JP4137451B2 - Multilayer substrate manufacturing method - Google Patents

Multilayer substrate manufacturing method Download PDF

Info

Publication number
JP4137451B2
JP4137451B2 JP2002006767A JP2002006767A JP4137451B2 JP 4137451 B2 JP4137451 B2 JP 4137451B2 JP 2002006767 A JP2002006767 A JP 2002006767A JP 2002006767 A JP2002006767 A JP 2002006767A JP 4137451 B2 JP4137451 B2 JP 4137451B2
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
prepreg
substrates
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002006767A
Other languages
Japanese (ja)
Other versions
JP2003209357A (en
Inventor
恵美 中村
智康 郡司
敏宏 村山
誠之 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002006767A priority Critical patent/JP4137451B2/en
Publication of JP2003209357A publication Critical patent/JP2003209357A/en
Application granted granted Critical
Publication of JP4137451B2 publication Critical patent/JP4137451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は多層基板製造方法に関し、例えば2枚の基板を積層して多層基板を製造する多層基板製造方法に適用して好適なものである。
【0002】
【従来の技術】
従来、多層基板製造方法においては、製造用のサイズでなる製造用基板上に、当該製造用基板とほぼ同サイズ及び同材質の積層用基板を積層し、当該製造用基板及び積層用基板の一面に対してほぼ垂直にスルーホールを貫通形成して層間接続することにより、多層基板を製造するようになされている。
【0003】
【発明が解決しようとする課題】
ところで、かかる多層基板製造方法においては、互いに同サイズ及び同材質の製造用基板及び積層用基板を用いているものの、製造用基板及び積層用基板の一面に対する配線占有率が異なるので、製造工程中の熱処理や冷却処理によって製造用基板の有機材料における収縮量と、積層用基板の有機材料における収縮量とが大幅に相違することになる。
【0004】
従って多層基板製造方法においては、製造用基板及び積層用基板の一面に対してほぼ垂直にスルーホールを貫通形成した場合であっても、当該製造用基板及び積層用基板に本来形成されるべきスルーホールの形成位置が収縮量の相違によって大幅にずれてしまっているので、電気的接続が十分に行えず、電気的耐性が弱いという問題があった。
【0005】
本発明は以上の点を考慮してなされたもので、従来に比して簡易な方法で電気的耐性の強い多層基板を製造し得る多層基板製造方法を提案しようとするものである。
【0006】
【課題を解決するための手段】
かかる課題を解決するため本発明は、第1の基板に対して電子部品を接合する接合工程と、第1の基板よりも大きい面積でなる第2の基板上に、電子部品に対する収容空間が設けられた板状プリプレグを積層するプリプレグ積層工程と、電子部品が接合された第1の基板を、該電子部品が収容空間に収容されるように第2の板状プリプレグに積層する基板積層工程と、板状プリプレグを加熱する加熱工程とをもつ多層基板製造方法を採用した。
【0007】
従ってこの多層基板製造方法では、加熱工程での加熱により第1の基板及び第2の基板が収縮しても、第2の基板に対する第1の基板の位置ずれが、第1の基板の収縮量の範囲内に収まるようにすることが可能となるため、当該位置ずれに起因する、第1の基板及び第2の基板の電気的耐性の低下を抑えることができる。
【0008】
【発明の実施の形態】
以下図面について、本発明の一実施の形態を詳述する。
【0009】
本発明においては、完成品である多層基板51〜53(図5)を製造するための多層基板製造方法について、図1〜図5を用いて説明する。
【0010】
第1段階(図1(A)上段)として、多層基板製造装置(図示せず)は、基板製造用のワークシートサイズ(面積)でなるガラスエポキシ材質の両面銅張板1aをほぼ1/3以下の面積を有する3枚の基板に切り分けた後、当該切り分けた3枚の基板の一面2A、3A及び4Aに対してエッチングレジスト処理及び湿式エッチング処理を順次施して1本の配線パターンでなる配線wir1、wir2及びwir3を形成することにより、積層用基板2、3及び4を作製する。
【0011】
一方、多層基板製造装置は、両面銅張板1aと同サイズ同材質の両面銅張板1b(図1(A)下段)の一面5Aに対して、当該両面銅張板1aから積層用基板2、3及び4を作製した際の配線wir1、wir2及びwir3と対応する位置に上述と同様の処理を施して配線W1、W2及びW3を形成することにより、製造用基板5を作製する。
【0012】
これにより多層基板製造装置は、製造用基板5の一面5Aにおける面積のほぼ1/3以下の面積を有する積層用基板2、3及び4を選定すると共に、製造用基板5の配線W1、W2及びW3を互いに所定間隔離した状態で形成し得るようになされている。
【0013】
なお積層用基板2、3及び4を製造用基板5の一面5Aにおける面積のほぼ1/3以下の面積に選定した理由については後述する。
【0014】
また、多層基板製造装置は、製造用基板5の配線W1、W2及びW3に対して端子めっき処理を行うことにより、当該製造用基板5に対して積層用基板2、3及び4を積層した後に行うマスキング処理等の追加工程を省略し得るようになされている。
【0015】
第2段階(図1(B)上段)として、多層基板製造装置は、半導体メモリ等でなるベアチップ11aの回路形成面における所定位置へ形成したスタットバンプ12aと、積層用基板2の一面2Aに形成した内周側の配線wir1とを異方性導電膜13aを介して接合(いわゆるフリップチップ実装)する。
【0016】
同様に多層基板製造装置は、ベアチップ11b及び11cの回路形成面における所定位置へ形成したスタットバンプ12b及び12cと、積層用基板3及び4の一面3A及び4Aに形成した内周側の配線wir2及びwir3とを異方性導電膜13b及び13cを介してフリップチップ実装する。
【0017】
第3段階(図2(C))として、多層基板製造装置は、製造用基板5の配線W1上へ、積層用基板2の一面2Aとほぼ同面積でなるガラスエポキシ材質の介挿プリプレグ25a及び覆蓋プリプレグ26aを順次積層し、さらに当該配線W1に配線wir1を対向させて位置決めした状態で、ベアチップ11aが実装された積層用基板2を積層する。
【0018】
同様に多層基板製造装置は、製造用基板5の配線W2及びW3上へ、積層用基板3及び4の一面3A及び4Aとほぼ同面積でなるガラスエポキシ材質の介挿プリプレグ25b及び25c及び覆蓋プリプレグ26b及び26cを順次積層し、さらに当該配線W2及びW3に配線wir2及びwir3を対向させて位置決めした状態で、ベアチップ11b及び11cが実装された積層用基板3及び4を積層する。
【0019】
ここで介挿プリプレグ25a、25b及び25cとは、製造用基板5と積層用基板2、3及び4との間における厚さを所定の厚さに選定するためのものであり、覆蓋プリプレグ26a、26b及び26cとは、ベアチップ11a、11b及び11cを被覆するためのものである。
【0020】
この場合、多層基板製造装置は、介挿プリプレグ25a、25b又は25cの厚さを適宜変更し得るようになされており、これにより製造用基板5に対して積層用基板2、3又は4を積層した際の高さを、最終的な製品の一部として用いられるマザーボード基板へ実装した際に必要な高さとほぼ一致させ得るようになされている。
【0021】
従って多層基板製造装置は、製造用基板5と積層用基板2、3又は4との間における厚さを搭載機器へ実装する際の高さの制約に対して柔軟に対応し得るようになされている。
【0022】
また多層基板製造装置は、覆蓋プリプレグ26a、26b又は26cの一部をベアチップ11a、11b又は11cの体積に応じて除去することにより、ベアチップ覆蓋空間v1、v2及びv3を形成し得るようになされている。
【0023】
これにより多層基板製造装置は、ベアチップ覆蓋空間v1、v2及びv3を介してベアチップ11a、11b及び11cを収容し得ることにより、当該ベアチップ11a、11b及び11cが実装された積層用基板2、3及び4を覆蓋プリプレグ26a、26b及び26cに対して互いに干渉することなく積層し得ると共に、当該積層した状態で覆蓋プリプレグ26a、26b及び26cを熱硬化した際にベアチップ11a、11b及び11cの周囲へ速やかに拡散させ得るようになされている。
【0024】
従って第4段階(図2(D))として、多層基板製造装置は、介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26c(図2(C))を真空雰囲気中で所定温度に加熱すると、当該介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cが熱硬化する際の拡散によってベアチップ11a〜11cの周囲を被覆すると共に、積層用基板2〜4と製造用基板5とを気密性を保って一体化形成した層間部31、32、33となる。
【0025】
その後、多層基板製造装置は常温常圧に戻すと、熱硬化性を有する介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cとは逆に、積層用基板2、3、4及び製造用基板5は、当該積層用基板2、3、4及び製造用基板5のうちの有機部材がその特性に従って硬化することになるので結果的に収縮してしまうことになる。
【0026】
この場合、例えば図3に示すように、製造用基板5と積層用基板2、3及び4とは互いに同材質であるので収縮率が同じであるが、積層用基板2、3及び4は、その他面2B、3B及び4Bの面積がワークサイズでなる製造用基板5の他面5Bよりも小さい(すなわち積層用基板2、3及び4を所定間隔sp1及びsp2ずつ離すことで配線W1、W2及びW3が独立した構成とされている)ことにより、積層用基板2、3及び4の収縮量sh3及びsh4、sh5及びsh6、sh7及びsh8については製造用基板5の収縮量sh1及びsh2よりも格段に少なくなる。
【0027】
これに加えて積層用基板2、3及び4は、製造用基板5上に積層された状態で保持されているので、当該製造用基板5の収縮動作に対する積層用基板2、3及び4の位置ずれについては殆ど起こらない。すなわち製造用基板5に対して積層用基板2、3及び4の位置関係はほぼ保持された状態のまま製造用基板5が収縮されるからである。
【0028】
従って製造用基板5の配線W1、W2及びW3に対する積層用基板2、3及び4の配線wir1、wir2及びwir3のずれ量は、積層用基板2、3及び4の収縮量sh3及びsh4、sh5及びsh6、sh7及びsh8の範囲内に収まることになり、その結果多層基板製造装置は、製造用基板5に対する積層用基板2、3及び4の位置ずれが最小限に収まっている状態で電気的な接続を実行し得るようになされている。
【0029】
ここで、上述の第1段階(図1(A)上段)で積層用基板2、3及び4を製造用基板5のほぼ1/3の面積に選定した理由としては、ワークシートサイズでなる1枚の製造用基板5上へ一度に積層して多数の製品を製造し得る生産性の観点からすれば、積層用基板2、3及び4の一面2A、3A及び4Aの面積を極力小さくすることが望ましいが、ベアチップ11a、11b及び11cを実装することの必要性を加味しつつ、積層用基板2、3及び4の収縮量sh3及びsh4、sh5及びsh6、sh7及びsh8(図4)の範囲内に収縮量が収まるようにすることを考慮すれば、一般的には少なくとも製造用配線板5の一面5Aの面積に対してほぼ1/3の面積であることが理想的と考えられるからである。
【0030】
従って多層基板製造装置は、第1段階(図1(A)上段)で積層用基板2、3及び4の一面2A、3A及び4Aを製造用基板5の一面5Aにおける面積のほぼ1/3の面積となるように切り分けていることにより、生産性を必要最大限に確保し得ると共に、製造用基板5に対する積層用基板2、3及び4の位置ずれを最小限に収え得るようになされている。
【0031】
この状態において、第5段階(図4(E))として多層基板製造装置は、積層用基板2〜4の他面2B〜4Bの所定位置から配線wir1〜wir3及び配線W1〜W3を順次介して製造用基板5の他面5Bにかけてほぼ垂直に貫通孔を形成した後、当該貫通孔の内周面に対して銅めっき処理を行ってスルーホール35A及び36A、35B及び36B、35C及び36Cを形成する。
【0032】
これにより多層基板製造装置は、積層用基板2〜4の他面2B〜4B及び一面2A〜4Aと、製造用基板5の一面5A及び他面5Bとをスルーホール35A及び36A、35B及び36B、35C及び36Cを介して接続し、積層用基板2〜4の他面2B〜4Bから製造用基板5の他面5Bまでの各層をそれぞれ強固に電気的及び機械的に層間接続する。
【0033】
第6段階(図4(F))として、多層基板製造装置は、積層用基板2、3及び4の他面2B、3B及び4Bに所定パターンの配線41、42及び43を形成することにより、製造用多層基板50を作製する。
【0034】
第7段階として、図5に示すように、多層基板製造装置は、製造用多層基板50(図4(F))の製造用基板5を所定位置で切断することにより、多層基板51、52及び53を製造し得るようになされている。
【0035】
かかる多層基板51、52及び53は、製造工程中の熱処理や冷却処理によって製造用基板5及び積層用基板2、3及び4の有機材料が収縮した場合においても、製造用基板5に対する積層用基板2、3及び4の位置ずれが最小限に収まっている状態でスルーホール35A及び36A、35B及び36B、35C及び36Cを介して電気的に接続されていることにより、全体として電気的耐性が強化されている。
【0036】
以上の多層基板製造方法において、多層基板製造装置は、まず、ワークシートサイズ(面積)でなるガラスエポキシ材質の両面銅張板1a(図1(A)上段)を製造用基板5の一面5Aにおける面積に対してほぼ1/3の面積となるように切り分けて積層用基板2を予め作製しておくことにより、製造用基板5の収縮量に比して少ない収縮量でなる積層用基板2を選定する。
【0037】
そして多層基板製造装置は、製造用基板5の一面5A(図2(C))に形成した配線W1上に、介挿プリプレグ25a及び覆蓋プリプレグ26aを介して積層用基板2の配線wir1を対向させて位置決めした状態で積層用回路基板15を積層する。
【0038】
ここで多層基板製造装置は、介挿プリプレグ25a(図2(D))及び覆蓋プリプレグ26aを加熱硬化して製造用基板5、介挿プリプレグ25a、覆蓋プリプレグ26a及び積層用基板2を一体化させた後に常温に戻すと、当該積層用基板2及び製造用基板5は有機部材の特性に従って硬化する際に収縮(図3)してしまうことになる。
【0039】
しかしながら、積層用基板2はその他面2Bがワークサイズでなる製造用基板5の他面5Bよりも小さいので、その収縮量sh3及びsh4については製造用基板5の収縮量sh1及びsh2よりも格段に少ないと共に、製造用基板5に対して積層用基板2の位置関係はほぼ保持された状態のまま製造用基板5が収縮されることにより、製造用基板5の配線W1に対する積層用基板2の配線wir1のずれ量は、積層用基板2の収縮量sh3及びsh4の範囲内に収まる。
【0040】
この状態において多層基板製造装置は、積層用基板2(図4(E))の他面2Bの所定位置から配線wir1及び配線W1を介して製造用基板5の他面5Bにかけてほぼ垂直にスルーホール35A及び36Aを形成するようにした。
【0041】
従って多層基板製造装置は、製造用基板5及び積層用基板2が収縮しても、製造用基板5の配線W1に対する配線wir1の位置ずれが当該積層用基板2の収縮量sh3及びsh4の範囲内に収まっているので、製造用基板5に対する積層用基板2の位置ずれを最小限に収えた状態で電気的な接続を確実に実行することができる。
【0042】
また、多層基板製造装置は、製造用基板5(図3)の一面5Aに配線W2及びW3を所定間隔sp1及びsp2ずつ離して独立させた構成とし、積層用基板2と同様の工程によってスルーホール35B及び36B(図4(E))、35C及び36Cを形成していることにより、製造用基板5の配線W1に対する積層用基板2、3及び4の配線wir1、wir2及びwir3のずれ量を積層用基板2、3及び4の収縮量sh3及びsh4、sh5及びsh6、sh7及びsh8の範囲内に収まるようにすることを1つの製造用基板5上で一度に実現することができる。
【0043】
以上のような多層回路基板製造方法によれば、多層基板製造装置は、製造用基板5及び積層用基板2の有機部材の特性により当該製造用基板5及び積層用基板2が収縮しても、製造用基板5の配線W1に対する積層用基板2の配線wir1のずれ量が当該積層用基板2の収縮量sh3及びsh4の範囲内に収まるようにしたことにより製造用基板5に対する積層用基板2の位置ずれを最小限に収えた状態で電気的な接続を確実に実行することができ、かくして、従来に比して簡易な方法で電気的耐性の強い多層基板を製造することができる。
【0044】
なお上述の実施の形態においては、第1段階(図1(A)上段)で製造用基板5の一面5Aにおける面積に対してほぼ1/3の面積となるように両面銅張板1aを切り分けて積層用基板2、3及び4を予め作製しておくことにより選定する場合について述べたが、本発明はこれに限らず、製造用基板5と同サイズであっても製造用基板5よりも収縮量が少ない積層用基板を用いていれば良く、要は、第2段階(図1(B))の工程へ移行する際に製造用基板の収縮量に比して少ない収縮量でなる積層用基板が選定されていれば、この他種々の積層用基板を幅広く用いることができる。
【0045】
また上述の実施の形態においては、接続仲介部としてのガラスエポキシ材質でなる介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26c(層間部31〜33)を用いる場合について述べたが、本発明はこれに限らず、ポリフェニレンエーテル又はビスマレイミドトリアジン材質等、この他種々の材質でなる接続仲介部を用いるようにしても良い。
【0046】
この場合、特に、ポリフェニレンエーテル又はビスマレイミドトリアジンの含有量が多い材質でなる接続仲介部は、ガラスエポキシ材質でなる覆蓋プリプレグ26a〜26c及び介挿プリプレグ25a〜25cに比して熱膨張係数が低いので加熱後の硬化による反りを効果的に低減し得ることにより、製造用基板5に対する積層用基板2の位置ずれを一段と収えた状態で電気的な接続を一段と確実に実行することができる。
【0047】
さらに上述の実施の形態においては、表面実装部品としてのベアチップ11a、11b及び11cを積層用基板2、3及び4に実装する場合について述べたが、本発明はこれに限らず、ベアチップ11a、11b及び11cを製造用基板5に実装するようにしても良い。この場合上述の実施の形態と同様の効果を得ることができる。
【0048】
さらに上述の実施の形態においては、表面実装部品としてのベアチップ11a、11b及び11cを実装する場合について述べたが、本発明はこれに限らず、トランジスタやダイオード等の部品でなるこの他種々の表面実装部品を実装することができる。この場合上述の実施の形態と同様の効果を得ることができる。
【0049】
さらに上述の実施の形態においては、介挿プリプレグ25a、25b又は25cの厚さを適宜変更する場合について述べたが、本発明はこれに限らず、当該介挿プリプレグ25a、25b又は25cの厚さの変更に加えて、積層用基板2、3又は4のサイズを最終製品への実装用面積とほぼ同面積となるようにそれぞれ選定し、最終製品の実装用の配線パターンにそれぞれ配線41、42又は43を形成するようにしても良い。
【0050】
この場合、多層基板製造装置は、多層基板51〜53を製造する工程前に、最終製品へ実装し得る実装空間に対応させたものとしてそれぞれ製造でき、多層基板51〜53として切断した後には、最終製品への実装を円滑に行わせることができると共に、最終製品への実装時における冗長な工程を省略することができる。
【0051】
さらに上述の実施の形態においては、スルーホール35A及び36A、35B及び36B、35C及び36Cを形成する際に、製造用基板5と積層用基板2〜4とを介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cによって一体化した後に貫通孔を形成する場合について述べたが、本発明はこれに限らず、当該一体化する前に貫通孔を形成するようにしても良い。
【0052】
この場合、上述の第3段階を示した図2(C)との対応部分に同一符号を付して示す図6のように、多層基板製造装置は、導電ペースト、はんだ又はスタッドバンプ等でなる棒状の導通用部材62A及び63A、62B及び63B、62C及び63Cを製造用基板5の配線W1、W2及びW3上のスルーホール形成位置に予め突設しておくと共に、介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cに対して当該導通用部材62A及び63A、62B及び63B、62C及び63Cにそれぞれ対応する位置に貫通孔64A及び65A、64B及び65B、64C及び65Cを形成しておく。
【0053】
そして多層基板製造装置は、貫通孔64A及び65A、64B及び65B、64C及び65Cに導通用部材62A及び63A、62B及び63B、62C及び63Cを挿通させて介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cを順次積層し、続いてベアチップ11a、11b及び11cが実装された積層用基板2、3及び4を積層した後、介挿プリプレグ25a〜25c及び覆蓋プリプレグ26a〜26cを加熱することにより製造用基板5と積層用基板2、3及び4とを一体化する。
【0054】
このようにすれば、多層基板製造装置は、上述の第5段階(図4(E))における銅めっき処理工程を削除することができると共に、製造用基板5に対する積層用基板2の収縮量を当該積層用基板2の収縮量sh2の範囲内に収めることに伴って位置ずれを一段と低減した状態で電気的な接続を一段と確実に実行することができる。
【0055】
さらに上述の実施の形態においては、製造用基板5の一面5Aへ介挿プリプレグ25a及び覆蓋プリプレグ26aを介して積層用基板2を積層する場合について述べたが、本発明はこれに限らず、製造用基板5の他面5Bに積層用基板を積層するようにしても良い。
【0056】
例えば図4(D)との対応部分に同一符号を付した図7(A)に示す具体例のように、多層基板製造装置は、上下反転された製造用基板5の他面5Bに所定の配線70を形成し、その形成部分にベアチップ71をフリップチップ実装する。
【0057】
続いて多層基板製造装置は、製造用基板5の一面5B上へ、ベアチップ71実装部分を囲むような(コの字状のように一部が空いていても良い)介挿プリプレグ72を積層した後、当該配線70と、製造用基板5の収縮量に比して少ない収縮量でなる積層用基板73の配線とを位置決めさせた状態で当該積層用基板73を積層する。
【0058】
この状態において多層基板製造装置は、介挿プリプレグ72を加熱硬化することにより、製造用基板5、介挿プリプレグ72及び積層用基板73を一体化させた後にスルーホール75A、75Bを形成する。
【0059】
また、例えば図4(D)との対応部分に同一符号を付した図7(B)に示す具体例のように、多層基板製造装置は、上下反転された製造用基板5の他面5Bに所定の配線80を形成し、その配線80上へ介挿プリプレグ82を積層した後、当該配線80と、製造用基板5の収縮率に比して少ない収縮率でなる積層用基板83の配線とを位置決めさせた状態で当該積層用基板83を積層する。
【0060】
この状態において多層基板製造装置は、介挿プリプレグ82を加熱硬化することにより、製造用基板5、介挿プリプレグ82及び積層用基板83を一体化させた後にスルーホール85を形成する。
【0061】
かかる具体例の場合、上述の実施の形態と同様に、製造用基板5の配線70及び80と積層用基板73及び83の配線との位置関係は、ほぼ保持された状態のまま収縮することにより、製造用基板5の配線70及び80に対する積層用基板73及び83の配線のずれ量は当該積層用基板73及び83の収縮量の範囲内に収まるので、多層基板製造装置は、製造用基板5に対する積層用基板2(3、4)の位置ずれと、当該製造用基板5に対する積層用基板73及び83の位置ずれとの双方とも最小限に収えた状態で電気的な接続を確実に実行することができる。
【0062】
これに加えて、積層用基板73及び83の一面及び介挿プリプレグ72及び82の面積を最終製品(マザー基板)への実装用のサイズに選定すると共に、製造用基板5に対して積層用基板73又は83を積層した際の高さが最終製品へ実装する際の高さにほぼ一致するように介挿プリプレグ72及び82の厚みを選定させておけば、最終製品への実装空間が複雑な場合でも、それに対応させたものを1つの製造用基板5上で製造でき、その結果、最終製品への実装を円滑に行わせることができると共に、最終製品への実装時における冗長な工程を省略することができる。
【0063】
【発明の効果】
上述のように本発明は、第1の基板に対して電子部品を接合する接合工程と、第1の基板よりも大きい面積でなる第2の基板上に、電子部品に対する収容空間が設けられた板状プリプレグを積層するプリプレグ積層工程と、電子部品が接合された第1の基板を、該電子部品が収容空間に収容されるように第2の板状プリプレグに積層する基板積層工程と、板状プリプレグを加熱する加熱工程とをもつ多層基板製造方法を採用した。
【0064】
従ってこの多層基板製造方法では、加熱工程での加熱により第1の基板及び第2の基板が収縮しても、第2の基板に対する第1の基板の位置ずれが、第1の基板の収縮量の範囲内に収まるようにすることが可能となるため、当該位置ずれに起因する、第1の基板及び第2の基板の電気的耐性の低下を抑えることができ、かくして電気的耐性の強い多層基板製造方法を実現できる。
【図面の簡単な説明】
【図1】多層基板の製造工程(1)を示す略線的断面図である。
【図2】多層基板の製造工程(2)を示す略線的断面図である。
【図3】各基板における収縮の様子を示す略線的断面図である。
【図4】多層基板の製造工程(3)を示す略線的断面図である。
【図5】多層基板を示す略線的断面図である。
【図6】他の実施の形態によるスルーホールの形成を示す略線的断面図である。
【図7】他の実施の形態による多層基板の製造工程を示す略線的断面図である。
【符号の説明】
2、3、4、73、83……積層用基板、5……製造用基板、11a、11b、11c、71……ベアチップ、15、16、17……積層用回路基板、25a、25b、25c……覆蓋プリプレグ、26a、26b、26c、72、82……介挿プリプレグ、31、32、33……層間部、35A、35B、35C、36A、36B、36C、75A、75B、85……スルーホール、50……製造用多層基板、51、52、53……多層基板、62A、62B、62C、63A、63B、63C……導通用部材、64A、64B、64C、65A、65B、65C……貫通孔。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer substrate manufacturing method, and is suitable for application to a multilayer substrate manufacturing method in which, for example, two substrates are laminated to manufacture a multilayer substrate.
[0002]
[Prior art]
Conventionally, in a multilayer substrate manufacturing method, a substrate for stacking having the same size and the same material as that of the manufacturing substrate is stacked on a manufacturing substrate having a manufacturing size, and one surface of the manufacturing substrate and the stacking substrate is stacked. On the other hand, a multilayer substrate is manufactured by forming through-holes substantially perpendicularly to each other and connecting the layers.
[0003]
[Problems to be solved by the invention]
By the way, in such a multilayer substrate manufacturing method, although the manufacturing substrate and the lamination substrate having the same size and the same material are used, the wiring occupancy ratio on one surface of the manufacturing substrate and the lamination substrate is different, so that the manufacturing process is in progress. The amount of shrinkage in the organic material of the substrate for production and the amount of shrinkage in the organic material of the substrate for lamination are greatly different due to the heat treatment and the cooling treatment.
[0004]
Therefore, in the multilayer substrate manufacturing method, even if the through hole is formed so as to penetrate substantially perpendicularly to one surface of the manufacturing substrate and the laminated substrate, the through hole that should be originally formed on the manufacturing substrate and the laminated substrate is used. Since the formation position of the hole is greatly shifted due to the difference in contraction amount, there is a problem that the electrical connection cannot be sufficiently performed and the electrical resistance is weak.
[0005]
The present invention has been made in consideration of the above points, and an object of the present invention is to propose a multilayer substrate manufacturing method capable of manufacturing a multilayer substrate having high electrical resistance by a simpler method than in the past.
[0006]
[Means for Solving the Problems]
  In order to solve this problem, the present invention provides:A bonding step of bonding an electronic component to the first substrate, and a prepreg lamination in which a plate-shaped prepreg provided with an accommodation space for the electronic component is stacked on a second substrate having a larger area than the first substrate. A step of laminating the first substrate to which the electronic component is bonded to the second plate-shaped prepreg so that the electronic component is accommodated in the accommodating space, and a heating step of heating the plate-shaped prepreg. A multilayer substrate manufacturing method with
[0007]
  ThereforeThis multilayer substrate manufacturing methodThen1st by heating in the heating processSubstrate andSecondEven if the substrate shrinks,SecondAgainst the substrateFirstThe substrate displacement isFirstWithin the shrinkage range of the boardIt becomes possible toFor,ConcernedMisalignmentDue to the firstSubstrate andA decrease in electrical resistance of the second substrate can be suppressed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0009]
In this invention, the multilayer substrate manufacturing method for manufacturing the multilayer substrates 51-53 (FIG. 5) which are finished products is demonstrated using FIGS.
[0010]
As the first stage (upper stage in FIG. 1A), a multilayer board manufacturing apparatus (not shown) has a glass epoxy double-sided copper clad 1a having a worksheet size (area) for board manufacturing of approximately 1/3. After dividing into three substrates having the following areas, wiring is formed by one wiring pattern by sequentially performing etching resist processing and wet etching processing on the surfaces 2A, 3A, and 4A of the three substrates. By forming wir1, wir2 and wir3, the laminated substrates 2, 3 and 4 are produced.
[0011]
On the other hand, the multi-layer substrate manufacturing apparatus has a double-sided copper-clad plate 1a to a laminated substrate 2 from one side 5A of a double-sided copper-clad plate 1b having the same size and the same material as the double-sided copper-clad plate 1a (lower stage in FIG. The manufacturing substrate 5 is manufactured by forming the wirings W1, W2, and W3 by performing the same processing as described above at the positions corresponding to the wirings wir1, wir2, and wir3 when the 3 and 4 are manufactured.
[0012]
As a result, the multilayer substrate manufacturing apparatus selects the stacking substrates 2, 3 and 4 having an area of approximately 1/3 or less of the area of the one surface 5 </ b> A of the manufacturing substrate 5, and the wirings W <b> 1, W <b> 2 of the manufacturing substrate 5 and W3 can be formed in a state of being separated from each other by a predetermined distance.
[0013]
The reason why the stacking substrates 2, 3, and 4 are selected to be approximately 1/3 or less of the area of the one surface 5 </ b> A of the manufacturing substrate 5 will be described later.
[0014]
In addition, the multi-layer substrate manufacturing apparatus performs terminal plating on the wirings W1, W2, and W3 of the manufacturing substrate 5, thereby stacking the stacking substrates 2, 3, and 4 on the manufacturing substrate 5. Additional steps such as a masking process to be performed can be omitted.
[0015]
As the second stage (upper stage in FIG. 1B), the multilayer substrate manufacturing apparatus is formed on the surface 2A of the lamination substrate 2 and the stat bumps 12a formed at predetermined positions on the circuit formation surface of the bare chip 11a made of a semiconductor memory or the like. The inner peripheral wiring wir1 is joined (so-called flip chip mounting) via the anisotropic conductive film 13a.
[0016]
Similarly, the multi-layer substrate manufacturing apparatus includes stat bumps 12b and 12c formed at predetermined positions on the circuit formation surfaces of the bare chips 11b and 11c, inner wirings wir2 formed on one surface 3A and 4A of the substrates 3 and 4 for lamination, and Wir3 is flip-chip mounted via anisotropic conductive films 13b and 13c.
[0017]
As a third stage (FIG. 2C), the multilayer substrate manufacturing apparatus includes an insertion prepreg 25a made of a glass epoxy material having substantially the same area as the one surface 2A of the substrate for lamination 2 on the wiring W1 of the substrate for manufacturing 5. The cover prepreg 26a is sequentially laminated, and the lamination substrate 2 on which the bare chip 11a is mounted is laminated in a state where the wiring wir1 is positioned facing the wiring W1.
[0018]
Similarly, the multi-layer substrate manufacturing apparatus has glass epoxy material insertion prepregs 25b and 25c and a cover prepreg having substantially the same area as the surfaces 3A and 4A of the substrates 3 and 4 on the wirings W2 and W3 of the substrate 5 for manufacturing. 26b and 26c are sequentially stacked, and the stacked substrates 3 and 4 on which the bare chips 11b and 11c are mounted are stacked in a state where the wirings wir2 and wir3 are positioned facing the wirings W2 and W3.
[0019]
Here, the inserted prepregs 25a, 25b and 25c are for selecting a predetermined thickness between the manufacturing substrate 5 and the stacking substrates 2, 3 and 4, and the cover prepreg 26a, 26b and 26c are for covering the bare chips 11a, 11b and 11c.
[0020]
In this case, the multilayer substrate manufacturing apparatus can appropriately change the thickness of the interposed prepregs 25a, 25b, or 25c, whereby the stacking substrate 2, 3 or 4 is stacked on the manufacturing substrate 5. Thus, the height can be made to substantially coincide with the height required when mounted on a motherboard used as a part of the final product.
[0021]
Therefore, the multilayer substrate manufacturing apparatus can flexibly cope with the height restriction when the thickness between the manufacturing substrate 5 and the stacking substrate 2, 3 or 4 is mounted on the mounting device. Yes.
[0022]
Further, the multilayer substrate manufacturing apparatus can form the bare chip cover spaces v1, v2, and v3 by removing a part of the cover prepreg 26a, 26b, or 26c according to the volume of the bare chip 11a, 11b, or 11c. Yes.
[0023]
As a result, the multilayer substrate manufacturing apparatus can accommodate the bare chips 11a, 11b, and 11c via the bare chip covering spaces v1, v2, and v3, so that the stacking substrates 2, 3, and the bare chips 11a, 11b, and 11c mounted thereon can be accommodated. 4 can be stacked on the cover prepregs 26a, 26b and 26c without interfering with each other, and when the cover prepregs 26a, 26b and 26c are thermally cured in the stacked state, the cover prepregs 26a, 26b and 26c It is made to be able to diffuse.
[0024]
Accordingly, as the fourth stage (FIG. 2D), the multilayer substrate manufacturing apparatus heats the insertion prepregs 25a to 25c and the cover prepregs 26a to 26c (FIG. 2C) to a predetermined temperature in a vacuum atmosphere. The periphery of the bare chips 11a to 11c is covered by diffusion when the insertion prepregs 25a to 25c and the cover prepregs 26a to 26c are thermally cured, and the stacking substrates 2 to 4 and the manufacturing substrate 5 are integrated with keeping airtightness. The formed interlayer portions 31, 32, and 33 are formed.
[0025]
After that, when the multilayer substrate manufacturing apparatus returns to room temperature and normal pressure, the laminated substrates 2, 3, 4 and the manufacturing substrate 5 are opposite to the thermosetting insertion prepregs 25 a to 25 c and the cover lid prepregs 26 a to 26 c. Since the organic member of the laminated substrates 2, 3, 4 and the manufacturing substrate 5 is cured according to the characteristics, the organic member is eventually contracted.
[0026]
In this case, for example, as shown in FIG. 3, the production substrate 5 and the lamination substrates 2, 3, and 4 are made of the same material and have the same shrinkage rate, but the lamination substrates 2, 3, and 4 are The areas of the other surfaces 2B, 3B and 4B are smaller than the other surface 5B of the manufacturing substrate 5 having the work size (that is, the wiring substrates W1, W2 and W2 are separated by separating the lamination substrates 2, 3 and 4 by a predetermined interval sp1 and sp2, respectively. W3 is an independent configuration), and the shrinkage amounts sh3 and sh4, sh5 and sh6, sh7 and sh8 of the multilayer substrates 2, 3 and 4 are much higher than the shrinkage amounts sh1 and sh2 of the manufacturing substrate 5. Less.
[0027]
In addition to this, since the lamination substrates 2, 3 and 4 are held in a state of being laminated on the production substrate 5, the positions of the lamination substrates 2, 3 and 4 with respect to the contraction operation of the production substrate 5. Almost no deviation occurs. That is, the manufacturing substrate 5 is contracted while the positional relationship of the stacking substrates 2, 3 and 4 is substantially maintained with respect to the manufacturing substrate 5.
[0028]
Accordingly, the shift amounts of the wirings wir1, wir2 and wir3 of the lamination substrates 2, 3 and 4 with respect to the wirings W1, W2 and W3 of the production substrate 5 are the shrinkage amounts sh3 and sh4 and sh5 of the lamination substrates 2, 3 and 4. As a result, the multilayer substrate manufacturing apparatus is electrically connected with the positional deviation of the stacked substrates 2, 3 and 4 with respect to the manufacturing substrate 5 being minimized. A connection can be made.
[0029]
Here, the reason why the laminating substrates 2, 3, and 4 are selected to be approximately 1/3 the area of the manufacturing substrate 5 in the first stage (the upper stage in FIG. 1A) is 1 that is a worksheet size. From the viewpoint of productivity in which a large number of products can be manufactured by laminating on a single manufacturing substrate 5, the area of one side 2A, 3A and 4A of the laminating substrates 2, 3 and 4 should be made as small as possible. However, the shrinkage amounts sh3 and sh4, sh5 and sh6, sh7 and sh8 (FIG. 4) of the laminated substrates 2, 3 and 4 are taken into account while considering the necessity of mounting the bare chips 11a, 11b and 11c. Considering that the amount of shrinkage can be accommodated in the inside, it is generally considered that an area of at least about 1/3 with respect to the area of one surface 5A of the manufacturing wiring board 5 is ideal. is there.
[0030]
Therefore, in the first stage (the upper stage in FIG. 1A), the multilayer substrate manufacturing apparatus is configured so that the surfaces 2A, 3A, and 4A of the lamination substrates 2, 3, and 4 are approximately 1/3 of the area of the surface 5A of the manufacturing substrate 5. By cutting the area so as to have an area, the productivity can be ensured to the maximum necessary, and the misalignment of the laminated substrates 2, 3 and 4 with respect to the manufacturing substrate 5 can be minimized. Yes.
[0031]
In this state, as the fifth stage (FIG. 4E), the multilayer substrate manufacturing apparatus sequentially passes the wirings wir1 to wir3 and the wirings W1 to W3 from predetermined positions on the other surfaces 2B to 4B of the stacking substrates 2 to 4. After a through hole is formed almost vertically over the other surface 5B of the manufacturing substrate 5, copper plating is performed on the inner peripheral surface of the through hole to form through holes 35A and 36A, 35B and 36B, 35C and 36C. To do.
[0032]
Thereby, the multilayer substrate manufacturing apparatus includes the other surfaces 2B to 4B and the other surfaces 2A to 4A of the stacking substrates 2 to 4 and the one surface 5A and the other surface 5B of the manufacturing substrate 5 to the through holes 35A and 36A, 35B and 36B, The layers from the other surfaces 2B to 4B of the stacking substrates 2 to 4 to the other surface 5B of the manufacturing substrate 5 are firmly and electrically connected to each other via 35C and 36C.
[0033]
As a sixth stage (FIG. 4F), the multilayer substrate manufacturing apparatus forms wirings 41, 42, and 43 having a predetermined pattern on the other surfaces 2B, 3B, and 4B of the laminated substrates 2, 3, and 4, A multilayer board 50 for manufacturing is produced.
[0034]
As a seventh stage, as shown in FIG. 5, the multilayer substrate manufacturing apparatus cuts the manufacturing substrate 5 of the manufacturing multilayer substrate 50 (FIG. 4F) at a predetermined position, so that the multilayer substrates 51, 52 and 53 can be manufactured.
[0035]
The multilayer substrates 51, 52 and 53 are laminated substrates for the production substrate 5 even when the organic material of the production substrate 5 and the lamination substrates 2, 3 and 4 is shrunk by heat treatment or cooling treatment during the production process. The electrical resistance is enhanced as a whole by being electrically connected through the through holes 35A and 36A, 35B and 36B, 35C and 36C in a state where the positional deviation of 2, 3, and 4 is minimized. Has been.
[0036]
In the multilayer substrate manufacturing method described above, the multilayer substrate manufacturing apparatus first uses a glass epoxy material double-sided copper-clad plate 1a (upper stage in FIG. 1A) having a worksheet size (area) on one surface 5A of the manufacturing substrate 5. The lamination substrate 2 is cut in advance so as to have an area that is approximately 1/3 of the area, whereby the lamination substrate 2 having a smaller shrinkage amount than the shrinkage amount of the production substrate 5 is obtained. Select.
[0037]
Then, the multilayer substrate manufacturing apparatus causes the wiring wir1 of the lamination substrate 2 to face the wiring W1 formed on the one surface 5A (FIG. 2C) of the manufacturing substrate 5 via the insertion prepreg 25a and the cover prepreg 26a. Then, the laminated circuit board 15 is laminated in the positioned state.
[0038]
Here, the multilayer substrate manufacturing apparatus heats and cures the insertion prepreg 25a (FIG. 2D) and the cover prepreg 26a, and integrates the manufacturing substrate 5, the insertion prepreg 25a, the cover prepreg 26a, and the lamination substrate 2. Then, when the temperature is returned to room temperature, the lamination substrate 2 and the production substrate 5 shrink (FIG. 3) when cured according to the characteristics of the organic member.
[0039]
However, since the laminated substrate 2 is smaller than the other surface 5B of the manufacturing substrate 5 whose other surface 2B is a workpiece size, the shrinkage amounts sh3 and sh4 are much smaller than the shrinkage amounts sh1 and sh2 of the manufacturing substrate 5. The wiring of the stacking substrate 2 with respect to the wiring W1 of the manufacturing substrate 5 is reduced by shrinking the manufacturing substrate 5 while the positional relationship of the stacking substrate 2 with respect to the manufacturing substrate 5 is substantially maintained. The shift amount of wir1 falls within the range of the shrinkage amounts sh3 and sh4 of the laminated substrate 2.
[0040]
In this state, the multilayer substrate manufacturing apparatus has a through-hole substantially perpendicularly extending from a predetermined position on the other surface 2B of the lamination substrate 2 (FIG. 4E) to the other surface 5B of the manufacturing substrate 5 via the wiring wir1 and the wiring W1. 35A and 36A were formed.
[0041]
Accordingly, in the multilayer substrate manufacturing apparatus, even if the manufacturing substrate 5 and the lamination substrate 2 are contracted, the displacement of the wiring wir1 with respect to the wiring W1 of the manufacturing substrate 5 is within the range of the contraction amounts sh3 and sh4 of the stacking substrate 2. Therefore, electrical connection can be reliably performed in a state where the positional deviation of the laminated substrate 2 with respect to the manufacturing substrate 5 is minimized.
[0042]
Further, the multilayer substrate manufacturing apparatus has a configuration in which the wirings W2 and W3 are separated from each other by a predetermined interval sp1 and sp2 on one surface 5A of the manufacturing substrate 5 (FIG. 3), and through-holes are formed by the same process as the stacking substrate 2. By forming 35B and 36B (FIG. 4E), 35C and 36C, the shift amounts of the wirings wir1, wir2 and wir3 of the lamination substrates 2, 3 and 4 with respect to the wiring W1 of the production substrate 5 are laminated. The shrinkage amounts sh3 and sh4, sh5 and sh6, sh7 and sh8 of the production substrates 2, 3 and 4 can be realized on one manufacturing substrate 5 at a time.
[0043]
According to the multilayer circuit board manufacturing method as described above, the multilayer board manufacturing apparatus is configured such that even if the manufacturing board 5 and the lamination board 2 contract due to the characteristics of the organic members of the production board 5 and the lamination board 2, Since the shift amount of the wiring wir1 of the lamination substrate 2 with respect to the wiring W1 of the production substrate 5 falls within the range of the shrinkage amounts sh3 and sh4 of the lamination substrate 2, the lamination substrate 2 with respect to the production substrate 5 Electrical connection can be reliably performed with the positional deviation kept to a minimum, and thus a multilayer substrate having high electrical resistance can be manufactured by a simpler method than in the past.
[0044]
In the above-described embodiment, the double-sided copper-clad plate 1a is cut in the first stage (the upper stage in FIG. 1A) so that the area of the one surface 5A of the manufacturing substrate 5 is approximately 1/3. However, the present invention is not limited to this, and the present invention is not limited to this. It is only necessary to use a laminated substrate with a small amount of shrinkage, and the point is that the amount of shrinkage is smaller than the amount of shrinkage of the production substrate when the process proceeds to the second stage (FIG. 1B). If a substrate for use is selected, a variety of other laminated substrates can be used widely.
[0045]
In the above-described embodiment, the case where the insertion prepregs 25a to 25c and the cover prepregs 26a to 26c (interlayer portions 31 to 33) made of glass epoxy material are used as the connection mediating portion is described. In addition to the above, a connection mediating portion made of various other materials such as polyphenylene ether or bismaleimide triazine may be used.
[0046]
In this case, in particular, the connection mediating portion made of a material having a high content of polyphenylene ether or bismaleimide triazine has a lower coefficient of thermal expansion than the cover prepregs 26a to 26c and the interposed prepregs 25a to 25c made of glass epoxy material. Therefore, the warp due to curing after heating can be effectively reduced, so that the electrical connection can be more reliably performed in a state in which the positional deviation of the lamination substrate 2 with respect to the production substrate 5 is further reduced.
[0047]
Furthermore, in the above-described embodiment, the case where the bare chips 11a, 11b, and 11c as the surface mounting components are mounted on the lamination substrates 2, 3, and 4 has been described. However, the present invention is not limited to this, and the bare chips 11a, 11b are mounted. And 11c may be mounted on the manufacturing substrate 5. In this case, the same effect as that of the above-described embodiment can be obtained.
[0048]
Further, in the above-described embodiment, the case where the bare chips 11a, 11b, and 11c as the surface mounting components are mounted has been described. However, the present invention is not limited to this, and various other surfaces including components such as transistors and diodes. A mounting component can be mounted. In this case, the same effect as that of the above-described embodiment can be obtained.
[0049]
Furthermore, in the above-mentioned embodiment, although the case where the thickness of the insertion prepreg 25a, 25b or 25c was changed suitably was described, this invention is not limited to this, The thickness of the said insertion prepreg 25a, 25b or 25c In addition to the above change, the size of the laminated substrate 2, 3 or 4 is selected so as to be approximately the same as the area for mounting on the final product, and the wiring 41, 42 is mounted on the wiring pattern for mounting the final product, respectively. Alternatively, 43 may be formed.
[0050]
In this case, the multilayer substrate manufacturing apparatus can be manufactured as a device corresponding to a mounting space that can be mounted on the final product before the step of manufacturing the multilayer substrates 51 to 53, and after being cut as the multilayer substrates 51 to 53, Mounting on the final product can be performed smoothly, and redundant steps when mounting on the final product can be omitted.
[0051]
Further, in the above-described embodiment, when the through holes 35A and 36A, 35B and 36B, 35C and 36C are formed, the interposing prepregs 25a to 25c and the cover prepregs are interposed between the production substrate 5 and the lamination substrates 2 to 4. Although the case where the through holes are formed after being integrated by 26a to 26c has been described, the present invention is not limited thereto, and the through holes may be formed before the integration.
[0052]
In this case, as shown in FIG. 6 in which the same reference numerals are assigned to the parts corresponding to FIG. 2C showing the third stage described above, the multilayer substrate manufacturing apparatus is made of conductive paste, solder, stud bumps, or the like. The rod-like conducting members 62A and 63A, 62B and 63B, 62C and 63C are projected in advance at the through-hole forming positions on the wirings W1, W2 and W3 of the manufacturing substrate 5, and the insertion prepregs 25a to 25c and Through holes 64A and 65A, 64B and 65B, 64C and 65C are formed in the cover prepregs 26a to 26c at positions corresponding to the conducting members 62A and 63A, 62B and 63B, 62C and 63C, respectively.
[0053]
The multilayer board manufacturing apparatus inserts the conducting members 62A and 63A, 62B and 63B, 62C and 63C through the through holes 64A and 65A, 64B and 65B, 64C and 65C, and inserts the prepregs 25a to 25c and the cover prepregs 26a to 26c. 26c are sequentially stacked, and subsequently, the stacking substrates 2, 3 and 4 on which the bare chips 11a, 11b and 11c are mounted are stacked, and then the interposing prepregs 25a to 25c and the cover prepregs 26a to 26c are heated. The substrate 5 and the lamination substrates 2, 3 and 4 are integrated.
[0054]
In this way, the multilayer substrate manufacturing apparatus can eliminate the copper plating process in the fifth stage (FIG. 4E) and can reduce the shrinkage amount of the stacking substrate 2 relative to the manufacturing substrate 5. The electrical connection can be more reliably performed in a state where the positional deviation is further reduced as the stacking substrate 2 falls within the shrinkage sh2.
[0055]
Further, in the above-described embodiment, the case where the lamination substrate 2 is laminated on the one surface 5A of the production substrate 5 via the insertion prepreg 25a and the cover prepreg 26a has been described. However, the present invention is not limited thereto, and the production is not limited thereto. A lamination substrate may be laminated on the other surface 5B of the production substrate 5.
[0056]
For example, as in the specific example shown in FIG. 7A in which the same reference numerals are assigned to the parts corresponding to FIG. 4D, the multilayer substrate manufacturing apparatus has a predetermined surface on the other surface 5B of the manufacturing substrate 5 turned upside down. A wiring 70 is formed, and a bare chip 71 is flip-chip mounted on the formation portion.
[0057]
Subsequently, the multilayer board manufacturing apparatus laminates an insertion prepreg 72 that surrounds the mounting portion of the bare chip 71 on the surface 5B of the manufacturing board 5 (a part may be vacant like a U-shape). Thereafter, the lamination substrate 73 is laminated in a state where the wiring 70 and the wiring of the lamination substrate 73 having a smaller shrinkage amount than the shrinkage amount of the manufacturing substrate 5 are positioned.
[0058]
In this state, the multilayer board manufacturing apparatus heats the insertion prepreg 72 to form the through holes 75 </ b> A and 75 </ b> B after integrating the manufacturing board 5, the insertion prepreg 72, and the lamination board 73.
[0059]
Further, for example, as in the specific example shown in FIG. 7B in which the same reference numerals are given to the corresponding parts to FIG. 4D, the multilayer substrate manufacturing apparatus is arranged on the other surface 5B of the manufacturing substrate 5 turned upside down. After forming the predetermined wiring 80 and laminating the insertion prepreg 82 on the wiring 80, the wiring 80 and the wiring of the lamination substrate 83 having a smaller shrinkage rate than the shrinkage rate of the manufacturing substrate 5 In this state, the lamination substrate 83 is laminated.
[0060]
In this state, the multilayer substrate manufacturing apparatus heats and cures the insertion prepreg 82, thereby forming the through hole 85 after integrating the manufacturing substrate 5, the insertion prepreg 82, and the lamination substrate 83.
[0061]
In the case of such a specific example, as in the above-described embodiment, the positional relationship between the wirings 70 and 80 of the manufacturing substrate 5 and the wirings of the lamination substrates 73 and 83 is contracted while being substantially held. Since the amount of displacement of the wiring of the lamination substrates 73 and 83 with respect to the wiring 70 and 80 of the production substrate 5 falls within the range of the contraction amount of the lamination substrates 73 and 83, the multilayer substrate production apparatus is provided with the production substrate 5 The electrical connection is reliably executed in a state where both the positional deviation of the laminated substrate 2 (3, 4) with respect to the substrate and the positional deviation of the laminated substrates 73 and 83 with respect to the manufacturing substrate 5 are kept to a minimum. be able to.
[0062]
In addition, the area of one side of the laminating substrates 73 and 83 and the area of the interposing prepregs 72 and 82 is selected as a size for mounting on the final product (mother substrate), and the laminating substrate with respect to the manufacturing substrate 5 If the thickness of the insertion prepregs 72 and 82 is selected so that the height when the layers 73 and 83 are stacked substantially matches the height when mounted on the final product, the mounting space on the final product is complicated. Even in this case, the corresponding product can be manufactured on one manufacturing substrate 5, and as a result, the mounting to the final product can be performed smoothly and the redundant process at the time of mounting to the final product can be omitted. can do.
[0063]
【The invention's effect】
  As described above, the present inventionA bonding step of bonding an electronic component to the first substrate, and a prepreg lamination in which a plate-shaped prepreg provided with an accommodation space for the electronic component is stacked on a second substrate having a larger area than the first substrate. A step of laminating the first substrate to which the electronic component is bonded to the second plate-shaped prepreg so that the electronic component is accommodated in the accommodating space, and a heating step of heating the plate-shaped prepreg. A multilayer substrate manufacturing method with
[0064]
  ThereforeThis multilayer substrate manufacturing methodThen1st by heating in the heating processSubstrate andSecondEven if the substrate shrinks,SecondAgainst the substrateFirstThe substrate displacement isFirstWithin the shrinkage range of the boardIt becomes possible toFor,ConcernedMisalignmentDue to the firstSubstrate andA reduction in electrical resistance of the second substrate can be suppressed, and thus a multilayer substrate manufacturing method having high electrical resistance can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a manufacturing step (1) of a multilayer substrate.
FIG. 2 is a schematic cross-sectional view showing a manufacturing step (2) of the multilayer substrate.
FIG. 3 is a schematic cross-sectional view showing a state of contraction in each substrate.
FIG. 4 is a schematic cross-sectional view showing a manufacturing step (3) of the multilayer substrate.
FIG. 5 is a schematic cross-sectional view showing a multilayer substrate.
FIG. 6 is a schematic cross-sectional view showing formation of a through hole according to another embodiment.
FIG. 7 is a schematic cross-sectional view illustrating a manufacturing process of a multilayer substrate according to another embodiment.
[Explanation of symbols]
2, 3, 4, 73, 83... Laminating substrate, 5... Manufacturing substrate, 11a, 11b, 11c, 71... Bare chip, 15, 16, 17 .. Laminating circuit substrate, 25a, 25b, 25c …… Cover prepreg, 26a, 26b, 26c, 72, 82 …… Interpolated prepreg, 31, 32, 33 …… Interlayer part, 35A, 35B, 35C, 36A, 36B, 36C, 75A, 75B, 85 …… Through Hall, 50 ... multilayer substrate for manufacturing, 51, 52, 53 ... multilayer substrate, 62A, 62B, 62C, 63A, 63B, 63C ... conductive member, 64A, 64B, 64C, 65A, 65B, 65C ... Through hole.

Claims (2)

第1の基板に対して電子部品を接合する接合工程と、
上記第1の基板よりも大きい面積でなる第2の基板上に、上記電子部品に対する収容空間が設けられた板状プリプレグを積層するプリプレグ積層工程と、
上記電子部品が接合された第1の基板を、該電子部品が上記収容空間に収容されるように上記板状プリプレグに積層する基板積層工程と、
上記板状プリプレグを加熱する加熱工程と
を具えることを特徴とする多層基板製造方法。
A bonding step of bonding electronic components to the first substrate;
A prepreg laminating step of laminating a plate-shaped prepreg provided with an accommodation space for the electronic component on a second substrate having a larger area than the first substrate;
A substrate laminating step of laminating the first substrate to which the electronic component is bonded to the plate-shaped prepreg so that the electronic component is accommodated in the accommodating space;
Multilayer substrate manufacturing method characterized by obtaining ingredients and heating step of heating the plate-shaped prepreg.
上記プリプレグ積層工程では、
上記第2の基板に対して、高さ調整用の板状プリプレグ及び上記電子部品に対する収容空間が設けられた板状プリプレグを順次積層し、
上記加熱工程では、
上記高さ調整用の板状プリプレグ及び上記電子部品に対する収容空間が設けられた板状プリプレグを加熱する
ことを特徴とする請求項1に記載の多層基板製造方法。
In the prepreg lamination process,
A plate-like prepreg for height adjustment and a plate-like prepreg provided with a housing space for the electronic component are sequentially laminated on the second substrate,
In the heating step,
2. The method for producing a multilayer substrate according to claim 1, wherein the plate-like prepreg for adjusting the height and the plate-like prepreg provided with a housing space for the electronic component are heated .
JP2002006767A 2002-01-15 2002-01-15 Multilayer substrate manufacturing method Expired - Lifetime JP4137451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006767A JP4137451B2 (en) 2002-01-15 2002-01-15 Multilayer substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006767A JP4137451B2 (en) 2002-01-15 2002-01-15 Multilayer substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2003209357A JP2003209357A (en) 2003-07-25
JP4137451B2 true JP4137451B2 (en) 2008-08-20

Family

ID=27645439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006767A Expired - Lifetime JP4137451B2 (en) 2002-01-15 2002-01-15 Multilayer substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4137451B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20031201A (en) * 2003-08-26 2005-02-27 Imbera Electronics Oy Procedure for manufacturing an electronics module and an electronics module
JP2006059992A (en) * 2004-08-19 2006-03-02 Shinko Electric Ind Co Ltd Method for manufacturing electronic component built-in board
JP4622449B2 (en) * 2004-10-21 2011-02-02 パナソニック株式会社 Electronic component built-in substrate and manufacturing method thereof
JP2006196567A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Method for manufacturing circuit formation substrate
JP2006203086A (en) * 2005-01-24 2006-08-03 Citizen Electronics Co Ltd Electronic part package and manufacturing method thereof
JP4688545B2 (en) * 2005-03-31 2011-05-25 富士通セミコンダクター株式会社 Multilayer wiring board
JP2007019268A (en) * 2005-07-07 2007-01-25 Toshiba Corp Wiring board and manufacturing method thereof, and electronic equipment incorporating wiring board
JP2007019267A (en) * 2005-07-07 2007-01-25 Toshiba Corp Wiring board and electronic equipment having the same
JP2007103776A (en) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd Method of manufacturing substrate having built-in electronic components
JP2007134369A (en) * 2005-11-08 2007-05-31 Matsushita Electric Ind Co Ltd Manufacturing method of multilayer board
JP4779668B2 (en) * 2006-01-25 2011-09-28 パナソニック株式会社 Manufacturing method of laminated substrate
JP2008078573A (en) * 2006-09-25 2008-04-03 Cmk Corp Multi-layer printed wiring board having built-in parts
JP2010034588A (en) * 2009-11-09 2010-02-12 Panasonic Corp Method of manufacturing circuit-component built-in substrate
JP5170227B2 (en) * 2010-12-10 2013-03-27 富士通セミコンダクター株式会社 Multilayer wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003209357A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP4137451B2 (en) Multilayer substrate manufacturing method
JP6083152B2 (en) Wiring board and method of manufacturing wiring board
JP4205749B2 (en) Electronic module manufacturing method and electronic module
EP2672789B1 (en) Ultrathin buried die module and method of manufacturing thereof
JP2676112B2 (en) Manufacturing method of electronic component mounting board
US5640760A (en) Method for the 3D interconnection of packages of electronic components using printed circuit boards
US7888174B2 (en) Embedded chip package process
US20090151990A1 (en) Multilayer wiring board and method of making the same
US20090283302A1 (en) Printed circuit board and manufacturing method thereof
JP2006324568A (en) Multilayer module and its manufacturing method
US20110030207A1 (en) Multilayer printed wiring board and manufacturing method thereof
KR20040005591A (en) Semiconductor-mounting substrate used to manufacture electronic packages, and production process for producing such semiconductor-mounting substrate
JPH098175A (en) Shelf formation method and bonding of multilayer printed-circuit board
JP2024037141A (en) Semiconductor package structure with hybrid core structure and method for manufacturing the same
JP2016048768A (en) Wiring board and manufacturing method of semiconductor device
US20050121225A1 (en) Multi-layer circuit board and method for fabricating the same
US20040140574A1 (en) Method of eliminating uncontrolled voids in sheet adhesive layer
KR100895241B1 (en) Method for manufacturing substrate for package
WO2013125033A1 (en) Circuit board manufacturing method
JP3885169B2 (en) Semiconductor device manufacturing method
JP2007258635A (en) Method for manufacturing built-in component substrate
JP2003197822A (en) Wiring board, multilayer wiring board and manufacturing method thereof
JP2002290033A (en) Method of manufacturing multilayer wiring board
JP5078451B2 (en) Electronic component built-in module
KR101923039B1 (en) Package structure and method for manufacturing package structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Ref document number: 4137451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term