JP4138190B2 - 燃料集合体及び原子炉の炉心 - Google Patents

燃料集合体及び原子炉の炉心 Download PDF

Info

Publication number
JP4138190B2
JP4138190B2 JP35610899A JP35610899A JP4138190B2 JP 4138190 B2 JP4138190 B2 JP 4138190B2 JP 35610899 A JP35610899 A JP 35610899A JP 35610899 A JP35610899 A JP 35610899A JP 4138190 B2 JP4138190 B2 JP 4138190B2
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
gadolinia
rods
fuel rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35610899A
Other languages
English (en)
Other versions
JP2001174580A (ja
Inventor
淳一 小山
亮司 桝見
裕子 原口
勝正 配川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35610899A priority Critical patent/JP4138190B2/ja
Publication of JP2001174580A publication Critical patent/JP2001174580A/ja
Application granted granted Critical
Publication of JP4138190B2 publication Critical patent/JP4138190B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料集合体とそれを装荷した原子炉の炉心に係り、特にウラン235を主な核分裂性物質とする核燃料物質を含む燃料棒を用い、初装荷炉心での長期連続運転を目指した燃料集合体と原子炉の炉心に関する。
【0002】
【従来の技術】
沸騰水型原子炉に装荷される燃料集合体は四角筒型のチャンネルボックスと、チャンネルボックスの内部に収納された燃料バンドルからなり、燃料バンドルは、核分裂性物質を含む燃料ペレットを封入した多数の燃料棒が正方格子状に配列されて構成されている。また、近年の沸騰水型原子炉用燃料集合体では出力分布を平坦にするため、水ロッドなどを用いて燃料集合体中央部に広い減速材領域を設けることが多い。
【0003】
原子炉は、中性子がウラン235などの核分裂性物質に吸収されて核分裂が起こり、その際にエネルギーとともに放出される中性子が次の核分裂を引き起こすという連鎖反応により、エネルギーを出し続けている。この連鎖反応が平衡にある状態を臨界といい、一定の出力で運転される原子炉はこの状態を保ち続けている。核分裂性物質は核分裂反応によって消滅するが、原子炉を一定の期間にわたって燃料の補給なしに運転するため、炉心内には初期の臨界維持に必要な量よりも多い核分裂性物質が装荷されている。このために超過した反応度を余剰反応度といい、運転期間を通じて余剰反応度を適切に制御することは重要である。余剰反応度を制御する技術としては、ガドリニアなどの可燃性毒物を燃料ペレット中に混入するものがよく知られている。
【0004】
近年、原子力プラントの設備利用率を高めるため、連続運転期間を長くすることが望まれている。長期間にわたって連続運転するためには、新しく装荷する燃料集合体のウラン濃縮度を高める必要がある。このため、正方格子状の燃料棒配列は8行8列から9行9列以上にし、1本の燃料棒の熱的負担を軽減する傾向にある。これと同時に長期間にわたって余剰反応度を抑えるために、ガドリニアの濃度を増すのが普通である。ガドリニアの濃度が高いほど、長い期間にわたってガドリニアによる中性子吸収効果が持続し、燃料集合体の反応度が抑えられる。例えば、ウランを主な核分裂性物質とする最近の初装荷炉心では7重量%以上の高濃度ガドリニアが用いられる。
【0005】
しかし、ガドリニアを増やすと、その分ウランの量が減るため、燃料集合体の経済性が悪化する傾向がある。また、ガドリニア入り燃料ペレットはガドリニア濃度の増加に伴って熱伝導率が低下し、燃料温度が高まる傾向がある。そこで、濃度を増加せずに長期間にわたってガドリニアの中性子吸収を持続させる工夫が考案されてきた。
【0006】
特開平9−105792号公報には、その図13に、燃料集合体のコーナーを結ぶ対角線に対して片側にガドリニア入り燃料棒を集中配置した構成が示され、このようにガドリニア入り燃料棒を集中配置することによって、ガドリニア入り燃料棒相互の干渉効果によりガドリニアの燃焼を遅延できることが記載されている。
【0007】
また、特開平7−209460号公報及び特開平7−244184号公報には、3本のガドリニア入り燃料棒をL型に隣接配置したり、5本のガドリニア入り燃料棒を十字型に配置すると、ガドリニア入り燃料棒相互の干渉効果によってガドリニアの燃焼が遅くなり、長期間にわたって反応度抑制できることが記載されている。
【0008】
また、プルトニウムを主な核分裂性物質とする燃料集合体として、MOX燃料と呼ばれるものがあり、このものでも連続運転期間を長くするためにはプルトニウムの富化度を高める必要がある。このMOX燃料に関しては、特開平10−26682号公報にガドリニア入り燃料棒の配置例が記載されている。
【0009】
【発明が解決しようとする課題】
しかし、本発明者らの検討の結果、ウランを主な核分裂性物質とする上記従来技術には次のような問題があることが分かった。
【0010】
特開平9−105792号公報に記載の燃料集合体におけるガドリニア入り燃料棒の配置では、燃焼に伴う中性子増倍率の上昇が遅く、優れたガドリニアの燃焼遅延効果が得られる。しかし、局所出力ピーキングは燃焼初期で1.6程度になり、最大線出力密度の制限値を満足することは困難である。特開平9−105792号公報の記述によると、このような非対称のガドリニア配置は、初装荷炉心内で濃縮度の低い燃料集合体の隣りに置くことを想定したものである。このため隣りに低濃縮度の燃料集合体が置かれない場合は局所出力ピーキングが過大になってしまう。
【0011】
一方、特開平7−209460号公報及び特開平7−244184号公報におけるガドリニア入り燃料棒の配置では、局所出力ピーキングは燃焼初期でも1.4程度であり、熱的余裕は優れている。しかし、特開平9−105792号公報の配置に比べると、ガドリニアの燃焼遅延効果はかなり小さく、改善の余地のあることが分かった。
【0012】
なお、MOX燃料においては、プルトニウムの中性子吸収反応断面積が大きいため、ガドリニアによる中性子吸収が比較的少なく、ガドリニアの消耗はゆっくりしている。例えば、ウラン燃料の場合に比べて,MOX燃料で同じ期間だけ中性子吸収を持続させるのに必要なガドリニア濃度は半分以下である。したがって、上記の課題はウラン燃料に特有のものである。特開平10−26682号公報に記載されたMOX燃料では、むしろガドリニアの燃焼を早めるために、1重量%未満の薄いガドリニアを全燃料棒の半数以上に混入しており、上記課題とは目的が逆である。
【0013】
本発明の目的は、ウランを主な核分裂性物質とする燃料集合体及び原子炉の炉心において、長期連続運転を可能とするため可燃性毒物の消耗を十分に遅延すると共に、燃料集合体内の出力分布を平坦化できるものを提供することである。
【0014】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、第1燃料集合体と、この第1燃料集合体より燃料集合体平均ウラン濃縮度が低い第2燃料集合体を含む原子炉の炉心に前記第1燃料集合体として装荷される燃料集合体であって、ウラン235を主な核分裂性物質とする核燃料物質を含む燃料ペレットを封入した燃料棒と、前記核燃料物質に可燃性毒物を混入した燃料ペレットを封入した可燃性毒物入り燃料棒とを正方格子状に配列し、前記可燃性毒物により原子炉運転中における前記核分裂性物質の余剰反応度を制御する燃料集合体において、前記正方格子状の燃料棒配列の対向する角を結ぶ2本の対角線のそれぞれについて、その対角線によって燃料集合体の横断面を2つの領域に分けたとき、その2つの領域の両方に少なくとも1本以上前記可燃性毒物入り燃料棒が含まれ、前記可燃性毒物入り燃料棒は、燃料集合体の同じ横断面位置に前記可燃性毒物を混入した燃料ペレットを備える複数の燃料棒であり、前記燃料集合体の横断面において、前記可燃性毒物入り燃料棒が置かれた格子の総数をNg、前記可燃性毒物入り燃料棒が置かれた格子の境界のうち、他の可燃性毒物入り燃料棒に面しない境界の総数をNfとするとき、Nf/Ng<2であるものとする。
【0015】
正方格子状の燃料棒配列の2本の対角線のそれぞれについて、2つに分けられる領域の両方に少なくとも1本以上前記可燃性毒物入り燃料棒を配置することにより、局所出力ピーキング特性を大幅に低減できる。
【0016】
また、このように局所出力ピーキングを抑えるため2本の対角線のそれぞれに対して、その両側に可燃性毒物入り燃料棒を配置すると、可燃性毒物入り燃料棒の集中度は小さくなる傾向がある。このため、可燃性毒物の燃焼が早まる。しかし、発明者らは、種々のガドリニア入り燃料棒配置について、その燃焼特性を評価、分析した結果、Nf/Ngを指標とすると、ガドリニアの燃焼遅延の程度が整理できること、そして、Nf/Ngは定義により4以下の値をとるが、Nf/Ngが4から2の範囲ではガドリニアの燃焼遅延に大差が無く、Nf/Ng<2にすると効果的に燃焼遅延が可能であることを見出した。本発明はこの知見に基づいてNf/Ng<2とする配置を併用しており、これにより可燃性毒物の燃焼遅延効果を改善できる。
【0017】
(2)上記(1)において、好ましくは、前記2本の対角線のうちの1本について、その対角線によって分けられる燃料集合体の横断面の2つの領域の両方に2行2列に、隣接配置された4本の可燃性毒物入り燃料棒が含まれる。
【0018】
このように4本の可燃性毒物入り燃料棒を集中配置させた部分を2ヶ所設けることにより、出力分布のバランスをとりつつ、可燃性毒物の消耗を遅らせることができる。
【0019】
(3)また、上記(1)又は(2)において、好ましくは、前記燃料棒の配列が9行9列以上の正方格子状であり、燃料集合体は沸騰水型原子炉用である。
【0020】
これにより沸騰水型原子炉用の燃料集合体において、ウラン濃縮度を高めつつ上記(1)の作用が得られる。
【0021】
(4)更に、上記(1)又は(2)において、好ましくは、前記2本の対角線のうちの1本について、その対角線によって分けられる燃料集合体の横断面の2つの領域のうち、制御棒側に位置する領域に含まれる可燃性毒物入り燃料棒の数が反対側の領域に含まれる可燃性毒物入り燃料棒の数より少なく、燃料集合体は沸騰水型原子炉用である。
【0022】
これにより沸騰水型原子炉用の燃料集合体において、制御棒側の中性子束が比較的高くなり、制御棒の中性子吸収価値が高くなり、原子炉の停止余裕が向上する。また、制御棒と反対側の狭い領域に可燃性毒物入り燃料棒を集中的に配置することにより、燃料集合体内の大域的な出力分布の偏りが緩和される。
【0023】
(5)また、上記(1)又は(2)において、好ましくは、前記燃料棒の配列が10行10列の正方格子状であり、燃料集合体中央部の8格子分の領域に水ロッドが置かれ、燃料集合体は沸騰水型原子炉用である。
【0024】
これにより燃料棒配列が10行10列の正方格子状にありかつ中央部の水ロッドの広い減速材領域により出力分布を平坦にした沸騰水型原子炉用の燃料集合体で、上記(1)の作用が得られる。
【0025】
(6)また、上記(1)又は(2)において、前記正方格子状の燃料棒配列は5行5列の正方格子状に燃料棒を配列した4つのサブバンドルを有していてもよく、この場合、前記サブバンドルが2行2列に組み合わされると共に、各サブバンドルの燃料棒のうち燃料集合体中央側の燃料棒が除去され、燃料集合体中央部に減速材流路が形成されている。
【0026】
これにより5行5列の正方格子状に燃料棒を配列した4つのサブバンドルを有しかつ中央部の広い減速材領域により出力分布を平坦にした沸騰水型原子炉用の燃料集合体で、上記(1)の作用が得られる。
【0027】
(7)また、上記目的を達成するために、本発明は、上記(1)〜(6)のいずれか1項記載の燃料集合体を装荷した原子炉の炉心が提供される。
【0028】
これにより上記(1)で述べたように可燃性毒物の燃焼を十分に遅延すると共に、燃料集合体内の出力分布を平坦化できるので、長期連続運転に対応できる炉心が得られる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0030】
(第1の実施形態)
まず、本発明の第1の実施形態による燃料集合体のを図1により説明する。本実施形態は沸騰水型原子炉の初装荷炉心に装荷される燃料集合体の例であり、図1はその横断面を示すものである。
【0031】
図1において、符号15は本実施形態の燃料集合体を示しており、この燃料集合体15は、9行9列の正方格子状に配列された多数の燃料棒2,7と、中央部の7格子分の領域に配置され大きな高減速領域を形成する2本の水ロッド6とを有している。燃料棒2,7は核分裂性物質を含む燃料ペレットを封入して構成されており、燃料棒7はガドリニア入り燃料棒(可燃性毒物入り燃料棒)である。燃料棒7の燃料ペレットには余剰反応度を制御するための可燃性毒物としてガドリニアが混入されている。ガドリニア入り燃料棒7は全部で16本配置されており、ガドリニアを6重量%含んでいる。
【0032】
本実施形態において、16本のガドリニア入り燃料棒7は次のように配置されている。
【0033】
まず、図1に示す燃料集合体15の横断面において、可燃性毒物入り燃料棒7が置かれた格子の総数をNg、可燃性毒物入り燃料棒7が置かれた格子の境界面のうち、他の可燃性毒物入り燃料棒7に面しない境界面の総数をNfとすると、Ngは16、Nfは28である。したがって、Nf/Ng=1.75<2である。
【0034】
また、正方格子状の燃料棒配列の一方の対向する角を結ぶ対角線8によって上記横断面を2つの領域に分けたとき、対角線上に4本の可燃性毒物入り燃料棒7があり、分けられた両方の領域に6本ずつの可燃性毒物入り燃料棒7が含まれている。正方格子状の燃料棒配列の他方の対向する角を結ぶ対角線18によって上記横断面を2つの領域に分けた場合も、両方の領域に8本ずつの可燃性毒物入り燃料棒7が含まれている。
【0035】
更に、対角線18によって分けられた2つの領域の両方に、2行2列に隣接配置された4本の可燃性毒物入り燃料棒7が含まれている。
【0036】
図2に本実施形態の燃料集合体15の縦断面図を示す。燃料集合体15は四角筒型のチャンネルボックス1と、チャンネルボックスの内部に収納された燃料バンドル20からなる。燃料バンドル20は、上記燃料棒2,7を正方格子状に配列しかつ中央部に2本の水ロッド6を配置したものを、上部タイプレート3、下部タイプレート4で支持し、スペーサ5で束ねて構成されている。
【0037】
本実施形態の燃料集合体15におけるガドリニア入り燃料棒7の上記の配置による作用を説明する。
【0038】
図3に特開平9−105792号公報に記載された燃料集合体の横断面を比較例1として示し、図4に特開平7−244184号公報に記載された燃料集合体の横断面を比較例2として示し、図5に特開平9−105792号公報に記載された他の燃料集合体の横断面を比較例3として示す。図中、燃料棒、水ロッド、チャンネルボックス、対角線には図1と同じ符号を付している。
【0039】
発明者らは、図3〜図5に示す比較例1〜3のガドリニア入り燃料棒の配置について燃料集合体特性を評価した。
【0040】
図3の配置では、横断面内の対角線8の片側にガドリニア入り燃料棒が19本存在する。また、図4の配置では、横断面内に13本のガドリニア入り燃料棒7が存在する。そのうちの10本は5本ずつ十字型に配置されている。図5の配置では、横断面内に16本のガドリニア入り燃料棒7が存在する。これらの評価ケースにおいて、ガドリニアの濃度は全て6重量%とし、横断面平均のウラン濃縮度はいずれのケースも約5重量%とした。
【0041】
図6及び図7に燃料集合体の特性を比較して示す。図6は燃焼度に伴う中性子増倍率の動きである。曲線Aは図3の配置、曲線Bは図4の配置、曲線Cは図5の配置の特性を示す。また、図7は燃料集合体横断面における最大出力燃料棒の相対出力で定義される局所出力ピーキングの燃焼に伴う変化を示す。この図でも、曲線Aは図3の配置、曲線Bは図4の配置、曲線Cは図5の配置の特性を示す。
【0042】
図6に示される通り、図3の配置(曲線A)では燃焼に伴う中性子増倍率の上昇が遅く、優れたガドリニアの燃焼遅延効果が得られる。しかし、図7の曲線Aに示されるように、局所出力ピーキングは燃焼初期で1.6程度になり、最大線出力密度の制限値を満足することは困難である。特開平9−105792号公報の記述によると、図3や図5のような非対称のガドリニア配置は、初装荷炉心内で濃縮度の低い燃料集合体の隣りに置くことを想定したものである。このため隣りに低濃縮度の燃料集合体が置かれない場合は局所出力ピーキングが図7のとおり過大になってしまう。
【0043】
一方、図4の配置(曲線B)では、図7に示すように局所出力ピーキングは燃焼初期でも1.4程度であり、熱的余裕は優れている。一方、図6の通り、図4の配置(曲線B)と図5の燃料集合体(曲線C)は同程度の中性子増倍率の最大値となる。ガドリニア入り燃料棒の本数が異なるので初期の中性子増倍率は異なるが、中性子増倍率が最高になる燃焼度は同程度であり、ガドリニアの持続期間もほぼ同等である。図3の配置(曲線A)に比べるとガドリニアの燃焼遅延効果はかなり小さく、改善の余地のあることが分かった。
【0044】
本発明は、上記の問題点に着目し、長期連続運転を可能とするため、ウランを主な核分裂性物質とする場合の可燃性毒物の消耗を十分に遅延すると共に、燃料集合体内の出力分布を平坦化できるようにしたものである。
【0045】
まず、従来の技術である図3及び図4について発明者らが詳細に分析した結果、以下の知見が得られた。
【0046】
図4のガドリニア入り燃料棒配置において、ガドリニアの燃焼遅延効果が比較的小さいのは、十字型配置の突起部にあたる4本のガドリニア入り燃料棒7ではガドリニアの燃焼遅延がほとんどないためである。これら4本のガドリニア入り燃料棒7では、ガドリニアを含まない燃料棒2に3方向で接しているため、熱中性子が十分に供給されて、普通の離散配置の場合とほぼ同程度の速度でガドリニアが燃えてしまう。これら4本のガドリニア入り燃料棒7は十字型配置の中央のガドリニア入り燃料棒7を熱中性子から遮蔽する働きを持っている。これらが通常の速度で燃えるのに伴って、中央のガドリニア入り燃料棒7に対する遮蔽効果も消えていくため、大きな燃焼遅延効果が得られない。すなわち、少数のガドリニア入り燃料棒だけに対してガドリニアの燃焼遅延の対策を施しても大きな効果が得られないことが分かった。
【0047】
発明者らは、種々のガドリニア入り燃料棒配置について、その燃焼特性を評価、分析した結果、
Ng:ガドリニア入り燃料棒が置かれた格子の総数、
Nf:ガドリニア入り燃料棒が置かれた格子の境界のうち、他のガドリニア入り燃料棒に面しない境界の総数、
として、Nf/Ngを指標とすると、ガドリニアの燃焼遅延の程度が整理できることを見出した。
【0048】
図4や図5の配置では燃焼度18GWd/tで中性子増倍率がほぼ最高になっており、ガドリニアの燃焼遅延の目安としてこの点の中性子増倍率が参考になる。すなわち、18GWd/tにおける中性子増倍率が小さいほどガドリニアの燃焼が遅い。種々のガドリニア入り燃料棒配置に対する上記指標値と、18GWd/tにおける中性子増倍率との関係を図8に示す。黒丸は各評価ケースの点を示し、実線はそれらの傾向を示している。Nf/Ngが小さいほど18GWd/tにおける中性子増倍率が小さく、ガドリニアが長期間持続する。
【0049】
他のガドリニア入り燃料棒に面しない格子境界からは中性子が豊富に流入するので、このような境界を少なくすると、ガドリニアの燃焼を遅くできると考えられる。本発明による指標Nf/Ngは、燃料集合体横断面の平均で見たときの、ガドリニア入り燃料棒1本あたりの、他のガドリニア入り燃料棒以外に面する境界の数という意味を持つ。一般にガドリニアの断面積は燃料集合体内の位置によって異なり、例えば水ロッドの近傍では大きな値を持つ。また、全体のガドリニア分布によって燃料集合体内の中性子束分布は大きく影響される。したがって、ガドリニア入り燃料棒相互の干渉効果も、燃料集合体内の位置や燃料集合体全体にわたる他のガドリニア入り燃料棒の配置によって影響を受ける。しかしながら、発明者らによる図8の検討結果から、そのような影響はあまり大きくなく、局所的な隣接関係の単純平均であるNf/Ngによってガドリニアの燃焼特性がうまく整理できることが明らかになった。
【0050】
更に、Nf/Ngは定義により4以下の値をとるが、図8の結果により、4から2の範囲では大きな差の無いことが分かった。すなわち、Nf/Ngを2より小さくすると効果的に燃焼遅延が可能であることを見出した。
【0051】
本発明の第1の実施形態である図1の配置では、ガドリニア入り燃料棒が16本ある。ガドリニア入り燃料棒が置かれた格子の境界総数16×4=64うち、他のガドリニア入り燃料棒によって遮蔽されていない境界の数は28となり、半数未満である。
【0052】
図1の配置の中性子増倍率特性を図9の曲線Dに示す。曲線Bで示される図4の配置や曲線Cで示される図5の配置よりもガドリニアの燃焼はゆっくりしている。図4の配置のNf/Ngは2.77、図5の配置のNf/Ngは4.0であり、いずれもNf/Ngは2よりも大きい。図1のガドリニア入り燃料棒配置では、他のガドリニア入り燃料棒によって4方向全部を遮蔽されたガドリニア入り燃料棒が存在せず、また、燃料集合体の片側に多く配置されてもいないが、Nf/Ngが2より小さく、平均的にガドリニア入り燃料棒が良く遮蔽されているため、ガドリニアは長期間持続する。
【0053】
なお、プルトニウムを主な核分裂性物質とする燃料においては、プルトニウムの中性子吸収断面積が大きいので、ガドリニア入り燃料棒の隣がガドリニア入り燃料棒であってもガドリニアを含まない燃料棒であっても、半ば遮断された状況にある。このため、ガドリニア入り燃料棒の相対関係の影響は小さい。上記の可燃性毒物の燃焼遅延に関する知見は、ウランを主な核分裂性物質とする燃料に特有なものである。
【0054】
次に、燃料集合体内の出力分布に着目する。図3の配置の局所ピーキングが非常に高いのは、ガドリニア入り燃料棒配置の非対称性が大きすぎるためである。つまり、対角線8の右下だけにガドリニア入り燃料棒が集中しているため、この領域の中性子束が非常に低く、反対側のコーナー近くの中性子束が過大になっている。図3の配置は特開平9−105792号公報に記載されているように、領域のガドリニア入り燃料棒数の差を明示するため参考的に示された配置例であり、局所出力ピーキングに関しては考慮されていない。
【0055】
そこで、本発明の図1の配置では、対角線8の両側にガドリニア入り燃料棒7を配置する。また、もう一方の対角線18についても、その両側にガドリニア入り燃料棒を配置する。
【0056】
図1の配置の局所出力ピーキング特性を図10の曲線Dに示す。燃焼度初期で1.4程度であり、曲線Aで示される図3の配置に比べて局所出力ピーキングは大幅に低減される。
【0057】
このように局所出力ピーキングを抑えるため対角線8,18のそれぞれに対して、その両側にガドリニア入り燃料棒を配置すると、ガドリニア入り燃料棒7の集中度は小さくなる傾向がある。このため、一般的には図4の配置のようにガドリニアの燃焼が早まる。しかし、本発明の知見に基づいて、本実施形態ではNf/Ngを2未満とする配置を併用しており、これによりガドリニアの燃焼遅延効果は改善できる。
【0058】
また、局所ピーキングを抑えつつ、Nf/Ngを小さくするガドリニア入り燃料棒配置として、ガドリニア入り燃料棒7を隣接集中配置した部分を複数設けることが効果的である。4本のガドリニア入り燃料棒7を2行2列に配置すると、その部分のNf/Ngはちょうど2である。したがって、全体のNf/Ngを2未満とするためには、このような2行2列以上の大きな集中配置部分を設ける必要がある。図1の配置では、8本のガドリニア入り燃料棒7を集中配置させた部分を2ヶ所設けることにより、出力分布のバランスをとりつつ、ガドリニアの消耗を遅らせている。
【0059】
以上により本実施形態では、図1のガドリニア入り燃料棒配置を用いることにより、可燃性毒物の燃焼を十分に遅延すると共に、燃料集合体内の出力分布を平坦化できるので、熱的余裕を確保しつつ、長期連続運転が可能となる。
【0060】
(第2の実施形態)
本発明の第2の実施形態を図11により説明する。図中、図1に示す部材と同等のものには同じ符号を付している。
【0061】
図11において、本実施形態の燃料集合体15Aでは、燃料棒2,7が10行10列の正方格子状に配列されており、2本の水ロッド5が中央部の8格子分の領域に置かれ、大きな高減速領域を形成している。燃料棒2,7は全部で92本あり、そのうちガドリニア入り燃料棒(可燃性毒物入り燃料棒)7は全部で18本配置されている。
【0062】
可燃性毒物入り燃料棒7が置かれた格子の総数Ngは18、可燃性毒物入り燃料棒7が置かれた格子の境界面のうち、他の可燃性毒物入り燃料棒7に面しない境界面の総数Nfは32である。したがって、Nf/Ng=1.78<2である。
【0063】
燃料棒配列の対向する角を結ぶ対角線8,18のそれぞれについて、その対角線によって上記横断面を2つの領域に分けたとき、その両方の領域に可燃性毒物入り燃料棒7が含まれ、対角線8,18に対して対称に配置されている。
【0064】
本実施形態においても、ガドリニア入り燃料棒7が置かれた格子の境界面のうち、他のガドリニア入り燃料棒7によって遮蔽されている面が半分以上あるので、ガドリニアの燃焼遅延効果が大きい。また、対角線8,18に対して対称にガドリニア入り燃料棒を配置して出力分布のバランスをとることにより、局所出力ピーキングは低く抑えられる。
【0065】
本実施形態のように10行10列格子の燃料集合体15Aにおいては、冷却材流路を十分に確保するため9行9列格子の燃料集合体に比べて、燃料棒を細くする必要がある。この場合、燃料棒内における熱中性子レベルの低下が少ないため、ガドリニアの燃焼は早まる傾向がある。したがって、本実施形態の配置によるガドリニアの燃焼遅延は特に効果的である。また、本実施形態の燃料集合体は9行9列格子の燃料集合体に比べて燃料棒が多いため、熱的余裕が大きい。
【0066】
(第3の実施形態)
本発明の第3実施形態を図12により説明する。図中、図1に示す部材と同等のものには同じ符号を付している。
【0067】
図12において、本実施形態の燃料集合体15Bでは、燃料棒2,7が10行10列の正方格子状に配列されており、2本の水ロッド5が中央部の8格子分の領域に置かれ、大きな高減速領域を形成している。燃料棒2,7は全部で92本あり、そのうちガドリニア入り燃料棒(可燃性毒物入り燃料棒)7は全部で18本配置されている。燃料集合体15Bは、炉心に装荷するとき図示左上側のコーナー部に制御棒30が位置するよう装荷される。
【0068】
可燃性毒物入り燃料棒7が置かれた格子の総数Ngは18、可燃性毒物入り燃料棒7が置かれた格子の境界面のうち、他の可燃性毒物入り燃料棒7に面しない境界面の総数Nfは32である。したがって、Nf/Ng=1.78<2である。
【0069】
燃料棒配列の対向する角を結ぶ対角線8,18のそれぞれについて、その対角線によって上記横断面を2つの領域に分けたとき、両方の領域に可燃性毒物入り燃料棒7が含まれている。
【0070】
本実施形態においても、ガドリニア入り燃料棒7が置かれた格子の境界面のうち、他のガドリニア入り燃料棒7によって遮蔽されている面が半分以上あるので、ガドリニアの燃焼遅延効果が大きい。また、対角線8に対して両側にガドリニア入り燃料棒7を配置し、かつ対角線18に対して対称にガドリニア入り燃料棒を配置して出力分布のバランスをとることにより、局所出力ピーキングは低く抑えられる。
【0071】
本実施形態では、対角線8に対してはガドリニア入り燃料棒7の配置を非対称にしており、炉心に装荷されたとき制御棒30側の領域にガドリニア入り燃料棒7が少ない。この配置により、制御棒30側の中性子束が比較的高くなり、局所出力ピーキングは第2の実施形態よりも高まる傾向がある。しかし、同時に制御棒30の中性子吸収価値が高くなり、原子炉の停止余裕が向上する。図5に示されるような従来の非対称ガドリニア入り燃料棒配置でも制御棒価値の向上効果が期待される。しかし、制御棒と反対側の領域に広く分散してガドリニア入り燃料棒7が置かれているため、燃料集合体内に大域的な出力分布の偏りが生じ、局所出力ピーキングは比較的大きい。本実施形態ではNf/Ngを小さくするために、制御棒30と反対側の狭い領域にガドリニア入り燃料棒7を集中的に配置することになる。これによって、燃料集合体内の大域的な出力分布の偏りが緩和される。
【0072】
(第4の実施形態)
本発明の第4の実施形態を図13により説明する。図中、図1に示す部材と同等のものには同じ符号を付している。
【0073】
図13において、本実施形態の燃料集合体15Cでは、燃料棒2,7が5行5列の正方格子状に配列されたサブバンドル9が4つ組み合わさって、全体として10行10列の燃料棒配列構造となっている。各サブバンドル9の燃料棒配列において燃料集合体15Cの中央側コーナーの燃料棒が除去され、4格子分以上の面積を有する大きな減速材領域10が形成されている。燃料棒2,7は全部で96本あり、ガドリニア入り燃料棒(可燃性毒物入り燃料棒)7は全部で17本配置されている。
【0074】
可燃性毒物入り燃料棒7が置かれた格子の総数Ngは17、可燃性毒物入り燃料棒7が置かれた格子の境界面のうち、他の可燃性毒物入り燃料棒7に面しない境界面の総数Nfは32である。したがって、Nf/Ng=1.88<2である。
【0075】
燃料棒配列の対向する角を結ぶ対角線8,18のそれぞれについて、その対角線によって上記横断面を2つの領域に分けたとき、その両方の領域に1本以上の可燃性毒物入り燃料棒7が含まれている。
【0076】
本実施形態の燃料集合体15Cは燃料棒2,7の数が、図11の燃料集合体15Aよりも多いので、線出力密度の余裕を更に大きくできる傾向がある。
【0077】
なお、第1〜第4の実施形態において、燃料集合体最外周にはガドリニア入り燃料棒を置いていない。前述のとおり、沸騰水型原子炉では燃料集合体の間に非沸騰水領域が存在し、そこで中性子の減速が促進される。したがって、燃料集合体の最外周位置は熱中性子量が多く、ガドリニアが早く燃え尽きてしまう傾向がある。そこで、これらの実施形態では最外周位置を避けてガドリニア入り燃料棒が置かれている。
【0078】
(第5の実施形態)
次に、本発明の第5の実施形態を図14及び図15により説明する。図中、図1に示す部材と同等のものには同じ符号を付している。本実施形態は加圧水型原子炉用の燃料集合体に本発明を適用したものである。
【0079】
図14において、本実施形態の加圧水型原子炉用の燃料集合体15Dは、多数の燃料棒2,7が正方格子状に配列され、上部ノズル11、下部ノズル12、スペーサ13などで支持されている。図15は本実施形態の燃料集合体15Dの横断面を示す。燃料棒2,7は17行17列の正方格子状に配列され、25個の格子位置は制御棒が挿入される制御棒案内管14で占められている。ガドリニア入り燃料棒(可燃性毒物入り燃料棒)7は48本含まれている。
【0080】
可燃性毒物入り燃料棒7が置かれた格子の総数Ngは48、可燃性毒物入り燃料棒7が置かれた格子の境界面のうち、他の可燃性毒物入り燃料棒7に面しない境界面の総数Nfは80である。したがって、Nf/Ng=1.67<2である。
【0081】
燃料棒配列の対向する角を結ぶ対角線8,18のそれぞれについて、その対角線によって上記横断面を2つの領域に分けたとき、その両方の領域に1本以上の可燃性毒物入り燃料棒7が含まれている。
【0082】
本実施形態では、ガドリニア入り燃料棒7が燃料集合体15Dの最外周にも置かれている。加圧水型原子炉の場合、燃料集合体の外周部と中央部で熱中性子量にあまり大きな差がなく、最外周にガドリニア入り燃料棒を置いたときも、ガドリニアの燃焼が大幅に早まることはない。本実施形態の燃料集合体15Dは炉心内でより低い濃縮度の燃料集合体と隣接することを想定したものである。最外周にガドリニア入り燃料棒7を置いた場合、低濃縮度の燃料集合体と隣接したときに、流れ込んでくる熱中性子によって最外周の燃料棒出力が高まることを緩和できる。更に、本実施形態では、最外周に置かれたガドリニア入り燃料棒7に対して、そのすぐ内側にもガドリニア入り燃料棒7を隣接配置することにより、ガドリニアの燃焼遅延を図っている。
【0083】
(第6の実施形態)
本発明の第6の実施形態を図16及び図17により説明する。本実施形態は、高濃縮度の燃料集合体として、図11と図12の燃料集合体を装荷した、沸騰水型原子炉の初装荷炉心である。
【0084】
図16は1/4回転対称な燃料装荷パターンの1/4炉心部分を示す。燃料集合体平均ウラン濃縮度が約4.5重量%の高濃縮度燃料集合体25,26と燃料集合体平均ウラン濃縮度が約1.8重量%の低濃縮度燃料集合体27の3種類で構成されている。
【0085】
図17は燃料集合体4体からなる部分を拡大して示す。高濃縮度燃料集合体25は、図11に示した燃料集合体15Aと同じガドリニア入り燃料棒の配置であり、高濃縮度燃料集合体26は、図12に示した燃料集合体15Bと同じガドリニア入り燃料棒の配置になっている。ガドリニアの濃度は10重量%である。低濃縮度燃料集合体27に直接隣接する高濃縮度燃料集合体26は低濃縮度燃料集合体27に近い側に多くのガドリニア入り燃料棒7が位置するようになっている。これにより、低濃縮燃料集合体27から熱中性子が流入しても、高濃縮燃料集合体26の外周付近の出力が過大になるのを防ぐ効果が得られる。
【0086】
ウラン燃料炉心では熱中性子の割合が多いため、ガドリニアが燃え易い。したがって、本発明のようなガドリニアの燃焼を遅らせる対策が特に有効である。これにより、本実施形態の初装荷炉心では、第1サイクルで20ヶ月以上の連続運転が可能となる。
【0087】
【発明の効果】
本発明によれば、ウランを主な核分裂性物質とするもので可燃性毒物の燃焼を十分に遅延するとともに、燃料集合体内の出力分布を平坦化できるので、長期連続運転に対応できる燃料集合体および炉心が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による沸騰水型原子炉用燃料集合体の横断面図である。
【図2】図1に示した本発明の第1の実施形態による燃料集合体の概略構造を示す縦断面図である。
【図3】従来技術の燃料集合体におけるガドリニア入り燃料棒配置を比較例1として示す図1と同様な横断面図である。
【図4】従来技術の他の燃料集合体におけるガドリニア入り燃料棒配置を比較例2として示す図1と同様な横断面図である。
【図5】従来技術の更に他の燃料集合体におけるガドリニア入り燃料棒配置を比較例3として示す図1と同様な横断面図である。
【図6】従来技術の中性子増倍率の燃焼度依存性を比較して示す図である。
【図7】従来技術の局所出力ピーキングの燃焼度依存性を比較して示す図である。
【図8】本発明の指標値であるNf/Ngと燃焼が進んだ時点の中性子増倍率の関係を示す図である。
【図9】図1に示した本発明の第1の実施形態による燃料集合体の中性子増倍率特性を示す図である。
【図10】図1に示した本発明の本発明の第1実施形態による燃料集合体の局所出力ピーキング特性を示す図である。
【図11】本発明の第2の実施形態による沸騰水型原子炉用燃料集合体の横断面図である。
【図12】本発明の第3の実施形態による沸騰水型原子炉用燃料集合体の横断面図である。
【図13】本発明の第4の実施形態による沸騰水型原子炉用燃料集合体の横断面図である。
【図14】本発明の第5の実施形態による加圧水型原子炉用燃料集合体の概略構造を示す縦断面図である。
【図15】図14に示した本発明の第5の実施形態による燃料集合体の横断面図である。
【図16】本発明の第6の実施形態による沸騰水型原子炉の初装荷炉心の1/4炉心部分を示す横断面図である。
【図17】図16に示した本発明の第6の実施形態による初装荷炉心の燃料集合体4体からなる部分を拡大して示す横断面図である。
【符号の説明】
1…チャンネルボックス
2…燃料棒
3…上部タイプレート
4…下部タイプレート
5…スペーサ
6…水ロッド
7…可燃性毒物入り燃料棒
8,18…対角線
9…サブバンドル
10…高減速領域
11…上部ノズル
12…下部ノズル
13…スペーサ
14…制御棒案内管
15,15A〜15D…燃料集合体
20…燃料バンドル
25,26…高濃縮度燃料集合体
27…低濃縮度燃料集合体。
30…制御棒

Claims (7)

  1. 第1燃料集合体と、この第1燃料集合体より燃料集合体平均ウラン濃縮度が低い第2燃料集合体を含む原子炉の炉心に前記第1燃料集合体として装荷される燃料集合体であって、ウラン235を主な核分裂性物質とする核燃料物質を含む燃料ペレットを封入した燃料棒と、前記核燃料物質に可燃性毒物を混入した燃料ペレットを封入した可燃性毒物入り燃料棒とを正方格子状に配列し、前記可燃性毒物により原子炉運転中における前記核分裂性物質の余剰反応度を制御する燃料集合体において、
    前記正方格子状の燃料棒配列の対向する角を結ぶ2本の対角線のそれぞれについて、その対角線によって燃料集合体の横断面を2つの領域に分けたとき、その2つの領域の両方に少なくとも1本以上前記可燃性毒物入り燃料棒が含まれ、
    前記可燃性毒物入り燃料棒は、燃料集合体の同じ横断面位置に前記可燃性毒物を混入した燃料ペレットを備える複数の燃料棒であり、
    前記燃料集合体の横断面において、前記可燃性毒物入り燃料棒が置かれた格子の総数をNg、前記可燃性毒物入り燃料棒が置かれた格子の境界のうち、他の可燃性毒物入り燃料棒に面しない境界の総数をNfとするとき、Nf/Ng<2であることを特徴とする燃料集合体。
  2. 請求項1記載の燃料集合体において、前記2本の対角線のうちの1本について、その対角線によって分けられる燃料集合体の横断面の2つの領域の両方に2行2列に、隣接配置された4本の可燃性毒物入り燃料棒が含まれることを特徴とする燃料集合体。
  3. 請求項1又は2記載の燃料集合体において、前記燃料棒の配列が9行9列以上の正方格子状であることを特徴とする沸騰水型原子炉用の燃料集合体。
  4. 請求項1又は2記載の燃料集合体において、前記2本の対角線のうちの1本について、その対角線によって分けられる燃料集合体の横断面の2つの領域のうち、制御棒側に位置する領域に含まれる可燃性毒物入り燃料棒の数が反対側の領域に含まれる可燃性毒物入り燃料棒の数より少ないことを特徴とする沸騰水型原子炉用の燃料集合体。
  5. 請求項1又は2記載の燃料集合体において、前記燃料棒の配列が10行10列の正方格子状であり、燃料集合体中央部の8格子分の領域に水ロッドが置かれていることを特徴とする沸騰水型原子炉用の燃料集合体。
  6. 請求項1又は2記載の燃料集合体において、前記正方格子状の燃料棒配列は5行5列の正方格子状に燃料棒を配列した4つのサブバンドルを有し、前記サブバンドルが2行2列に組み合わされると共に、各サブバンドルの燃料棒のうち燃料集合体中央側の燃料棒が除去され、燃料集合体中央部に減速材流路が形成されていることを特徴とする沸騰水型原子炉用の燃料集合体。
  7. 請求項1〜6のいずれか1項記載の燃料集合体を装荷した原子炉の炉心。
JP35610899A 1999-12-15 1999-12-15 燃料集合体及び原子炉の炉心 Expired - Fee Related JP4138190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35610899A JP4138190B2 (ja) 1999-12-15 1999-12-15 燃料集合体及び原子炉の炉心

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35610899A JP4138190B2 (ja) 1999-12-15 1999-12-15 燃料集合体及び原子炉の炉心

Publications (2)

Publication Number Publication Date
JP2001174580A JP2001174580A (ja) 2001-06-29
JP4138190B2 true JP4138190B2 (ja) 2008-08-20

Family

ID=18447376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35610899A Expired - Fee Related JP4138190B2 (ja) 1999-12-15 1999-12-15 燃料集合体及び原子炉の炉心

Country Status (1)

Country Link
JP (1) JP4138190B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824008B2 (ja) * 2007-12-25 2011-11-24 株式会社グローバル・ニュークリア・フュエル・ジャパン 沸騰水型原子炉の炉心
FR3030099B1 (fr) * 2014-12-11 2017-01-13 Dcns Reacteur nucleaire a eau pressurisee

Also Published As

Publication number Publication date
JP2001174580A (ja) 2001-06-29

Similar Documents

Publication Publication Date Title
US5781604A (en) Initial core and fuel assembly
JPH03108690A (ja) 燃料集合体
JP4138190B2 (ja) 燃料集合体及び原子炉の炉心
JP2928606B2 (ja) 燃料集合体
JP4088735B2 (ja) 核燃料集合体及び沸騰水型原子炉の炉心
JPH0450795A (ja) 燃料集合体
JP4351798B2 (ja) 燃料集合体および原子炉
JP2563287B2 (ja) 原子炉用燃料集合体
JP4354621B2 (ja) 沸騰水型原子炉用燃料集合体
JP3880696B2 (ja) 原子炉の炉心および燃料集合体
JPS59147295A (ja) 燃料集合体
JP3884192B2 (ja) Mox燃料集合体及び原子炉の炉心並びに原子炉の運転方法
JP4044993B2 (ja) 原子炉の燃料装荷方法
JP3894784B2 (ja) 沸騰水型原子炉の燃料装荷方法
JP3309797B2 (ja) 燃料集合体
JP2852101B2 (ja) 原子炉の炉心及び燃料の装荷方法
JP2656279B2 (ja) 沸騰水型原子炉用燃料集合体
JP2002189094A (ja) 沸騰水型原子炉用燃料集合体
JPH09166678A (ja) Mox燃料集合体
JP3262723B2 (ja) Mox燃料集合体及び原子炉の炉心
JP3314382B2 (ja) 燃料集合体
JPH0331794A (ja) 沸騰水型原子炉
JP2739515B2 (ja) 沸騰水型原子炉
JPH03267793A (ja) 燃料集合体
JPS636492A (ja) 原子炉燃料集合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Ref document number: 4138190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees