JP4154157B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP4154157B2
JP4154157B2 JP2002048433A JP2002048433A JP4154157B2 JP 4154157 B2 JP4154157 B2 JP 4154157B2 JP 2002048433 A JP2002048433 A JP 2002048433A JP 2002048433 A JP2002048433 A JP 2002048433A JP 4154157 B2 JP4154157 B2 JP 4154157B2
Authority
JP
Japan
Prior art keywords
image
luminance
speed
shutter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048433A
Other languages
English (en)
Other versions
JP2003250094A (ja
Inventor
裕夫 竹村
章 西牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002048433A priority Critical patent/JP4154157B2/ja
Priority to DE60308242T priority patent/DE60308242T2/de
Priority to EP03251097A priority patent/EP1339227B1/en
Priority to US10/372,656 priority patent/US20040165091A1/en
Publication of JP2003250094A publication Critical patent/JP2003250094A/ja
Application granted granted Critical
Publication of JP4154157B2 publication Critical patent/JP4154157B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors

Description

【0001】
【発明の属する技術分野】
本発明は撮像装置に係り、特に広範囲な輝度を持つ被写体の撮像を可能にし、撮像された画像信号の処理を行い得るようにした撮像装置に関する。
【0002】
【従来の技術】
従来CCDセンサの撮像素子を用いたカメラでは、電荷の蓄積容量の限界と、その特性の関係からカメラの入射光量をある範囲内に抑えるようにして撮影していた。従って、屋外等での撮影時には被写体の輝度範囲を撮像可能とするダイナミックレンジが得られず、撮像画像に問題があった。このため、撮像素子などの電子シャッタ機能を用いて、高速シャッタと低速シャッタのように異なったシャッタ時間、すなわち2つの異なる露光時間で撮像し、この画像信号を信号処理することで、広ダイナミックレンジ拡大幅を図っていた。
【0003】
従来の広ダイナミックレンジカメラ1の動作原理を図22を用いて説明する。図22は、従来の広ダイナミックレンジカメラ1における画像信号処理の説明図であり、図22(A)は、CCDセンサ(撮像素子)の信号出力、図22(B)は、高ダイナミックレンジカメラ画像の信号出力である。
【0004】
図22において、Aフィールドを低速シャッタ画像、Bフィールドを高速シャッタ画像とする。ここで、低速シャッタ画像とは、例えばシャッタ速度が1/60秒で撮像した画像、高速シャッタ画像とは、例えばシャッタ速度が1/2000秒で撮像した画像である。これらの画像信号は、例えば、CCDセンサの撮像素子にシャッタパルスを直接与える電子シャッタを制御し、シャッタ速度、すなわち、露光時間を制御した画像信号のことである。
【0005】
広ダイナミックレンジカメラ1は、低速シャッタで被写体の輝度の低い部分(輝度の高い部分は飽和してしまう)を撮像し、高速シャッタで被写体の輝度の高い部分(輝度の低い部分は撮像不可能)を撮像する。そして、両方の画像を合成することによって、1画面で被写体の輝度の低い部分から輝度の高い部分の撮像を可能にするものである。
【0006】
例えば、A1フィールド画像(低速シャッタ画像)とB0フィールド画像(高速シャッタ画像)を合成し、次に、A1フィールド画像(低速シャッタ画像)とB1フィールド画像(高速シャッタ画像)を合成する。以降、同じ動作を繰り返し行う。この場合、低速シャッタと高速シャッタの速度と合成比率は固定である。
【0007】
また、このシャッタ速度の比はダイナミックレンジの拡大比である。ここでは、低速シャッタ速度1/60秒、高速シャッタ速度1/2000秒で固定されているので、この広ダイナミックレンジカメラ1は、約33倍の拡大率を持っているということになる。尚、広ダイナミックレンジカメラ1に入射光量を自動調節するオートアイリスレンズ等を搭載してもダイナミックレンジは拡大しない。
【0008】
図23に従来の広ダイナミックレンジカメラ1のブロック図を示す。この広ダイナミックレンジカメラ1は、被写体像から、CCDセンサ等の光電素子を用いた撮像素子2で画像信号を得る。得られた画像信号はA/D変換器3で、アナログ信号からデジタル信号に変換(以下、A/D変換とする)され、デジタル信号処理手段4に送られる。
【0009】
デジタル信号処理手段4は、フレームメモリ6,7と、合成処理回路8と、プロセス回路9とを備える。デジタル信号処理手段4に送られた画像信号は、まず、フレームメモリ6,7に入力され、書き込まれる。フレームメモリ6,7から読み出された画像信号は、合成処理回路8に送られ、プロセス回路9で処理された後、画像信号出力端子10から出力される。
【0010】
一方、広ダイナミックレンジカメラ1は広ダイナミックレンジカメラ1に具備される制御部11でデジタル信号処理手段4と撮像素子2の制御を行っている。この制御部11は、CPU(中央演算処理装置)13と露光制御部14とを備え、CPU13でデジタル信号処理手段4からの測光データの演算処理を行う。演算処理された結果は、CPU13からデジタル信号処理手段4と露光制御部14へ送られ、それぞれ制御信号が生成され、デジタル信号処理手段4と撮像素子2の制御がなされる。
【0011】
このような広ダイナミックレンジカメラ1は、例えば特願昭61−255984号公報、特開平5−22669号公報、特開平6−46325号公報、および、特開平7−58997号公報に示されている。
【0012】
【発明が解決しようとする課題】
しかしながら、従来の広ダイナミックレンジカメラ1では、異なる電子シャッタ時間の画像を数回撮像し合成していたため、静止画では有効であったが、監視カメラや車載カメラのように動きのある被写体を撮像する装置には不向きであった。また、画像信号処理時間が長くかかるため、動きのある被写体を撮像する場合、被写体の動きの速さによっては画像信号処理および当該画像信号処理に関わる信号(例えば、制御部11から制御信号)が追従できない場合があった。
【0013】
特に、移動体の制御目的等で、従来の広ダイナミックレンジカメラ1を移動体に設置して適用した場合、当該移動体に設置された広ダイナミックレンジカメラ1で撮像した画像に基づいて制御を行っても、要求される制御動作が間に合わないという問題があった。
【0014】
本発明は、上述した事情を考慮してなされたもので、被写体が刻一刻と変化する移動体からの撮像を行うのに有効な撮像装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明に係る撮像装置は、上述した課題を解決するために、請求項1に記載したように、第1の露光時間で撮像した第1の画像および前記第1の露光時間よりも短い第2の露光時間で撮像した第2の画像を交互に得るCMOSセンサと、前記CMOSセンサから出力する前記第1の画像および前記第2の画像の垂直方向範囲を選択する垂直位置選択回路と、前記CMOSセンサから出力する前記第1の画像および前記第2の画像の水平方向範囲を選択する水平位置選択回路と、前記CMOSセンサから出力された前記第1の画像および前記第2の画像の選択された範囲をそれぞれ複数のエリアに分割し、それぞれのエリアの輝度情報を検出する輝度情報検出処理手段と、前記CMOSセンサの前記第1の露光時間および第2の露光時間をそれぞれ調整する制御手段と、前記CMOSセンサから出力された前記第1の画像および第2の画像の選択された範囲について、それぞれ特性変換処理を行う特性変換処理手段と、前記特性変換処理手段から得られる特性変換処理後の前記第1の画像および第2の画像の選択された範囲を加算する合成手段とを具備し、前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定するとともに、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を前記第1の露光時間の決定とは独立に決定することを特徴とする。
【0016】
上述した課題を解決するために、本発明に係る撮像装置は、請求項2に記載したように、前記輝度情報検出処理手段は、前記第1の画像および前記第2の画像について分割したエリア単位に輝度を積算し、前記分割したエリア毎の輝度の平均値を検出するように構成されることを特徴とする。
【0017】
また、上述した課題を解決するために、本発明に係る撮像装置は、請求項3に記載したように、前記輝度情報検出処理手段は、前記第1の画像および前記第2の画像について分割したエリアの輝度ピーク値を前記分割したエリア毎に検出するように構成されることを特徴とする。
【0018】
さらに、上述した課題を解決するために、本発明に係る撮像装置は、請求項4に記載したように、前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定する際、前記第1の画像の複数のエリアのうち輝度不飽和状態にあるエリアの輝度情報に基づいて第1の露光時間を決定するように構成されることを特徴とする。
【0019】
さらにまた、上述した課題を解決するために、本発明に係る撮像装置は、請求項5に記載したように、前記制御手段は、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を決定する際、前記第2の画像の複数のエリアのうち輝度飽和状態にあるエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする。
【0020】
一方、上述した課題を解決するために、本発明に係る撮像装置は、請求項6に記載したように、前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定する際、前記第1の画像の複数のエリアのうち輝度不飽和状態にあるエリアの輝度情報に基づいて第1の露光時間を決定する一方、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を決定する際、前記第2の画像の複数のエリアのうち輝度飽和状態にあるエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする。
【0021】
また、上述した課題を解決するために、本発明に係る撮像装置は、請求項7に記載したように、前記制御手段は、前記第1の画像を分割して得られる複数のエリアのうち所定の閾値以下の輝度を持つエリアの輝度情報に基づいて第1の露光時間を決定するように構成されることを特徴とする。
【0022】
さらに、上述した課題を解決するために、本発明に係る撮像装置は、請求項8に記載したように、前記制御手段は、前記第2の画像を分割して得られる複数の分割したエリアのうち所定の閾値以上の輝度を持つエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする。
【0023】
他方、上述した課題を解決するために、本発明に係る撮像装置は、請求項9に記載したように、前記制御手段は、前記第1の画像を分割して得られる複数のエリアのうち所定の閾値以下の輝度を持つエリアの輝度情報に基づいて第1の露光時間を決定する一方、前記第2の画像を分割して得られる複数の分割したエリアのうち所定の閾値以上の輝度を持つエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする。
【0024】
また、上述した課題を解決するために、本発明に係る撮像装置は、請求項10に記載したように、前記制御手段は、前記第1の露光時間および前記第2の露光時間を決める電子シャッタの最終発生タイミングをタイミングジェネレータの1CLOCK単位での時間的移動を行うように構成されることを特徴とする。
【0025】
さらに、上述した課題を解決するために、本発明に係る撮像装置は、請求項11に記載したように、前記輝度情報検出処理手段は、前記第1の画像を分割して得られる複数のエリアおよび前記第2の画像を分割して得られる複数のエリアのうち所定のエリアを選択抽出するエリア選択抽出手段を備えることを特徴とする。
【0026】
また、上述した課題を解決するために、本発明に係る撮像装置は、請求項12に記載したように、前記撮像手段は、移動体に設置されることを特徴とする。
【0027】
さらに、上述した課題を解決するために、本発明に係る撮像装置は、請求項13に記載したように、前記移動体の周囲に存在する障害物を検知する際に、前記合成画像を用いることを特徴とする。
【0028】
さらにまた、上述した課題を解決するために、本発明に係る撮像装置は、請求項14に記載したように、前記移動体は、自動二輪車、自動車および列車等の移動車両、航空機、および、船舶のいずれかであることを特徴とする。
【0029】
このような撮像装置は、被写体が刻一刻と変化する移動体からの撮像を行う場合にも有効である。
【0030】
【発明の実施の形態】
以下、本発明に係る撮像装置の実施形態を添付図面を参照して説明する。
【0031】
[第1実施形態]
図1に本発明に係る撮像装置20の第1実施形態を示す回路ブロック図の一例を示す。
【0032】
図1に示される撮像装置20は撮像手段21と、画像信号処理手段としてのアナログ信号処理手段22およびデジタル信号処理手段23と、制御手段24と、画像信号出力手段としての画像信号出力端子25とを具備する。
【0033】
撮像装置20は被写体像を撮像手段21で撮像し、画像信号(アナログ信号)を生成する。生成されたアナログ画像信号はアナログ信号処理手段22でアナログ信号からデジタル信号に変換(以下、A/D変換とする)後、デジタル画像信号として出力される。このデジタル画像信号は、2つに分岐し、一方がデジタル信号処理手段23に入力され、信号処理される。信号処理後のデジタル画像信号はデジタル信号からアナログ信号に変換(以下、D/A変換とする)後、画像信号出力端子25から出力される。
【0034】
また、アナログ信号処理手段22から出力された画像信号の他方は、制御手段24に入力される。制御手段24は制御信号を生成し、撮像手段21、アナログ信号処理手段22およびデジタル信号処理手段23の制御を行う。制御手段24がこれら各部を制御することにより、撮像装置20は広範囲な輝度差を有する被写体に対しても常に最適なシャッタ速度で撮像することが可能となる。
【0035】
図1に示される撮像装置20の各部について説明する。
【0036】
撮像手段21は被写体像を示す画像光を撮像する撮像レンズ27と、例えば、撮像素子としてのCMOSセンサ28とを備える。
【0037】
撮像手段21は被写体像を示す画像光を撮像レンズ27で撮像し、CMOSセンサ28の受光面に結像する。結像された画像光は、CMOSセンサ28の露光時間、つまり、電子シャッタ速度を調節することで、CMOSセンサ28に露光される光量の調節がなされる。CMOSセンサ28は光電変換を行い、画像光量に応じた量の電荷をCMOSセンサ28に蓄積する。この蓄積された蓄積電荷の電荷量に応じた画像信号がCMOSセンサ28から出力される。
【0038】
また、被写体を撮像する際、撮像手段21に備えられるCMOSセンサ28の電子シャッタは、異なる2つのシャッタ速度での撮像を交互に繰り返す。2つのシャッタ速度のうち、遅い側のシャッタ速度(以下、低速シャッタ速度とする)と、速い側のシャッタ速度(以下、高速シャッタ速度とする)とで撮像される。CMOSセンサ28から交互に出力される画像信号は、撮像手段21から出力され、アナログ信号処理手段22に入力される。
【0039】
アナログ信号処理手段22は交互に入力されたアナログ画像信号の利得調整を行う自動利得制御回路(以下、AGC回路とする)31と、A/D変換を行うA/D変換回路32とを備える。アナログ信号処理手段22に入力されたアナログ画像信号は、AGC回路31と、A/D変換回路32とに順次伝送され、信号処理される。AGC回路31は行利得調整を制御手段24からの制御信号により、アナログ画像信号毎に利得を可変させて調整することができる。
【0040】
A/D変換回路32はアナログ画像信号のA/D変換を行う。変換後の画像信号、すなわち、デジタル画像信号は、アナログ信号処理手段22から交互に出力され、デジタル信号処理手段23に交互に入力される。
【0041】
デジタル信号処理手段23は、画像信号処理実行手段33と、画像信号合成手段としての加算回路34と、合成された画像信号のD/A変換を行うD/A変換回路35とを備える。
【0042】
画像信号処理実行手段33は、低速シャッタで撮像されたデジタル画像信号を信号処理する低速シャッタ用信号処理手段37と、高速シャッタ速度で撮像されたデジタル画像信号を処理する高速シャッタ用信号処理手段38とを備える。そして、低速シャッタ用信号処理手段37および高速シャッタ用信号処理手段38は、各々、メモリ回路と、切換回路と、特性変換回路とを有する。すなわち、低速シャッタ用信号処理手段37は、低速シャッタ用メモリ回路39と、低速シャッタ用切換回路40と、低速シャッタ用特性変換回路41とを有し、一方、高速シャッタ用信号処理手段38は、高速シャッタ用メモリ回路43と、高速シャッタ用切換回路44と、高速シャッタ用特性変換回路45とを有する。
【0043】
画像信号処理実行手段33で行われる画像信号処理について、図2および図3を参照して説明する。
【0044】
図2は、撮像装置20の動作について時系列を合わせて、詳細に説明した動作説明図である。
【0045】
図2(A)は、垂直同期信号であり、撮像装置20は、この周期に同期して動作する。CMOSセンサ28で撮像し、画像信号を出力する期間(1垂直同期期間)は、2A01が低速シャッタ側の画像信号出力期間(以下、低速シャッタ期間とする)、2A02が高速シャッタ側の画像信号出力期間(以下、高速シャッタ期間とする)、2A03が低速シャッタ期間、2A04が高速シャッタ期間、2A05が低速シャッタ期間である。
【0046】
図2(B)にCMOSセンサ28の電子シャッタ動作を示す。CMOSセンサ28の電子シャッタ動作は、CMOSセンサ28の電荷蓄積と読出し時間の関係で1垂直期間の遅れを生じる。従って、図2(A)のような垂直同期信号に対して、電子シャッタ動作は、2B01は高速シャッタ動作期間、2B02は低速シャッタ動作期間となり、以下同様に高速シャッタ動作期間、低速シャッタ動作期間の繰り返しで、2B03、2B04、2B05の動作期間となる。
【0047】
図2(C)にAGC回路31の動作を示す。AGC回路31は、低速シャッタ動作期間と、高速シャッタ動作期間とで、独立で動作する。2C01が低速シャッタ用動作期間、2C02が高速シャッタ用動作期間となり、以下同様な繰り返しで、2C03、2C04、2C05の動作期間となる。
【0048】
図2(D)はCMOSセンサ28から出力される画像信号で、2D01が低速シャッタ画像信号、2D02が高速シャッタ画像信号となり、以下同様な繰り返しで、2D03、2D04、2D05となる。
【0049】
図2(D)のCMOSセンサ28から出力される低速シャッタ画像信号および高速シャッタ画像信号の出力特性について、図3を用いて補足する。
【0050】
図3は、CMOSセンサ28の撮像特性を示した説明図であり、低速シャッタと高速シャッタの入射光量に対する画像信号の出力レベルを示している。図3において、低速シャッタによる画像信号の出力特性は3aであり、低速シャッタ出力の飽和点は3bである。一方、高速シャッタの画像出力特性は3cであり、高速シャッタ出力の飽和点は3dである。図3によれば、低速シャッタ画像信号は飽和に達する入射光量が少なく、飽和に達するのが早い。逆に、高速シャッタ画像信号は飽和に達する入射光量が多く、飽和に達するのが遅い。このことから、図2(D)の画像出力信号の特性において、2D01(低速シャッタ画像信号)では、1垂直同期期間内に飽和して、出力が頭打ちとなっている。一方、2D02(高速シャッタ画像信号)では、1垂直同期期間内に飽和がなく、緩やかに出力が増加している。
【0051】
図2(E)〜図2(J)は、動作説明をわかりやすくするために示した説明図である。
【0052】
図2(E)は、図2(D)と同意であり、いずれも図1に示されるアナログ信号処理手段22のA/D変換回路32からの出力である。
【0053】
図2(E)において、2E01が低速シャッタ画像信号、2E02が高速シャッタ画像信号で、以下、同様の繰り返しで、2E03、2E04、2E05と画像信号が出力される。図2(E)によれば、低速シャッタ画像信号および高速シャッタ画像信号は両者とも間欠信号である。例えば、低速シャッタ画像信号に着目すれば、低速シャッタ画像信号は2E01、2E03および2E05とで形成される間欠信号である。
【0054】
尚、図2(E)中では低速シャッタ画像信号および高速シャッタ画像信号を低速シャッタ信号および高速シャッタ信号と簡略化してある。以降、図2(E)以外の他図においても同様に簡略化する。
【0055】
図1に示されるアナログ信号処理手段22のA/D変換回路32から出力された低速シャッタ画像信号は、一方が、低速シャッタ用メモリ回路39を経由して、低速シャッタ用切換回路40に入力され、他方は、低速シャッタ用切換回路40に直接入力される。低速シャッタ用切換回路40は、画像信号を1垂直期間毎に低速シャッタ用メモリ回路39側からの入力と、アナログ信号処理手段22のA/D変換回路32側からの入力とを切り換えることで、間欠信号を連続信号にする。
【0056】
図2(F)は、連続信号となった低速シャッタ画像信号を示す。尚、図2(F)で符号Mがついている信号は、低速シャッタ用メモリ回路39から入力された画像信号を示す。この図2(F)は、図2(E)において、間欠となっている2E02および2E04の期間に低速シャッタ用メモリ回路39側からの入力に切り換え、低速シャッタ用メモリ回路39のメモリに蓄積された低速シャッタ画像信号を入力することで生成される。
【0057】
一方、高速シャッタ画像信号については図2(G)に示す。高速シャッタ画像信号においても連続信号とするプロセスは低速シャッタ画像信号の場合と同様のため、高速シャッタ画像信号については、その説明を省略する。
【0058】
図1に示される低速シャッタ用切換回路40および高速シャッタ用切換回路44で連続信号となった低速シャッタ画像信号および高速シャッタ画像信号は、低速用特性変換回路41および高速用特性変換回路45において、例えば、ガンマ特性を得る特性変換がなされる。特性変換後の低速シャッタ画像信号および高速シャッタ画像信号は、それぞれ、図2(H)および図2(I)に対応する。
【0059】
図1に示される画像信号合成手段としての加算回路34は、画像信号処理実行手段33に備えられる低速用特性変換回路41および高速用特性変換回路45において特性変換された低速シャッタ画像信号および高速シャッタ画像信号を加算し、1つの合成デジタル画像信号を得る。
【0060】
図2(J)および図2(K)は、特性変換後の低速シャッタ画像信号および高速シャッタ画像信号を加算することを示す説明図である。図2(K)は、図2(J)をアナログ的に示したものであり、図2(K)および図2(J)両図は同意である。また、図4は、得られた合成画像信号の出力特性を示す。図4の合成画像信号の出力特性は、図3における低速シャッタ画像信号特性3aと、高速シャッタ画像信号特性3cとを合成した特性となる。従って、図2(K)は、2K01〜2K05の期間の各期間において、図4に示される画像信号出力特性と同様の合成画像信号出力(デジタル信号)が得られる。
【0061】
図1に示されるD/A変換回路35は、加算回路34において合成された画像信号のD/A変換を行い、アナログ画像信号を出力する。D/A変換回路35で出力されたアナログ画像信号は、画像信号出力手段に伝送され、画像信号出力手段としての画像信号出力端子25より撮像装置20の出力として出力される。
【0062】
制御手段24は、画像信号情報取得手段47と、制御信号生成手段としてのマイクロコンピュータ回路(以下、マイコン回路とする)48と、電子シャッタ回路49とを備える。
【0063】
制御手段24は、画像信号情報取得手段47で低速シャッタ画像信号および高速シャッタ画像信号から画像信号情報を取得し、取得した画像信号情報に基づき、撮像装置20を制御する制御信号をマイコン回路48で生成する。マイコン回路48で生成された制御信号のうち、撮像手段21を制御する制御信号は電子シャッタ回路49に入力され、撮像手段21に備えられるCMOSセンサ28の電子シャッタを制御する制御信号を出力する。
【0064】
画像信号情報取得手段47は、まず、画像信号情報を取得するために、撮像した1画面分の画像信号を分割する。画像信号情報取得手段47は、分割した画像信号個々に対して、画像信号情報である輝度を積算する分割画像輝度積算手段としての輝度積算値回路50と、輝度のピーク値を検出する分割画像輝度ピーク値検出手段としての輝度ピーク値検出回路51と、撮像した1画面分の画像信号を分割するゲート波形発生回路52とを備える。
【0065】
画像信号情報取得手段47は、まず、画像信号情報として、分割画像輝度積算値および分割画像輝度ピーク値を算出するために、撮像により得た1画面分の画像信号を分割する。
【0066】
図5は1画面分の画像信号を分割し、画面分割した様子を示す説明図である。図5によれば、撮像した全体画面53において、この1画面分の画像信号を、例えば、25分割等、複数のエリアに分割し、25個の分割画面54の画像信号の集合とする。この画面分割は、画像信号情報取得手段47に備えられるゲート信号発生回路52で生成したゲート信号を用いて実行される。
【0067】
ゲート波形発生回路52は、水平同期パルス(以下、HDパルスとする)、垂直同期パルス(以下、VDパルスとする)、クロックパルス(以下、CLKパルスとする)を用いてゲート信号を生成する。このゲート信号は輝度を積算する積算値回路50と、輝度のピーク値を検出する輝度ピーク値検出回路51とに伝送され、撮像した全体画面53の1画面分の画像信号を25個の分割画面54に分割する。
【0068】
図6は画像信号情報取得手段47に備えられる分割画像輝度積算手段としての輝度積算値回路50のブロック図である。
【0069】
図6に示される輝度積算値回路50は、分割画面54の1画面分の画像信号毎に輝度積算値を算出する。輝度積算値回路50は、アナログ信号処理手段22から出力された画像信号およびゲート波形発生回路52で発生したゲート信号をゲート回路58に入力し、設定された分割画面54の画面範囲の画像信号をゲートする。ゲートされた画像信号は、積算処理部59で輝度の積算が実行され、積算出力制御回路60で図1に示されるマイコン回路48からの制御信号により、輝度積算値が出力される。出力された輝度積算値はマイコン回路48に入力される。
【0070】
積算処理部59で実行される輝度積算は、ゲートされた画像信号内の各画素に対して行われ、積算処理部59が備える積算回路62および1画素保持回路63でなされる。積算回路62は入力された1画素分の画像信号の輝度値と既に積算処理が完了した画素分の画像信号の輝度値とを加算し、加算した輝度値を1画素保持回路63に入力する。1画素保持回路63は入力された輝度値を記憶し、記憶した輝度値を積算回路62にフィードバックし、積算回路62に入力された画像信号の輝度値との加算を繰り返し、ゲートされた画像信号の輝度の積算値を算出する。算出された輝度の積算値は、図1に示されるマイコン回路48からの出力制御信号により、積算出力制御回路60で1画素保持回路63からの出力を受け付ける。受け付けられた輝度の積算値は、積算出力制御回路60から出力され、マイコン回路48に伝送される。
【0071】
一方、図7は画像信号情報取得手段47に備えられる分割画像輝度ピーク値検出手段としての輝度ピーク値検出回路51のブロック図である。
【0072】
図7に示される輝度ピーク値検出回路51は、分割画面54の1画面分の画像信号毎の輝度値のピーク値を検出する輝度ピーク値検出回路51は、分割画面54の1画面分の画像信号毎の輝度のピーク値を検出する。輝度ピーク値検出回路51は、輝度積算値回路50と同様にして、アナログ信号処理手段22から出力された画像信号およびゲート波形発生回路52で発生したゲート信号をピーク値検出用ゲート回路64に入力し、設定された分割画面54の画面範囲の画像信号をゲートする。ピーク値検出用ゲート回路64はゲートした画像信号を1画素ずつ出力する。
【0073】
ゲートした画像信号の輝度ピーク値を検出する。輝度ピーク値の検出は、連続する2画素分の輝度を加算してから行う。これは、CMOSセンサ28の光学色フィルタが補色モザイクの場合、信号の大きさが画素単位で変化するためである。2画素分の輝度を加算することにより、色フィルタの違いによる影響が無くなる。
【0074】
2画素分の輝度を加算するには、入力された現信号と、ピーク値検出用1画素保持回路65で1画素分遅らせた信号、すなわち、現信号に対して1画素前の信号とを輝度加算回路66で加算する。加算された2画素分の輝度値は1単位としてピーク値検出処理され、2画素保持回路67に入力される。2画素保持回路67は、2画素保持信号発生回路68から信号を受けて、2画素分の輝度値を1単位とした輝度値信号を生成する。
【0075】
2画素保持回路67から出力された現信号を含む輝度値信号は、比較回路69に入力され、現信号に対して2画素前の信号を含む輝度値信号と比較される。比較回路69は、2つの輝度値信号を比較し、輝度値の大きい方を選択する選択信号を生成して、切換回路70に供給する。切換回路70は、比較回路69からの選択信号に基づき、現信号と、現信号に対して2画素前の信号を含む輝度値信号とのうち、輝度値の大きい一方が選択される。この選択された信号は、輝度値信号保持回路71に入力され保持される。
【0076】
輝度値信号保持回路71で保持された輝度値信号は、比較回路69にフィードバックされ、2画素保持回路67からの輝度値信号との比較処理を繰り返す。この比較処理は、ピーク値検出用ゲート回路64から出力される画像信号の出力が終了するまで行われる。比較処理完了後、ピーク値出力制御回路72は、図1に示されるマイコン回路48からの出力制御信号により、輝度値信号保持回路71の出力すなわち、輝度ピーク値信号の出力を受け付ける。出力を受け付けられた輝度ピーク値信号は、ピーク値出力制御回路72から出力され、マイコン回路48に伝送される。
【0077】
ゲート波形発生回路52は、輝度の積算値およびピーク値検出のために画面を分割するゲート信号を生成する。ゲート波形発生回路52のブロック図を図8に示す。図8に示されるゲート波形発生回路52は、ゲートする範囲を設定する垂直方向設定部74および水平方向設定部75と、ゲート信号を生成する合成回路76とを備える。ゲート波形発生回路52は、入力されたVDパルス,HDパルス,CLKパルスの3つの信号からゲートするエリアを設定したゲート信号を生成し、出力する。
【0078】
垂直方向のゲート範囲の設定は、垂直方向設定部74で行われる。垂直方向設定部74に入力されたVDパルスは、垂直同期リセット信号発生回路78に入力される。垂直同期リセット信号発生回路78はリセット信号を生成し、生成されたリセット信号は、垂直方向スタート位置設定回路79に入力される。垂直方向スタート位置設定回路79は、HDパルスをカウントし、垂直方向のスタート点を決める。垂直方向のスタート点が決まれば、このスタート点より、垂直方向幅設定回路80で、HDパルスをカウントし、垂直方向の幅を設定することができる。垂直方向幅設定回路80で設定された垂直方向の幅は、垂直幅信号として合成回路76に入力される。
【0079】
一方、水平方向のゲート範囲の設定は、水平方向設定部75で行われる。水平方向設定部75に入力されたHDパルスは、水平同期リセット信号発生回路82に入力される。水平同期リセット信号発生回路82はリセット信号を生成し、生成されたリセット信号は、水平方向スタート位置設定回路83に入力される。水平方向スタート位置設定回路83は、CLKパルスをカウントし、水平方向のスタート点を決定する。水平方向のスタート点が決まれば、このスタート点より、水平方向幅設定回路84で、CLKパルスをカウントし、水平方向の幅を決めることができる。水平方向幅設定回路84で設定された水平方向の幅は、水平幅信号として出力され、合成回路76に入力される。
【0080】
垂直方向幅設定回路80と、水平方向幅設定回路84とから得られた垂直幅信号と、水平幅信号は、合成回路76で合成される。この合成された信号がゲート信号となって、ゲート波形発生回路52から出力される。
【0081】
制御手段24が備えるマイコン回路48の回路ブロック図を図9に示す。
【0082】
マイコン回路48には、画像信号情報として、画像信号情報取得手段47が備える輝度積算値回路50および輝度ピーク値検出回路51から輝度の積算値およびピーク値が入力される。入力された輝度の積算値およびピーク値は輝度平均値算出手段86に入力され、輝度平均値が算出される。算出された輝度平均値は、制御信号生成手段87に入力され、まず、電子シャッタ速度が計算される。次に、電子シャッタ速度の計算結果から適切な撮像画像が得られるように撮像装置20の各部を制御する制御信号を生成する。
【0083】
マイコン回路48が参照するデータを視覚的に表した例を図10に示す。この図10を用いて、マイコン回路48が備える輝度平均値算出手段86の輝度平均値算出処理について説明する。
【0084】
輝度平均値算出手段86は、輝度積算値回路50で、図5に示される分割画面54毎に輝度積算された低速シャッタ画像信号の輝度積算値(以下、低速輝度積算値とする)と、輝度ピーク値検出回路51から得られた低速シャッタ画像信号の輝度ピーク値(以下、低速輝度ピーク値)とから輝度飽和しているエリア(以下、輝度飽和エリアとする)89と、輝度飽和していないエリア(以下、不飽和エリアとする)90とに分けられる。
【0085】
輝度飽和エリア89と輝度不飽和エリア90の分別は、まず、分割画面54毎の低速輝度積算値から低速シャッタ画像信号の輝度平均値(以下、低速輝度平均値とする)を求める。
【0086】
図10(A)は低速輝度積算値を示す分割画面54の説明図である。例えば、輝度レベルが8BIT(28=256)幅において、低速輝度平均値が200とする。そして、低速輝度平均値200以上のエリアを抽出する。抽出された低速輝度平均値以上のエリアは図10(A)の破線で囲まれたエリアである。
【0087】
次に、同じ低速シャッタ画像信号から得られる輝度ピーク値が8BIT幅の最大値となるエリアを抽出する。図10(B)は低速輝度ピーク値を示す分割画面54の説明図である。この図10(B)において、抽出された低速輝度ピーク値が最大値となるエリアは図10(B)の破線で囲まれたエリアである。
【0088】
次に、低速輝度平均値が200以上、かつ、低速輝度ピーク値が8BIT幅の最大値のエリアを抽出する。図10(C)は、低速輝度積算値を示す分割画面54において、低速輝度積算値および低速輝度ピーク値から輝度飽和エリア89を算出する説明図である。低速輝度平均値が200以上、かつ、低速輝度ピーク値が8BIT幅の最大値として抽出されたエリアは、図10(A)および図10(B)の破線で囲まれたエリアの共通エリアであり、図10(C)においては、破線で囲まれたエリアである。図10(C)の破線で囲まれたエリアを輝度飽和エリア89とし、その他のエリアを輝度不飽和エリア90としている。輝度飽和エリア89は、高速シャッタによる撮像対象とされる。
【0089】
画像信号が輝度飽和エリア89と、輝度不飽和エリア90とに低速シャッタ画像信号が分けられた後、低速シャッタ画像信号の輝度積算値の不飽和エリアから低速輝度平均値を算出する。
【0090】
また、高速シャッタ画像信号については、低速シャッタ画像信号と同様にして、高速シャッタ画像信号の輝度積算値の輝度飽和エリア89から高速シャッタ画像信号の輝度平均値(以下、高速輝度平均値とする)を算出する。図10(D)は高速シャッタ画像信号の輝度積算値の輝度飽和エリア89から高速輝度平均値算出する説明図を示している。
【0091】
制御信号生成手段87はシャッタ速度およびシャッタ速度比の演算を行う演算手段としての計算処理手段91を備える。また、この計算処理手段91は、低速シャッタ画像信号から算出された輝度平均値(以下、低速輝度平均値とする)を処理する低速シャッタ用計算処理部92と、高速シャッタ画像信号から算出された輝度平均値(以下、高速輝度平均値とする)を処理する低速シャッタ用計算処理部93とを備える。低速シャッタ用計算処理部92および高速シャッタ用計算処理部93により、低速シャッタ画像および高速シャッタ画像に対して、各々適切な撮像画像を得るために電子シャッタ回路49と、AGC回路31とを制御し、電子シャッタ速度と画像信号の利得を可変させることで、適切な撮像画像が得られる。
【0092】
また、制御信号生成手段87は、計算処理手段91の他に特性変換制御信号生成手段として、画像信号の特性変換を制御する特性変換制御信号生成部95と、画像合成比率制御信号生成手段として、2つの画像信号の画像合成比率を制御する合成比率制御信号生成部96とを備える。
【0093】
計算処理手段91が備える低速シャッタ用計算処理部92は、低速シャッタ速度制御信号生成部98と、自動利得制御信号生成手段としての低速用AGC回路制御信号生成部99とを備え、低速シャッタ速度制御信号およびAGC制御信号とを生成する。
【0094】
低速シャッタ速度制御信号生成部98は入力された低速輝度平均値から図1に示されるCMOSセンサ28の電子シャッタ速度を変化させる低速シャッタ制御信号を生成する。入力された低速輝度平均値が適正範囲を超えている場合は大きな幅で粗く電子シャッタ速度を変化させる(以下、粗調整とする)。また、入力された低速輝度平均値が適正範囲内の場合は小さな幅で細かく電子シャッタ速度を変化させる(以下、微調整とする)。すなわち、電子シャッタ速度は2段階に調整される。この制御結果により次第に低速輝度平均値が適正範囲の中心になるように低速シャッタ速度制御信号を生成する。生成された低速シャッタ速度制御信号は電子シャッタ回路49に入力され、電子シャッタ回路49の制御がなされる。
【0095】
低速シャッタ速度制御信号生成部98で実行される電子シャッタ速度の制御について、図11および図12を用いて説明する。
【0096】
図11は、輝度平均値算出手段86から出力される低速輝度平均値の推移をグラフ化した一例である。このグラフにおいて、縦軸は輝度平均値算出手段86から出力される低速輝度平均値、横軸は時間軸を表している。階段状に変化している波形は低速輝度平均値を示す波形である。
【0097】
図11に示す例では、低速輝度平均値の初期値Psは、適正輝度平均値レベル幅Wよりも下にあるため、(現在の電子シャッタ速度)×(適正輝度平均値レベル幅Wの下限値)/(低速輝度平均値)だけ電子シャッタ速度を遅くする。電子シャッタ速度を遅くしていき、低速輝度平均値が適正輝度平均値レベル幅Wに入った後、適正輝度平均値レベル幅Wの中心を超えるまでシャッタ速度を垂直同期期間V毎に10%遅くしていく。そして、適正輝度平均値レベル幅Wの中心を超えたところで、電子シャッタ速度の変更を止める。初期状態から電子シャッタ速度の変更が止まるまでのシャッタ速度変更期間をTaとする。また、シャッタ速度の変更が止まり、輝度レベルの推移が安定した状態期間を適正輝度レベル状態期間Tbとする。
【0098】
低速シャッタ速度制御信号生成部98は、一度、適正輝度レベル状態期間Tbに入ると、ある一定時間Tcは適正輝度レベル幅Wの範囲外の値が観測されても、適正輝度レベル幅Wの範囲外の値が観測され続けない限り、シャッタ速度の補正を行わない。上記一定時間Tcを保護時間とする。
【0099】
図11を例にすれば、低速輝度平均値が変動し、TdおよびTfの期間で適正輝度レベル幅Wを超えているが、適正輝度レベル幅Wを超えているTdおよびTfの期間は保護時間Tcよりも短い期間であるため、シャッタ速度は変更されない。
【0100】
低速シャッタ速度制御信号生成部98は、図1に示されるCMOSセンサ28の電子シャッタ速度を2段階で制御することによって、急激な被写体輝度値の変化には粗調整で、素早くシャッタ速度を変化させ、緩やかな被写体輝度値の変化には微調整で、緩やかにシャッタ速度を変化させることができる。従って、撮像装置20は被写体輝度値の変化に対して常に自然な露出を保つことができる。また、保護時間Tcを設けることによって、被写体の急激な輝度変化による低速シャッタ速度制御信号生成部98の発振を抑止できる。
【0101】
一方、図12は撮像手段21におけるCMOSセンサ28の電子シャッタの状態遷移図である。この状態遷移図において、定義されているCMOSセンサ28の電子シャッタ状態は6個あり、低速シャッタ速度制御信号生成時は、常に上記6個のいずれかの状態にある。これらの状態間にある矢印は状態の遷移を示す。
【0102】
低速シャッタ速度制御信号生成部98は、垂直同期期間V毎に輝度平均値算出手段86から入力される低速輝度平均値の輝度レベルに応じて、低速シャッタ制御信号を生成する。生成された制御信号により、電子シャッタ回路49を制御することで、電子シャッタの露出状態を現在の状態から外にむいている矢印の方向へ遷移させる。電子シャッタの露出状態は矢印の低速輝度レベル範囲と入力された低速輝度平均値の低速輝度レベル範囲とが一致する矢印の先の方向へと遷移する。垂直同期期間V毎に上記処理動作を繰り返し実行することにより、低速シャッタ速度制御信号生成が適切に行われる。
【0103】
図12の状態遷移図を図11に示される低速輝度平均値の推移を例に挙げて説明する。
【0104】
図12には低速輝度平均値の状態に応じた6個の状態が定義され、図示されている。定義される6個の状態は、輝度平均値算出手段86から入力された直後の初期状態を示す状態(以下、初期状態Sとする)が1個と、露出の具合を示す状態が3個と、保護時間中の露出補正待機状態が2個とに大別される。
【0105】
露出の具合を示す3個の状態は、露出過剰状態Sと、露出不足状態Sと、露出適正状態Sとがある。ここでいう露出不足状態Sとは、輝度レベルが適正範囲以下であり、CMOSセンサ28に露光する時間が適正時間よりも短い状態、すなわち、シャッタ速度が適正な撮像画像を得るには速すぎる状態を言う。また、露出適正状態Sとは、輝度レベルが適正範囲であり、CMOSセンサ28に露光する時間が適切、すなわち、シャッタ速度が適正な状態を言う。そして、露出過剰Sとは、輝度レベルが適正範囲以上であり、CMOSセンサ28に露光する時間が適正時間よりも長い状態、すなわち、シャッタ速度が適正な撮像画像を得るには遅すぎる状態を言う。
【0106】
露出補正待機状態を示す2個の状態は、第1の露出補正待機状態SWUと、第2の露出補正待機状態SWLとがある。ここでいう第1の露出補正待機状態SWUは、入力される低速輝度平均値が露出適正状態Sから適正輝度平均値レベル幅Wの適正範囲の上限値を超過、すなわち露出過剰となり、保護時間カウント中の露出補正待機状態である。また、第2の露出補正待機状態SWL入力される低速輝度平均値が露出適正状態Sから適正輝度平均値レベル幅Wの適正範囲の下限値未満、すなわち露出不足となり、保護時間カウント中の露出補正待機状態である。
【0107】
状態遷移は低速シャッタ速度制御信号生成部98に低速輝度平均値が入力されることで行われる。状態遷移のトリガとなるイベントは、入力される低速輝度平均値の輝度レベルの範囲によるものが5通りと、露出補正待機状態に関するもの1通りと、合計6通りある。これらのイベントが低速シャッタ速度制御信号生成部98で発生した場合、電子シャッタの露出状態は遷移する。
【0108】
入力される低速輝度平均値の輝度レベルの範囲により発生するイベントは、適正範囲Wに関するものが3つ、適正範囲W以外の範囲(以下、適正範囲外とする)Wに関するものが2つに分類される。適正範囲Wに関するイベントは、適正範囲Wの中心値、すなわち、最適値P入力と、適正上部範囲WBU入力と、適正下部範囲WBL入力との3つである。一方、適正範囲外Wは、輝度レベルが適正範囲上限値より大きく最大値までの範囲(以下、適正範囲超とする)W入力と、輝度レベルが適正範囲下限値より小さく最小値までの範囲(以下、適正範囲未満)W入力との2つである。
【0109】
露出補正待機状態に関するイベントは、露出補正待機状態から保護時間が経過した場合発生する保護時間経過のイベントがある。
【0110】
図12において、低速シャッタ用計算処理部92の初期状態は、初期状態Sである。初期状態Sで起こり得るイベントは、適正範囲未満W入力と、適正下部範囲WBL入力と、最適値P入力と、適正上部範囲WBU入力と、適正範囲超W入力とがある。
【0111】
図11において、輝度平均値算出手段86から入力される低速輝度平均値(初期値)は、適正範囲未満Wにあるから実行されるイベントは適正範囲未満W入力となり、電子シャッタの露出状態が露出不足状態Sに遷移する。
【0112】
露出不足状態Sで起こり得るイベントは次の3つがある。
1:適正範囲未満W入力の場合は、露出不足状態Sのままで、状態は遷移しない。この時、電子シャッタ速度は粗調整される。
2:適正下部範囲WBL入力の場合は、露出不足状態Sのままで露出不足状態Sの状態は遷移しない。この時、電子シャッタ速度は微調整される。
3:最適値P入力の場合は、露出不足状態Sから露出適正状態Sに遷移させる。
【0113】
電子シャッタ速度変更期間Taでは、イベントが適正下部範囲WBL入力であるため、上記2項に該当するイベントが起こる。すなわち、電子シャッタ速度を微調整する。
【0114】
微調整を繰り返し、イベントが適正下部範囲WBL入力から適正上部範囲WBU入力になると、このイベントを示す矢印に従って、電子シャッタの露光状態を露出不足状態Sから露出適正状態Sに遷移させる。
【0115】
露出適正状態Sで処理されるイベントは次の2つがある。
1:イベントが適正範囲超W入力の場合、保護時間カウンタをリセットし、電子シャッタの露光状態を第1の保護時間待機状態SWUに遷移する。
2:イベントが適正範囲未満W入力の場合、保護時間カウンタをリセットし、電子シャッタの露光状態を第2の保護時間待機状態SWLに遷移する。
【0116】
入力される低速輝度平均値が適正範囲超Wに入ると、保護時間カウンタをリセットし、保護時間カウンタのカウントを開始する。そして、電子シャッタの露出状態を露出適正状態Sから第1の保護時間待機状態SWUに遷移させる。
【0117】
第1の保護時間待機状態SWUで処理されるイベントは次の3つがある。
1:イベントが適正上部範囲WBU入力の場合、保護時間カウンタをリセットし、露出適正状態Sに遷移する。
2:イベントが適正下部範囲WBL入力の場合、保護時間カウンタをリセットし、露出適正状態Sに遷移する。
3:イベントが保護時間Tc経過の場合、露出過剰状態Sに遷移する。
【0118】
図11の適正輝度レベル状態期間Tb以降の期間において、低速輝度平均値が適正範囲超Wとなる時間taで、露出適正状態Sから第1の保護時間待機状態SWUに遷移する。そして、低速輝度平均値が適正範囲超Wとなるtaから適正範囲Wに戻る時間tbまでの期間Tdでは、第1の保護時間待機状態SWUを保つ。
【0119】
第1の保護時間待機状態SWUの状態が期間Td(Tdは保護時間Tc未満)継続後、低速シャッタ速度制御信号生成部98に入力される低速輝度平均値が低下し、適正範囲Wに戻る時間tbで、イベントが適正上部範囲WBU入力となり、保護時間カウンタをリセットし、露出適正状態Sに遷移する。そして、適正範囲Wに戻る時間tbから適正範囲未満Wとなる時間tcまでの期間Teでは、露出適正状態Sを保つ。
【0120】
入力される低速輝度平均値が更に低下し、低速輝度平均値が適正範囲未満Wとなる時間tcで、イベントが適正範囲未満W入力となり、保護時間カウンタのリセットおよびカウントを開始し、第2の保護時間待機状態SWLに遷移する。そして、適正範囲未満Wとなる時間tcから適正範囲Wに戻る時間tdまでの期間Tfでは、第2の保護時間待機状態SWLを保つ。
【0121】
第2の保護時間待機状態SWLの状態が期間Tf(Tfは保護時間Tc未満)継続後、低速シャッタ速度制御信号生成部98に入力される低速輝度平均値が上昇し、適正範囲Wに戻る時間tdで、イベントが適正下部範囲WBL入力となり、保護時間カウンタをリセットし、露出適正状態Sに遷移する。そして、適正範囲Wに戻る時間tdから適正範囲超Wとなる時間teまでの期間Tgでは、露出適正状態Sを保つ。
【0122】
入力される低速輝度平均値が更に上昇し、イベントが適正範囲超Wとなる時間teで、イベントが適正範囲超Wとなり、保護時間カウンタをリセットおよびカウントを開始し、状態を第1の保護時間待機状態SWUに遷移する。そして、低速輝度平均値が適正範囲超Wとなる時間teから適正範囲超Wのまま保護時間カウンタの設定時間、すなわち、保護時間Tcが経過した時間tfで、イベントが保護時間Tc経過となり、露出過剰状態Sに遷移する。
【0123】
以降、露出過剰状態Sでは、露出不足状態Sと逆方向にシャッタ速度を変化させる動作となり、最終的には露出適正状態Sとなる。
【0124】
一方、低速用AGC回路制御信号生成部99は図1に示されるAGC回路31を制御するAGC制御信号を生成する。生成されたAGC制御信号はAGC回路31へ伝送され、AGC回路31の制御がなされる。
【0125】
また、低速シャッタ用計算処理部92は、明るさの微小な変化に応じて電子シャッタ速度を微調整する低速シャッタ微調整処理部100を備え、低速電子シャッタ速度制御信号の制御を行う。
【0126】
低速シャッタ微調整処理部100は、長周期の画面輝度変動を補償するための処理である。照明光源の輝度変動、例えば、蛍光灯フリッカの周波数と、CMOSセンサ28のフレーム周波数とが自然数倍で極めて近接している場合、折り返し歪による極めて長周期の画面輝度変動を生じる。この画面輝度変動を低速シャッタ微調整処理部100で検出し、当該変動を抑圧するように処理している。
【0127】
図13は、照明光源とCMOSセンサ28のフレーム周期との関係で生じる輝度変動を測定し、グラフ化した一例である。このグラフの縦軸は低速シャッタ速度制御信号生成部98から入力される低速輝度平均値であり、グラフの横軸はフレーム周期(時間軸)を表している。図13によれば、CMOSセンサ28のフレーム周期との関係で生じる輝度変動波形は緩やかな傾きであるが、輝度変動波形の振幅は30%程度と大きい。従って、照明光源とCMOSセンサ28のフレーム周期との関係で生じる輝度変動によって、低速輝度平均値の輝度レベルが適正範囲外Wとなる場合が生じる。
【0128】
低速シャッタ速度制御信号生成部98で生成された低速シャッタ速度制御信号による電子シャッタ回路49の制御のみの場合は、低速輝度平均値が適正範囲外Wとなると、保護時間Tc経過後にCMOSセンサ28の電子シャッタを制御し、図12に示される露出適正状態Sに合わせてしまう。更に露出は低速輝度平均値が上下し、各々上部と下部で電子シャッタ速度を変化させて露出適正状態Sに合わせてしまう為に、画面は極めて低い周期の発振を生じてしまう。
【0129】
長周期の画面輝度変動に対する改善を次の方法で実行する。
【0130】
画面輝度変動が、例えば、1フレーム周期に±1%以内である緩やかな画面輝度変動を検出し、微少な電子シャッタ制御によって、1フレーム毎に露出適正状態Sに追い込む。緩やかな画面輝度変動に対しては、保護時間Tcを設けずに露出適正状態Sに調節する。
【0131】
低速シャッタ微調整処理部100が実行する緩やかな画面輝度変動に対する微調整処理について詳細を説明する。
【0132】
低速シャッタ微調整処理部100が実行する微調整処理は、低速シャッタ用計算処理部92が露出適正状態Sと判断している場合にのみ動作を行う。微調整処理動作は、露出適正状態S中に低速シャッタ用計算処理部92が露出適正状態Sの低速輝度平均値を記憶し、この記憶した低速輝度平均値を初期値とする。
【0133】
初期値に対して1フレーム周期に±1%以内の範囲で低速輝度平均値が変動した場合、(初期値)/(平均値)を求める。(初期値)/(平均値)から演算した演算結果は、低速シャッタ用計算処理部92で露光時間のa%となる露出補正時間Δtが図14に示される電子シャッタ回路49が備える1CLOCK単位シフトレジスタ101を何段シフトさせれば露出適正状態Sとなるかを算出する。
【0134】
露出適正状態Sとする1CLOCK単位シフトレジスタ101のシフトレジスタ段数の算出は、マイコン回路48自身が現在のシャッタ速度を認知している為、露光時間のa%に対応する露出補正時間Δtは、
【数1】
露出補正時間Δt(sec)=現在シャッタ速度(sec)×a/100
であり、例えば、露光時間の1%に対応する露出補正時間Δt1は、
【数2】
露出補正時間Δt1(sec)=現在シャッタ速度(sec)×1/100
となる。また、露出補正するための1CLOCK単位シフトレジスタ101のシフトレジスタ段数は、
【数3】
シフトレジスタ段数
=露出補正時間Δt(sec)=マスターロックの1周期(sec)
である。
【0135】
算出されたシフトレジスタ段数を電子シャッタ回路49が備える1CLOCK単位シフトレジスタ101への制御信号とすれば、極めて微少な露光時間調整が可能となり、1フレーム周期単位で±1%の露光時間調整が実現できる。
【0136】
尚、低速シャッタ微調整処理部100が実行する微調整処理はCCDセンサ出力信号のAGC(自動利得制御)でも適用できる。しかし、S/N(信号対雑音比)を考慮した場合、前記方式を適用した方が増幅度アップに伴うノイズが少ない。
【0137】
一方、高速シャッタ用計算処理部93も低速シャッタ用計算処理部92と同様の機能を有する高速シャッタ速度制御信号生成部103と、高速用AGC回路制御信号生成部104と、高速シャッタ微調整処理部105とを備える。高速シャッタ用計算処理部93の処理動作は、入力される信号が高速輝度平均値である点以外は低速シャッタ用計算処理部92と同様である。
【0138】
特性変換制御信号生成部95には、低速シャッタ用計算処理部92および高速シャッタ用計算処理部93で生成された低速シャッタ速度制御信号および高速シャッタ速度制御信号が入力される。特性変換制御信号生成部95は入力されたシャッタ速度制御信号から特性変換制御信号を生成する。特性変換制御信号生成部95に低速シャッタ速度制御信号が入力された場合は、図1に示される低速シャッタ用特性変換回路41を制御する低速特性変換制御信号が得られる。
【0139】
一方、高速シャッタ速度制御信号が入力された場合は、図1に示される高速シャッタ用特性変換回路45を制御する高速特性変換制御信号が得られる。生成された低速特性変換制御信号および高速特性変換制御信号は、低速シャッタ用特性変換回路41および高速シャッタ用特性変換回路45に伝送される。
【0140】
低速特性変換制御信号および高速特性変換制御信号は、低速シャッタの画像と高速シャッタ画像を合成しダイナミックレンジ拡大画像を構築する際、合成画像の最適化を図るための制御信号である。低速特性変換制御信号および高速特性変換制御信号は、低速シャッタ用特性変換回路41および高速シャッタ用特性変換回路45の制御に用いる。
【0141】
画像合成の際に生ずる問題点として、2枚の画像を単純に加算しただけでは、拡大率が増大すると共に合成画面の階調特性に非直線歪みを生じ、コントラストのとれない画像となる問題点がある。従って、2枚の画像を加算する前にダイナミックレンジ拡大率に応じて画像信号の特性を変換し、非直線歪みを抑えてコントラスト低下の改善を図るものである。
【0142】
低速シャッタ用特性変換回路41および高速シャッタ用特性変換回路45の特性変換制御について説明する。
【0143】
まず、ダイナミックレンジ拡大率を以下の式より演算する。
ダイナミックレンジ拡大率=低速シャッタ制御信号/高速シャッタ制御信号
ここで演算されるダイナミックレンジ拡大率は露出制御完了時点でのダイナミックレンジ拡大率である。
【0144】
このダイナミックレンジ拡大率の値は、特性変換制御信号生成部95の演算手段としての計算処理手段91で演算され、演算結果は、低速特性変換制御信号および高速特性変換制御信号として出力される。
【0145】
低速シャッタ用特性変換回路41および高速シャッタ用特性変換回路45は、入力X−出力Yの特性としてX1〜X0.7とlog101〜10のテーブルを持っており、ダイナミックレンジ拡大率に応じてテーブルを切り換え、画像信号に対する非直線歪みの改善を行う。以下にダイナミックレンジ拡大率に対するテーブル選択の関係を示す。
ダイナミックレンジ拡大率<16の場合 …… Xのテーブルを選択
16≦ダイナミックレンジ拡大率≦64の場合 …… X0.7のテーブルを選択
64<ダイナミックレンジ拡大率の場合 …… Xのテーブルを選択
【0146】
特性変換制御信号生成部95は、この条件分岐の結果を低速特性変換制御信号および高速特性変換制御信号として生成し、低速シャッタ用特性変換回路41および高速シャッタ用特性変換回路45のテーブル切り換えを自動制御で行う。
【0147】
合成比率制御信号生成部96は2つの画像信号、すなわち、低速シャッタ用画像信号および高速シャッタ用画像信号の合成比率を制御する合成比率制御信号を生成する。生成された合成比率制御信号は図1に示される画像合成手段としての加算回路34に伝送される。
【0148】
合成比率制御の目的は特性変換制御と同様に低速シャッタの画像と高速シャッタ画像の合成を最適化し、合成画像のコントラストを高めるものである。画像合成の際の問題点としては、ダイナミックレンジ拡大率を大きく取っていった場合、白浮きした画像となりコントラストの劣化が大きくなる問題点がある。
【0149】
このコントラストの劣化の原因は、低速シャッタ画像のほとんどが飽和エリアとなり、飽和信号に高速シャッタ画像の信号が乗るためである。コントラストの劣化を改善するために、拡大率の増加と共に高速シャッタ画像の合成割合を大きくしていき、画像の白浮きを抑圧することでコントラスト低下の補正を図る。特に、合成画像のコントラストの向上には、特性変換制御と同時にこの合成比率制御を行うと効果が高い。
【0150】
合成比率制御信号生成部96の動作は、特性変換制御信号生成部95と同様にダイナミックレンジ拡大率を演算し、演算結果から低速シャッタと高速シャッタの画像合成比率を切り換えるための合成比率制御信号を生成する。この合成比率制御信号は図1に示される画像信号合成手段としての加算回路34へ送られ、2枚の画像の合成配分、すなわち合成比率を自動制御する。
【0151】
ダイナミックレンジ拡大率による合成比率制御の関係は以下の通りである。
ダイナミックレンジ拡大率=1のとき L100%,H0%
1<ダイナミックレンジ拡大率<6のとき L94%,H6%
6≦ダイナミックレンジ拡大率≦8のとき L88%,H12%
8<ダイナミックレンジ拡大率のとき L75%,H25%
(注)L:低速シャッタ画像、H:高速シャッタ画像
但し、上記の合成比率は一例であって、必要に応じて変えても良い。
【0152】
電子シャッタ回路49の回路ブロック図を図14に示す。図14に示される電子シャッタ回路49は、低速シャッタパルス生成手段107と、高速シャッタパルス生成手段108と、シャッタパルス切換回路109とを備える。
【0153】
電子シャッタ回路49には低速シャッタ速度制御信号と、CLKパルス、HDパルス、VDパルスおよびフィールド情報(以下、FIとする)とが入力される。
【0154】
電子シャッタ回路49に入力された低速シャッタ速度制御信号と、CLKパルス、HDパルス、VDパルスおよびFIは、低速シャッタパルス生成手段107に入力され、低速シャッタパルス生成手段107で低速側の電子シャッタを切るための低速シャッタパルスを生成する。また、電子シャッタ回路49に入力された高速シャッタ速度制御信号と、CLKパルス、HDパルス、VDパルスおよびFIは、高速シャッタパルス生成手段108に入力され、高速シャッタパルス生成手段108で高速側の電子シャッタを切るための高速シャッタパルスを生成する。
【0155】
生成された低速シャッタパルスおよび高速シャッタパルスはシャッタパルス切換回路109に入力される。また、シャッタパルス切換回路109にはFIも入力され、FIの情報内容に応じて低速シャッタパルスおよび高速シャッタパルスを切り換える。シャッタパルスの切り換えは、FIの情報に基づき、低速シャッタ速度で撮像する場合は低速シャッタパルスを、高速シャッタ速度で撮像する場合は高速シャッタパルスを出力する。シャッタパルス切換回路109から出力されたシャッタパルスは撮像手段21に入力され、撮像手段21が備えるCMOSセンサ28の電子シャッタを制御する。
【0156】
低速シャッタパルス生成手段107は、水平同期期間H単位のシャッタパルス生成部(以下、H周期単位のシャッタパルス生成部とする)110と、数十CLOCK周期単位のシャッタパルス生成部111と、OR回路112と、1CLOCK単位シフトレジスタ101とを備える。H周期単位のシャッタパルス生成部110で生成された水平同期期間H単位のシャッタパルスおよび数十CLOCK単位のシャッタパルス生成部111で生成された数十CLOCK単位のシャッタパルスはOR回路112で多重され、1CLOCK単位シフトレジスタ101に入力される。1CLOCK単位シフトレジスタ101は、CLOCK単位の露光時間の微調整を行い、シャッタパルスを1CLOCK単位シフトレジスタ101で遅延させることにより得る。この遅延量はマイコン回路48から入力される制御信号、すなわち、シフトレジスタ段数によって制御される。
【0157】
電子シャッタパルス発生タイミングおよび電子シャッタパルス時間について、図15〜図18を用いて説明する。
【0158】
図15(A)はVDパルス、図15(B)は、図15(A)に示されるVDパルスの周期(以下、V周期とする)の時間スケールで見た電子シャッタパルスの一例を示している。
【0159】
電子シャッタパルス発生タイミングは、電荷読出しパルス(図外)入力の直後であり、通常のTVカメラと同様の発生タイミングである。すなわち、図15で説明すれば、図15に示される時間t1および時間t3で電子シャッタパルスは発生する。図15(B)に示される電子シャッタパルスの一例では、時間t1でHDパルスの周期(以下、H周期とする)単位の電子シャッタパルスが、時間t3でCLOCKパルスの周期の例えば、8倍等の自然数倍周期(以下、数CLK周期とする)単位の電子シャッタパルスが発生している。
【0160】
また、電子シャッタパルス時間とは、電子シャッタパルスのパルス幅に対応する時間であり、被写体の画像光をCMOSセンサ28に露光する露光時間である。電子シャッタパルス時間の調整は、VDパルス、HDパルスおよびCLOCKパルスを用いてなされ、V周期単位、H周期単位および数CLK周期単位で調整が可能である。
【0161】
HDパルスを用いてなされる電子シャッタパルス時間の調整を説明する説明図を図16(A)および図16(B)に、数CLK周期の電子シャッタパルス時間の調整を説明する説明図を図17(A)および図17(B)に示す。
【0162】
図16(A)および図16(B)は、図15(B)に示される時間t1〜時間t3の電子シャッタパルス発生タイミングにおいて、V周期の一部を拡大した拡大図である。図16(A)はV周期内のHDパルスを示し、図16(B)は図16(A)に示されるH周期の時間スケールで見た電子シャッタパルスを示している。図16(B)に示される電子シャッタパルスの一例では、時間t1でH周期の電子シャッタパルスが発生する。
【0163】
また、図17(A)および図17(B)は、図15(B)に示される電子シャッタパルス発生タイミングにおける細かいパルスであり、時間t3〜時間t5のV周期において、一部を拡大した拡大図である。図17(A)はV周期内のCLOCKパルス、図17(B)は数CLK周期の電子シャッタパルスを示している。図17(B)に示される電子シャッタパルスの一例では、時間t3で数CLK周期の電子シャッタパルスが発生する。
【0164】
尚、HDパルスを用いてなされる電子シャッタパルス時間の調整は、図16(B)に示されるH周期の電子シャッタパルス時間に限らない。最初の電子シャッタパルスが発生した時間t1から時間t3までのV周期において、H周期単位に時間調整が可能である。一方、数CLKパルスを用いてなされる電子シャッタパルス時間の調整は、図17(B)に示される数CLK周期の電子シャッタパルス時間に限らない。最初の電子シャッタパルスが発生した時間t3から時間t5までのV周期において、数CLK周期単位に時間調整が可能である。
【0165】
この様なH周期単位および数CLK周期単位での電子シャッタパルス時間の調整手法は、通常のCCDセンサカメラに適用されている調整手法である。撮像装置20は、画像の露光時間を1CLOCK周期で調整を行うことができ、電子シャッタ速度調整のみで微調整処理を行える。この微調整処理は、撮像装置20の特徴となる点である。
【0166】
図18に電子シャッタパルスをシフトさせ、1CLOCK周期で露光時間の調整を行う説明図を示す。
【0167】
従来の撮像装置における電子シャッタパルス時間は、CLOCK周期の自然数倍周期単位の調整であり、通常、CLOCK周期の7,8倍程度であった。このため、電荷読出しパルスの直前で“数CLK周期のシャッタパルス”を1パルス切ると、露光時間が50%程度変化してしまい、露光時間のキザミが粗かった。
【0168】
これに対し、撮像装置20は、低速シャッタ微調整処理部100および高速シャッタ微調整処理部105で微調整処理を行い、1CLOCK周期単位で電子シャッタパルスをシフトさせ、1CLOCK周期単位で露光時間の調整を行うことができる。従って、電荷読出しパルスの直前に発生させたシャッタパルスの露光時間調整を数%ずつ行うことができ、露光時間を細かく調整することが可能となる。
【0169】
撮像装置20は、露光時間の細かな調整が可能なため、画像信号の輝度レベルを細かく調整することができ、高輝度部分で極めて早い電子シャッタ速度で撮像を行った画像信号に対して、電子シャッタの露光時間調整のみでフリッカ補正が可能となる。すなわち、本発明のような広ダイナミックレンジを実現する撮像装置20において、高速シャッタ画像信号のフリッカ補正が電子シャッタのみで可能となる。
【0170】
高速シャッタパルス生成手段108も低速シャッタパルス生成手段107と同様である。高速シャッタパルス生成手段108は低速シャッタパルス生成手段107と内部構成および動作が全く異ならないので、説明を割愛する。
【0171】
第1実施形態を示す撮像装置20によれば、被写体内の輝度差に応じてカメラダイナミックレンジ拡大率を高速に可変させ、被写体輝度差に最適化した撮像画像を得ることで、被写体として極めて輝度差の大きい画像認識用車載カメラ、屋内、夜間の屋外を同時撮像する監視カメラ等として有効な撮像装置を提供できる。
【0172】
第1実施形態を示す撮像装置20においては、画像信号処理手段としてのアナログ信号処理手段22およびデジタル信号処理手段23と、制御手段24とは、集積化される。集積化される範囲は、種々の形態が可能である。例えば、電子シャッタ回路49、低速シャッタ用メモリ回路39、高速シャッタ用メモリ回路43、低速シャッタ用切換回路40、高速シャッタ用切換回路44、低速用特性変換回路41、高速用特性変換回路45、画像信号合成手段としての加算回路34、輝度積算値回路50、輝度ピーク値検出回路51、ゲート波形発生回路52が1つの集積化半導体チップとして構築されても良い。もちろん、上記例に限らず、集積化する場合、図1に示される各構成部位の組み合せは任意である。また、加算回路34は切換回路でも良い。
【0173】
尚、上記の説明では撮像素子としてCMOSセンサ28を適用した例を説明したが、本発明は撮像素子にCCDセンサ等の光電素子を用いた場合にも、同様に被写体内の輝度差に応じてカメラダイナミックレンジ拡大率を可変させ、被写体輝度差に最適化した撮像画像を得ることができる。
【0174】
[第2実施形態]
本発明の第2実施形態を示す撮像装置20Aを図19に示す。第2実施形態を示す撮像装置20Aは、撮像して得られた画像信号のうち、重要度の高い画像情報エリアを選択抽出するエリア選択抽出手段113を備えている点以外は、図1に示される第1実施形態の撮像装置20とほぼ同様である。従って、撮像装置20と異なる構成部位にのみ符号を付し、全く異ならない構成部位については、同じ符号を付して、説明を省略する。
【0175】
図19によれば、撮像装置20Aは、撮像素子にCMOSセンサ28を有し、画像を撮像する撮像手段21と、この撮像手段21で撮像された1画面分の画像信号のうち、画面範囲から任意のエリアを選択抽出するエリア選択抽出手段113と、このエリア選択抽出手段113で、選択抽出されたエリアの画像信号を信号処理し、出力する画像信号出力手段114とを具備する。
【0176】
撮像装置20Aの撮像手段21が備える撮像素子としてのCMOSセンサ28で1画面分の画像信号が生成される。この1画面分の画像信号は、エリア選択抽出手段113からCMOSセンサ28に入力されるエリア選択抽出信号により、1画面分の画像信号の画面範囲から任意のエリアが選択抽出される。そして、CMOSセンサ28は、生成された1画面分の画像信号のうち任意のエリアを選択抽出した画像信号(以下、エリア選択抽出画像信号とする)を出力する。出力されたエリア選択抽出画像信号は、画像信号出力手段114に入力される。
【0177】
画像信号出力手段114に入力されたエリア選択抽出画像信号は、相関二重サンプリング回路(以下、CDS回路とする)116でエリア選択抽出画像信号に重畳されたノイズが除去され、A/D変換回路32でA/D変換され、画像信号処理回路117で信号処理される。画像信号処理回路117で信号処理されたエリア選択抽出画像信号は、画像信号出力端子25を介して画像信号出力手段114から撮像装置20Aの画像信号出力として出力される。また、画像信号処理回路117で信号処理されたエリア選択抽出画像信号は、フィードバック信号として、撮像装置20Aが備えるエリア選択抽出手段113にもフィードバックされる。
【0178】
エリア選択抽出手段113にフィードバックされるフィードバック信号は、制御回路118に入力され、走査パルス生成回路119を制御する制御信号が生成される。生成された制御信号は、走査パルス生成回路119に入力され、走査パルスの生成が制御される。走査パルス生成回路119で生成された走査パルスは、撮像素子としてのCMOSセンサ28が出力するエリア選択抽出画像信号のエリアを選択するエリア選択手段120に入力される。エリア選択手段120は、入力された走査パルスをトリガにして、エリア選択抽出情報を出力し、出力されたエリア選択抽出情報は撮像素子駆動回路121に入力される。
【0179】
また、走査パルス生成回路119で生成された走査パルスは、撮像素子駆動回路121にも直接入力される。撮像素子駆動回路121は、入力された走査パルスから撮像素子としてのCMOSセンサ28を駆動させる転送パルスおよびエリア選択抽出信号を生成し、生成された転送パルスおよびエリア選択抽出信号は、CMOSセンサ28に入力される。
【0180】
撮像装置20Aは、撮像素子であるCMOSセンサ28を有することで、撮像から撮像素子に蓄積された蓄積電荷、すなわち、画像信号の読出し時間の大幅な短縮を図っている。また、エリア選択抽出手段113を備えることで、図19に示される撮像装置20A内の画像信号出力手段114における画像信号処理時間の短縮を図っている。撮像装置20Aは、撮像素子からの画像信号の読出し時間短縮および画像信号出力手段114での画像信号処理時間短縮によって、撮像から画像信号出力までの所要時間短縮を図っている。
【0181】
撮像装置20Aは、撮像から画像信号出力までの所要時間短縮により、高速制御が要求される場合、例えば、移動体が走行ルート上にある障害物を検知し、衝突しないように回避する等の制御を行う場合において、第1実施形態を示す撮像装置20と比較するとより適した撮像装置となる。すなわち、撮像装置20Aは、制御情報取得の用途で移動体に設置する撮像装置として有効な撮像装置である。
【0182】
まず、撮像装置20Aの撮像素子としてのCMOSセンサ28による画像信号の読出し時間の短縮効果について説明する。
【0183】
図20(A)および図20(B)に例えば、640×480画素のCCDセンサとCMOSセンサ28で比較した場合におけるCCDセンサとCMOSセンサ28からの画像信号の読出し時間、すなわち、CCDセンサとCMOSセンサ28に蓄積された蓄積電荷の読出し時間について示す。
【0184】
図20(A)に示されるCCDセンサの場合は、蓄積電荷の読出しに要する時間、すなわち、転送パルス(撮像素子駆動信号)が入力され、全ての画素123から蓄積電荷を垂直転送部124に転送し、垂直転送部124に転送された蓄積電荷を順次読み出すまで、約1/30sec要する。
【0185】
一方、図20(B)に示されるCMOSセンサ28の場合は、転送パルス(撮像素子駆動信号)が入力された直後、どの画素でも(CMOSセンサでは転送パルスは1つでなく各画素(素子)でタイミングが異なるため)蓄積電荷をほとんど瞬時(約30nsec)に画像信号読出しライン125から読み出すことができる。このことから、撮像素子にCMOSセンサ28を有することで、撮像装置20Aは、撮像素子からの蓄積電荷の読出し時間を大幅に短縮できる。
【0186】
ここで、撮像素子にCCDセンサを備えた撮像装置20と、撮像素子にCMOSセンサ28を備えた撮像装置20Aとを車両等の移動体に設置し、時速150km(≒秒速41.7m)で走行した場合を比較する。撮像装置20では、撮像素子のCCDセンサからの蓄積電荷の読出し時間、すなわち、約1/30sec経過後では車は約1.4m進んでしまうのに対し、撮像装置20Aでは、撮像素子であるCMOSセンサ28からの蓄積電荷読出し時間経過後において、ほぼ0mである。
【0187】
従って、各々の撮像装置が前方にある障害を検知し、衝突回避のため、移動体を停止する制御を行う場合、撮像装置20を設置した移動体は、制動動作に入るまでに約1.4m空走してしまうのに対し、撮像装置20Aを設置した移動体は、ほぼ空走0mで制動動作に入れることを意味する。また、移動体の移動速度がさらに高速になれば、蓄積電荷読出し時間中の空走距離の違いは、より顕著なものとなる。
【0188】
次に、図19に示される撮像装置20Aが備えるエリア選択手段120および撮像素子駆動回路121について説明する。
【0189】
エリア選択手段120は、垂直方向の走査範囲を選択する垂直位置選択回路127と、水平方向の水平位置選択回路128とを備える。エリア選択手段120による画像信号の選択抽出エリアの設定は、垂直方向プリセット端子129および水平方向プリセット端子130から垂直位置選択回路127および水平方向の水平位置選択回路128にCMOSセンサ28を走査する走査範囲情報を予めインプットしておくことにより実施される。
【0190】
垂直方向のエリア選択抽出は、垂直方向プリセット端子129から垂直位置選択回路127にCMOSセンサ28を走査する走査範囲情報を予めインプットする。走査範囲情報は、CMOSセンサの垂直方向の有効走査線に対して、各有効走査線毎に0,1を垂直位置選択回路127にインプットすることで行われる。
【0191】
また、垂直位置選択回路127には、走査範囲情報の他に走査パルス生成回路119からの走査パルスが入力される。入力された走査パルスをトリガにして、インプットされた0,1情報がCMOSセンサ28を駆動する撮像素子駆動回路121に入力される。
【0192】
水平方向のエリア選択抽出も垂直方向エリア選択抽出と同様にして、水平方向プリセット端子130から水平位置選択回路128にCMOSセンサ28を走査する走査範囲を0,1でインプットする。そして、走査パルス生成回路119から入力される走査パルスをトリガにして、インプットされた0,1情報がCMOSセンサ28を駆動する撮像素子駆動回路121に入力される。
【0193】
撮像素子駆動回路121は、垂直方向の有効走査線の走査を行う垂直シフトレジスタ132と、水平方向の有効走査線の走査を行う水平シフトレジスタ133とを備える。垂直シフトレジスタ132は、走査パルス生成回路119からの走査パルスをトリガにして、垂直位置選択回路127からの走査範囲情報、すなわち、0,1情報に応じてCMOSセンサ28を駆動する駆動信号を生成する。また、水平シフトレジスタ133に対しても、走査パルス生成回路119からの走査パルスをトリガにして、水平位置選択回路128からの走査範囲情報、すなわち、0,1情報に応じてCMOSセンサ28を駆動する駆動信号(以下、CMOSセンサ駆動信号とする)を生成する。
【0194】
垂直シフトレジスタ132および水平シフトレジスタ133で生成されたCMOSセンサ駆動信号は、CMOSセンサ28に伝送される。そして、入力されたCMOSセンサ駆動信号により、CMOSセンサ28は、画像信号の選択抽出を行う。
【0195】
画像信号の選択抽出は、走査範囲情報として、1がインプットされた有効走査線に対しては、走査実施領域として画像信号の抽出を行う。一方、0がインプットされた有効走査線は走査実施不要領域として画像信号の抽出がなされない。選択抽出された画像信号は、第1実施形態を示す撮像装置20と同様にして、信号処理手段で画像信号処理される。
【0196】
撮像装置20Aが備える画像信号処理手段は、第1実施形態を示す撮像装置20と同じであるが、画像信号処理する情報量は、画像信号を選択抽出し、情報量を絞り込む分だけ素早く画像信号処理される。そして、画像信号処理手段で画像信号処理された画像信号は、画像信号出力手段114から出力される。
【0197】
図21は、撮像装置20Aに設置する一例として車載カメラとして用いた例を示す説明図である。車載カメラにおいては、画面中央部付近から画面上方にかけては、空135であり、車136、道路137、道路上の白線138等の被写体は画面中央付近より画面下方に多い。従って、車載カメラでは、画面中央付近より画面下方部を走査実施領域として設定し、その他の部分を走査実施不要領域として設定すれば、車136、道路137、道路上の白線138等の被写体がある重要度の高い領域の画像を素早く得ることができる。
【0198】
第2実施形態を示す撮像装置20Aによれば、撮像素子にCMOSセンサ28を有することで、光電変換後にCMOSセンサ28からの画像信号の読出しをほぼ瞬時に行うことが可能となる。また、エリア選択抽出手段113を備えることで、画像信号のうち重要度の高いエリアを選択抽出し、信号処理に必要な処理時間を短縮することが可能となる。
【0199】
このことから、撮像装置20Aは、撮像から画像信号出力までの所要時間短縮を実現し、高速制御が要求される場合、例えば、移動体が走行ルート上にある障害物を検知し、衝突しないように回避する等の制御を行う場合において、制御情報取得のために移動体に設置する撮像装置として有効である。
【0200】
尚、第2実施形態を示す撮像装置20Aを設置する移動体は、車両を例に説明したが、車両に限定されない。撮像装置20Aを設置する移動体は、車両、船舶、航空機等、撮像装置20Aを設置可能なあらゆる移動体を包含している。
【0201】
以上、撮像装置20,20Aによれば、被写体内の輝度差に応じてカメラダイナミックレンジ拡大率を高速に可変させることができるので、被写体輝度差に最適化した撮像画像を得ることができる。この結果、例えば、認識用車載カメラ、屋内、夜間の屋外を同時撮像する監視カメラ等のように被写体として極めて輝度差の大きい画像を撮像する必要がある場合に有効な撮像装置を提供できる。
【0202】
また、撮像装置20,20Aは、撮像素子にCMOSセンサ28を用いることで、読み出し時間を短縮することができるので、撮像から画像処理完了までの所要時間を短縮することができる。さらに、撮像装置20Aは、エリア選択抽出手段113を備えるので、撮像画面範囲内のうち、特に重要度の高いエリアを選択抽出することができ、画像信号処理する画像信号情報量を絞り込むことができる。従って、撮像から画像処理完了までの所要時間をより短縮することができる。
【0203】
すなわち、撮像装置20,20Aは、撮像から画像処理完了までの所要時間を短縮することができ、被写体が刻一刻と変化する移動体からの撮像を行うのに適した撮像装置であり、特に、移動体に設置される撮像装置からの画像信号を制御情報として用いて、この移動体を制御する等、撮像装置からの撮像情報を用いて次の動作を素早く制御する必要がある場合に有効である。
【0204】
【発明の効果】
本発明に係る撮像装置によれば、被写体が刻一刻と変化する移動体からの撮像を行うのに有効な撮像装置を提供できる。特に、移動体に設置される撮像装置からの画像信号を制御情報として用いて、この移動体を制御する等、撮像装置からの撮像情報を用いて次の動作を素早く制御する必要がある場合において、有効である。
【図面の簡単な説明】
【図1】 本発明に係る第1実施形態を示す撮像装置の一実施例を示す回路ブロック図。
【図2】 本発明に係る撮像装置における低速シャッタ画像信号および高速シャッタ画像信号の画像信号合成を説明する説明図。
【図3】 撮像装置に備えられる撮像素子の撮像特性の説明図。
【図4】 本発明に係る撮像装置の信号処理出力特性を示す説明図。
【図5】 本発明に係る撮像装置で撮影される撮像画面の分割例を示す説明図。
【図6】 図1に示される輝度積算値回路のブロック図。
【図7】 図1に示される輝度ピーク値検出回路のブロック図。
【図8】 図1に示されるゲート波形発生回路のブロック図。
【図9】 図1に示されるマイコン回路のブロック図。
【図10】 撮像した画面が分割された画像の処理内容の説明図であり、(A)は低速輝度積算値を示す画面、(B)は低速輝度ピーク値を示す画面、(C)は低速輝度積算値を示す画面において、低速輝度積算値および低速輝度ピーク値から飽和エリアを算出する画面、(D)高速輝度積算値を示す画面。
【図11】 本発明に係る撮像装置に備えられる輝度平均値算出手段からの輝度平均値の推移を示す説明図(グラフ)。
【図12】 本発明に係る撮像装置に備えられる撮像素子の電子シャッタ露出の制御状態の遷移を示す状態遷移図。
【図13】 交流照明光源による画面輝度変動を示す説明図。
【図14】 本発明に係る撮像装置に備えられる電子シャッタ回路の電子シャッタパルス発生を示す内部ブロック図。
【図15】 (A)はVDパルスを示し、(B)は電子シャッタパルスの発生タイミングをV周期の時間スケールで見た場合を示す説明図。
【図16】 (A)は図15に示されるV周期(t1〜t3)内のHDパルスを示し、(B)は電子シャッタパルスの発生タイミングをH周期の時間スケールで見た場合を示す説明図。
【図17】 (A)は図15に示されるV周期(t3〜t5)内の数CLKパルスを示し、(B)は電子シャッタパルスの発生タイミングを数CLK周期の時間スケールで見た場合を示す説明図。
【図18】 (A)はV周期内の数CLKパルスを示し、(B)は数CLK周期の電子シャッタパルスがシフトレジスタにより、1CLOCK単位で位相が可変する様子を示す説明図。
【図19】 本発明に係る第2実施形態を示す撮像装置の一実施例を示す回路ブロック図。
【図20】 本発明に係る撮像装置に備えられる撮像素子の違いによる蓄積電荷の読出し時間の違いを説明する図であり、(A)はCCDセンサの場合、(B)はCMOSセンサの場合を示す説明図。
【図21】 本発明に係る第2実施形態を示す撮像装置を移動体に設置する一例として車載カメラとして用いた例を示す説明図。
【図22】 従来の撮像装置において、(A)はCCDセンサ出力、(B)は撮像装置の画像出力を示す説明図。
【図23】 従来の撮像装置の回路ブロック図。
【符号の説明】
20 撮像装置
21 撮像手段
22 アナログ信号処理手段(画像信号処理手段)
23 デジタル信号処理手段(画像信号処理手段)
24 制御手段
25 画像信号出力端子(画像信号出力手段)
27 撮像レンズ
28 CMOSセンサ(撮像素子)
31 AGC(自動利得制御)回路
32 A/D変換回路
33 画像信号処理実行手段
34 加算回路(画像信号合成手段)
35 D/A変換回路
37 低速シャッタ用信号処理手段
38 高速シャッタ用信号処理手段
39 低速シャッタ用メモリ回路
40 低速シャッタ用切換回路
41 低速シャッタ用特性変換回路
43 高速シャッタ用メモリ回路
44 高速シャッタ用切換回路
45 高速シャッタ用特性変換回路
47 画像信号情報取得手段
48 マイコン回路(制御信号生成手段)
49 電子シャッタ回路
50 輝度積算値回路(分割画像輝度積算手段)
51 輝度ピーク値検出回路(分割画像輝度ピーク値検出手段)
52 ゲート波形発生回路
53 全体画面
54 分割画面
58 ゲート回路
59 積算処理部
60 積算出力制御回路
62 積算回路
63 1画素保持回路
64 ピーク値検出用ゲート回路
65 ピーク値検出用1画素保持回路
66 輝度加算回路
67 2画素保持回路
68 2画素保持信号発生回路
69 比較回路
70 切換回路
71 輝度信号保持回路
72 ピーク値出力制御回路
74 垂直方向設定部
75 水平方向設定部
76 合成回路
78 垂直同期リセット信号発生回路
79 垂直方向スタート位置設定回路
80 垂直方向幅設定回路
82 水平同期リセット信号発生回路
83 水平方向スタート位置設定回路
84 水平方向幅設定回路
86 輝度平均値算出手段
87 制御信号生成手段
89 輝度飽和エリア
90 輝度不飽和エリア
91 計算処理手段
92 低速シャッタ用計算処理部
93 高速シャッタ用計算処理部
95 特性変換制御信号生成部(特性変換制御信号生成手段)
96 合成比率制御信号生成部(画像合成比率制御信号生成手段)
98 低速シャッタ速度制御信号生成部
99 低速用AGC回路制御信号生成部
100 低速シャッタ微調整処理部
101 1CLOCK単位シフトレジスタ
103 高速シャッタ速度制御信号生成部
104 高速用AGC回路制御信号生成部
105 高速シャッタ微調整処理部
107 低速シャッタパルス生成手段
108 高速シャッタパルス生成手段
109 シャッタパルス切換回路
110 H周期(水平同期期間H)単位のシャッタパルス生成部
111 数十CLOCK周期単位のシャッタパルス生成部
112 OR回路
113 エリア選択抽出手段
114 画像信号出力手段(第2実施形態)
116 CDS回路
117 画像信号処理回路
118 制御回路
119 走査パルス生成回路
120 エリア選択手段
121 撮像素子駆動回路
123 画素
124 CCDセンサの垂直転送部
125 CMOSセンサの画像信号読出しライン
127 垂直位置選択回路
128 水平位置選択回路
129 垂直方向プリセット端子
130 水平方向プリセット端子
132 垂直シフトレジスタ
133 水平シフトレジスタ
135 空
136 車
137 道路
138 道路上の白線

Claims (14)

  1. 第1の露光時間で撮像した第1の画像および前記第1の露光時間よりも短い第2の露光時間で撮像した第2の画像を交互に得るCMOSセンサと、
    前記CMOSセンサから出力する前記第1の画像および前記第2の画像の垂直方向範囲を選択する垂直位置選択回路と、
    前記CMOSセンサから出力する前記第1の画像および前記第2の画像の水平方向範囲を選択する水平位置選択回路と、
    前記CMOSセンサから出力された前記第1の画像および前記第2の画像の選択された範囲をそれぞれ複数のエリアに分割し、それぞれのエリアの輝度情報を検出する輝度情報検出処理手段と、
    前記CMOSセンサの前記第1の露光時間および第2の露光時間をそれぞれ調整する制御手段と、
    前記CMOSセンサから出力された前記第1の画像および第2の画像の選択された範囲について、それぞれ特性変換処理を行う特性変換処理手段と、
    前記特性変換処理手段から得られる特性変換処理後の前記第1の画像および第2の画像の選択された範囲を加算する合成手段とを具備し、
    前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定するとともに、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を前記第1の露光時間の決定とは独立に決定することを特徴とする撮像装置。
  2. 前記輝度情報検出処理手段は、前記第1の画像および前記第2の画像について分割したエリア単位に輝度を積算し、前記分割したエリア毎の輝度の平均値を検出するように構成されることを特徴とする請求項1記載の撮像装置。
  3. 前記輝度情報検出処理手段は、前記第1の画像および前記第2の画像について分割したエリアの輝度ピーク値を前記分割したエリア毎に検出するように構成されることを特徴とする請求項1記載の撮像装置。
  4. 前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定する際、前記第1の画像の複数のエリアのうち輝度不飽和状態にあるエリアの輝度情報に基づいて第1の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  5. 前記制御手段は、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を決定する際、前記第2の画像の複数のエリアのうち輝度飽和状態にあるエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  6. 前記制御手段は、前記第1の画像の複数のエリアの輝度情報から前記第1の露光時間を決定する際、前記第1の画像の複数のエリアのうち輝度不飽和状態にあるエリアの輝度情報に基づいて第1の露光時間を決定する一方、前記第2の画像の複数のエリアの輝度情報から前記第2の露光時間を決定する際、前記第2の画像の複数のエリアのうち輝度飽和状態にあるエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  7. 前記制御手段は、前記第1の画像を分割して得られる複数のエリアのうち所定の閾値以下の輝度を持つエリアの輝度情報に基づいて第1の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  8. 前記制御手段は、前記第2の画像を分割して得られる複数の分割したエリアのうち所定の閾値以上の輝度を持つエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  9. 前記制御手段は、前記第1の画像を分割して得られる複数のエリアのうち所定の閾値以下の輝度を持つエリアの輝度情報に基づいて第1の露光時間を決定する一方、前記第2の画像を分割して得られる複数の分割したエリアのうち所定の閾値以上の輝度を持つエリアの輝度情報に基づいて第2の露光時間を決定するように構成されることを特徴とする請求項1記載の撮像装置。
  10. 前記制御手段は、前記第1の露光時間および前記第2の露光時間を決める電子シャッタの最終発生タイミングをタイミングジェネレータの1CLOCK単位での時間的移動を行うように構成されることを特徴とする請求項1記載の撮像装置。
  11. 前記輝度情報検出処理手段は、前記第1の画像を分割して得られる複数のエリアおよび前記第2の画像を分割して得られる複数のエリアのうち所定のエリアを選択抽出するエリア選択抽出手段を備えることを特徴とする請求項1記載の撮像装置。
  12. 前記撮像手段は、移動体に設置されることを特徴とする請求項1記載の撮像装置。
  13. 前記移動体の周囲に存在する障害物を検知する際に、前記合成画像を用いることを特徴とする請求項12記載の撮像装置。
  14. 前記移動体は、自動二輪車、自動車および列車等の移動車両、航空機又は船舶のいずれかであることを特徴とする請求項12記載の撮像装置。
JP2002048433A 2002-02-25 2002-02-25 撮像装置 Expired - Fee Related JP4154157B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002048433A JP4154157B2 (ja) 2002-02-25 2002-02-25 撮像装置
DE60308242T DE60308242T2 (de) 2002-02-25 2003-02-24 Bildaufnahmevorrichtung
EP03251097A EP1339227B1 (en) 2002-02-25 2003-02-24 Image pickup apparatus
US10/372,656 US20040165091A1 (en) 2002-02-25 2003-02-25 Image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048433A JP4154157B2 (ja) 2002-02-25 2002-02-25 撮像装置

Publications (2)

Publication Number Publication Date
JP2003250094A JP2003250094A (ja) 2003-09-05
JP4154157B2 true JP4154157B2 (ja) 2008-09-24

Family

ID=27655442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048433A Expired - Fee Related JP4154157B2 (ja) 2002-02-25 2002-02-25 撮像装置

Country Status (4)

Country Link
US (1) US20040165091A1 (ja)
EP (1) EP1339227B1 (ja)
JP (1) JP4154157B2 (ja)
DE (1) DE60308242T2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949903B2 (ja) * 2001-04-09 2007-07-25 東芝エルエスアイシステムサポート株式会社 撮像装置及び撮像信号処理方法
TWI224463B (en) * 2003-05-22 2004-11-21 Benq Corp Calibration method and scan device for transmitted scan
JP4720130B2 (ja) * 2003-09-09 2011-07-13 コニカミノルタホールディングス株式会社 撮像装置
EP1699231A1 (en) * 2003-12-25 2006-09-06 Niles Co., Ltd. Imaging system
KR100555755B1 (ko) * 2004-05-04 2006-03-03 삼성전자주식회사 휘도 히스토그램을 이용한 영상 자동 보정 장치
US7583305B2 (en) * 2004-07-07 2009-09-01 Eastman Kodak Company Extended dynamic range imaging system
JP2006222935A (ja) * 2005-01-13 2006-08-24 Canon Inc 電子スチルカメラ及び撮像方法及びプログラム及び記憶媒体
US7920175B2 (en) 2005-01-13 2011-04-05 Canon Kabushiki Kaisha Electronic still camera performing composition of images and image capturing method therefor
US7616256B2 (en) * 2005-03-21 2009-11-10 Dolby Laboratories Licensing Corporation Multiple exposure methods and apparatus for electronic cameras
CA2511220C (en) * 2005-03-21 2012-08-14 Sunnybrook Technologies Inc. Multiple exposure methods and apparatus for electronic cameras
JP4855704B2 (ja) * 2005-03-31 2012-01-18 株式会社東芝 固体撮像装置
US20070127909A1 (en) * 2005-08-25 2007-06-07 Craig Mowry System and apparatus for increasing quality and efficiency of film capture and methods of use thereof
JP4424292B2 (ja) * 2005-09-28 2010-03-03 ソニー株式会社 撮像装置、露出制御方法およびプログラム
JP4693602B2 (ja) * 2005-11-07 2011-06-01 株式会社東芝 撮像装置、及び画像用信号処理方法
JP2008009906A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 固体撮像装置及び撮像システム
US8242426B2 (en) 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
JP2008219523A (ja) * 2007-03-05 2008-09-18 Canon Inc 撮像装置及びその制御方法
KR20080095084A (ko) * 2007-04-23 2008-10-28 삼성전자주식회사 영상 잡음 제거 장치 및 방법
DE102007045448A1 (de) 2007-09-24 2009-04-02 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
JP5041985B2 (ja) * 2007-11-26 2012-10-03 本田技研工業株式会社 車載撮像装置
JP5094607B2 (ja) * 2008-07-16 2012-12-12 キヤノン株式会社 撮像装置、その制御方法及びプログラム
US8346008B2 (en) * 2009-06-09 2013-01-01 Aptina Imaging Corporation Systems and methods for noise reduction in high dynamic range imaging
DE102010024415B4 (de) 2010-06-19 2021-09-16 Volkswagen Ag Verfahren und Vorrichtung zur Aufnahme einer Bilderfolge einer Umgebung eines Fahrzeugs
EP3588939B1 (en) * 2010-10-31 2023-10-18 Mobileye Vision Technologies Ltd. Bundling night vision and other driver assistance systems (das) using near infra red (nir) illumination and a rolling shutter
JP5936323B2 (ja) * 2011-09-26 2016-06-22 キヤノン株式会社 画像記録装置およびその制御方法
JP5860298B2 (ja) * 2012-02-07 2016-02-16 日本放送協会 画像処理装置及びプログラム
WO2014200495A1 (en) * 2013-06-13 2014-12-18 Hewlett-Packard Development Company, L. P. Establish image pipeline
US9407832B2 (en) * 2014-04-25 2016-08-02 Himax Imaging Limited Multi-exposure imaging system and method for eliminating rolling shutter flicker
JP2016220056A (ja) 2015-05-21 2016-12-22 株式会社デンソー 画像生成装置
JP6674317B2 (ja) * 2016-05-13 2020-04-01 株式会社日立国際電気 テレビジョンカメラ
US11190462B2 (en) 2017-02-12 2021-11-30 Mellanox Technologies, Ltd. Direct packet placement
US11252464B2 (en) * 2017-06-14 2022-02-15 Mellanox Technologies, Ltd. Regrouping of video data in host memory
JP6717333B2 (ja) * 2018-03-23 2020-07-01 株式会社デンソー 露出制御装置
US20190320102A1 (en) * 2018-04-13 2019-10-17 Qualcomm Incorporated Power reduction for dual camera synchronization
KR102441628B1 (ko) 2018-10-01 2022-09-08 테크 아이디어 컴퍼니 리미티드 이미지 센서

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638118A (en) * 1987-06-09 1997-06-10 Canon Kabushiki Kaisha Image sensing device with diverse storage times used in picture composition
AUPO798697A0 (en) * 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd Data processing method and apparatus (ART51)
US6285398B1 (en) * 1997-11-17 2001-09-04 Sony Corporation Charge-coupled device video camera with raw data format output and software implemented camera signal processing
NZ332626A (en) * 1997-11-21 2000-04-28 Matsushita Electric Ind Co Ltd Expansion of dynamic range for video camera
JP4058789B2 (ja) * 1998-02-24 2008-03-12 ソニー株式会社 固体撮像装置及びその駆動方法、並びにカメラ
US6584235B1 (en) * 1998-04-23 2003-06-24 Micron Technology, Inc. Wide dynamic range fusion using memory look-up
JP4282113B2 (ja) * 1998-07-24 2009-06-17 オリンパス株式会社 撮像装置および撮像方法、並びに、撮像プログラムを記録した記録媒体
JP3443341B2 (ja) * 1998-10-19 2003-09-02 三洋電機株式会社 ディジタルカメラ
US7084905B1 (en) * 2000-02-23 2006-08-01 The Trustees Of Columbia University In The City Of New York Method and apparatus for obtaining high dynamic range images
JP3615454B2 (ja) * 2000-03-27 2005-02-02 三洋電機株式会社 ディジタルカメラ
US6765619B1 (en) * 2000-04-04 2004-07-20 Pixim, Inc. Method and apparatus for optimizing exposure time in image acquisitions
US20010040632A1 (en) * 2000-05-09 2001-11-15 Yang David Xiao Dong Multiple sampling via a time-indexed method to achieve wide dynamic ranges
JP4403635B2 (ja) * 2000-05-31 2010-01-27 パナソニック株式会社 ダイナミックレンジ拡大カメラ
US6958778B2 (en) * 2000-11-21 2005-10-25 Hitachi Kokusai Electric Inc. Iris control method and apparatus for television camera for controlling iris of lens according to video signal, and television camera using the same
JP3724374B2 (ja) * 2001-01-15 2005-12-07 ソニー株式会社 固体撮像装置及びその駆動方法
JP4511066B2 (ja) * 2001-03-12 2010-07-28 オリンパス株式会社 撮像装置
EP1371223A1 (en) * 2001-03-16 2003-12-17 Personal Robotics Inc. System and method to increase effective dynamic range of image sensors
JP3949903B2 (ja) * 2001-04-09 2007-07-25 東芝エルエスアイシステムサポート株式会社 撮像装置及び撮像信号処理方法
US20030103158A1 (en) * 2001-12-05 2003-06-05 Creo Il. Ltd. System and method for the formation of multiple exposure images

Also Published As

Publication number Publication date
EP1339227A2 (en) 2003-08-27
EP1339227A3 (en) 2004-03-10
JP2003250094A (ja) 2003-09-05
DE60308242T2 (de) 2007-08-30
US20040165091A1 (en) 2004-08-26
EP1339227B1 (en) 2006-09-13
DE60308242D1 (de) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4154157B2 (ja) 撮像装置
US10847556B2 (en) Solid-state imaging apparatus and imaging apparatus
JP3949903B2 (ja) 撮像装置及び撮像信号処理方法
US8154619B2 (en) Imaging apparatus, imaging processing method, and imaging control program
JP4424402B2 (ja) 撮像装置、撮像制御方法、撮像制御プログラム
KR100886311B1 (ko) 스미어 제거 기능을 포함한 디지털 카메라
JP2007180811A (ja) 映像信号処理方法および映像信号処理装置
JP2006333229A (ja) 撮像装置、カメラ及び撮像方法
JP2003319250A (ja) 撮像装置および撮像方法
WO2019187901A1 (ja) 撮像装置、撮像方法、およびプログラム
JP5037078B2 (ja) 固体撮像素子およびその駆動方法
JP7204480B2 (ja) 撮像装置、撮像システム、移動体及び撮像装置の制御方法
JP3384818B2 (ja) カメラおよびその予備測光方法ならびに予備測光装置および方法
JP2002314885A (ja) 撮像装置
JPH10173988A (ja) 電子スチルカメラ
JP2007251905A (ja) 撮像装置
JP2005286819A (ja) 撮像装置及びプログラム
JP2007251904A (ja) 撮像装置
JP5485680B2 (ja) 撮像装置および撮像方法
JP3852821B2 (ja) 固体撮像装置
JP2006237789A (ja) 撮像装置
JP4089676B2 (ja) 撮像装置
JP2521986B2 (ja) 撮像装置
JP2000078480A (ja) 撮像装置及び撮像方法
JP2003163831A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees