、第二のシュリンク技術と称す)とがある。以下、それぞれのシュリンク技術について説明する。
【0007】
第一のシュリンク技術とは、例えば、所定の形状でパターニングされたレジストパターンに対して、イオン注入、EB(電子ビーム)キュアリング(硬化:以下、単にキュアと称す)、UV(紫外線)キュア、または高温ベーク(熱処理)等を施すことにより、前記レジストパターンをシュリンクさせ、当該シュリンクしたレジストパターンをマスクとしてエッチング処理を施すことで、より微細なパターンを下地層に形成することが可能な技術である。
【0008】
以下、トランジスタのゲート電極を形成する場合を例にとって、第一のシュリンク技術の製造方法を具体的に説明する。
【0009】
まずはじめに、図38に示す断面構造の部分を有する製造途中の半導体装置を用意する。ここで、当該半導体装置は、活性層5を基礎にして平面視の下方から、ゲート酸化膜6、ゲート電極層7およびフォトレジスト8の順序でそれぞれ形成されている。
【0010】
次に、リソグラフィ技術により、フォトレジスト8に図39,40に示す回路パターンを形成する。ここで、図39は当該半導体装置を平面視したときの図であり、図39において、フォトレジスト8に形成された回路パターンは、ゲート電極パターン1、当該ゲート電極パターン1と接続しているボンディングパッドパターン(以下、パッドパターンと称する)2、ゲート電極パターン1間に存するスペース3、およびパッドパターン2間に存するスペース4等で構成されている。また、図39のX−X断面を図40に示す。
【0011】
次に、回路パターンがパターニングされたフォトレジスト8に対して、イオン注入やEBキュア等のシュリンク工程を施すことにより、回路パターンを構成するゲート電極パターン1およびパッドパターン2をシュリンクさせる。この様子を図41,42に示す。ここで、図41は当該半導体装置の平面図であり、図42は図41のX’−X’断面を示す断面図である。
【0012】
最後に、シュリンクしたフォトレジスト8(シュリンクした、ゲート電極パターン1およびパッドパターン2形状のフォトレジスト)をマスクとしてエッチング処理を施し、ゲート電極層7に回路パターンを形成することにより、ゲート電極9とパッド10とを形成する。その後、フォトレジスト8を除去した図を図43,44に示す。ここで、図43は当該半導体装置の平面図であり、図44は図43のX’’−X’’断面を示す断面図である。
【0013】
このように、第一のシュリンク技術では、イオン注入等により、回路パターンがパターニングされたフォトレジスト8をシュリンクさせているので、リソグラフィ技術で形成されるレジストパターンよりも微細なパターン(ゲート電極パターン1およびパッドパターン2)をフォトレジスト8にパターニングすることができ、結果として、より微細なパターンを下地層(ゲート電極層7)に形成することができる。つまり、より微細なゲート電極9およびパッド10を形成することができるのである。
【0014】
また、シュリンク工程では、上記のようにフォトレジスト8をシュリンクさせる効果の他に、フォトレジスト8の性質を改変させ、エッチング耐性(つまり、エッチングの際に、フォトレジスト8自身がエッチングされない能力)を向上させる効果も得られる。
【0015】
したがって、当該エッチング耐性の向上を考慮して予め、当該フォトレジスト8の厚さを薄膜化形成することができるので、アスペクト比の軽減へとつながり、エッチング処理による下地層への微細なパターン(上記の例では、ゲート電極層7により幅の細いゲート電極1)の形成が容易に行える。
【0016】
次に、ハードマスクを用いる第二のシュリンク技術について具体的に説明する。
【0017】
ここで、ハードマスクとは、実際に回路パターンが形成される下地層とフォトレジストとの間に形成される、下地層に対するエッチング選択比の大きい膜のことである。
【0018】
第二のシュリンク技術とは、予めパターニングされているレジストパターンをマスクとしてハードマスクをエッチングすることにより、ハードマスクに回路パターンが形成され、その後、等方性エッチングにより当該ハードマスクをシュリンクさせ、当該シュリンクしたハードマスクをマスクとし、下地層にエッチング処理を施し、当該下地層に対して、より微細な回路パターンを形成することが可能な技術である。
【0019】
以下、トランジスタのゲート電極を形成する場合を例にとって、第二のシュリンク技術の製造方法を具体的に説明する。
【0020】
まずはじめに、図45に示す断面構造の部分を有する製造途中の半導体装置を用意する。ここで、当該半導体装置は、活性層5を基礎にして平面視の下方から、ゲート酸化膜6、ゲート電極層7、ハードマスク層11およびフォトレジスト8の順序でそれぞれ形成されている。
【0021】
次に、リソグラフィ技術により、フォトレジスト8に図46,47に示す回路パターンを形成する。ここで、図46は当該半導体装置を平面視したときの図であり、図46において、フォトレジスト8に形成された回路パターンは、ゲート電極パターン1、パッドパターン2、ゲート電極パターン1間に存するスペース3、およびパッドパターン2間に存するスペース4等で構成されている。また、図46のY−Y断面を図47に示す。
【0022】
次に、回路パターンがパターニングされたフォトレジスト8(ゲート電極パターン1およびパッドパターン2)をマスクとしてエッチング処理を施し、ハードマスク層11に回路パターンを形成する。その後、フォトレジスト8を除去した図を図48,49に示す。ここで、図48は当該半導体装置の平面図であり、図49は図48のY’−Y’断面を示す断面図である。
【0023】
次に、回路パターンがパターニングされたハードマスク層11に対して、等方性エッチングを施すことにより、回路パターンを構成するゲート電極パターン1およびパッドパターン2をシュリンクさせる。この様子を図50,51に示す。ここで、図50は当該半導体装置の平面図であり、図51は図50のY’’−Y’’断面を示す断面図である。
【0024】
最後に、シュリンクしたハードマスク層11(シュリンクした、ゲート電極パターン1およびパッドパターン2形状のハードマスク層)をマスクとして、エッチング処理を施し、ゲート電極層7に回路パターンを形成することにより、ゲート電極9とパッド10とを形成する。その後、ハードマスク層11を除去することにより、第一のシュリンク技術により形成された回路パターンと同様の回路パターンをゲート電極層7に対して形成することができる(図43,44参照)。
【0025】
このように、第二のシュリンク技術では、新たにハードマスク層11を採用することにより、簡単な等方性エッチングにより当該ハードマスク層11をシュリンクさせることができ、当該シュリンクしたハードマスク層11をマスクとしてゲート電極層7に対してエッチング処理を施されているので、リソグラフィ技術のみで形成される回路パターンよりも微細なパターン、つまりゲート電極9およびパッド10を形成することができる。
【0026】
なお、第一および第二のシュリンク技術に関する文献として、Proc.ofSPIE vol.4345(2001)、P655、著者A.Yamaguchi et al、に記載されている「Ar ion implantation into resist for etching resistance improvement」があり、また、特開2001−308076号公報(P5〜6、第一図)等もある。
【0027】
【発明が解決しようとする課題】
一般的にリソグラフィ技術では、フォトレジスト8に回路パターンを露光するにあたり、微細なゲート電極パターン1の解像とパターン間に存する微細なスペース3,4の解像とを、同一条件で形成することは困難であるということである。
【0028】
つまり、微細なゲート電極パターン1の解像に有利なリソグラフィ条件は、微細スペース3,4の解像には不利な条件となり、逆に、微細スペース3,4の解像に有利なリソグラフィ条件は、微細なゲート電極パターン1の解像に不利な条件となっていた。
【0029】
例えば、微細ゲート電極パターン1の解像に優れている露光照明条件は、微細スペース3,4の解像性能が劣っていることが多い。また、例えば、微細スペース3,4の解像に優れているフォトレジスト8は、微細ゲート電極パターン1の解像性能が劣っていることが多い。
【0030】
したがって、微細ゲート電極パターン1の解像度と微細スペース3,4の解像度とは、トレードオフの関係にあり、微細ゲート電極パターン1と微細スペース3,4とを同時に形成する場合に、両者を同時に最小限に微細化させることができなかった。よって、回路パターンの全体の微細化には、上記の意味での制限が課せられていた。
【0031】
さらに、シュリンク工程においても、以下に示す問題があった。
【0032】
つまり、第一または第二のシュリンク技術では、フォトレジスト8またはハードマスク層11に形成された回路パターンをシュリンクさせることにより、ゲート電極パターン1およびパッドパターン2自身は微細化されるものの、パターン間に存するスペース3,4は逆に、その分拡大されてしまい、結果として回路パターンの集積度の向上を図ることはできなかった。
【0033】
例えば、図48と図50または図49と図51を比較して分かるように、パッドパターン2がシュリンクすることにより、当該パッドパターン2自身の大きさは縮小化するものの、その分スペース4の間隔が拡大してしまい、パターンシュリンクプロセスを施したにも係らず、回路パターン全体の縮小化には至らず、結果として回路パターンの集積度を向上には繋がらなかった。
【0034】
ここで、パッドパターン2自身のシュリンクを見越して、その分当該パッドパターン2間のスペース4をさらに狭く設計できればよいのだが、設計段階で上記トレードオフの関係に則し、スペース4が最低間隔で設計されている場合には、これ以下のサイズで、当該スペース4を設計したとしても、従来のリソグラフィ技術では、フォトレジスト8に正常に当該スペース4を形成することはできない。
【0035】
そこで、この発明は、上記問題に鑑み、回路パターン全体の微細(縮小)化および、当該微細化に伴い集積度の高いデバイスを製造することができる半導体装置の製造方法を提供することを目的とする。
【0036】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る請求項1に記載の半導体装置の製造方法は、パターンと、パターン間に存するスペースとを有する回路パターンを形成する半導体装置の製造方法において、(a)下地層上にハードマスク層を形成した半導体基板を用意する工程と、(b)前記パターン間に存する所定の前記スペースにパターンを配置することにより得られる第一のパターンに従って、前記ハードマスク層をパターン化する工程と、(c)前記工程(b)の後に、前記ハードマスク層をシュリンクさせる工程と、(d)前記工程(c)の後に、前記所定のスペースに基づく第二のパターンに従って、前記ハードマスク層に前記所定のスペースを形成する工程と、(e)前記工程(d)の後に、前記ハードマスク層をマスクとして、前記下地層に前記回路パターンを形成する工程とを、備え、前記工程(b)によって、ラインパターンが前記ハードマスク層にパターン化され、前記工程(d)は、前記ラインパターンに第一スペースを設けることで、前記ラインパターンを2つのラインパターンにするものであり、前記ラインパターンの幅は、前記工程(b)で形成可能な最小パターン幅であり、前記第一スペースの幅は、前記工程(d)で形成可能な最小スペース幅である。
【0037】
また、請求項2に記載の半導体装置の製造方法では、前記工程(b)は、(b−1)前記ハードマスク層上にフォトレジストを形成する工程と、(b−2)前記フォトレジストを前記第一のパターンに従ってパターニングする工程と、(b−3)前記工程(b−2)の後に、前記フォトレジストをシュリンクさせる工程と、(b−4)前記シュリンクしたフォトレジストをマスクとして、前記ハードマスク層をパターニングする工程とを、備えているものであってもよい。
【0038】
また、請求項3に記載の半導体装置の製造方法では、前記工程(b−3)は、イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせる工程であるものであってもよい。
また、請求項4に記載の半導体装置の製造方法は、パターンと、パターン間に存するスペースとを有する回路パターンを形成する半導体装置の製造方法において、(a)下地層上にハードマスク層を形成した半導体基板を用意する工程と、(b)前記パターン間に存する所定の前記スペースにパターンを配置することにより得られる第一のパターンに従って、前記ハードマスク層をパターン化する工程と、(c)前記工程(b)の後に、前記ハードマスク層をシュリンクさせる工程と、(d)前記工程(c)の後に、前記所定のスペースに基づく第二のパターンに従って、前記ハードマスク層に前記所定のスペースを形成する工程と、(e)前記工程(d)の後に、前記ハードマスク層をマスクとして、前記下地層に前記回路パターンを形成する工程とを、備え、前記工程(b)によって、ラインパターンが前記ハードマスク層にパターン化され、前記工程(d)は、前記ラインパターンに第一スペースを設けることで、前記ラインパターンを2つのラインパターンにするものであり、前記ラインパターンの幅は、前記工程(d)で形成可能な最小パターン幅よりも小さなものであり、前記第一スペースの幅は、前記工程(b)で形成可能な最小スペース幅よりも小さなものである。
また、請求項5に記載の半導体装置の製造方法では、前記工程(b)は、(b−1)前記ハードマスク層上にフォトレジストを形成する工程と、(b−2)前記フォトレジストを前記第一のパターンに従ってパターニングする工程と、(b−3)前記工程(b−2)の後に、前記フォトレジストをシュリンクさせる工程と、(b−4)前記シュリンクしたフォトレジストをマスクとして、前記ハードマスク層をパターニングする工程とを、備える。
また、請求項6に記載の半導体装置の製造方法では、前記工程(b−3)は、イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせる工程である。
【0039】
【発明の実施の形態】
本発明の製造方法は、例えば、リソグラフィ技術のみでは、形成困難なサイズの微細パターンおよび微細スペースを含む微細な回路パターンを形成するときに好適である。
【0040】
当該製造方法では、実際に回路パターンが形成される下地層上に形成された、ハードマスク層に上記微細な回路パターンをパターニングする際に、当該ハードマスク層に対して、まず微細なスペースのない第一のパターンをパターニングし、その後、微細スペースに基づく第二のパターンに従ってハードマスク層に微細スペースをパターニングすることを特徴とする。
【0041】
ここで、第一のパターンとは、微細な回路パターンにおいて、パターン間に存する微細スペースに新たなパターンを配置することにより、微細スペースをなくして形成された仮のパターンのことである。
【0042】
また、第二のパターンとは、微細な回路パターンにおいて、パターン間に存する微細スペース部分に基づいたパターンのことであり、第一のパターンでなくされた微細スペースを生成するためのパターンである。
【0043】
さらに、ハードマスク層とは、実際に回路パターンが形成される下地層とフォトレジストとの間に形成される、下地層に対するエッチング選択比の大きい膜のことである。
【0044】
以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。なお、従来技術で記した符号と同一符号のものは、同一または同等の部材(部分)を示している。
【0045】
<実施の形態1>
本実施の形態の製造方法は、ハードマスク層に第一のパターンを形成後、当該ハードマスク層をシュリンクさせ、その後、シュリンクされたハードマスク層に第二のパターンに従った微細スペースを形成することにより、ハードマスク層に微細な回路パターンを形成することを特徴とする。
【0046】
以下、図1に示すフローチャートに基づいて本実施の形態の工程の流れを概念的に説明する。
【0047】
まずはじめに、微細パターンと微細スペースとを含む回路パターンの回路パターンデータを設計する(ステップS1)。
【0048】
次に、回路パターンデータにおいて、パターン間をマージ(パターン間に存する微細スペース部分に新たなマージパターンを形成することにより、当該パターン間を結合すること)することにより、微細スペースのない第一のパターンデータを作成する(ステップS2)。
【0049】
次に、回路パターンデータから微細スペースの抽出を行い、当該微細スペースに基づく第二のパターンデータを作成する(ステップS3)。
【0050】
ここで、ステップS2とステップS3の順序は、どちらを先に実行してもかまわない。
【0051】
次に、第一、二のパターンデータを基に、第一のレチクルと第二のレチクルとをそれぞれ作成する(ステップS4)。
【0052】
次に、第一のレチクルを通して第一のリソグラフィ技術を施すことにより、フォトレジストに第一のパターンをパターニングする(ステップS5)。
【0053】
次に、第一のパターンがパターニングされたフォトレジストをマスクとして、異方性のエッチング処理を施すことにより、フォトレジストより下層に存するハードマスク層に第一のパターンを形成する(ステップS6)。
【0054】
次に、第一のパターンが形成されたハードマスク層に対して等方性エッチングを施すことにより、当該ハードマスク層をシュリンクさせる(ステップS7)。
【0055】
次に、シュリンクしたハードマスク層を覆うように再度フォトレジストを形成し、第二のレチクルを通して第二のリソグラフィ技術を施すことにより、当該フォトレジストに第二のパターンをパターニングする(ステップS8)。
【0056】
次に、第二のパターンがパターニングされたフォトレジストをマスクとして、異方性のエッチング処理を施すことにより、フォトレジストより下層に存するハードマスク層に第二のパターンにしたがった微細スペースを形成し、結果として、ハードマスク層の形状・寸法は、回路パターンデータと同等の形状・寸法となる(ステップS9)。
【0057】
最後に、回路パターン形状・寸法のハードマスク層をマスクとして、エッチング処理を施すことにより、下地層に回路パターンを形成する(ステップS10)。
【0058】
以上が、本実施の形態の製造方法の流れである。以下、トランジスタのゲート電極を形成する場合を例にとって、本実施の形態の製造方法を具体的に説明する。
【0059】
まずはじめに、図2に示すように、CAD処理等の設計処理により、微細なゲート電極パターン1、当該ゲート電極パターン1と接続しているボンディングパッドパターン(以下、パッドパターンと称する)2、ゲート電極パターン1間に存する微細スペース3、およびパッドパターン2間に存する微細スペース4とで構成される回路パターンデータを作成する(ステップS1)。
【0060】
ここで、微細ゲート電極パターン1のライン幅サイズは、当該微細パターンの解像に最適なリソグラフィ条件を用いて形成される最小のサイズよりも、さらに小さいサイズのもので設計されているとする。
【0061】
また、微細スペース3,4のサイズ(当該微細スペースに隣接するパターン間隔)は、当該微細スペース3,4の解像に最適なリソグラフィ条件を用いて形成される最小のサイズで設計されているとする。
【0062】
次に、図2に示す回路パターンデータにおいて、微細スペース3,4部分に新たなパターンを導入することにより、第一のパターンデータを作成する(ステップS2)。
【0063】
具体的な、当該第一のパターンデータの作成方法を以下にて説明する。
【0064】
まず、図3に示すように、点線で示したパターン間に存する微細スペース3,4部分に新たなマージパターンを形成(配置)した後、微細ゲート電極パターン1同士、およびパッドパターン2同士をマージし、当該パターン間を結合することにより、図4に示す微細スペースのないパターンデータ12を作成する。
【0065】
ここで、図4において、1aは結合ゲート電極パターンであり、2aは結合パッドパターンである。
【0066】
ところで、理由は後述するが、マージパターンを新たに導入することにより、図2に示すゲート電極パターン1の最小ライン幅より小さいサイズのライン幅が存在しないようにする必要がある。
【0067】
例えば、図5に示す孤立パターン(パターン形成に最適なリソグラフィ条件にて形成されうる最小のライン幅のものとする)13間の微細スペース14をマージする際には、図6の点線に示す、孤立パターン13の最小ライン幅より小さいライン幅のマージパターン15を形成するのではなく、図6の実線で示す、孤立パターン13の最小ライン幅よりも大きいライン幅のマージパターン16を形成する必要がある。
【0068】
話を戻して、次に、図4に示したパターンデータ12を一律に大きく(サイジング)する。このサイジング処理は、以下の理由に基づくものである。
【0069】
上述したように、設計段階の結合ゲート電極パターン1a(または、ゲート電極パターン1)のライン幅は、パターン形成に特化した最適なリソグラフィ条件により形成されうる最低ライン幅以下のサイズであるため、このままのサイズでは、後の第一のリソグラフィ技術(ステップS5)において、フォトレジストに正常な結合ゲート電極パターン1aを形成することはできない。
【0070】
そこで、後のステップS7で施されるシュリンク工程により所望の元のサイズに戻せる範囲内で、ステップS5の第一のリソグラフィ技術で結合ゲート電極パターン1aを正常に形成できるように、図4に示したパターンデータ12全体を一律に大きく(サイジング)する。
【0071】
このサイジングされたパターンデータが第一のパターンデータであり、図7にて、その構造を示す。ここで、図7の点線はサイジング前のパターンデータを示している。
【0072】
さて次に、図2に示す回路パターンデータから微細スペース3,4の抽出を行い、当該微細スペース3,4に基づく第二のパターンデータを作成する(ステップS3)。
【0073】
具体的な第二のパターンデータの作成方法を以下にて説明する。
【0074】
まず図8に示すように、図2に示した回路パターンデータから微細スペース3,4の抽出を行う。
【0075】
次に、図9に示すように、微細スペース3,4を拡大(延長)する。
【0076】
具体的に、微細スペース3においては、ゲート電極パターン1のライン方向と垂直な方向に、その形状を拡大(延長)し、これに対して、微細スペース4においては、パッドパターン2の(微細スペース4が介在する)配列方向と垂直な方向(つまり既存のパターンに干渉しない方向)に、その形状を拡大(延長)する。
【0077】
これ(図9)が、第二のパターンデータである。また、当該拡大(延長)した微細スペースパターンをそれぞれ、結合微細スペース3aおよび結合微細スペース4aと称する。
【0078】
次に、上記第一のパターンデータおよび第二のパターンデータに基づいて、第一のレチクルおよび第二のレチクルをそれぞれ作成する(ステップS4)。
【0079】
さて、次の工程において、第一のパターンおよび第二のパターンをハードマスク層にパターニングするのだが、当該パターニング工程に際して、図10に示す製造途中の半導体装置(下地層上にハードマスク層を形成した半導体基板)を用意する。
【0080】
具体的に、図10が示すように当該半導体装置は、活性層5上にゲート酸化膜6が形成されており、当該ゲート酸化膜6上にゲート電極層7が形成されている。また、ゲート電極層7上にはハードマスク層11が形成され、当該ハードマスク層11上にはフォトレジスト8が形成されている。
【0081】
図10に示す製造途中の半導体装置と第一のレチクルを用意できたので、次に、第一のリソグラフィ技術により、当該第一のレチクルとステッパとを用いて、フォトレジスト8に第一のパターンをパターニングする(ステップS5)。
【0082】
この第一のパターンがパターニングされている様子の平面図を図11に示し、図11のA−A断面図を図12に示す。
【0083】
ここで、ステップS2で説明したように、第一のパターンデータは、一律にサイジングされているので、当該第一のリソグラフィ技術により、結合ゲート電極パターン1aを正常に形成することができる。
【0084】
また、ステップS2で説明(詳しくは図5,6を用いた説明)したように、マージパターンを新たに導入することにより、図2に示すゲート電極パターン1の最小ライン幅より小さいサイズのライン幅が存在しないようにしているため、当該マージパターンを新たに設けたとしても、第一のリソグラフィ技術により当該マージパターンが形成されなくなるということを防止することができる。
【0085】
さらに、第一のパターンデータによりパターニングされる第一のパターンには微細スペース3,4が存在しないため、当該第一のリソグラフィ技術の条件を微細パターンに特化した条件に設定することができる。
【0086】
微細パターンに特化した第一のリソグラフィ技術の条件として、例えば、輪帯照明や四重極照明等の変形照明の使用や、パターン形成に特化したフォトレジスト8の使用等の条件を選択することができる。
【0087】
従来では、微細パターンの解像度と微細スペースの解像度とは、トレードオフの関係にあり、微細パターンと微細スペースとを同時に形成する場合に、両者を同時に最小限に微細化させることができなかったが、上記のように、第一のリソグラフィ技術は、微細パターン(結合ゲート電極パターン1a)のみを形成する工程となるので、微細パターンに特化した条件を選択することができ、トレードオフの関係で定められる微細パターンの最低サイズよりも、より小さいサイズのパターンを設計・形成することが可能となる。
【0088】
さて本発明の製造工程に話を戻して、次に、第一のパターンが形成されているフォトレジスト8をマスクとして、異方性エッチングを行うことにより、ハードマスク層11に第一のパターンをパターニングする(ステップS6)。
【0089】
当該異方性エッチング処理を経て、フォトレジスト8が除去された様子の平面図を図13に示し、図13のB−B断面図を図14に示す。
【0090】
当該ハードマスク層11の異方性エッチングは、例えば、真空チャンバ中でCF4、CHF3、Ar、O2等のガス種を用いて、高周波電磁界によりプラズマを発生させることにより行われる。
【0091】
次に、第一のパターンがパターニングされているハードマスク層11に対して、等方性エッチング(例えば、液相エッチング等)を施すことにより、当該第一のパターンを等方的にシュリンクさせる(ステップS7)。
【0092】
この様子の平面図を図15に示し、図15のC−C断面図を図16に示す。なお、ゲート電極パターン等を当所の設計のサイズで半導体装置に形成するには、当該シュリンク工程により、ステップS2でサイジング(拡大)した程度のシュリンク量が必要となる。
【0093】
ここで、ハードマスク層11として上記で定義した、ゲート電極層7に対する異方性のエッチング選択比が大きいという性質の他に、さらに、ゲート電極層7に対する等方性のエッチング選択比の小さい材料のものを選択してもよい。例えば、ゲート電極層7がポリシリコンの場合には、ハードマスク層11として、シリコン酸化膜もしくはシリコン窒化膜等を選択することにより上記条件を満たすことができる。
【0094】
上記のようにハードマスク層11の材料を選択することにより、第一のパターンがパターニングされたハードマスク層11をシュリンクさせるための等方性エッチングの条件を選択することができ、当該等方性エッチングの際にゲート電極層7に対するエッチングを抑制することが可能となる。よって、前記選択された等方性エッチングをハードマスク層11に施したとしても、ゲート電極層7への当該エッチングによる影響を最小限に抑えることができる。
【0095】
等方性エッチングの条件として、例えば、濃度0.25%のフッ化水素酸水溶液中に、図13,14構造を有する半導体装置を180秒ほど浸漬すると、シリコン酸化膜であるハードマスク層11は30nmほど等方的にシュリンクされる。このとき、フッ化水素酸による等方性エッチングにより、ポリシリコンであるゲート電極層7は、ほとんどエッチングされることはない。
【0096】
ここで、等方性エッチングにより、ハードマスク層11の厚さ方向へのシュリンクも同時に進行するため、当該ハードマスク層11の当所の厚さとして、当該等方性エッチングによりシュリンクする量と、後のステップS10における当該ハードマスク層11をマスクとしてゲート電極層7に回路パターンを形成するときに行われる異方性エッチングに耐えることができるだけの量とを、考慮して所定の厚さを設定しておく必要がある。
【0097】
次に、ハードマスク層11に形成された第一のパターンをシュリンクさせた後に、当該ハードマスク層11上に新たなフォトレジスト18を再度形成し、当該シュリンクした第一のパターンに微細スペース3,4を形成するために、第二のリソグラフィ技術により、第二のレチクルとステッパとを用いて、フォトレジスト18に、結合微細スペース3a,4aからなる第二のパターンをパターニングする(ステップS8)。
【0098】
この様子の平面図を図17に示し、図17のD−D断面図を図18に示す。なお、図17に示す点線は、フォトレジスト18より下に形成されているシュリンクした第一のパターンを示している。
【0099】
図17,18から分かるように、第二のリソグラフィ技術を施すことにより、図2に示した回路パターンデータにおいて、微細スペース3,4が存在していた部分のハードマスク層11上のフォトレジスト18が除去され、当該除去された箇所で、第一のパターンの輪郭を有するハードマスク層11が露出した状態になる。
【0100】
ここで、第二のパターンデータに基づいてパターニングされる第二のパターンには、微細スペース3,4を形成するための結合微細スペース3a,4aしか存在しないため(つまり、ゲート電極パターン等のパターン自身は含まれない)、当該第二のリソグラフィ技術の条件を微細スペースに特化した条件に設定することができる。
【0101】
微細スペースに特化した第二のリソグラフィ技術の条件として、例えば、小シグマ照明等の使用や、微細スペース形成に特化したフォトレジスト18の使用等の条件を選択することができる。
【0102】
従来では、微細パターンの解像度と微細スペースの解像度とは、トレードオフの関係にあり、微細パターンと微細スペースとを同時に形成する場合に、両者を同時に最小限に微細化させることができなかったが、第二のリソグラフィ技術は、結合微細スペース3a,4a(または、微細スペース3,4)のみを形成する工程となるので、微細スペースに特化した条件を選択することができ、トレードオフの関係で定められる微細スペースの最低サイズよりも、より小さいサイズのスペースを設計・形成することが可能となる。
【0103】
話を製造工程に戻して、次に、前記第二のパターンが形成されたフォトレジスト18をマスクとして、異方性エッチング処理を施すことにより、当該フォトレジスト18の下層に存在する第一のパターン形状のハードマスク層11に、第二のパターンを形成、つまり第一のパターンに微細なスペース3,4を形成したハードマスク層11を作成し、回路パターンデータと同等の形状・寸法の回路パターン形状のハードマスク層11が完成される(ステップS9)。
【0104】
当該異方性エッチング処理を経て、フォトレジスト18が除去された様子の平面図を図19に示し、図19のE−E断面図を図20に示す。
【0105】
ここで、上述したように第二のパターンは、第一のパターンに微細スペース3,4を形成するためのものであり、当該微細スペース3,4を確実に形成するために、ステップS3において、拡大(延長)操作を行うことが有効である。
【0106】
すなわち、第一のパターン上に第二のパターンを形成する際に、多少ずれて第二のパターンが形成されても、確実に微細スペース3,4が形成されるように、マージンを持たせることが可能となるのである。
【0107】
なお、ここでの異方性エッチングの条件として、例えばステップS6と同じものが挙げられる。
【0108】
話を製造工に戻し、最後に、上記までの工程で構成された、回路パターン形状を有するハードマスク層11をマスクとして、異方性エッチング処理を施すことにより、下地層であるゲート電極層7に回路パターン、つまりゲート電極9とパッド10とを作成する(ステップS10)。
【0109】
当該異方性エッチング処理を経て、ハードマスク層11が除去された様子の平面図を図21に示し、図21のF−F断面図を図22に示す。
【0110】
上記で、ゲート電極層11にポリシリコン、ハードマスク層11にシリコン酸化膜を採用したときに、当該異方性エッチングを、真空チャンパ内でのHBr、Cl2、O2等のガス種を用いた高周波電磁界によるプラズマ発生により実行することにより、ハードマス層11は、ほとんどエッチングされずに済む(つまり、ゲート電極層7に対するエッチング選択比の大きいハードマスク層11を実現することができる。)。
【0111】
以上が、トランジスタのゲート電極を形成する場合を例にとった、本実施の形態の製造方法の具体的な説明である。
【0112】
上記の工程の説明から分かるように、本実施の形態の製造方法では、微細スペースを含まない第一のパターンを形成する第一のリソグラフィ技術と、微細スペースに基づく第二のパターンを形成する第二のリソグラフィ技術とを、全く別個独立に行うことができることが特長である。
【0113】
これは、ハードマスク層11を下地層(ゲート電極層)7上に設け、当該ハードマスク層11に対して二回のリソグラフィ技術をそれぞれ施し、当該ハードマスク層11に回路パターンを形成することにより可能となっている。
【0114】
つまり、ゲート電極層7に対して上記二回に渡るリソグラフィ技術を施すことも可能であるが、この場合、以下に示す問題が生じる。
【0115】
まず、第一のリソグラフィ技術により、ゲート電極層7に第一のパターンを形成し、第二のリソグラフィ技術に備えて、フォトレジスト18を当該ゲート電極層7およびゲート酸化膜層6を覆うように形成したとする(図23)。
【0116】
さて、次に図23に示す半導体装置に対して第二のリソグラフィ技術を施すのだが、第二のパターンの形状から分かるように、当該第二のパターンは、ゲート電極層7とゲート酸化膜層6とに渡って形成されることとなる(図17参照)。
【0117】
ここで、通常リソグラフィ技術は、段差を有する構造上にフォトレジストを形成し、当該フォトレジストにパターンを形成したとしても、当該段差が大きければ、正常にパターンの形成が行えないという問題を有している。
【0118】
したがって、図23に示す構造に対して第二のリソグラフィ技術を施したとしても、通常ゲート電極層7が厚く形成されているため、正常に第二のパターンをパターニングすることができないという問題が生じるのである。
【0119】
そこで、下地層7に対するエッチング選択比の大きいハードマスク層11を導入し、選択比が大きい故に、当該ハードマスク層11の厚さは薄膜化できるので、当該ハードマスク層11の厚さは、ゲート電極層7の厚さより十分小さく設定できるので、上記のような段差によるリソグラフィ技術の問題を解消することができる(図18と図23参照)。
【0120】
よって、下地層7上にハードマスク層11を形成することにより、前記第一、第二のリソグラフィ技術が可能となり、微細パターンまたは微細スペースに特化したリソグラフィ条件を選択することかができるので、従来のトレードオフの関係で規定される微細パターンおよび微細スペースのサイズよりも、さらに小さいサイズの微細パターンおよび微細スペースを設計・形成することができ、回路パターン全体の微細化が図れ、デバイスの高集積化にも繋がる。
【0121】
さらに、本実施の形態では、第一のリソグラフィ技術後に、ハードマスク層11をシュリンクさせ、その後に第二のリソグラフィ技術を施しているので、ゲート電極パターン1およびパッドパターン2のシュリンクにより、ゲート電極パターン1間に存する微細スペース3、およびパッドパターン間に存する微細スペース4は、当該シュリンクの影響を受けずに済むので、従来の技術で説明したようなシュリンクによる当該微細スペース3,4の拡大を防止することができる。
【0122】
<実施の形態2>
本実施の形態の製造方法は、ハードマスク層上に成膜されたフォトレジストに第一のパターンを形成後、当該フォトレジストをシュリンクさせ、その後、シュリンクされたレジストパターンをマスクとしてハードマスク層に第一のパターンを形成し、最後に、ハードマスク層に第二のパターンを形成することにより、回路パターンを形成することを特徴とする。
【0123】
具体的に、図24に示すフローチャートに基づいて本実施の形態の工程の流れを説明する。ここで、実施の形態1で説明した図1のステップS1〜S5までは、本実施の形態においても共通するので、ここでの説明は省略する。
【0124】
さて、図1のステップS5の工程後(第一のリソグラフィ技術後)に、第一のパターンがパターニングされたフォトレジストに対して、イオン注入、電子線キュア、紫外線キュア、高温ベーク、等方性エッチング等を施すことにより、当該フォトレジストをシュリンクさせる(ステップS11)。
【0125】
次に、前記シュリンクしたフォトレジストをマスクとして異方性エッチング処理を施すことにより、フォトレジストより下層に存するハードマスク層にシュリンクした第一のパターンを形成する(ステップS12)。
【0126】
次に、シュリンクした第一のパターンが形成されているハードマスク層を覆うように再度フォトレジストを形成し、第二のレチクルを通して、第二のリソグラフィ技術により、当該フォトレジストに第二のパターンをパターニングする(ステップS13)。
【0127】
次に、第二のパターンがパターニングされたフォトレジストをマスクとして異方性エッチング処理を施すことにより、フォトマスクより下層に存するハードマスク層に第二のパターンを形成し、結果として、ハードマスク層の形状・寸法は、回路パターンデータと同等の形状・寸法となる(ステップS14)。
【0128】
最後に、回路パターンが形成されたハードマスク層をマスクとして、異方性エッチング処理を施すことにより、下地層に回路パターンを形成する(ステップS15)。
【0129】
以上が、本実施の形態の製造方法の流れである。以下、実施の形態1と同様に、トランジスタのゲート電極を形成する場合を例にとって、ステップS11以降の本実施の形態の製造方法を具体的に説明する。
【0130】
まず、第一のリソグラフィ技術により、第一のレチクルとステッパとを用いて、フォトレジスト8に第一のパターンをパターニングする(ステップS5、図11,12)。
【0131】
次に、第一のパターンがパターニングされたフォトレジスト8に対して、イオン注入、電子線キュア、紫外線キュア、高温ベーク、または等方性エッチング等を施すことにより、当該フォトレジスト8をシュリンクさせる(ステップS11)。
【0132】
この様子を示す平面図を図25に示し、図25のG−G断面図を図26に示す。なお、本実施の形態では、ハードマスク層11のシュリンク工程は行わないので、実施の形態1と異なり、当該ハードマスク層11の厚さとして、シュリンク量を考慮する必要がなく、その分当該ハードマスク層11は薄く形成されている。
【0133】
イオン注入によりフォトレジスト8をシュリンクさせる場合には、例えば、以下の条件により、フォトレジスト8を下記の程度シュリンクさせることができる。
【0134】
真空中で、Arイオンを加速電圧50keV、注入量1×1016個/cm2で、KrFフォトレジストに注入すると、フォトレジスト寸法150nmのものを100nm程度までシュリンクさせることができる。
【0135】
また、典型的なアクリル系ArFフォトレジストだと、上記と同条件のイオン注入により、フォトレジスト寸法100nmのものを60nm程度までシュリンクさせることができる。
【0136】
次に、電子線キュアによりフォトレジスト8をシュリンクさせる場合には、例えば、真空中で電子線を加速電圧4keV、照射量2000μC/cm2の条件で、典型的なアクリル系ArFフォトレジストに照射すると、フォトレジスト寸法を約5%シュリンクさせることができる。
【0137】
また、紫外線キュアによりフォトレジストをシュリンクさせる場合には、例えば、典型的なアクリル系ArFフォトレジストを約110℃に加熱しながら、40秒間DUV(遠紫外線:波長200〜300nm)を当該フォトレジストに照射すると、フォトレジスト寸法を約5%シュリンクさせることができる。
【0138】
最後に、高温ベークによりフォトレジストをシュリンクさせる場合には、例えば、典型的なアクリル系ArFフォトレジストをホットプレート上に載置し、約170℃で120秒間ベークを行うと、フォトレジスト寸法を約5%シュリンクさせることができる。
【0139】
さて、ステップS11の工程後に、シュリンクしたフォトレジスト8をマスクとして、異方性エッチングを施すことにより、フォトレジスト8より下層に位置するハードマスク層11に、当該シュリンクした第一のパターンを形成する(ステップS12)。
【0140】
ステップS11後のフォトレジスト8を除去した様子の平面図は図15であり、この断面図は図16である。
【0141】
次に、ステップS13〜S15の工程を施すのだが、当該工程は実施の形態1のステップS8〜S10と同じなので、ここでの説明は省略する。
【0142】
以上のように本実施の形態においても、実施の形態1と同様に、下地層(ゲート電極層)7上にハードマスク層11を形成することにより、前記第一、第二のリソグラフィ技術が可能となり、微細パターンまたは微細スペースに特化したリソグラフィ条件を選択することかができるので、従来のトレードオフの関係で規定される微細パターンおよび微細スペースのサイズよりも、さらに小さいサイズの微細パターンおよび微細スペースを設計・形成することができ、回路パターン全体の微細化が図れ、デバイスの高集積化にも繋がる。
【0143】
また、本実施の形態では、第一のリソグラフィ技術後に、フォトレジスト8をシュリンクさせ、当該シュリンクしたフォトレジスト8をマスクとして下地層7に結合ゲート電極パターン1aと結合パッドパターン2aとを形成し、その後に第二のリソグラフィ技術を施しているので、結合ゲート電極パターン1aおよび結合パッドパターン2aのシュリンクにより、ゲート電極パターン1およびパッドパターン2はシュリンクし、併せて、ゲート電極パターン1間に存する微細スペース3、およびパッドパターン間に存する微細スペース4は、当該シュリンク影響を受けずに済む。したがって、当該微細スペース3,4の拡大を防止することができ、回路パターン全体の微細化に繋がり、デバイスの高集積度化を図ることができる。
【0144】
また、イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせることにより、フォトレジストの性質を改変することができるため、ハードマスク層のエッチング処理の際の当該エッチング耐性の向上も図ることができる。
【0145】
<実施の形態3>
本実施の形態の製造方法は、実施の形態1と実施の形態2との併用である。つまり、ハードマスク層上に成膜されたフォトレジストに第一のパターンを形成後、当該フォトレジストをシュリンクさせ、その後、シュリンクされたフォトレジストをマスクとしてハードマスク層に第一のパターンを形成する。さらに、第一のパターンが形成された当該ハードマスク層をシュリンクさせ、最後に、シュリンクされたマスク層に第二のパターンを形成することを特徴とする。
【0146】
本実施の形態の工程の流れを示すフローチャートを図27に示す。ここで、当該フローチャートのステップS5以前の工程は描かれていないが、実施の形態1で説明した図1のステップS1〜S4までの工程が、本実施の形態においても同様に実行される。
【0147】
まず、第一のリソグラフィ技術により、第一のレチクルとステッパとを用いて、フォトレジスト8に、結合ゲート電極パターン1aおよび結合パッドパターン2aからなる第一のパターンをパターニングする(ステップS5、図11,12)。
【0148】
さて、図1のステップS5の工程後(第一のリソグラフィ技術後)に、第一のパターンがパターニングされたフォトレジスト8に対して、イオン注入、電子線キュア、紫外線キュア、高温ベーク、または等方性エッチング等を施すことにより、当該フォトレジスト8をシュリンクさせる(ステップS20)。
【0149】
当該様子を示す平面図は図25であり、本実施の形態における図25のG−G断面を図28に示す。図26と図28とでは、後のハードマスク層11のシュリンク工程(ステップS22)を考慮して、図28に示すハードマスク層11は、その分厚く形成されている点において異なる。
【0150】
次に、前記シュリンクしたフォトレジスト8をマスクとして異方性エッチング処理を施すことにより、フォトレジスト8より下層に存するハードマスク層11にシュリンクした第一のパターンを形成する(ステップS21)。
【0151】
フォトレジスト8除去後の当該様子を示す平面図は図15であり、本実施の形態における図15のC−C断面を図29に示す。図16と図29とでは、上述同様、後のハードマスク層11のシュリンク工程(ステップS22)を考慮して、図29に示すハードマスク層11は、その分厚く形成されている点において異なる。
【0152】
次に、シュリンクした第一のパターンが形成されたハードマスク層11に対して等方性エッチングを施すことにより、当該ハードマスク層11をシュリンクさせ、第一のパターンをさらに縮小化させる(ステップS22)。
【0153】
この様子を示す平面図を図30に示し、図30のH−H断面図を図31に示す。図30,31が示すように、等方性エッチングによりハードマスク層11が全方向に対して等方的に縮小化されている。
【0154】
次に、シュリンクしたハードマスク層11を覆うように再度フォトレジスト18を形成し、ステッパを用い、第二のレチクルを通して第二のリソグラフィ技術を施すことにより、当該フォトレジスト18に、結合微細スペース3a,4aからなる第二のパターンをパターニングする(ステップS23)。
【0155】
この様子を示す平面図を図32に示し、図32のI−I断面図を図33に示す。ここで、図32において、二度のシュリンク工程により縮小化された第一のパターン形状のハードマスク層11を点線にて示している。
【0156】
次に、第二のパターンがパターニングされたフォトレジスト18をマスクとしてエッチング処理を施すことにより、フォトマスク18より下層に存するハードマスク層11に第二のパターンを形成し、結果として、ハードマスク層11の形状は回路パターンデータと同等の形状・寸法となる(ステップS24)。
【0157】
この様子を示す平面図を図34に示し、図34のJ−J断面図を図35に示す。
【0158】
最後に、回路パターン形状のハードマスク層11をマスクとして、エッチング処理を施すことにより、下地層7に回路パターンを形成する(ステップS25)。
【0159】
この様子を示す平面図を図36に示し、図36のK−K断面図を図37に示す。
【0160】
なお、各ステップの詳細な形成方法は、実施の形態1および実施の形態2と同様なので、ここでの具体的な説明は省略する。
【0161】
以上の工程を経て回路パターンを形成することにより、実施の形態1,2と同様に、下地層(ゲート電極層)7上にハードマスク層11を形成することにより、前記第一、第二のリソグラフィ技術が可能となり、微細パターンまたは微細スペースに特化したリソグラフィ条件を選択することかができるので、従来のトレードオフの関係で規定される微細パターンおよび微細スペースのサイズよりも、さらに小さいサイズの微細パターンおよび微細スペースを設計・形成することができ、回路パターン全体の微細化が図れ、デバイスの高集積化にも繋がる。
【0162】
また、本実施の形態では、第一のリソグラフィ技術後に、フォトレジスト8をシュリンクさせ、当該シュリンクしたフォトレジスト8をマスクとしてハードマスク層11に結合ゲート電極パターン1aと結合パッドパターン2aとを形成し、その後、さらにハードマスク層11をシュリンクし、第二のリソグラフィ技術を施しているので、微細スペース3,4の間隔幅を増大させることなく、実施の形態1,2よりもさらに微細なゲート電極等のパターンを形成することができる。
【0163】
【発明の効果】
本発明の請求項1に記載の半導体装置の製造方法では、パターンと、パターン間に存するスペースとを有する回路パターンを形成する半導体装置の製造方法において、(a)下地層上にハードマスク層を形成した半導体基板を用意する工程と、(b)前記パターン間に存する所定の前記スペースにパターンを配置することにより得られる第一のパターンに従って、前記ハードマスク層をパターン化する工程と、(c)前記工程(b)の後に、前記ハードマスク層をシュリンクさせる工程と、(d)前記工程(c)の後に、前記所定のスペースに基づく第二のパターンに従って、前記ハードマスク層に前記所定のスペースを形成する工程と、(e)前記工程(d)の後に、前記ハードマスク層をマスクとして、前記下地層に前記回路パターンを形成する工程とを、備えているので、工程(b)、(c)のリソグラフィ技術は、比較的厚さの薄いハードマスク層に対して施されることとなり、パターン形成に特化した条件のリソグラフィ技術とスペース形成に特化したリソグラフィ技術とを、それぞれ別個独立に施すことができ、従来のトレードオフの関係で規定される回路パターンのサイズよりも、さらに小さい回路パターンのサイズを設計・形成することができ、デバイスの高集積化にも繋がる。さらに、第一のパターンが形成されているハードマスクをシュリンクさせることにより、より微細なパターンを形成することができる。
【0164】
本発明の請求項2に記載の半導体装置の製造方法では、前記工程(b)は、(b−1)前記ハードマスク層上にフォトレジストを形成する工程と、(b−2)前記フォトレジストを前記第一のパターンに従ってパターニングする工程と、(b−3)前記工程(b−2)の後に、前記フォトレジストをシュリンクさせる工程と、(b−4)前記シュリンクしたフォトレジストをマスクとして、前記ハードマスク層をパターニングする工程とを備えているので、スペース領域を含まないパターンで構成された第一のパターンのみがシュリンクし、スペース領域に基づく第二のパターンはシュリンクすることがない。したがって、スペース部分の領域に影響(シュリンクによるスペースの拡大)を与えることなく、パターンのみをシュリンクさせることができ、請求項1に記載の発明よりも、さらにデバイスの高集積化を図ることができる。
【0165】
本発明の請求項3に記載の半導体装置の製造方法では、前記工程(b−3)は、イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせる工程であるので、フォトレジストの性質を改変することができるため、ハードマスク層のエッチング処理の際の当該エッチング耐性の向上も図ることができる。
【図面の簡単な説明】
【図1】 実施の形態1の製造方法の工程の流れを示すフローチャートである。
【図2】 回路パターンデータの形状を示す平面図である。
【図3】 回路パターンデータのマージする箇所を説明する平面図である。
【図4】 回路パターンデータの微細スペースをマージすることに作成されたパターンデータ図である。
【図5】 パターンデータに対してマージをするときの注意点を説明するための図である。
【図6】 パターンデータに対してマージをするときの注意点を説明するための図である。
【図7】 第一のパターンデータを示す平面図である。
【図8】 回路パターンデータより微細スペースを抽出した様子を示す図である。
【図9】 第二のパターンデータを示す平面図である。
【図10】 回路パターンが形成される半導体装置の構成を示す断面図である。
【図11】 第一のパターンがパターニングされたフォトレジストの様子を示す平面図である。
【図12】 第一のパターンがパターニングされたフォトレジストの様子を示す断面図である。
【図13】 第一のパターンが形成されたハードマスク層の様子を示す平面図である。
【図14】 第一のパターンが形成されたハードマスク層の様子を示す断面図である。
【図15】 シュリンクした第一のパターン形状のハードマスク層の様子を示す平面図である。
【図16】 シュリンクした第一のパターン形状のハードマスク層の様子を示す断面図である。
【図17】 第二のパターンがパターニングされたフォトレジストの様子を示す平面図である。
【図18】 第二のパターンがパターニングされたフォトレジストの様子を示す断面図である。
【図19】 回路パターン形状のハードマスク層の様子を示す平面図である。
【図20】 回路パターン形状のハードマスク層の様子を示す断面図である。
【図21】 回路パターンデータ通りに形成されたゲート電極とパッドとを示す平面図である。
【図22】 回路パターンデータ通りに形成された半導体装置の断面構造を示す図である。
【図23】 段差によるリソグラフィ技術の困難性を説明するための図である。
【図24】 実施の形態2の製造方法の工程の流れを示すフローチャートである。
【図25】 シュリンクした第一のパターンが形成されているフォトレジストの様子を示す平面図である。
【図26】 シュリンクした第一のパターンが形成されているフォトレジストの様子を示す断面図である。
【図27】 実施の形態3の製造方法の工程の流れを示すフローチャートである。
【図28】 シュリンクしたフォトレジストの様子を示す断面図である。
【図29】 シュリンクした第一のパターンが形成されたハードマスク層の様子を示す断面図である。
【図30】 さらにシュリンクした第一のパターン形状のハードマスク層の様子を示す平面図である。
【図31】 さらにシュリンクした第一のパターン形状のハードマスク層の様子を示す断面図である。
【図32】 第二のパターンがパターニングされているフォトレジストの様子を示す平面図である。
【図33】 第二のパターンがパターニングされているフォトレジストの様子を示す断面図である。
【図34】 回路パターン形状のハードマスク層の様子を示す平面図である。
【図35】 回路パターン形状のハードマスク層の様子を示す断面図である。
【図36】 形成された回路パターンの様子を示す平面図である。
【図37】 回路パターンが形成された半導体装置の断面構造を示す図である。
【図38】 第一のシュリンク技術が施される半導体装置の断面を示す図である。
【図39】 回路パターンがパターニングされているフォトレジストの様子を示す平面図である。
【図40】 回路パターンがパターニングされているフォトレジストの様子を示す断面図である。
【図41】 回路パターン形状のフォトレジストをシュリンクさせた様子を示す平面図である。
【図42】 回路パターン形状のフォトレジストをシュリンクさせた様子を示す断面図である。
【図43】 シュリンクした回路パターンが形成された半導体装置を示す平面図である。
【図44】 シュリンクした回路パターンが形成された半導体装置を示す断面図である。
【図45】 第二のシュリンク技術が施される半導体装置の断面を示す図である。
【図46】 回路パターンがパターニングされているフォトレジストの様子を示す平面図である。
【図47】 回路パターンがパターニングされているフォトレジストの様子を示す断面図である。
【図48】 回路パターンが形成されたハードマスク層の様子を示す平面図である。
【図49】 回路パターンが形成されたハードマスク層の様子を示す断面図である。
【図50】 シュリンクしたハードマスク層の様子を示す平面図である。
【図51】 シュリンクしたハードマスク層の様子を示す断面図である。
【符号の説明】
1 ゲート電極パターン、2 パッドパターン、3,4 微細スペース、8,18 レジスト、7 ゲート電極層(下地層)、9 ゲート電極、10 パッド、11 ハードマスク層、1a 結合ゲート電極パターン、2a 結合パッドパターン。

Claims (6)

  1. パターンと、パターン間に存するスペースとを有する回路パターンを形成する半導体装置の製造方法において、
    (a)下地層上にハードマスク層を形成した半導体基板を用意する工程と、
    (b)前記パターン間に存する所定の前記スペースにパターンを配置することにより得られる第一のパターンに従って、前記ハードマスク層をパターン化する工程と、
    (c)前記工程(b)の後に、前記ハードマスク層をシュリンクさせる工程と、
    (d)前記工程(c)の後に、前記所定のスペースに基づく第二のパターンに従って、前記ハードマスク層に前記所定のスペースを形成する工程と、
    (e)前記工程(d)の後に、前記ハードマスク層をマスクとして、前記下地層に前記回路パターンを形成する工程とを、備え、
    前記工程(b)によって、ラインパターンが前記ハードマスク層にパターン化され、
    前記工程(d)は、前記ラインパターンに第一スペースを設けることで、前記ラインパターンを2つのラインパターンにするものであり、
    前記ラインパターンの幅は、前記工程(b)で形成可能な最小パターン幅であり、
    前記第一スペースの幅は、前記工程(d)で形成可能な最小スペース幅である、
    ことを特徴とする半導体装置の製造方法。
  2. 前記工程(b)は、
    (b−1)前記ハードマスク層上にフォトレジストを形成する工程と、
    (b−2)前記フォトレジストを前記第一のパターンに従ってパターニングする工程と、
    (b−3)前記工程(b−2)の後に、前記フォトレジストをシュリンクさせる工程と、
    (b−4)前記シュリンクしたフォトレジストをマスクとして、前記ハードマスク層をパターニングする工程とを、
    備えることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記工程(b−3)は、
    イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせる工程である、
    ことを特徴とする請求項2に記載の半導体装置の製造方法。
  4. パターンと、パターン間に存するスペースとを有する回路パターンを形成する半導体装置の製造方法において、
    (a)下地層上にハードマスク層を形成した半導体基板を用意する工程と、
    (b)前記パターン間に存する所定の前記スペースにパターンを配置することにより得られる第一のパターンに従って、前記ハードマスク層をパターン化する工程と、
    (c)前記工程(b)の後に、前記ハードマスク層をシュリンクさせる工程と、
    (d)前記工程(c)の後に、前記所定のスペースに基づく第二のパターンに従って、前記ハードマスク層に前記所定のスペースを形成する工程と、
    (e)前記工程(d)の後に、前記ハードマスク層をマスクとして、前記下地層に前記回路パターンを形成する工程とを、備え、
    前記工程(b)によって、ラインパターンが前記ハードマスク層にパターン化され、
    前記工程(d)は、前記ラインパターンに第一スペースを設けることで、前記ラインパターンを2つのラインパターンにするものであり、
    前記ラインパターンの幅は、前記工程(d)で形成可能な最小パターン幅よりも小さなものであり、
    前記第一スペースの幅は、前記工程(b)で形成可能な最小スペース幅よりも小さなものである、
    ことを特徴とする半導体装置の製造方法。
  5. 前記工程(b)は、
    (b−1)前記ハードマスク層上にフォトレジストを形成する工程と、
    (b−2)前記フォトレジストを前記第一のパターンに従ってパターニングする工程と、
    (b−3)前記工程(b−2)の後に、前記フォトレジストをシュリンクさせる工程と、
    (b−4)前記シュリンクしたフォトレジストをマスクとして、前記ハードマスク層をパターニングする工程とを、備える、
    ことを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記工程(b−3)は、
    イオン注入、電子線キュア、紫外線キュア、または高温ベークにより、前記フォトレジストをシュリンクさせる工程である、
    ことを特徴とする請求項5に記載の半導体装置の製造方法。
JP2002266742A 2002-09-12 2002-09-12 半導体装置の製造方法 Expired - Fee Related JP4171270B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002266742A JP4171270B2 (ja) 2002-09-12 2002-09-12 半導体装置の製造方法
KR1020030007686A KR100544923B1 (ko) 2002-09-12 2003-02-07 전자 디바이스의 제조 방법
US10/360,860 US6938238B2 (en) 2002-09-12 2003-02-10 Method of manufacturing electronic device
TW092109888A TWI223355B (en) 2002-09-12 2003-04-28 Method of manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266742A JP4171270B2 (ja) 2002-09-12 2002-09-12 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004103999A JP2004103999A (ja) 2004-04-02
JP4171270B2 true JP4171270B2 (ja) 2008-10-22

Family

ID=31986660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266742A Expired - Fee Related JP4171270B2 (ja) 2002-09-12 2002-09-12 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US6938238B2 (ja)
JP (1) JP4171270B2 (ja)
KR (1) KR100544923B1 (ja)
TW (1) TWI223355B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594852B (en) * 2003-09-02 2004-06-21 Nanya Technology Corp Method of evaluating mask registration
US20070099424A1 (en) * 2005-10-28 2007-05-03 Texas Instruments Incorporated Reduction of mechanical stress on pattern specific geometries during etch using double pattern layout and process approach
US7951722B2 (en) 2007-08-08 2011-05-31 Xilinx, Inc. Double exposure semiconductor process for improved process margin
JP2009081420A (ja) 2007-09-07 2009-04-16 Nec Electronics Corp 半導体装置の製造方法
JP5233219B2 (ja) 2007-09-20 2013-07-10 富士通セミコンダクター株式会社 半導体装置の製造方法及びフォトマスクの設計方法
US20090087993A1 (en) * 2007-09-28 2009-04-02 Steven Maxwell Methods and apparatus for cost-effectively increasing feature density using a mask shrinking process with double patterning
CN102096310B (zh) * 2009-12-14 2013-01-02 中芯国际集成电路制造(上海)有限公司 光刻胶图案的修正方法及刻蚀方法
JP2015115524A (ja) * 2013-12-13 2015-06-22 大日本印刷株式会社 インプリントモールドの製造方法
JP6944255B2 (ja) * 2017-03-14 2021-10-06 Hoya株式会社 転写用マスクの製造方法、および半導体デバイスの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221567B1 (en) * 1998-01-14 2001-04-24 Fujitsu Limited Method of patterning polyamic acid layers
JP2001308076A (ja) 2000-04-27 2001-11-02 Nec Corp 半導体装置の製造方法
US6500756B1 (en) * 2002-06-28 2002-12-31 Advanced Micro Devices, Inc. Method of forming sub-lithographic spaces between polysilicon lines

Also Published As

Publication number Publication date
TW200404341A (en) 2004-03-16
KR100544923B1 (ko) 2006-01-24
JP2004103999A (ja) 2004-04-02
US20040054981A1 (en) 2004-03-18
US6938238B2 (en) 2005-08-30
TWI223355B (en) 2004-11-01
KR20040024430A (ko) 2004-03-20

Similar Documents

Publication Publication Date Title
JP2003124339A (ja) 半導体装置およびその製造方法
JP4171270B2 (ja) 半導体装置の製造方法
US6589713B1 (en) Process for reducing the pitch of contact holes, vias, and trench structures in integrated circuits
JP3373147B2 (ja) フォトレジスト膜及びそのパターン形成方法
JP4389242B2 (ja) フォトレジストパターンをマスクに利用するエッチング方法
JP2007123342A (ja) 半導体装置の製造方法。
US6361928B1 (en) Method of defining a mask pattern for a photoresist layer in semiconductor fabrication
US6210842B1 (en) Method for fabricating stencil mask
JP3612533B2 (ja) 半導体装置の製造方法
JP2004503927A (ja) 微細パターンとワイドパターンとが混在する集積回路ステージを形成するための方法
JP2005055537A (ja) 設計パターンの作成方法、フォトマスクの製造方法、レジストパターンの形成方法及び半導体装置の製造方法
KR100510448B1 (ko) 열적 흐름 공정을 이용한 반도체장치의 미세 포토레지스트 패턴형성방법
US6514874B1 (en) Method of using controlled resist footing on silicon nitride substrate for smaller spacing of integrated circuit device features
KR100598103B1 (ko) 패턴 형성 방법
KR100562299B1 (ko) 반도체 소자의 트렌치 제조 방법 및 그 마스크 패턴 형성방법
KR0179339B1 (ko) 감광막패턴 형성방법
KR100510616B1 (ko) 반도체 제조 공정에서의 barc 패터닝 및 식각 방법
KR100401517B1 (ko) 반도체 제조용 노광 마스크의 제조방법
JP3131016B2 (ja) ネガ型レジストパターンの形成方法
JP2003332227A (ja) マスクパターン及びそれを用いるステンシルマスク
JPH11184066A (ja) フォトマスク及びコンタクトホール形成方法
KR100853461B1 (ko) 아르곤플로라이드 광원을 이용한 반도체 소자의 패턴형성방법
JPH05326503A (ja) 線パターンの形成方法
KR20060130936A (ko) 반도체 장치의 제조방법
JP2003332212A (ja) マスクパターン形成方法および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees