JP4144294B2 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP4144294B2
JP4144294B2 JP2002247200A JP2002247200A JP4144294B2 JP 4144294 B2 JP4144294 B2 JP 4144294B2 JP 2002247200 A JP2002247200 A JP 2002247200A JP 2002247200 A JP2002247200 A JP 2002247200A JP 4144294 B2 JP4144294 B2 JP 4144294B2
Authority
JP
Japan
Prior art keywords
main switch
switch element
period
voltage
conduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002247200A
Other languages
English (en)
Other versions
JP2004135362A (ja
Inventor
淳 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002247200A priority Critical patent/JP4144294B2/ja
Publication of JP2004135362A publication Critical patent/JP2004135362A/ja
Application granted granted Critical
Publication of JP4144294B2 publication Critical patent/JP4144294B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メインスイッチ素子を間接制御するタイプのスイッチング電源装置に関するものである。
【0002】
【背景技術】
スイッチング電源装置の一回路構成例が図5に示されている。スイッチング電源装置1はトランス2を有し、このトランス2の一次コイルN1にはメインスイッチ素子(例えばMOS−FET)Qが接続されている。また、トランス2の二次コイルN2には二次側出力回路3が接続されている。二次側出力回路3は、メインスイッチ素子Qのスイッチング動作に基づいて二次コイルN2から出力される電圧を整流平滑し当該整流平滑した直流電圧を出力電圧Voutとして外部の負荷4に出力する回路であり、整流側整流素子である整流側ダイオード5と、転流側整流素子である転流側ダイオード6と、チョークコイル7と、平滑コンデンサ8とを有して構成されている。
【0003】
さらに、トランス2には一次コイルN1に磁気結合する三次コイルN3が設けられており、三次コイルN3には出力電圧検出回路10が接続されている。出力電圧検出回路10は二次側出力回路3と同様な回路構成を有しており、整流側整流素子である整流側ダイオード11と、転流側整流素子である転流側ダイオード12と、チョークコイル13と、平滑コンデンサ14と、分圧抵抗体15,16とを有して構成されている。この出力電圧検出回路10は三次コイルN3から出力された電圧を整流平滑し、該整流平滑電圧を分圧抵抗体15,16により分圧した電圧を出力電圧Voutの検出電圧Vdとして出力する。
【0004】
メインスイッチ素子Qには制御回路18が接続されている。制御回路18は、誤差増幅器20と、コンパレータ21と、基準電圧源22と、三角波発振回路23とを有して構成されており、出力電圧Voutを設定電圧Vspに安定化するために、出力電圧検出回路10から出力された検出電圧Vdを利用してメインスイッチ素子Qのスイッチング制御を行う。
【0005】
このようなスイッチング電源装置1では、制御回路18の制御動作によりメインスイッチ素子Qがスイッチオンすると、一次コイルN1に接続された入力電源9から入力電圧Vinがトランス2に供給され、二次側出力回路3には図5の実線Ionに示されるような経路でもって電流が通電する。これにより、二次側出力回路3では、整流側ダイオード5により二次コイルN2の出力電圧が整流され当該整流された電圧が平滑コンデンサ8により平滑され出力電圧Voutとして負荷4に出力される。また、このメインスイッチ素子Qのオン期間中には、二次コイルN2の出力電圧に基づいた電流の通電によって、チョークコイル7には電磁エネルギーが蓄積される。
【0006】
制御回路18の制御動作によりメインスイッチ素子Qがスイッチオフすると、二次側出力回路3には、チョークコイル7に蓄積されたエネルギーに基づいて図5の点線Ioffに示されるような経路でもって電流が通電し、転流側ダイオード6により整流された電圧が平滑コンデンサ8に供給され平滑されて当該整流平滑電圧が出力電圧Voutとして負荷4に出力される。
【0007】
一方、出力電圧検出回路10は二次側出力回路3と同様に動作するものであり、メインスイッチ素子Qのオン期間中には、出力電圧検出回路10には、三次コイルN3の出力電圧に基づいた図5の実線ionに示されるような経路の電流が通電し、整流側ダイオード11により整流された三次コイルN3の出力電圧が平滑コンデンサ14により平滑される。出力電圧検出回路10では、その平滑コンデンサ14による平滑電圧が分圧抵抗体15,16により分圧されて出力電圧Voutの検出電圧Vdとして出力される。
【0008】
また、メインスイッチ素子Qのオフ期間中に、出力電圧検出回路10には、チョークコイル13の蓄積エネルギーに基づいた図5の点線ioffに示されるような経路の電流が通電し、転流側ダイオード12により整流された電圧が平滑コンデンサ14により平滑される。そして、平滑コンデンサ14による平滑電圧が分圧抵抗体15,16により分圧され当該分圧電圧が検出電圧Vdとして出力電圧検出回路10から出力される。
【0009】
制御回路18は、出力電圧検出回路10から出力された検出電圧Vdに基づいて、出力電圧Voutが設定電圧Vspよりも低いことを検知したときには、出力電圧Voutを上昇させて設定電圧Vspとするためにメインスイッチ素子Qのスイッチオン期間を長くする方向に制御する。つまり、メインスイッチ素子Qのスイッチング動作の予め定められた1周期Tに対するスイッチオン期間tonの割合(ton/T)である時比率(デューティ比)を大きくする方向に制御する。これにより、入力電源9からトランス2に供給されるエネルギーが増加して、出力電圧Voutが高くなる方向に可変し、設定電圧Vspに対する出力電圧Voutの低下分が補償される。
【0010】
また反対に、制御回路18は、出力電圧検出回路10の検出電圧Vdに基づいて、出力電圧Voutが設定電圧Vspよりも高いことを検知したときには、出力電圧Voutを降下させて設定電圧Vspとするためにメインスイッチ素子Qのスイッチオン期間を短くする方向に(時比率を小さくする方向)に制御する。これにより、入力電源9からトランス2への供給エネルギーが減少し、出力電圧Voutが低くなる方向に可変し、設定電圧Vspに対する出力電圧Voutの上昇分が補正される。
【0011】
このように、制御回路18によるメインスイッチ素子Qのスイッチング制御により、スイッチング電源装置1から出力される電圧Voutの安定化が図られている。
【0012】
【発明が解決しようとする課題】
ところで、二次コイルN2に誘起される電圧よりも三次コイルN3に誘起される電圧が低くなるように設計される場合が多い。二次側出力回路3のダイオード5,6は二次コイルN2に誘起される電圧に対応する素子が採用され、また、出力電圧検出回路10のダイオード11,12は三次コイルN3に誘起される電圧に対応する素子が採用されるので、二次コイルN2の誘起電圧と三次コイルN3の誘起電圧とが異なると、必然的に、二次側出力回路3のダイオード5,6と、出力電圧検出回路10のダイオード11,12とは、それぞれ、耐電圧や順方向電圧や逆方向電流などの特性が異なる素子により構成されることになる。この二次側出力回路3側と出力電圧検出回路10側との整流素子(ダイオード)の特性の違いのために、例えば、複数のスイッチング電源装置1が何れも同じ回路であるのにも拘わらず、入力電圧Vinの異なる入力電源9がそれぞれ接続されてしまうと、各々のスイッチング電源装置1から出力される出力電圧Voutが異なってしまうという問題が生じる。
【0013】
すなわち、スイッチング電源装置1から出力される出力電圧Voutは、図6の実線Sに示されるように、スイッチング電源装置1に接続される入力電源9の入力電圧Vinによらずに一定であることが望ましい。しかしながら、整流素子であるダイオード5,6とダイオード11,12との特性の違いのために、出力電圧Voutが同じであるのに、入力電圧Vinの差違により出力電圧検出回路10から出力される検出電圧Vdが異なってしまい、これに起因して、図6の点線aに示されるように入力電圧Vinが大きくなるにつれて出力電圧Voutが高くなる事態が生じたり、図6の鎖線bに示されるように入力電圧Vinが大きくなるに従って出力電圧Voutが低くなる事態が発生してしまう。つまり、スイッチング電源装置1から出力される電圧Voutが、接続される入力電源9の入力電圧Vinに応じて異なってしまうという問題が生じる。
【0014】
本発明は上記課題を解決するために成されたものであり、その目的は、回路構成の煩雑化を防止しながら、入力電圧Vinの差違によらずに出力電圧Voutを一定にすることができるスイッチング電源装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、この発明は次に示す構成をもって前記課題を解決するための手段としている。すなわち、この発明は、トランスの一次コイル側に設けられたメインスイッチ素子のスイッチング動作によって、トランスの二次コイルから出力される電圧を整流平滑して外部に出力する構成を備えると共に、トランスの三次コイルから出力される電圧を整流平滑し当該整流平滑電圧に基づいた電圧を前記外部への出力電圧の検出電圧として間接的に検出出力する出力電圧検出回路と、前記外部への出力電圧を安定化するために出力電圧検出回路による検出電圧を利用してメインスイッチ素子のスイッチング制御を行う制御回路とが設けられているスイッチング電源装置において、出力電圧検出回路は、メインスイッチ素子のオン期間に整流動作を行う整流側整流素子と、メインスイッチ素子のオフ期間に整流動作を行う転流側整流素子と、整流側整流素子を通るメインスイッチ素子のオン期間専用の電流導通経路部分と、転流側整流素子を通るメインスイッチ素子のオフ期間専用の電流導通経路部分とを有し、そのメインスイッチ素子のオン期間専用の電流導通経路部分と、メインスイッチ素子のオフ期間専用の電流導通経路部分とのうちの少なくとも一方には抵抗体が直列的に介設されており、メインスイッチ素子のオン期間に該メインスイッチ素子のオン期間専用の電流導通経路部分を流れる電流と、メインスイッチ素子のオフ期間に該メインスイッチ素子のオフ期間専用の電流導通経路部分を流れる電流との比が、一次コイルに入力する入力電圧の差違に拘わらず外部への出力電圧をほぼ一定にする比率となるように前記抵抗体の抵抗値が設定されていることを特徴としている。
【0016】
【発明の実施の形態】
以下に、この発明に係る実施形態例を図面に基づいて説明する。なお、以下に述べる各実施形態例の説明において、図5に示すスイッチング電源装置と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。
【0017】
第1実施形態例のスイッチング電源装置1は、図5に示す回路構成に加えて、次に示すような構成が設けられている。すなわち、図5に示す回路を設計して、二次側出力回路3と出力電圧検出回路10の各々の整流素子として使用される各ダイオード5,6,11,12が決定すると、その設計したスイッチング電源装置1が、図6の点線aに示すような出力電圧Voutと入力電圧Vinとの関係を持つのか、あるいは、鎖線bに示すような出力電圧Voutと入力電圧Vinとの関係を持つのかが分かる。第1実施形態例では、入力電圧Vinが高くなるに従って出力電圧Voutが高くなる場合(点線aの場合)には、出力電圧検出回路10に図1(a)に示されるような抵抗体R1を設ける。この抵抗体R1は、メインスイッチ素子Qがオンしている期間だけに電流が通電するメインスイッチ素子Qのオン期間専用の電流導通経路部分(図1(a)のX部分から整流側ダイオード11と三次コイルN3を通りY部分に至るまでの電流導通経路部分)に直列的に介設されている。
【0018】
また、入力電圧Vinが高くなるに従って出力電圧Voutが低くなる場合(図6の鎖線bの場合)には、出力電圧検出回路10に図2(a)に示されるような抵抗体R2を設ける。この抵抗体R2は、メインスイッチ素子Qがオフしている期間だけに電流が通電するメインスイッチ素子Qのオフ期間専用の電流導通経路部分(つまり、前記X部分から転流側ダイオード12を通りY部分に至る電流導通経路部分)に直列的に介設されている。
【0019】
通常、出力電圧検出回路10の整流側ダイオード11と転流側ダイオード12にはそれぞれ同じ特性のダイオードが用いられており、図5の回路構成では、メインスイッチ素子Qのオン期間に当該メインスイッチ素子Qのオン期間専用の電流導通経路部分に流れる電流ionに対するメインスイッチ素子Qのオフ期間に当該メインスイッチ素子Qのオフ期間専用の電流導通経路部分に流れる電流ioffとの電流比(ioff/ion)はほぼ1である。これに対して、抵抗体R1を設けると、抵抗体R1を設けない場合に比べて、抵抗体R1による損失が発生する分、前記電流ionは減少し、これにより、当該電流ionは、前記電流ioffよりも少なくなる。よって、抵抗体R1を設けることにより、前記電流比(ioff/ion)は1よりも大きくなる。
【0020】
この場合、電流ionの減少によって、出力電圧検出回路10から出力される検出電圧Vdは、図1(b)の二点鎖線L1に示されるように、出力電圧Voutが変化していないのにも拘わらず、入力電圧Vinが高くなるにつれて大きくなる傾向を示そうとする。それというのは、入力電圧Vinが高くなるに従って、制御回路18の制御動作によりメインスイッチ素子Qのオン期間が短くなっていき、電流ionの通電時間が短くなる。このため、電流ionの減少が検出電圧Vdの減少に与える影響が小さくなるので、入力電圧Vinが低い場合よりも入力電圧Vinが高い場合の方が電流ionの減少による検出電圧Vdの降下量が少なくなる。つまり、入力電圧Vinが低い場合よりも入力電圧Vinが高い場合の方が検出電圧Vdが高くなるので、入力電圧Vinの差違に対する検出電圧Vdの変化傾向は二点鎖線L1に示すようになる。
【0021】
このように、電流ionの減少によって出力電圧検出回路10の検出電圧Vdは入力電圧Vinが高くなるにつれて大きくなる傾向を示そうとするが、実際には、二次側出力回路3のダイオード5,6と、出力電圧検出回路10のダイオード11,12との特性の違いに起因した図1(b)の点線a’に示すような出力電圧検出回路10の検出電圧Vdと入力電圧Vinとの関係があることから、このダイオード5,6,11,12の特性に起因した入力電圧Vinの差違に対する検出電圧Vdの変化傾向(点線a’)と、前記電流ionの減少に起因した入力電圧Vinの差違に対する検出電圧Vdの変化傾向(二点鎖線L1)とを相殺させることにより、出力電圧Voutが同じであるならば、図1(b)の実線dのように入力電圧Vinの差違によらずに出力電圧検出回路10の検出電圧Vdを一定にすることができる。
【0022】
このことから、第1実施形態例では、抵抗体R1に起因した電流ionの減少による入力電圧Vinの差違に対する検出電圧Vdの変化傾向によって、ダイオード5,6,11,12の特性に起因した入力電圧Vinの差違に応じた検出電圧Vdの変化傾向を打ち消すことができるように、抵抗体R1の抵抗値が調整されている。つまり、抵抗体R1の抵抗値は、電流比(ioff/ion)が、入力電圧Vinの差違に拘わらず出力電圧Voutをほぼ一定にする比率となるように設定される。
【0023】
これにより、同じ回路を持つ複数のスイッチング電源装置1に、それぞれ、入力電圧Vinの異なる入力電源9が接続されても、各スイッチング電源装置1から設定電圧Vspを持つ出力電圧Voutを出力させることが可能となる。
【0024】
図2(a)に示すように抵抗体R2を設けた場合には、抵抗体R2による損失が発生する分、メインスイッチ素子Qのオフ期間中にメインスイッチ素子Qのオフ期間専用の電流導通経路部分を流れる電流ioffが減少する。これにより、当該電流ioffは、前記電流ionよりも少なくなる。よって、抵抗体R2を設けることにより、前記電流比(ioff/ion)は1よりも小さくなる。
【0025】
この場合、電流ioffの減少によって、出力電圧検出回路10から出力される検出電圧Vdは、出力電圧Voutが変化していないのにも拘わらず、図2(b)の二点鎖線L2に示されるように、入力電圧Vinが高くなるにつれて少なくなる傾向を示そうとする。それというのは、入力電圧Vinが高くなるに従って、制御回路18の制御動作によりメインスイッチ素子Qのオフ期間が長くなり、電流ioffの通電時間が増加する結果、電流ioffの減少が検出電圧Vdの減少に与える影響が大きくなるからである。
【0026】
このように、電流ioffの減少によって出力電圧検出回路10の検出電圧Vdは入力電圧Vinが高くなるにつれて少なくなる傾向を示そうとするが、実際には、二次側出力回路3のダイオード5,6と、出力電圧検出回路10のダイオード11,12との特性の違いに起因した図2(b)の鎖線b’に示すような出力電圧検出回路10の検出電圧Vdと入力電圧Vinとの関係があることから、このダイオード5,6,11,12の特性に起因した入力電圧Vinに応じた検出電圧Vdの変化傾向(一点鎖線b’)と、前記電流ioffの減少による入力電圧Vinに応じた検出電圧Vdの変化傾向(二点鎖線L2)とを相殺させることにより、出力電圧Voutが同じであるならば、図2(b)の実線dのように入力電圧Vinの差違によらずに出力電圧検出回路10の検出電圧Vdを一定にすることができる。
【0027】
このことから、第1実施形態例では、抵抗体R2に起因した電流ioffの減少による入力電圧Vinに応じた検出電圧Vdの変化傾向によって、ダイオード5,6,11,12の特性に起因した入力電圧Vinに応じた検出電圧Vdの変化傾向を打ち消すことができるように、抵抗体R2の抵抗値が調整されている。つまり、抵抗体R2の抵抗値は、前記電流比(ioff/ion)が入力電圧Vinの差違に拘わらず出力電圧Voutをほぼ一定にする比率となるように設定されている。
【0028】
なお、この第1実施形態例では、抵抗体R1を設ける場合には、抵抗体R1は、整流側ダイオード11と三次コイルN3との間の電流導通経路部分に介設されていたが、抵抗体R1は、メインスイッチ素子Qのオン期間専用の電流導通経路部分であれば、介設位置が限定されるものではなく、例えば、前記X部分と整流側ダイオード11間の電流導通経路部分に抵抗体R1を介設してもよい。
【0029】
また同様に、抵抗体R2に関しても同様であり、メインスイッチ素子Qのオフ期間専用の電流導通経路部分であれば、介設位置が限定されるものではなく、例えば、前記X部分と転流側ダイオード12間の電流導通経路部分に抵抗体R2を直列的に介設してもよい。
【0030】
さらに、この第1実施形態例では、抵抗体R1,R2のうちの一方側のみを設ける構成であったが、抵抗体R1,R2の両方をそれぞれ上記同様な位置に設けてもよい。この場合には、前記電流比(ioff/ion)が、一次コイルN1に入力する入力電圧Vinの差違に拘わらず出力電圧Voutをほぼ一定にする比率となるように、抵抗体R1の抵抗値と抵抗体R2の抵抗値との比が設定される。
【0031】
さらに、抵抗体R1や抵抗体R2を可変抵抗体により構成してもよい。この場合には、前記電流比(ioff/ion)が、入力電圧Vinの差違に拘わらず出力電圧Voutをほぼ一定にする比率となるように、その可変抵抗体である抵抗体R1や抵抗体R2の抵抗値が調整された後に固定されて使用されることとなる。
【0032】
以下に、第2実施形態例を説明する。この第2実施形態例では、第1実施形態例に示した抵抗体R1,R2を設けない構成として、次に示すような構成を有する。すなわち、通常、整流側ダイオード11と転流側ダイオード12は、同じダイオードを用いているが、第2実施形態例では、整流側ダイオード11と転流側ダイオード12が、それぞれ、寄生抵抗値の異なるダイオードにより構成されている。これにより、メインスイッチ素子Qのオン期間中に当該メインスイッチ素子Qのオン期間専用の電流導通経路部分に流れる電流ionと、メインスイッチ素子Qのオフ期間中に当該メインスイッチ素子Qのオフ期間専用の電流導通経路部分に流れる電流ioffとが異なり、これら電流ionと電流ioffの比(ioff/ion)は1以外の値となる。
【0033】
第1実施形態例でも述べたように、電流比(ioff/ion)を調整することで、入力電圧Vinの差違に拘わらず出力電圧検出回路10の検出電圧Vdを一定にすることができる。これにより、入力電圧Vinの差違によらずにスイッチング電源装置1の出力電圧Voutを一定にすることができる。このことを考慮して、第2実施形態例では、整流側ダイオード11と転流側ダイオード12の各々の寄生抵抗値を調整することで前記電流比(ioff/ion)を調整している。つまり、整流側ダイオード11の寄生抵抗値と転流側ダイオード12の寄生抵抗値との比は、前記電流比(ioff/ion)が入力電圧Vinの差違に拘わらずスイッチング電源装置1の出力電圧Voutが一定になる比率となるための比に設定される。
【0034】
なお、この発明は第1や第2の各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、第1や第2の各実施形態例では、出力電圧検出回路10は、一次コイルN1に磁気結合した三次コイルN3を利用して、出力電圧Voutの検出電圧Vdを検出出力する構成であったが、例えば、図3に示されるように、二次コイルN2に磁気結合した三次コイルN3を設け、この三次コイルN3を利用して出力電圧Voutの検出電圧Vdを検出出力する出力電圧検出回路10を設けてもよい。この場合には、出力電圧検出回路10の検出電圧Vdを制御回路18に供給するために、出力電圧検出回路10から制御回路18への検出電圧Vdの供給経路上にはフォトカプラ25が介設されることとなる。
【0035】
このような二次コイルN2に磁気結合した三次コイルN3を利用した出力電圧検出回路10が設けられる場合においても、第1実施形態例の如く抵抗体R1,R2の少なくとも一方を設けたり、整流側ダイオード11と転流側ダイオード12の寄生抵抗値を異なるものとしたりして、電流ion,ioffを調整することにより、前記電流比(ioff/ion)が入力電圧Vinの差違に拘わらずスイッチング電源装置1の出力電圧Voutが一定になる比率とすることができる。
【0036】
さらに、第1実施形態例では、抵抗体R1,R2の少なくとも一方を設け当該抵抗体R1,R2の抵抗値を調整することで、また、第2実施形態例では、整流側ダイオード11と転流側ダイオード12の寄生抵抗値を調整することで、前記電流比(ioff/ion)を調整して、入力電圧Vinの差違に拘わらずスイッチング電源装置1の出力電圧Voutを一定にしていたが、第1実施形態例の構成と第2実施形態例の構成とを組み合わせてもよい。例えば、抵抗体R1,R2の少なくとも一方を設ける構成とし、前記電流比(ioff/ion)が入力電圧Vinの差違に拘わらずスイッチング電源装置1の出力電圧Voutが一定になる比率となるように、組み込んだ抵抗体R1あるいはR2の抵抗値を考慮して、メインスイッチ素子Qのオン期間専用の電流導通経路部分における整流側ダイオード11の寄生抵抗値を含むトータルの抵抗値と、メインスイッチ素子Qのオフ期間専用の電流導通経路部分における転流側ダイオード12の寄生抵抗値を含むトータルの抵抗値との比を設定する。
【0037】
さらに、第1や第2の各実施形態例では、整流素子として、ダイオード5,6,11,12が設けられたが、それら整流素子であるダイオード5,6,11,12のうちの1つ以上を例えば図4に示されるようなMOS−FET等の同期整流器26,27により構成してもよい。
【0038】
さらに、第1や第2の各実施形態例では、フォワードコンバータタイプのスイッチング電源装置1を例にして説明したが、この発明は、フライバックコンバータタイプのスイッチング電源装置1にも適用することができるものである。また、第1や第2の各実施形態例のスイッチング電源装置1では、DC−DC変換の例を示したが、この発明は、AC−DC変換タイプのスイッチング電源装置1にも適用することができる。
【0039】
【発明の効果】
この発明によれば、メインスイッチ素子のオン期間専用の電流導通経路部分と、メインスイッチ素子のオン期間専用の電流導通経路部分とのうちの少なくとも一方に抵抗体を設けたり、それら電流導通経路部分に設けられている整流素子の寄生抵抗値を調整することで、メインスイッチ素子のオン期間に当該メインスイッチ素子のオン期間専用の電流導通経路部分を流れる電流と、メインスイッチ素子のオフ期間に当該メインスイッチ素子のオフ期間専用の電流導通経路部分に流れる電流との比を調整して、一次コイルに入力する入力電圧の差違に拘わらず外部への出力電圧をほぼ一定にする構成を備えた。
【0040】
このため、例えば、複数の同じ回路を持つスイッチング電源装置に、それぞれ、入力電圧が異なる入力電源が接続されても、それら各々のスイッチング電源装置から設定電圧値の出力電圧を出力させることができる。これにより、スイッチング電源装置の性能の信頼性を向上させることができる。
【0041】
また、メインスイッチ素子のオン期間専用の電流導通経路部分と、メインスイッチ素子のオン期間専用の電流導通経路部分とのうちの少なくとも一方に抵抗体を設けるだけで、又は、その抵抗体を設けずに出力電圧検出回路の整流側整流素子と転流側整流素子の寄生抵抗値を調整するだけで、上記のような優れた効果を得ることができるので、回路の煩雑化や部品点数の増加を回避でき、また、装置の大型化を防止することができる。
【図面の簡単な説明】
【図1】第1実施形態例の特徴的な構成を備えたスイッチング電源装置の一回路構成例を説明するための図である。
【図2】第1実施形態例の特徴的な構成を備えたスイッチング電源装置の別の回路構成例を説明するための図である。
【図3】本発明に係るスイッチング電源装置のその他の実施形態例を示す回路図である。
【図4】整流素子として同期整流器を用いた例を説明するための回路図である。
【図5】メインスイッチ素子を間接制御するタイプのスイッチング電源装置の一例を示す回路図である。
【図6】従来の課題を説明するための図である。
【符号の説明】
1 スイッチング電源装置
2 トランス
5,11 整流側ダイオード
6,12 転流側ダイオード
10 出力電圧検出回路
18 制御回路
26,27 同期整流器
N1 一次コイル
N2 二次コイル
N3 三次コイル
R1,R2 抵抗体

Claims (3)

  1. トランスの一次コイル側に設けられたメインスイッチ素子のスイッチング動作によって、トランスの二次コイルから出力される電圧を整流平滑して外部に出力する構成を備えると共に、トランスの三次コイルから出力される電圧を整流平滑し当該整流平滑電圧に基づいた電圧を前記外部への出力電圧の検出電圧として間接的に検出出力する出力電圧検出回路と、前記外部への出力電圧を安定化するために出力電圧検出回路による検出電圧を利用してメインスイッチ素子のスイッチング制御を行う制御回路とが設けられているスイッチング電源装置において、出力電圧検出回路は、メインスイッチ素子のオン期間に整流動作を行う整流側整流素子と、メインスイッチ素子のオフ期間に整流動作を行う転流側整流素子と、整流側整流素子を通るメインスイッチ素子のオン期間専用の電流導通経路部分と、転流側整流素子を通るメインスイッチ素子のオフ期間専用の電流導通経路部分とを有し、そのメインスイッチ素子のオン期間専用の電流導通経路部分と、メインスイッチ素子のオフ期間専用の電流導通経路部分とのうちの少なくとも一方には抵抗体が直列的に介設されており、メインスイッチ素子のオン期間に該メインスイッチ素子のオン期間専用の電流導通経路部分を流れる電流と、メインスイッチ素子のオフ期間に該メインスイッチ素子のオフ期間専用の電流導通経路部分を流れる電流との比が、一次コイルに入力する入力電圧の差違に拘わらず外部への出力電圧をほぼ一定にする比率となるように前記抵抗体の抵抗値が設定されていることを特徴とするスイッチング電源装置。
  2. メインスイッチ素子のオン期間専用の電流導通経路部分における整流側整流素子の寄生抵抗値を含むトータルの抵抗値と、メインスイッチ素子のオフ期間専用の電流導通経路部分における転流側整流素子の寄生抵抗値を含むトータルの抵抗値との比が調整されて、メインスイッチ素子のオン期間に該メインスイッチ素子のオン期間専用の電流導通経路部分を流れる電流と、メインスイッチ素子のオフ期間に該メインスイッチ素子のオフ期間専用の電流導通経路部分を流れる電流との比が、一次コイルに入力する入力電圧の差違に拘わらず外部への出力電圧をほぼ一定にする比率に設定されていることを特徴とする請求項1記載のスイッチング電源装置。
  3. メインスイッチ素子のオン期間専用の電流導通経路部分とメインスイッチ素子のオフ期間専用の電流導通経路部分とに抵抗体を設けない構成と成しており、整流側整流素子の寄生抵抗値と転流側整流素子の寄生抵抗値との比が調整されて、メインスイッチ素子のオン期間に該メインスイッチ素子のオン期間専用の電流導通経路部分を流れる電流と、メインスイッチ素子のオフ期間に該メインスイッチ素子のオフ期間専用の電流導通経路部分を流れる電流との比が、一次コイルに入力する入力電圧の差違に拘わらず外部への出力電圧をほぼ一定にする比率に設定されていることを特徴とする請求項1記載のスイッチング電源装置。
JP2002247200A 2002-08-14 2002-08-27 スイッチング電源装置 Expired - Fee Related JP4144294B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247200A JP4144294B2 (ja) 2002-08-14 2002-08-27 スイッチング電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002236580 2002-08-14
JP2002247200A JP4144294B2 (ja) 2002-08-14 2002-08-27 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2004135362A JP2004135362A (ja) 2004-04-30
JP4144294B2 true JP4144294B2 (ja) 2008-09-03

Family

ID=32301048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247200A Expired - Fee Related JP4144294B2 (ja) 2002-08-14 2002-08-27 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP4144294B2 (ja)

Also Published As

Publication number Publication date
JP2004135362A (ja) 2004-04-30

Similar Documents

Publication Publication Date Title
US10158282B1 (en) Switching power supply device
US10355605B1 (en) Adjustable frequency curve for flyback converter at green mode
US9143047B2 (en) Loosely regulated feedback control for high efficiency isolated DC-DC converters
US7453248B2 (en) Switching power supply device
US20100226149A1 (en) Power-supply control device and power-supply apparatus therewith
JP3661666B2 (ja) 絶縁型スイッチング電源装置
US8824170B2 (en) Power factor correct current resonance converter
US6778412B2 (en) Synchronous converter with reverse current protection through variable inductance
JP3337009B2 (ja) スイッチング電源装置
TW201946351A (zh) 電源控制用半導體裝置以及開關電源裝置及其設計方法
JP4229202B1 (ja) 多出力スイッチング電源装置
JP2009273329A (ja) スイッチング電源装置
JP3365356B2 (ja) Dc−dcコンバータ
JP3391320B2 (ja) Dc−dcコンバータ
JP2007028751A (ja) 多出力スイッチング電源装置
JP2004201385A (ja) Dc/dcコンバータ回路
JP5696692B2 (ja) スイッチング電源装置
KR20110138068A (ko) 역률 보상 컨버터 및 그 구동 방법
JP4144294B2 (ja) スイッチング電源装置
JP2003299359A (ja) スイッチング電源装置
JPH11178342A (ja) 電源装置、電子機器、及び降圧型整流平滑回路
JP2008079488A (ja) 直流変換装置
JP4460131B2 (ja) フライバックコンバータ
JP2001095256A (ja) 電源回路
JP5034389B2 (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees