JP4159190B2 - 眼科測定装置 - Google Patents

眼科測定装置 Download PDF

Info

Publication number
JP4159190B2
JP4159190B2 JP22844199A JP22844199A JP4159190B2 JP 4159190 B2 JP4159190 B2 JP 4159190B2 JP 22844199 A JP22844199 A JP 22844199A JP 22844199 A JP22844199 A JP 22844199A JP 4159190 B2 JP4159190 B2 JP 4159190B2
Authority
JP
Japan
Prior art keywords
eye
measurement
optical
optical system
examined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22844199A
Other languages
English (en)
Other versions
JP2001046340A (ja
Inventor
昌克 岩本
Original Assignee
隆祥産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆祥産業株式会社 filed Critical 隆祥産業株式会社
Priority to JP22844199A priority Critical patent/JP4159190B2/ja
Publication of JP2001046340A publication Critical patent/JP2001046340A/ja
Application granted granted Critical
Publication of JP4159190B2 publication Critical patent/JP4159190B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角膜形状を測定するケラトメータ、眼屈折力を測定するレフラクトメータ、あるいは眼屈折力と角膜形状の両者を測定するレフラクト・ケラトメータ等の眼科測定装置に関する。さらに詳しくは、装置の光学測定部と被検眼との間の相対位置、すなわち作動距離を簡単なシステムで検知することにより上記光学特性の測定精度を高める眼科測定装置に関する。
【0002】
【従来の技術】
ケラト測定及びレフラクト測定のいずれの場合でも、上記光学特性を求める算出式において作動距離という演算ファクタを含んでおり、その作動距離が測定精度に影響を与えるという問題が共通している。図1に示すように、作動距離とは、眼科測定装置の光学測定部の所定の基準面Aから被検眼1の基準面Bまでの距離である。そして、光学測定部が被検眼1に対して特定の位置関係にあるときに意図した光学測定原理が利用できるように設計的に規定されたその距離が規定作動距離D0であり、このとき、光学測定部の基準面Aは被検眼1に対して規定作動位置にある。また、被検眼の光学特性を実測したときの、光学測定部の基準面Aから被検眼1の基準面Bまでの距離が、実作動距離Dであり、このときの光学測定部の基準面Aは被検眼1に対して実作動位置にある。従来、検者の熟練度差で合焦の程度が異なる、あるいは被検者11が動いてしまうために実作動距離Dが不明であったにも拘わらず、実作動距離Dの代りに規定作動距離D0を光学特性算出式に代入して光学特性を求めていた。
【0003】
以下に、作動距離という演算ファクタが測定精度に如何に影響を及ぼすかについて、ケラト測定及びレフラクト測定に分けて具体的に説明する。
【0004】
ケラトメータには、被検眼の角膜上に指標像を形成するためのケラト測定光源が平行光束タイプのものと、拡散光タイプのものとがある。
【0005】
平行光束タイプのものは、測定装置と被検眼との間の位置ずれが測定精度に大きな影響を与えないという長所を有する反面、平行光束を作り出すための特殊な光学系が必要となるために高コストになるという短所を有する。したがって、低コストとするためには、拡散光タイプのものが使用される。
【0006】
拡散光タイプのケラトメータの投影・受光光学系を図1に示す。図1に示すように、拡散光タイプのものは、拡散光源4として、例えば、光軸7を中心としたリング状LEDアレイとその前方に配置した拡散板とを組み合わせたものを用いている。このタイプのものは、拡散光源4に特殊な光学系を付加する必要がないので、投影光学系がシンプル且つ安価であるという特長を有する。以下に、この拡散光タイプの構成について詳述する。
【0007】
拡散光タイプの投影光学系29では、図1に示すように、光源4から出射された拡散光6が被検眼1の角膜2に投影されている。拡散光6の中で光軸7に対して角度θで入射した光は角膜2上で拡散反射され、光軸平行の指標像は、光源4と被検眼像1の角膜曲率中心を結ぶ線状で且つ曲率半径rの略1/2のところ(光軸7よりの高さh2)に結像する。この角膜指標像は、リレーレンズ31及び結像レンズ33を経て、受光光学系により光電検出器としてのCCDセンサー34上に導かれて光軸7よりの高さh3の像が結像する。この像によるCCDセンサー34の信号をコンピュータで演算処理することによって角膜2の曲率半径rが算出されるようになっている。
【0008】
図2は、曲率半径rの求め方を説明する説明図である。角膜の曲率半径rは、(1)式で求められている。
r=2・h2・{2・h2・D±h1・(h1 2+D2-4・h2 2)0.5}・(h1 2-4・h2 2) --(1)
ここで、h1は光軸7からの光源高さ、h2は光軸7からの角膜指標像の高さである。
【0009】
(1)式から明らかなように、実作動距離Dは、求められる角膜の曲率半径rを決定する演算ファクターである。この(1)式に代入すべきものは実作動距離Dであるが、実作動距離Dが不明であるので、実作動距離Dが規定作動距離D0に等しいと仮定して、実作動距離Dの代りに規定作動距離D0を算出式に代入して光学特性を求めていた。したがって、正しい曲率半径rを求めるためには、実作動距離Dが規定作動距離D0にできるだけ一致させる必要がある。
【0010】
上述したように、拡散光を用いたケラト測定では、実作動距離Dが規定作動距離D0と等しいときには正しい角膜曲率半径rを求めることができる。しかしながら、実側時には、上述した理由で、実作動距離Dが規定作動距離D0と異なることが多く、このため正確な角膜曲率半径rを求めることができない。この点について、図3を参照しながら詳細に説明する。
【0011】
図3(a)は、図2と同じようにD=D0のときであって、設計値であるh1,及びD0と測定値であるh21とを(1)式に代入することで角膜曲率半径rを算出することができる。
【0012】
ところが、図3(b)に示すように、D<D0のときには、光源4の角膜曲率中心方向への入射角θ2は、図3(a)の入射角θ1より大きくなるので、角膜指標像の光軸7からの高さh22が図3(a)における角膜指標像の光軸7からの高さh21より大きくなる。角膜指標像の光軸7からの高さh22が大きくなると、(1)式から、角膜の曲率半径rは図3(a)での曲率半径値より大きめに算出される。
【0013】
また、図3(c) に示すように、D>D0のときには、入射角θ3は入射角θ1より小さくなり、角膜指標像の光軸7からの高さh23が図3(a)における角膜指標像の光軸7からの高さh21より小さくなる。角膜指標像の光軸7からの高さh23が小さくなると、(1)式から、角膜の曲率半径は図3(a)での曲率半径値より小さめに算出される。すなわち、実作動距離Dが所定の規定作動距離D0から外れた場合、算出された角膜曲率半径は、測定誤差を含むことになる。
【0014】
このように、従来の拡散光タイプのケラト測定では、上述の理由で、実作動距離Dが必ずしも規定作動距離D0に一致しないにも拘わらず、実作動距離Dが規定作動距離D0に等しいものとして、実際の作動距離Dの代りに設計上の規定値である規定作動距離D0を(1)式に代入して角膜2の曲率半径rを算出していた。
【0015】
したがって、従来の拡散光タイプのケラトメータは、角膜曲率半径rが実作動距離Dに関係した距離誤差を含むという問題を本質的に有する。実作動距離Dを規定作動距離D0に一致させるべく、オートフォーカス機構といった複雑な機構を付加すれば、検者の熟練度の問題は解決できるとしても、この場合は、全体としてコストアップになるという問題を有する。
【0016】
次に、眼屈折力Gを測定する従来のレフラクトメータについても述べるが、レフラクトメータにおいても、拡散光タイプのケラトメータと同様の問題がある。
【0017】
ケラト測定のところで説明したのと同様に、検者の熟練度差で合焦の程度が異なる、あるいは被検者11が動いてしまうために、レフラクト測定時の実作動距離Dが不明であるにも拘わらず、実作動距離Dの代りに規定作動距離D0を算出式に代入して光学特性を求めていた。
【0018】
図4及び図5は、それぞれ、従来のレフラクトメータの投影・受光光学系を、図4における投影光学系29を示す。図4及び図5に示すように、光軸7に対して入射角θ、規定入射高さh1の細く絞ったビーム光9を、被検眼1の眼底3に投影するようになっている。投影されたビーム光9は、眼球内で屈折しながら進行し、眼底3上で光軸7に対する高さh6の眼底指標像が投影される。この眼底指標像は、被検眼1側からリレーレンズ31、絞り32、結像レンズ33の順序で配置された受光光学系30により光電検出器としてのCCDセンサー34上に導かれて光軸7よりの高さh7の像が結像される。CCDセンサー34上で結像した像の信号をコンピュータで演算処理することによって眼屈折力Gが算出される。レフラクト用の受光光学系30においては、図4に示すように、リレーレンズ31が、被検眼側基準面B(被検眼1の角膜2)の位置と絞り32の位置とが互いに共役な位置になるように配置されるとともに、結像レンズ33が、絞り32を通過した光が光軸7に対して平行になるように結像レンズ33の焦点位置に配置される。
【0019】
この場合、実作動距離Dと規定作動距離D0との差を距離誤差Δとし、眼軸長をd、眼屈折力をG、眼球の屈折率をn、規定入射高さをh5とすると、眼底指標像の高さh6は(2)式で表わされる。
6=(-1)・d・n-1・{(h5-Δ・θ)・G+θ} --(2)
【0020】
受光光学系30によりCCD34センサ上に形成された眼底指標像の光軸7からの高さh7は、リレーレンズf1の焦点距離をf1、結像レンズf2の焦点距離をf2とすると、h7は(3)式で与えられる。
7=f1 -1・f2・(D-f1)・(1-Δ・θ)-1・n・d-1・h6 --(3)
【0021】
(2)式を(3)式に代入して、眼屈折力Gについて式を整理すると、(4)式が得られる。
G={h7・f1+(D0-f1)・θ・f2}・{(D0-f1)・(Δ・θ-h5)・f2+h7・f1・Δ}-1 --(4)
【0022】
(4)式からわかるように、眼屈折力Gは、作動距離の距離誤差Δに依存しており、距離誤差Δを求めることができれば、正確な眼屈折力Gを算出することができる。
【0023】
しかしながら、従来、眼屈折力Gは(5)式によって算出されていた。
G={h7・f1+(D0-f1)・θ・f2}・{(D0-f1)・h7・f2}-1 --(5)
【0024】
(4)式と(5)式とを比較すると、(5)式は、(4)式においてΔ=0としたときのものと等しいことがわかる。すなわち、従来、実作動距離Dが不明であったために作動距離の距離誤差Δを無視して、眼屈折力Gは、近似式(5)によって算出されていた。
【0025】
実側時には上記理由により実作動距離Dが必ずしも規定作動距離D0に一致しない(すなわち、作動距離Dの距離誤差Δがゼロにならない)にも拘わらず、実作動距離Dが不明であるとともに、従来技術には、作動距離の距離誤差Δを補正しようとする発想がそもそもなかったために、作動距離の距離誤差Δを無視して眼屈折力Gを算出していた。したがって、実作動距離Dを正確に検知することができれば、(4)式から正確な眼屈折力Gを算出できるようになる。
【0026】
【発明が解決しようとする課題】
したがって、本発明の解決すべき技術的課題は、装置の光学測定部と被検眼との間の実作動距離を簡単なシステムで検知し、検知された実作動距離と予め与えられている規定作動距離との距離誤差から光学特性を補正することにより、光学特性の測定精度を高めることができる眼科測定装置を提供することである。
【0027】
【課題を解決するための手段及び作用・効果】
上述の技術的課題を解決するために、本発明に係る眼科測定装置は、以下の特徴を有する。
【0028】
すなわち、本発明に係る眼科測定装置は、被検眼の光学特性を測定する光学測定部と、光学測定部が被検眼に対して規定作動位置にあるか否かを検出する規定作動位置検出手段と、被検眼に対する光学測定部の相対的位置関係を常時検出する位置検出手段と、規定作動位置検出手段からの規定作動位置情報と位置検出手段からの位置情報とから、被検眼に対する光学測定部の規定作動位置及び実作動位置を認識する位置認識手段と、位置認識手段より得られた光学測定部の実作動位置、あるいは規定作動位置と実作動位置との距離誤差を演算ファクターとして含む被検眼光学特性算出式に基づいて被検眼光学特性値を演算する演算手段とを備え、実作動位置において得られた光学特性値を距離誤差に基づいて補正して、実作動位置での補正光学特性値を求めることを基本的特徴としている。
【0029】
上記装置によれば、検者が、光学測定部を被検眼に対する規定作動位置に位置決めすべく光学測定部を動かすときに、位置検出手段によって被検眼に対する光学測定部の相対的位置が常時検出されているとともに、光学測定部が規定作動位置にあるか否かが作動位置検出手段によって認識される。ある位置が規定作動位置であると検者が判断して被検眼の測定を開始した瞬間、その瞬間での実作動位置が位置検出手段によって検出される。これらの光学測定部の規定作動位置と実作動位置とは位置認識手段によって認識され、規定作動位置に対する実作動位置の距離誤差が算出される。実作動位置での光学特性値は、距離誤差を加味して被検眼光学特性算出式に従って演算手段によって算出され、距離誤差に基づいて補正される。したがって、距離誤差を考慮しなかった従来例より、光学特性値の測定精度を向上させることができる。
【0030】
上記規定作動位置検出手段としては、種々の検出手段を用いることができる。例えば、三角測量手段あるいは超音波計測手段等の2つの物体間の距離を測定する公知の測距手段を眼科測定装置に別途設けて用いることができる。また、1つの光源からの光を2つの指標光にスプリットさせ、被検眼の角膜に対してある角度からその指標光を投影し、既存の光学系とは別に設けられた2つの受光光学系で各角膜反射指標像を受光し、2つの角膜反射指標像が規定作動位置で1つに重なるように予め設計しておき、角膜反射指標像の重なり具合によって光学測定部が被検眼に対して規定作動位置にあるか否かを検出するという指標像一致検出手段を用いることができる。また、光軸に対して点対称の2つの指標光を被検眼の角膜に対してある角度から投影し、角膜で反射した2つの指標像の間隔を測定して、角膜反射指標像間の間隔が規定作動位置での予め設定された間隔と等しくなった位置から規定作動位置を検出するという指標像間隔検出手段を用いることができる。
【0031】
規定作動位置検出手段としては、上述した検出手段を用いることもできるが、光学測定部の位置に応じて被検眼の合焦を判定する合焦判定手段を用いることが好ましい。
【0032】
眼科測定装置においては、被検眼の状態をモニターするために前眼部を観察する光学系が必ず設けられており、この前眼部像を合焦判定像として利用することができる。そして、合焦判定手段は、光学測定部が被検眼に対して規定作動位置になったときに被検眼が合焦するように予め光学設計されている。被検眼の光学特性を測定する際に、検者は光学測定部を前後に動かして被検眼が合焦するように位置決め操作を行う。被検眼が合焦すれば、この合焦位置が規定作動位置となり、前眼部像を合焦させるという通常の測定操作から規定作動位置を簡単に検出することができる。そして、合焦判定手段は、既存の光学系を利用することができるので、低コスト化を図ることができる。
【0033】
合焦判定光投影光学系は、別途設けることができるが、通常、眼科測定装置の光学測定部に設けられている既存の投影光学系を利用することができる。すなわち、レフラクトメータには、前眼部像あるいはアライメント用照準像を角膜に投影するための投影光学系が設けられており、ケラトメータには、前眼部像、アライメント用照準像、及び角膜指標像を角膜に投影するための投影光学系が設けられており、これらの投影光学系を合焦判定光投影光学系として利用することができる。
【0034】
例えば、被検眼の前眼部を照明する照明光学系を合焦判定光投影光学系と兼用することができる。
【0035】
また、ケラトメータにおいては、角膜形状測定指標光投影光学系を合焦判定光投影光学系と兼用することができる。
【0036】
また、被検眼の角膜上にアライメント光を投影するアライメント光学系を合焦判定光投影光学系と兼用することができる。このとき、角膜面上に形成されたアライメント用照準像のコントラストが前眼部像より高いので、被検眼の合焦及び合照準が容易になる。
【0037】
好ましくは、上記角膜形状測定指標光として拡散光を用いることができる。
【0038】
上記構成によれば、平行光束を作り出すための特殊な投影光学系が不必要となるので、低コスト化を図ることができる。
【0039】
本発明をさらに具体的に述べれば、眼科測定装置は、被検者の顔面をベースに固定するための被検眼固定手段と、被検眼の光学特性測定用指標光を被検眼に投影する指標光投影光学系と、各投影光学系で投影された光の被検眼反射像を光電検出手段に受光する受光光学系と、を備えてなり、かつ、ベース上に被検眼固定手段に対して前後左右に移動自在に設置してなる光学測定部と、光電検出手段からの画像信号に基づいて角膜反射像を映し出すモニターとを備える眼科測定装置に関し、この眼科測定装置は、さらに、以下に述べる、合焦判定光投影光学系と、演算手段と、合焦判定手段と、位置認識手段と、補正手段とを有する。すなわち、合焦判定光投影光学系は、光学測定部に設けられて、合焦判定光を角膜に投影する光学系であり、角膜反射像としての、前眼部像、アライメント用照準像、及び角膜指標像を角膜に投影するための投影光学系を用いることができる。演算手段は、光電検出手段からの画像信号を受信するとともに、規定作動距離を演算ファクターとして含む被検眼光学特性算出式に基づいて被検眼光学特性を算出する。位置検出手段は、被検眼固定手段に対する光学測定部の位置を常時検出するものであり、例えば、ポテンショメーターを用いることができる。合焦判定手段は、モニター上で合焦判定光の角膜反射像のピントを合わせるときに、光学測定部の位置に応じて合焦程度を常時判定するものであり、被検眼の前眼部を観察する光学系を利用することができる。位置認識手段は、位置検出手段からの位置情報と合焦判定手段からの合焦情報とから、合焦判定手段により合焦状態と判定された瞬間の光学測定部の規定作動位置と、測定指標光を実際に投影した瞬間の光学測定部の実作動位置とを認識するものである。補正手段は、位置認識手段より得られた規定作動位置と実作動位置との距離誤差に基づいて被検眼光学特性算出式を補正して、実作動位置での補正された光学特性値を算出する。
【0040】
上記装置によれば、合焦判定光によって被検眼の角膜上に形成された角膜反射像が、光電検出手段に導かれ、光電検出手段からの画像信号に基づいて角膜反射像がモニターに表示される。角膜反射像は、さらに合焦判定像として解析されて、合焦の程度が常時判定されている。また、本装置には、被検眼固定手段に対する光学測定部の位置を常時検出する位置検出手段が設けられている。検者が、モニター上の角膜反射像を見ながら光学測定部を前後に動かすときに、合焦情報と位置情報とから合焦状態と判定された瞬間の光学測定部の規定作動位置が認識・判定される。したがって、検者がモニター上の角膜反射像を見ながらアライメントの位置決めを行うので、オートフォーカス機構が不要になる。そして、検者がある位置で合焦したと思って測定ボタンを押した瞬間、光学特性測定用の視標光が被検眼に投影されて光学特性が測定されるとともに、その瞬間の実作動位置が認識される。このようにして得られた規定作動位置と実作動位置との距離誤差Δに基づいて被検眼光学特性算出式に距離誤差データを代入して光学特性値を補正するので、光学特性値の測定精度を向上させることができる。
【0041】
【発明の実施の形態】
以下に、本発明の好適な一実施形態について、図6〜図13を参照して詳細に説明する。
【0042】
図6は、角膜形状と眼屈折力との両方を測定することができるレフラクト・ケラトメータを示す側面図である。レフラクト・ケラトメータは、被検眼固定手段としての被検者固定フレーム23と、光学測定部28を内蔵する本体21と、本体21と一体化されているとともにベース22に対して前後に移動自在の移動台24と、移動台24を可動に支持するための土台であってテーブル等の台上に据え置かれるベース22とから構成されている。
【0043】
図6に示した被検眼固定フレーム23は、被検者11が顎を乗せるための顎乗せ台25と、顎乗せ台25がベース22から略垂直に延在するように顎乗せ台25をベース22に対して固定する顎乗せ台支持部25aとからなる。顎乗せ台25は、被検者11の額が押し当てられることによりその顔面が固定される顎乗せ台フレーム25bと、被検者11の被検眼1がちょうど光学測定部28の接眼部に位置するように被検者11の顎の高さを上下に調節するための高さ調節機構を有する顎乗せ部25cとを備えている。
【0044】
図6に示した移動台24は、被検者固定フレーム23に対して前後、左右に移動自在の移動機構を内蔵しており、その上面には操作ボタン26aを有するジョイスティック26を備え、検者はモニター28aを見ながらジョイスティック26を動かして照準及び合焦できるように顎乗せ台25に対して光学測定部28の位置調整操作を行う。
【0045】
図7に示すように、移動台24の下面には、位置検知手段としてのポテンショメーター27が設けられている。ポテンショメーター27としては、例えば、両端をベース22に固定して全体を緊張させた状態にある糸が、可変抵抗器に接続されたプーリーの外周に巻回されたものを用いることができる。このような構成で、移動台24がベース22に対して前後に動くと、プーリーが回転することに伴って可変抵抗器の抵抗値が変化する。この抵抗値変化が移動台24の移動量に対応しているので、ポテンショメーター27の抵抗値変化をモニターすることで、移動台24の移動量を検知することができる。なお、このポテンショメーター27としては、種々のタイプのものを使用することができる。例えば、ラック&ピニオン機構を用いたもの、可動鉄心とコイルとから構成される差動変圧器方式のもの、あるいはリニア・エンコーダを用いたもの等の種々の位置検出手段を用いることができる。
【0046】
図6に示すように、本体21は、角膜曲率半径及び眼屈折力等の光学特性を測定するための光学測定部28と、光学測定部28から得られた画像信号を受信するとともに、各種データに基づいて角膜曲率半径及び眼屈折力等の測定値を演算する不図示の演算手段と、レチクルマークが写し出されているとともに、被検眼反射像及び眼科測定値といった種々の情報を表示するモニター28aと、位置情報と合焦情報とから規定作動位置及び実作動位置をそれぞれ認識する不図示の位置認識手段とを備えている。
【0047】
図8は、本発明の一実施形態に係る眼科測定装置の光学測定部28の光学系を示す図である。図8に示すように、光学測定部28は、被験眼1の前眼部に照明光53を照明する照明光源53bと、被検眼1の角膜2上にアライメント光52を投影するアライメント用投影光学系52aと、被検眼1の角膜2にケラト測定光51を投影するケラト測定光源51bと、眼底3に対してレフ測定光50を投影するレフ測定投影光学系50aと、眼底指標像をレフ受光光学系用CCDセンサ34a上に結像させるレフ受光光学系30bと、前眼部像及び角膜指標像を角膜反射像受光光学系用CCDセンサ34b上に結像させる角膜反射像受光光学系30bとを備える。
【0048】
照明用投影光学系は、通常、接眼レンズ67の近傍に設けられており、照明光源53bから出射された照明光53は、被検眼1の角膜2上に前眼部像を投影する。前眼部像は、接眼レンズ67、ダイクロイックミラー5、フィールドレンズ66、ビームスプリッタ65、及び絞り32からなる角膜反射像受光光学系30bによって角膜反射像受光光学系用CCDセンサ34b上に導かれる。
【0049】
アライメント光学投影光学系52aは、レフラクト測定時に用いられ、アライメント状態で測定光学系の光軸7上に位置する被検眼1に臨むように配置されたスポット光を発射する点状のアライメント光源52bを有する。アライメント光52は、ビームスプリッタ65、フィールドレンズ66、ダイクロイックミラー61、接眼レンズ67を経て、被検眼1の角膜2に角膜反射像であるアライメント用照準像が投影される。アライメント用照準像は、接眼レンズ67、ダイクロイックミラー61、フィールドレンズ66、ビームスプリッタ65、及び絞り32からなる角膜反射像受光光学系30bによって角膜反射像受光光学系用CCDセンサ34b上に導かれる。
【0050】
被検眼1の角膜2あるいは眼底3に対して光学特性測定用の指標光をそれぞれ投影する投影光学系及びその受光光学系について説明する。
【0051】
角膜の曲率半径を測定するためのケラト測定用の指標光投影光学系は、接眼レンズ67の近傍に設けられている。リング状に配置されたケラト測定光源51bから出射された光は、拡散板60を介して被検眼1の角膜2上に投影される。角膜指標像は、接眼レンズ67、ダイクロイックミラー5、フィールドレンズ66、ビームスプリッタ65、及び絞り32からなる角膜反射像受光光学系30bによって角膜反射像受光光学系用CCDセンサ34b上に導かれて、角膜反射像受光光学系用CCDセンサ34b上で結像する。
【0052】
眼屈折力を測定するためのレフラクト測定用の指標光投影光学系50aにおいて、レフ測定光源50bから出射した細く絞られたビーム光のレフ測定光50が、マスク62でリングパターンの指標光50に加工される。このレフ測定用の指標光50は、穴開きミラー63、ダイクロイックミラー61、接眼レンズ67を経て、被検眼1に投影され、被検眼1の眼底3で反射して眼底指標像を形成する。眼底指標像は、接眼レンズ67、ダイクロイックミラー61、穴開きミラー63、及び結像レンズ66からなるレフ受光光学系30aによってレフ受光光学系用CCDセンサ34aに導かれて、レフ受光光学系用CCDセンサ34a上で結像する。
【0053】
図9は、本発明の一実施形態に係る眼科測定装置のシステム図である。図9に示すように、CCDセンサ34a,34b上で結像した被検眼反射像の画像信号を受信するとともに、各種データに基づいて角膜曲率半径及び眼屈折力等の眼科測定値を演算するための演算手段としてのCPU35が本体21に設けられている。CPU35には、角膜反射像受光光学系用CCDセンサ34bからの信号を受け取って角膜反射像をモニター28aに出力するビデオ回路47と、投影・受光光学系49を介して被検眼1に対して投影する各光源50,51,52,53を制御する制御出力信号、及び入力装置としてのジョイスティック26の入力信号の入出力端子であるI/Oポート48と、ポテンショメータ27からのアナロクデータをデジタル化するためのA/D変換回路36と、システム制御のプログラムが書き込まれたROM45と、システムのワークエリアとして使用されて角膜指標像、眼底指標像、及び位置データの各実測値を一時的に記憶する位置記憶手段としてのRAM44と、ビデオ回路47からの信号を直接CPU35に伝えるダイレクトメモリアクセス回路46とが接続されている。
【0054】
前眼部像の結像した角膜反射像受光光学系用CCDセンサ34bから出力された電気信号は、ビデオ回路で映像信号に変換され、画像表示デバイスとしてのモニター28aに前眼部像が表示される。検者はモニター28a上の前眼部像を見ながら、ジョイスティック26を操作して、測定光学部28を搭載した移動台24をベース22に対して前後、左右に移動させる。前眼部像の中心がモニター28aに表示された円形レチクルパターンの中心と一致するように、すなわち被検眼1と測定光学部28との光軸が一致するように、検者はモニター28aを見ながら照準する。なお、このような照準操作を行う際には、被検眼1が測定光学部28に対して予め略合焦状態になっているので、その後に続く合焦操作が容易且つスムーズに行われる。
【0055】
角膜反射像受光光学系用CCDセンサ34b上に結像されたアライメント用照準像及び角膜指標像も、上記前眼部像と同様の信号処理によって、それぞれ、照準像及び角膜指標像としてモニター28aに表示される。検者は、モニター28aに表示されたアライメント用照準像あるいは角膜指標像を見ながら、光学測定部28を搭載した移動台24を顎乗せ台25の固定されたベース22に対してジョイスティック26を操作して前後に動かして、照準像あるいは角膜指標像を合焦させる。なお、アライメント用照準像の輝度が前眼部像より高いので、照明光学系を使用しなくても前眼部を観察することができるとともに、アライメント用照準像によって合焦及び合照準を容易に行うことができる。
【0056】
被検眼1の角膜2上に投影される、前眼部像、アライメント用照準像、及び角膜指標像の各角膜反射像は、検者がモニター28aに表示された角膜反射像を合焦させるために使用されるとともに、別途、以下に説明する信号処理を施すことによって、合焦状態を判定するための合焦判定像として使用される。
【0057】
規定作動位置検出手段としての合焦判定手段は、光学測定部28が被検眼1に対して規定作動位置になったときのみに合焦するように光学設計されており、角膜反射像受光光学系用CCDセンサ34bとCPU35とを少なくとも備える。合焦判定手段は、角膜反射像受光光学系用CCDセンサ34b上で受光された合焦判定像としての角膜反射像のコントラストが最も高くなったときに、光学測定部28が合焦状態、すなわち判定規定作動位置であると判定する。合焦判定手段による信号処理方法は、図11に示すアナログ回路と図12に示すデジタル回路とに大別される。
【0058】
図11のアナログ回路による信号処理では、合焦判定像が結像した角膜反射像受光光学系用CCDセンサ34bから出力されたビデオ信号は、高周波フィルター37を通過して、アナログ的な信号処理がまず行われたあと、最終的にデジタルデータに変換される。角膜反射像受光光学系用CCDセンサ34bから出力されたビデオ信号を高周波フィルター37を通過させることにより、輝度信号を含む高周波成分がビデオ信号から抽出される。高周波成分が積分器38で1フィールド毎に積分され、積分回路信号はA/D変換回路36で量子化される。その一方で、角膜反射像受光光学系用CCDセンサ34bからのビデオ信号が同期分離回路39及び垂直同期パルス回路40を通過することによって、各種制御タイミング信号が作り出される。クリア信号によって、積分器38が1フィールド毎に初期化されて1フィールドにおけるデータを積分する。ホールド信号によって積分器からのデータをA/D変換回路36で量子化し且つ保持する。A/D変換回路36に保持されたデジタルデータが、1フィールド毎の割り込み信号によって、CPU35に取り込まれる。このとき、ポテンショメータ27から出力されたアナログ信号はA/D変換回路36を通ることによりデジタルデータに変換され、このデータは移動台24の位置データとしてCPU35に取り込まれる。
【0059】
図12のデジタル回路による信号処理では、角膜反射像受光光学系用CCDセンサ34bの直後にA/D変換回路36を接続してアナログデータをデジタルデータに変換するものである。すなわち、合焦判定像が結像した角膜反射像受光光学系用CCDセンサ34bからのビデオ信号は、最初にA/D変換回路36で量子化され、量子化データがフレームメモリ42に格納される。量子化データは、空間フィルタ43で微分され、加算器41により積分される。CPUは1フィールド毎の割り込み信号により、加算器41によって積算値が取り込まれる。一方、角膜反射像受光光学系用CCDセンサ34bからのビデオ信号から、周期分離回路39及び垂直同期パルス回路40を通ることにより各種制御タイミング信号が生成される。クリア信号によって、加算器41が1フィールド毎に初期化されて1フィールドにおけるデジタルデータを加算する。加算器41での積算値が、1フィールド毎の割り込み信号によって、CPU35に取り込まれる。このとき、ポテンショメータ27から出力されたアナログデータはA/D変換回路36によりデジタルデータに変換されて移動台24の位置データとしてCPU35に取り込まれる。なお、フレームメモリ42を省略して空間フィルタ43に直接入力することもできる。
【0060】
測定操作を行っている間、アナログ方式及びデジタル方式のいずれの場合においても、合焦判定像の積算値及び光学測定部28の位置データが常時検出されている。検者がピント合わせするために、検者がジョイスティック26を操作しながら移動台24を前後に動かすと、各位置での位置データと合焦判定像の積算値とが変化する。各位置での位置データと積算値とに対して、位置データを横軸に、積算値を縦軸にとると、図13に示す山型曲線のグラフとなる。検者が移動台24を前後に動かすと積算値は合焦判定像の合焦位置で最大となるので、図13における山型曲線の頂点が合焦位置である。検者が移動台24を前後に動かすのは以下の理由による。すなわち、モニター28上でピント合わせをするために、検者が移動台24を動かす際に、検者がある一方向に動かすだけで合焦したと判断することはなく、検者は、通常、その反対方向にも動かす。つまり、検者は、合焦の有無を判断するために、合焦位置を中心に移動台24を前後に動かすという操作を繰り返す。したがって、検者が移動台24を前後に動かしているときに、合焦判定手段から合焦判定像の合焦情報を得ることができる。
【0061】
位置認識手段は、図9に示すように、角膜反射像受光光学系用CCDセンサ34bと、CPU35と、ポテンショメータ27と、モニター28aと、位置記憶手段としてのRAM44とを少なくとも備える。ポテンショメータ27からの位置情報と、角膜反射像受光光学系用CCDセンサ34bとCPU35とを少なくとも備える合焦判定手段からの合焦情報とが、それぞれ、所定のタイミングで、RAM44に一時的に蓄えられる。これらの位置情報と合焦情報とを常時モニターすると、上述したように、図13の山型曲線が得られる。そして、山型曲線の頂点が合焦状態と判定され、その瞬間での光学測定部28の合焦位置が規定作動位置として認識され、その位置での位置データがRAM44に蓄えられる。また、検者がモニター28a上の角膜反射像から合焦したと判断したときに測定開始ボタンを押す。この瞬間に光学特性測定用の指標光が被検眼1に投影されるとともに、その瞬間での光学測定部28の位置が実作動位置として認識され、その位置での位置データがRAM44に蓄えられる。
【0062】
位置認識手段より得られた規定作動位置と実作動位置との距離誤差Δに基づいて被検眼光学特性算出式を補正する補正手段は、図9に示すCPU35を備えている。CPU35によって、指標光を実際に投影した瞬間の、角膜指標像及び眼底指標像の高さ情報、及びそのときの位置情報を、それぞれ、従来技術で説明した(1)式及び(4)に代入して演算処理することによって、補正された角膜曲率半径及び眼屈折力等が算出される。このようにして得られた眼科測定値は、モニター28a上に表示されるか、あるいは不図示のプリンタで印字される。
【0063】
次に、角膜曲率半径の測定を行なったあとさらに眼屈折力の測定を行う、本発明の一実施形態としてのレフラクト・ケラトメータの測定方法に関して、図10に示した測定フローチャートにしたがって説明する。
【0064】
図6に示すように、被検眼1のケラト測定に先だって、まず最初に、被検者11の顔が顎乗せ台フレーム25bに当接するとともに顎を顎乗せ部25cに乗せた状態にして、光学測定部28に対して安定して保持できるように被験者11の被検眼1を固定する。
【0065】
ステップ#101では、被検者11が不図示の固視標を測定窓から注視した状態で照明用光源53bを点灯させ、前眼部像を角膜反射像受光光学系30bを経て角膜反射像受光光学系用CCDセンサ34b上に結像させる。角膜反射像受光光学系用CCDセンサ34b上の前眼部像は画像処理されてモニター28aに表示される。検者は、モニター28aに表示された前眼部像を見ながら、顎乗せ部25cを上下方向に高さ調整するとともに、ジョイスティック26を操作してベース22に対して前後、左右に移動台24を移動させる。このように検眼部1を光学測定部28に対して三次元的に移動させることにより、モニター28a上に表示されたレチクルパターンの中心と前眼部像の中心とが一致させるべくアライメント調整を行う。このとき、光学測定部28は被検眼1に対して略合焦位置となっている。
【0066】
このようなアライメント調整を行った後、検者は、モニター28aに表示された前眼部像を見ながら、前眼部像が合焦状態になるように、移動台24を前後に動かす。移動台24を前後に動かしているときに、合焦判定手段によって合焦位置と判定されたときの位置データPFは、ポテンショメータ27から読み取られる。そして、その位置データPFは、RAM44に一時的に記憶される。なお、この合焦位置での、装置の所定の基準面A(すなわち、拡散光源4)から被検眼1の基準面B(すなわち、角膜表面2)までの作動距離は、規定作動距離D0になっている。
【0067】
ステップ#101の照準及び合焦の操作が終わると、ステップ#102のオートスタートの選択モードに移り、ケラト測定を自動測定するか手動測定するかを選択する。自動測定モードを選択すると、ステップ#104に移行し、検者が前後に動かしているときに、合焦位置と判定されたときの位置に達すると、自動的に測定スイッチがONされる。測定スイッチがONされると、ケラト測定指標光51によって角膜2表面に角膜指標像が形成される。手動測定モードを選択すると、ステップ#103に移行し、検者が測定スイッチをONする。
【0068】
ステップ#103では、測定を行うか否かが判断され、測定を行う場合、ステップ#104へ移行し、測定を行わない場合にはステップ#101へ移行して焦点合わせモードに戻る。測定スイッチがONされると、ケラト測定指標光51によって角膜2表面に角膜指標像が形成される。
【0069】
ステップ#104では、前眼部像が合焦するように、検者は、モニター28aに表示された前眼部像を見ながら、ジョイスティック26を操作して、被検眼1に対して光学測定部28を前後に動かす。検者は、合焦したと思ったときに、ジョイスティック26の操作ボタン26aを押す。このときの位置データPMは、ポテンショメータ27で読み取られる。そして、その位置データPFは、RAM44に一時的に記憶される。なお、この実測位置データPMは、装置の所定の基準面A(すなわち、拡散光源4)から被検眼1の基準面B(すなわち、角膜表面2)までの実作動距離Dに相当する。
【0070】
ステップ#105では、CPU35が実測位置PMと合焦位置PFとの差分を位置測定誤差Eとして演算する。なお、この位置測定誤差Eは作動距離誤差Δに等しい。
【0071】
ステップ#106では、ステップ#105で求められた位置測定誤差Eが所定の位置測定誤差C内に収まっているか否かが判断され、所定範囲C内であれば、次のステップ#107に移行し、所定範囲C外であれば、ステップ#101へ移行して焦点合わせモードに戻る。
【0072】
ステップ#107では、ケラト測定用の指標光51によって角膜2表面に角膜指標像を投影し、角膜指標像の光は、角膜反射像受光光学系30bを経て角膜反射像受光光学系用CCDセンサ34b上に結像される。実測位置PMでの角膜反射像受光光学系用CCDセンサ34b上に結像された角膜指標像の光軸7から高さh3のデータが取り込まれる。
【0073】
ステップ#108では、設計値であるh1及び測定値であるh3,Dを、従来技術で説明した距離誤差Δを演算ファクターとして含む被検眼光学特性演算式(1)に代入することにより、実測位置PMでの角膜曲率半径rの実測値を補正して正確な角膜曲率半径rを得る。
【0074】
ステップ#108が終わると、ステップ#109に移行して、ケラト測定光源51bを消灯してケラト測定が完了する。このとき、角膜曲率半径rがモニター28aに表示される。なお、ここでは合焦判定光としては、照明光53を使用したが、拡散光を使用したケラト測定指標光51は、照明光として用いることができる。
【0075】
次に、眼屈折力Gを測定する時には、ジョイスティック26の操作ボタン26aを押して眼屈折力測定モードに切換える。
【0076】
ケラト測定と同様に、光学測定部28に対して安定して保持できるように被験者11の被検眼1を顎乗せ台25に対して固定する。
【0077】
ステップ#101では、被検者11が不図示の固視標を測定窓から注視した状態で照明光源53b及びアライメント光源52bを点灯し、前眼部像を角膜反射像受光光学系30bを経て角膜反射像受光光学系用CCDセンサ34b上に結像させる。角膜反射像受光光学系用CCDセンサ34b上の前眼部像は画像処理されてモニター28aに表示される。ケラト測定を行った直後であるので、通常は測定位置に大きく変動していないが、変動したと思われる場合には、検者は、モニター28aに表示された前眼部像を見ながら、顎乗せ部25cを上下に動かし、ジョイスティック26を操作して、ベース22に対して前後左右に移動台24を動かして、ケラト測定と同様のアライメント調整を行う。
【0078】
アライメント調整後、検者は、アライメント光52によって角膜上に投影された照準像の合焦状態をモニター28aで観察する。検者は、照準像を見ながら光学測定部28を前後に動かして、合焦状態に持って行く。光学測定部28を前後に動かしているときに、合焦判定手段によって合焦位置と判定されたときの位置データPFは、ポテンショメータ27から読み取られる。そして、その位置データPFは、RAM44に一時的に記憶される。なお、この合焦位置での、装置の所定の基準面A(すなわち、拡散光源4)から被検眼1の基準面B(すなわち、角膜表面2)までの作動距離は、規定作動距離D0になっている。
【0079】
ステップ#101の照準及び合焦の操作が終わると、ステップ#102のオートスタートモードに移り、レフラクト測定を自動測定するか手動測定するかを選択する。自動測定モードを選択すると、ステップ#104に移行し、検者が前後に動かしているときに、合焦位置と判定されたときの位置に達すると、自動的に測定スイッチがONされる。測定スイッチがONされると、レフラクト測定用の指標光50によって角膜2表面に角膜指標像が投影される。手動測定モードを選択すると、ステップ#103に移行し、検者が測定スイッチをONする。
【0080】
ステップ#103では、測定を行うか否かが判断され、測定を行う場合、ステップ#104へ移行し、測定を行わない場合にはステップ#101へ移行して焦点合わせモードに戻る。測定スイッチがONされると、レフラクト測定用の指標光50によって眼底3に眼底指標像が投影される。
【0081】
ステップ#104では、照準像が合焦するように、検者は、モニター28a上に表示された照準像を見ながら、ジョイスティック26を操作して、被検眼1に対して光学測定部28を前後に動かす。検者は、合焦したと思ったときに、ジョイスティック26の操作ボタン26aを押す。このときの位置データPMはポテンショメータ27で読み取られる。そして、その位置データPFは、RAM44に一時的に記憶する。なお、この実測位置データPMは、装置の所定の基準面A(すなわち、光源4)から被検眼1の基準面B(すなわち、角膜表面2)までの実作動距離Dに相当する。
【0082】
ステップ#105では、CPU35が実測位置PMと合焦位置PFとの距離誤差を位置測定誤差Eとして演算する。なお、この位置測定誤差Eは作動距離誤差Δに等しい。
【0083】
ステップ#106では、ステップ#105で求められた位置測定誤差Eが所定の位置測定誤差C内に収まっているか否かが判断され、所定範囲C内であれば、次のステップ#107に移行し、所定範囲C外であれば、ステップ#101へ移行して焦点合わせモードに戻る。
【0084】
ステップ#107では、レフラクト測定用の指標光50によって眼底3に眼底指標像を投影し、眼底指標像の光は、レフ受光光学系30aを経てレフ受光光学系用CCDセンサ34a上に結像される。実測位置PMでのレフ受光光学系用CCDセンサ34a上に結像された眼底指標像の光軸7から高さh3に関するデータが取り込まれる。
【0085】
ステップ#108では、設計値であるD0,f1,f2,h1,h5,θ及び測定値であるh7,Δを、従来技術で説明した距離誤差Δを演算ファクターとして含む被検眼光学特性演算式(4)に代入することにより、実測位置PMでの眼屈折力Gの実測値を補正して正確な眼屈折力Gを得る。
【0086】
ステップ#108が終わると、ステップ#109に移行する。レフラクト測定光源50bを消灯し眼屈折力Gがモニターに表示されると、レフラクト測定が完了する。なお、ここでは合焦判定光としては、アライメント光52を使用したが、照明光53を合焦判定光として用いることもできる。
【0087】
以上、レフラクト・ケラトメータに関して本発明の実施形態を詳細に説明したが、本発明は、上記実施形態のみに限定されるものではなく、レフラクトメータ単独及びケラトメータ単独に対しても適用できることは言うまでもない。また、図8に示した眼科測定装置では、レフ受光光学系30a及び角膜反射像受光光学系30bのそれぞれにおいて、レフ受光光学系用CCDセンサ34a及び角膜反射像受光光学系用CCDセンサ34bを用いているが、低コスト化を図るために、1つのCCDセンサによって角膜反射像及び眼底指標像を受光する受光光学系にすることができる。
【0088】
また、上記実施形態では、光電検出手段から得られた画像信号を用いて被検眼の光学特性値を求めているが、光電検出手段を用いない別の実施形態としては、次のようなものがある。例えば、被検眼の眼底に2つの指標光(線状あるいは点状スリットを透過した光)を投影し、その2つの指標光が眼底上で一致するように指標光を光軸上で移動させて、眼底上で一致した位置に移動させた移動量によって所定の算出式を補正して被検眼の眼屈折力を求めるいわゆる合致法と呼ばれる測定方法を用いることができる。
【図面の簡単な説明】
【図1】 被検眼の角膜に拡散光を投影し、その角膜指標像を受光するケラト測定の投影・受光光学系を説明する説明図である。
【図2】 曲率半径rの求め方を説明する説明図である。
【図3】 ケラト測定の投影光学系における作動距離と角膜指標像高さとの間の関係を説明する説明図であって、(a)は実作動距離が規定作動距離と等しいとき、(b)は作動距離が規定作動距離より小さいとき、(c)は作動距離が規定作動距離より大きいときをそれぞれ示す。
【図4】 被検眼の眼底にビーム光を投影し、その眼底指標像を受光するレフラクト測定の投影・受光光学系を説明する説明図である。
【図5】 図4におけるレフラクト測定の投影光学系を説明する説明図である。
【図6】 本発明の一実施形態に係る眼科測定装置を示す側面図である。
【図7】 図6に示した眼科測定装置にポテンショメータが取付けられている状態を示す一部破断側面図である。
【図8】 本発明の一実施形態に係る眼科測定装置の光学測定部の光学系を示す図である。
【図9】 本発明の一実施形態に係る眼科測定装置のシステム図である。
【図10】 本発明の一実施形態に係る、被検眼の光学特性の測定方法を説明するフローチャートである。
【図11】 本発明の一実施形態に係る眼科測定装置における合焦判定手段を説明するブロック図である。
【図12】 本発明の一実施形態に係る眼科測定装置における他の合焦判定手段を説明するブロック図である。
【図13】 本発明の一実施形態に係る眼科測定装置における合焦状態検出方法を説明する説明図である。
【符号の説明】
1 被検眼
2 角膜
3 眼底
4 光源
6 拡散光
7 光軸
8 反射光
9 ビーム光
11 被検者
21 本体
22 ベース
23 被検眼固定フレーム(被検眼固定手段)
24 移動台
25 顎乗せ台
25a 顎乗せ台支持部
25b 顎乗せ台フレーム
25c 顎乗せ部
26 ジョイスティック
26a 操作ボタン
27 ポテンショメータ(位置検知手段)
28 光学測定部
28a モニター
29 投影光学系
30 受光光学系
30a レフ受光光学系
30b 角膜反射像受光光学系
31 リレーレンズ
32 絞り
33 結像レンズ
34 CCDセンサ(光電検出手段)
34a レフ受光光学系用CCDセンサ(光電検出手段)
34b 角膜反射像受光光学系用CCDセンサ(光電検出手段)
35 CPU
36 A/D変換回路
37 ハイパスフィルタ
38 積分器
39 同期分離回路
40 垂直同期パルス回路
41 加算器
42 フレームメモリ
43 空間フィルタ
44 RAM
45 ROM
46 DMA
47 ビデオ回路
48 IOポート
49 投影・受光光学系
50 レフ測定光
50a レフ測定投影光学系
50b レフ測定光源
51 ケラト測定光
51b ケラト測定光源
52 アライメント光
52a アライメント投影光学系
52b アライメント光源
53 照明光
53b 照明光源
60 拡散板
61 ダイクロイックミラー
62 マスク
63 穴開きミラー
64 投影レンズ
65 ビームスプリッタ
66 フィールドレンズ
67 接眼レンズ
A 装置側基準面
B 被検眼側基準面
D 実作動距離
0 規定作動距離
1 拡散光源の高さ
2 角膜指標像の高さ
5 レフ光規定入射高さ
6 眼底指標像の高さ
7 CCDセンサ上の眼底指標像の高さ

Claims (8)

  1. 被検眼(1)の光学特性を測定する光学測定部(28)と、
    光学測定部(28)が被検眼(1)に対して規定作動位置にあるか否かを検出する規定作動位置検出手段と、
    被検眼(1)に対する光学測定部(28)の相対的位置関係を常時検出する位置検出手段(27)と、
    規定作動位置検出手段からの規定作動位置情報と位置検出手段(27)からの位置情報とから、被検眼(1)に対する光学測定部(28)の規定作動位置及び実作動位置を認識する位置認識手段と、
    位置認識手段より得られた光学測定部(28)の実作動位置、あるいは規定作動位置と実作動位置との距離誤差を演算ファクターとして含む被検眼光学特性算出式に基づいて被検眼光学特性値を演算する演算手段とを備え、
    実作動位置において得られた光学特性値を距離誤差に基づいて補正して、実作動位置での補正光学特性値を求めることを特徴とする眼科測定装置。
  2. 上記規定作動位置検出手段は、光学測定部(28)の位置に応じて被検眼(1)の合焦を判定する合焦判定手段であることを特徴とする請求項1記載の眼科測定装置。
  3. 被検者(11)の顔面をベース(22)に固定する被検眼固定手段(23)と、
    被検眼(1)の光学特性測定用指標光を被検眼(1)に投影する指標光投影光学系と、各投影光学系で投影された光の被検眼反射像を光電検出手段(34a,34b)に受光する受光光学系と、を備えてなり、かつ、ベース(22)上に被検眼固定手段(23)に対して前後左右に移動自在に設置してなる光学測定部(28)と、
    光電検出手段(34b)からの画像信号に基づいて角膜反射像を映し出すモニター(28a)と、を備えてなる眼科測定装置において、さらに、
    光学測定部(28)に設けられて、合焦判定光を角膜(2)に投影する合焦判定光投影光学系と、
    光電検出手段(34b)からの画像信号を受信するとともに、規定作動距離を演算ファクターとして含む被検眼光学特性算出式に基づいて被検眼光学特性を算出する演算手段(35)と、
    被検眼固定手段(23)に対する光学測定部(28)の位置を常時検出する位置検出手段(27)と、
    モニター(28a)上で合焦判定光の角膜反射像のピントを合わせるときに、光学測定部(28)の位置に応じて合焦程度を常時判定する合焦判定手段と、
    位置検出手段(27)からの位置情報と合焦判定手段からの合焦情報とから、合焦判定手段により合焦状態と判定された瞬間の光学測定部(28)の規定作動位置と、測定指標光を実際に投影した瞬間の光学測定部(28)の実作動位置とを認識する位置認識手段と、
    該位置認識手段より得られた規定作動位置と実作動位置との距離誤差に基づいて被検眼光学特性算出式を補正する補正手段とを有することを特徴とする眼科測定装置。
  4. 上記合焦判定手段は、光学測定部(28)に設けられて合焦判定光を角膜(2)に投影する合焦判定光投影光学系を含むことを特徴とする請求項2又は3記載の眼科測定装置。
  5. 上記合焦判定光投影光学系は、被検眼(1)の前眼部を照明する照明光学系であることを特徴とする請求項4記載の眼科測定装置。
  6. 上記眼科測定装置はケラトメータであって、上記合焦判定光投影光学系は、角膜形状測定指標光投影光学系であることを特徴とする請求項4記載の眼科測定装置。
  7. 上記角膜形状測定指標光が拡散光であることを特徴とする請求項6記載の眼科測定装置。
  8. 上記合焦判定光投影光学系は、被検眼(1)の角膜(2)上にアライメント光を投影するアライメント光学系であることを特徴とする請求項4記載の眼科測定装置。
JP22844199A 1999-08-12 1999-08-12 眼科測定装置 Expired - Fee Related JP4159190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22844199A JP4159190B2 (ja) 1999-08-12 1999-08-12 眼科測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22844199A JP4159190B2 (ja) 1999-08-12 1999-08-12 眼科測定装置

Publications (2)

Publication Number Publication Date
JP2001046340A JP2001046340A (ja) 2001-02-20
JP4159190B2 true JP4159190B2 (ja) 2008-10-01

Family

ID=16876553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22844199A Expired - Fee Related JP4159190B2 (ja) 1999-08-12 1999-08-12 眼科測定装置

Country Status (1)

Country Link
JP (1) JP4159190B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535580B2 (ja) * 2000-08-09 2010-09-01 株式会社トプコン 眼科装置
KR100676276B1 (ko) * 2003-10-15 2007-01-30 의료법인 세광의료재단 각막굴절력 측정방법
JP5143772B2 (ja) * 2008-03-28 2013-02-13 パナソニック株式会社 画像表示装置および画像表示方法
JP6140979B2 (ja) * 2012-11-09 2017-06-07 キヤノン株式会社 眼科撮影装置及び方法
JP6009935B2 (ja) 2012-12-26 2016-10-19 株式会社トプコン 眼科装置

Also Published As

Publication number Publication date
JP2001046340A (ja) 2001-02-20

Similar Documents

Publication Publication Date Title
JP4492847B2 (ja) 眼屈折力測定装置
US7216980B2 (en) Eye characteristic measuring apparatus
JP4233426B2 (ja) 眼屈折力測定装置
JP4684700B2 (ja) 眼光学特性測定装置
CN107495919B (zh) 眼科装置
KR101637944B1 (ko) 안과장치 및 얼라인먼트 방법
JP2007089715A (ja) 眼屈折力測定装置
JP2001095760A (ja) 眼の光学特性測定装置
JP2014079496A (ja) 眼科装置および眼科制御方法並びにプログラム
KR101647287B1 (ko) 안과장치 및 안과방법
JP2003245300A (ja) 眼科装置
KR20140099195A (ko) 안굴절력 측정 장치
US6695450B2 (en) Ophthalmic characteristics measuring apparatus
JP2013128648A (ja) 眼科装置および眼科制御方法並びにプログラム
JP4630126B2 (ja) 眼光学特性測定装置
JP3636917B2 (ja) 眼屈折力測定装置
JPH0966027A (ja) 眼科装置
JP4159190B2 (ja) 眼科測定装置
JP2003144389A (ja) 眼の光学特性測定装置
CN110680273A (zh) 眼科检测系统及方法
JPH0554771B2 (ja)
JP4795002B2 (ja) 眼科測定装置
JP6823339B2 (ja) 眼科装置
JP2001120503A (ja) 角膜形状測定装置
JPH0654807A (ja) 眼科装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees