JP4117385B2 - 宇宙線破壊耐量を有する半導体装置 - Google Patents

宇宙線破壊耐量を有する半導体装置 Download PDF

Info

Publication number
JP4117385B2
JP4117385B2 JP2002145902A JP2002145902A JP4117385B2 JP 4117385 B2 JP4117385 B2 JP 4117385B2 JP 2002145902 A JP2002145902 A JP 2002145902A JP 2002145902 A JP2002145902 A JP 2002145902A JP 4117385 B2 JP4117385 B2 JP 4117385B2
Authority
JP
Japan
Prior art keywords
semiconductor region
region
seb
impurity concentration
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002145902A
Other languages
English (en)
Other versions
JP2003338624A (ja
Inventor
三郎 田上
小林  孝
文明 桐畑
智司 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Fuji Electric Holdings Ltd filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2002145902A priority Critical patent/JP4117385B2/ja
Priority to US10/366,946 priority patent/US6885063B2/en
Publication of JP2003338624A publication Critical patent/JP2003338624A/ja
Application granted granted Critical
Publication of JP4117385B2 publication Critical patent/JP4117385B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に関し、特に宇宙線破壊耐量の高いパワーMOSFETを構成する半導体装置に関する。
【0002】
【従来の技術】
パワーMOSFETは、スイッチング素子として電源装置、モーターの駆動回路や制御回路等に広く用いられている。パワーMOSFETを宇宙用ロケットや人工衛星などに搭載する場合には、宇宙空間から飛来する高エネルギー重イオン粒子の突入によってパワーMOSFETが破壊されるのを防ぐ必要がある。そのため、この破壊(シングルイベントバーンアウト、SEB)に対する耐量(以下、SEB耐量とする)が高いパワーMOSFETを使用する必要がある。
【0003】
図7は、従来のnチャネルパワーMOSFETの構成を示す断面図である。このパワーMOSFETでは、N+半導体基板よりなるドレイン層11上にN-ベース層12がエピタキシャル成長され、そのN-ベース層12の表面部分に選択的にPベース領域13が形成され、さらにそのPベース領域13の表面部分に選択的にN+ソース領域14が形成される。また、Pベース領域13内にはN+ソース領域14の一部を覆う高不純物P+ベース領域が形成されるが、図中にはその詳細を省略する。そして、Pベース領域13の、N+ソース領域14とN-ベース層12との間の表面領域がチャネル領域となり、そのチャネル領域上にゲート絶縁膜15を介してゲート電極16が形成される。また、N+ソース領域14とPベース領域13とに共通にソース電極17が形成される。N+ドレイン層11の裏面にはドレイン電極18が形成される。
【0004】
ここで、図7に示す構成のパワーMOSFETのオン抵抗はチャネル領域の抵抗とN-ベース層12の抵抗とN+ドレイン層11の抵抗の和となるが、通常、これらの抵抗の中でN-ベース層12の抵抗が最も大きい。パワーMOSFETのスイッチング損失をできるだけ小さく抑えるためには、オン抵抗はできる限り小さいのが好ましい。したがって、一般にN-ベース層12の厚さは、耐圧を維持するのに必要な最低限の厚さに設計される。つまり、パワーMOSFETの設計においては、耐圧クラスVBRが決まればN-ベース層12の不純物濃度NDとその厚さはほぼ決まる。
【0005】
耐圧クラスVBRとN-ベース層12の不純物濃度NDとの関係は、Pベース領域13のアクセプタ濃度をNA、真空の誘電率をε0、半導体の比誘電率をε、電子の電荷をq、および半導体の絶縁破壊電界強度(Siの場合3.25×105V/cm)をEBRとし、階段接合と近似すればつぎの(1)式で表される。
BR=(ε・ε0(NA+ND)EBR 2)/(2q・NA・ND) ・・・(1)
【0006】
上記(1)式は、NA>>NDの場合にはつぎの(2)式に近似され、この(2)式よりN-ベース層12の不純物濃度NDが決まる。
BR=(ε・ε0・EBR 2)/(2q・ND) ・・・(2)
【0007】
また、N-ベース層12側の空乏層の幅dはつぎの(3)式で表され、N-ベース層12の全体の厚さはこのdにPベース領域13の厚さを足したものとなる。d=√((2ε・ε0・VBR)/(q・ND))=2VBR/EBR・・・(3)
実際の素子耐圧設計においては、(3)式を基準にしマージンをとってある。
【0008】
ところで、ブレークダウンによる素子破壊を防止するための改良を施した縦型MOSFETについて種々出願されている(特開昭59−132671号、特開昭60−196975号)。
【0009】
【発明が解決しようとする課題】
しかしながら、図7に示す構成のパワーMOSFETを宇宙用に用いた場合、このパワーMOSFETに高エネルギーを有する重イオン粒子が入射すると、耐圧の1/3〜1/2程度の印加電圧でもSEB破壊が起こるという問題点がある。このSEB破壊について、3次元デバイスシミュレーションによって明らかとなったメカニズムを詳細に説明すると、つぎのようになる。
【0010】
すなわち、ソース−ドレイン間およびソース−ゲート間をそれぞれ正および負にバイアスした状態で、このパワーMOSFETに高エネルギー重イオン粒子よりなる飛程Rを持った宇宙線が入射したとする。入射した宇宙線は、たとえばN+ソース領域14の先端を通り、N+ドレイン層11に達するまでの間にエネルギーを失いながら電子、正孔対を生成する。このときの入射ビームにより流れる電流は局所的に10万A/cm2を超えることがある。
【0011】
生成した電子は電界によりN+ドレイン層11に向かって流れる。一方、正孔はN+ソース領域14へ向かい、Pベース領域13を通ってソース電極17から引き出される。この正孔電流が一定値を超えると、N+ソース領域14とPベース領域13との間のpn接合が順バイアスされてラッチアップが起こり、N+ソース領域14から電子が注入される。つまり、寄生npnトランジスタがオン状態となる。注入された電子は、電流の通り易い入射ビームパスに沿ってN+ドレイン層11に達し、ここでダイナミックアバランシェを引き起こす。それによって、大量の電子、正孔対が発生する。
【0012】
ここで、JnおよびJpをそれぞれ電子電流および正孔電流の値とし、αnおよびαpをそれぞれ電子および正孔のインパクト・イオン化率で電界の函数であるとすると、半導体のキャリア対発生率Gはつぎの(4)式で表される。
G=αn・Jn+αp・Jp ・・・(4)
【0013】
この場合、JnおよびJpが極めて大きいため、スタティックな絶縁破壊電界強度(シリコンでは約2×105V/cm)よりもはるかに低い電界でもキャリア対発生率Gの値は大きくなる。つまり、大量の電子、正孔対が生成されることになる。発生した正孔は再びN+ソース領域14に向かって流れ、ラッチアップを促進するため、寄生npnトランジスタとの間でサイリスタモードに類似した正帰還がかかり、電流が急激に増大する。
【0014】
このようにして入射ビームパスに沿って高密度の電子、正孔プラズマが維持され、最終的には局所的に熱暴走が起こり、素子破壊に至る。正帰還がかかるまでの時間は通常1000ピコ秒程度である。図8にシミュレーションにより求めたSEB破壊が起こるときと起こらないときの電流波形の一例を示す。
【0015】
本発明は、上記問題点に鑑みてなされたものであって、宇宙用として用いるのに十分なSEB耐量を具えたパワーMOSFETを構成する半導体装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するため、本発明者らは、N-ベース層の不純物濃度をパラメータとし、トータルエピタキシャル成長層の厚さ(N+半導体基板から表面までの厚さ)とSEB耐量との関係についてシミュレーションをおこなった。図4に示す実線は、N-ベース層の不純物濃度を5×10 14 /cm 3 として厚さを変化させた時のSEB耐量と、N - ベース層の不純物濃度を1×10 15 /cm 3 として厚さを変化させた時のSEB耐量である。このようにN - ベース層の不純物濃度をパラメータとして厚さを変化させた、パラメータを5×1014/cm3の2倍に変化させて1×1015/cm3としても、相対的にSEB耐量はわずかに低下するが、それぞれの曲線形状がほとんど変化せず、トータルエピタキシャル成長層の厚さの増大と共にSEB耐量が増大していることを示している。その結果、新たにつぎのことが明らかとなった。図4はこのシミュレーション結果を示す特性図であるが、同図の実線より明らかなように、SEB耐量は、N-ベース層の不純物濃度にほとんど依存せず、トータルエピタキシャル成長層の厚さとともに増大することがわかる。これは、上述した正帰還がエピタキシャル成長層が厚くなるほどかかりにくくなるためである。以下に詳細を示す本発明は、宇宙線がシリコンを貫通するような場合でも適用できる。
【0017】
図4に付した三角印のA点は、エピタキシャル成長層を2段とし、表面に近い側の第1のエピタキシャル成長層の不純物濃度を1×1015/cm3とし、基板側の第2のエピタキシャル成長層の不純物濃度を3×1017/cm3とし、両エピタキシャル成長層を同じ厚さとしてトータルエピタキシャル成長層の厚さとした素子のシミュレーション結果である。5×10 14 /cm 3 の曲線及び1×10 15 /cm 3 の曲線の近くにA点があり、第2のエピタキシャル成長層の不純物濃度を3×10 17 /cm 3 としてもSEB耐量を備えていることがわかる。以上の結果より、SEB耐量はエピタキシャル成長層のトータル厚さでほぼ決まり、基板側の第2のエピタキシャル成長層の不純物濃度が3×1017/cm3 でもSEB耐量の低下はほとんどないことがわかる。したがって、図7に示す従来の構成において、N-ベース層とN+半導体基板よりなるドレイン層との間に比較的高不純物濃度のN型のベース層を設けることにより、オン抵抗をあまり増加させることなくSEB耐量を飛躍的に高めることができる。
【0018】
本発明は上述した知見に基づきなされたものであり、第1のN-ベース領域と、第1のN-ベース領域の表面部分に選択的に設けられたPベース領域と、Pベース領域の表面部分に選択的に設けられたN+ソース領域と、Pベース領域内でN+ソース領域の一部を覆うように設けられたP+ベース領域と、第1のN-ベース領域に接し、かつPベース領域から離れた第2のNベース領域と、第2のNベース領域に接し、かつ第1のN-ベース領域から離れたN+ドレイン領域と、Pベース領域の、第1のN-ベース領域とN+ソース領域との間にできるチャネル領域に沿って設けられたゲート絶縁膜と、チャネル領域との間にゲート絶縁膜を挟むゲート電極と、N+ソース領域およびPベース領域に共通に接したソース電極と、N+ドレイン領域に接したドレイン電極と、を具備し、第2のNベース領域は、その平均不純物濃度が1×1015/cm3以上3×1017/cm3以下であることを特徴とする。
【0019】
ここで、第2のNベース領域の厚さは、耐圧クラス100V以上の素子に対して第1のN-ベース領域の厚さの1/4以上であれば、従来構造の素子に比べ少なくとも50%以上のSEB耐量の向上が見込めるからである。また、第2のNベース領域の厚さの上限については、第1のN-ベース領域の厚さの10倍である。また、第2のNベース領域の平均不純物濃度が1×1015/cm3以上である理由は、これ以下の不純物濃度ではオン抵抗が増大してしまい、実用に適さなくなるからである。
【0020】
この発明によれば、N-ベース領域とN+半導体基板よりなるドレイン領域との間に、厚さd2の平均不純物濃度が1×1015/cm3以上3×1017/cm3以下である第2のNベース領域が設けられているため、寄生npnトランジスタのラッチアップと基板近傍でのダイナミックアバランシェとの間の正帰還が起こり難くなり、SEB耐量を高めることができる。また、チャネル領域表面部分でP+ベース領域のゲート側端部とN+ソース領域のゲート側端部の間の距離ΔLを0.6μm以下とすることで、寄生npnトランジスタが動作し難くなり、SEB耐量を高めることができる。
【0021】
あるいは、第2のNベース領域は、平均不純物濃度が1×1015/cm3以上3×1017/cm3以下であり、かつVSEB=8x(ここでVSEB,xの単位はそれぞれV,μmである)の直線上での必要な素子耐圧V1=12.5x(ここで、V1の単位はVである)に対しての厚さxとの差の1/2以上の厚さとすることで、オン抵抗Ronを損なわせることなく、SEB耐量を高めることができる。
【0022】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。図1は、本発明にかかる半導体装置を構成するパワーMOSFETの構成の一例を示す断面図である。このパワーMOSFETは、第1の半導体領域である第1のN-ベース層22、第2の半導体領域であるPベース領域23とこれよりも高不純物濃度のP+ベース領域23a、第3の半導体領域である第1のN+ソース領域24、第4の半導体領域である第2のNベース層3、第5の半導体領域であるN+ドレイン層21、ゲート絶縁膜25、第1の電極であるゲート電極26、第2の電極であるソース電極27、および第3の電極であるドレイン電極28を有する。
【0023】
第2のNベース層3は、N+ドレイン層21となるN+半導体基板上にエピタキシャル成長されている。第1のN-ベース層22は第2のNベース層3上にエピタキシャル成長されている。PおよびP+ベース領域23および23a は第1のN-ベース層22の表面部分に選択的に形成されている。N+ソース領域24はPベース領域23の表面部分に選択的に形成されている。チャネル領域は、Pベース領域23の、N+ソース領域24とN-ベース層22との間の表面領域に形成される。ゲート絶縁膜25はチャネル領域上に形成され、さらにその上にゲート電極26が形成されている。ソース電極27は、N+ソース領域24とP+ベース領域23a とに共通に形成されている。ドレイン電極28はN+ドレイン層21の裏面に形成されている。
【0024】
ここで、たとえばN+ドレイン層21の厚さおよび不純物濃度はそれぞれ320μmおよび2×1018/cm3である。また、第2のNベース層3の厚さは第1のN-ベース層22の厚さの1/4以上である。第2のNベース層3の平均不純物濃度は1×1015/cm3以上3×1017/cm3以下である。また、たとえば第1のN-ベース層22の厚さおよび不純物濃度はそれぞれ23μmおよび9×1014/cm3である。また、たとえばPベース領域23の拡散深さおよび不純物濃度はそれぞれ3.5μmおよび7×1017/cm3である。
【0025】
また、たとえばN+ソース領域24の拡散深さおよび不純物濃度はそれぞれ0.2μmおよび2×1021/cm3である。なお、図1に示すパワーMOSFETの製造プロセスは、半導体基板(N+ドレイン層21)の表面に第2のNベース層3をエピタキシャル成長させ、その上にさらに第1のN-ベース層22をエピタキシャル成長させた後は、図7に示す従来のパワーMOSFETと同じであるので、その詳細な説明を省略する。
【0026】
図1には、第1のN-ベース層22の厚さをd1、第2のNベース層3の厚さをd2、素子耐圧確保に必要な空乏層の厚さをdmax、宇宙線の進入深さをR、N+ソース領域24と高濃度P+ベース領域23a の端部間の距離をΔLとして示してある。また、以下の本発明の実施例においては、簡単のため、d1, d2, dmax, R, ΔLの記号およびP+ベース領域23a は記載を省略してある。
【0027】
ところで、図5に示す構成の絶縁ゲート型バイポーラトランジスタ(IGBT)には、ドレイン層41からの正孔の注入効率を低下させるか、または高電圧印加時のパンチスルーを防止する目的でドレイン側にN+バッファ層49が設けられている。本実施の形態の第2のNベース層3はこのN+バッファ層49とは異なる。IGBTではN+バッファ層49の厚さは、N-ドリフト層42(本実施の形態のN-ベース層22に相当)の厚さの数十分の1と極めて薄い。
【0028】
なお、図5において、符号41はドレイン層(コレクタ層)、符号43はベース領域、符号44はソース領域(エミッタ領域)、符号45はゲート絶縁膜、符号46はゲート電極、符号47はソース電極(エミッタ電極)、符号48はドレイン電極(コレクタ電極)である。
【0029】
また、本実施の形態のパワーMOSFETと、特開昭59−132671号公開公報または特開昭60−196975号公開公報に開示された各MOSFETとでは、それぞれ以下の点で異なる。すなわち、本実施の形態のパワーMOSFETでは、Pベース領域23が第1のN-ベース層22を突き抜けずに第1のN-ベース層22中に形成されている。つまり、Pベース領域23は第2のNベース層3に達していない。そのため、ブレークダウンは電界強度の高いPベース領域23の拡散コーナー部で起こる。
【0030】
それに対して、特開昭59−132671号のMOSFETでは、P型ウェル領域(本実施の形態のPベース領域23に相当)がN-型低濃度領域(本実施の形態の第1のN-ベース層22に相当)を突き抜けてN+型中濃度領域(本実施の形態の第2のNベース層3に相当)に達している。そのため、ブレークダウンはP型ウェル領域の底部で起こる。
【0031】
また、特開昭60−196975号のMOSFETでは、P型のチャネル領域(本実施の形態のPベース領域23に相当)よりも深く、N型のドレイン領域(本実施の形態の第1のN-ベース層22に相当)を突き抜けてN型の不純物再分布層(本実施の形態の第2のNベース層3に相当)に達するP型のウェル領域が設けられている。そのため、ブレークダウンはウェル領域の底部で起こる。
【0032】
上述した実施の形態によれば、第1のN-ベース層22とN+半導体基板よりなるドレイン層21との間に、厚さが第1のN-ベース層22の厚さの1/4以上であり、かつその平均不純物濃度が1×1015/cm3以上3×1017/cm3以下である第2のNベース層3が設けられているため、寄生npnトランジスタのラッチアップと基板近傍でのダイナミックアバランシェとの間の正帰還が起こり難くなり、SEB耐量を高めることができる。したがって、宇宙用として用いるのに十分なSEB耐量を具えたパワーMOSFETが得られる。また、第2のNベース層3の厚さおよび不純物濃度を適切に選択すれば、与えられた耐圧の範囲内でSEB破壊を起こさないようにすることができるので、SEB破壊が起こらないパワーMOSFETが得られる。
【0033】
なお、本発明は、上述した縦型パワーMOSFETに限らず、図2に示す構成のような横型パワーMOSFETにも適用できる。図2に示すように、横型パワーMOSFETでは、第1のN-ベース層42となる半導体基板の表面部分にPベース領域43が選択的に形成され、さらにその中の表面部分にN+ソース領域44が選択的に形成される。また、半導体基板の同じ表面部分にPベース領域43から離れて第2のNベース領域5が選択的に形成され、さらにその中の表面部分にN+ドレイン領域(ドレイン層)41が選択的に形成される。ゲート電極46は、Pベース領域43の、第1のN-ベース層42とN+ソース領域44との間にできるチャネル領域上にゲート絶縁膜45を介して設けられる。ソース電極47はN+ソース領域44およびPベース領域43に共通に接する。ドレイン電極48はN+ドレイン領域41に接する。また、基板裏面には絶縁膜49が設けられる。
【0034】
図2に示す横型パワーMOSFETでも、第2のNベース領域5の幅は第1のN-ベース層42の幅の1/4以上である。また、第2のNベース領域5の平均不純物濃度は1×1015/cm3以上3×1017/cm3以下である。ここで、第1のN-ベース層42の幅はPベース領域43と第2のNベース領域5との間の横方向の距離である。また、第2のNベース領域5の幅は第1のN-ベース層42とN+ドレイン領域41との間の横方向の距離である。その他の半導体層や半導体領域の不純物濃度等については、図1に示す縦型パワーMOSFETの対応する層や領域と同じである。この場合にも、宇宙用として用いるのに十分なSEB耐量を具えたパワーMOSFETが得られる。
【0035】
また、本発明は、図3に示す構成のようなトレンチ型パワーMOSFETにも適用できる。図3に示すように、トレンチ型パワーMOSFETでは、N+ドレイン層61となる半導体基板上に第2のNベース層7および第1のN-ベース層62が順次エピタキシャル成長され、第1のN-ベース層62の表面部分にPベース領域63が形成される。N+ソース領域64はPベース領域63の中の表面部分に選択的に形成される。そして、N+ソース領域64内にトレンチ溝が第1のN-ベース層62に達するように形成され、その溝の内周面にゲート絶縁膜65が形成される。ゲート絶縁膜65の内側はゲートポリシリコンにより埋め戻されてゲート電極66となる。ソース電極67はN+ソース領域64およびPベース領域63に共通に接する。ドレイン電極68はN+ドレイン層61に接する。
【0036】
図3に示すトレンチ型パワーMOSFETでは、第2のNベース層7の厚さは第1のN-ベース層62の厚さの1/4以上である。また、第2のNベース層7の平均不純物濃度は1×1015/cm3以上3×1017/cm3以下である。その他の半導体層や半導体領域の不純物濃度等については、図1に示す縦型パワーMOSFETの対応する層や領域と同じである。この場合にも、宇宙用として用いるのに十分なSEB耐量を具えたパワーMOSFETが得られる。
【0037】
以上において本発明は、上述した実施の形態に限らず種々変更可能である。たとえば、上述した実施の形態では第1導電型をn型とし、第2導電型をp型としたが、その逆でもよい。また、本発明は、上述した半導体層や半導体領域の厚さや深さおよび不純物濃度の値に制限されるものではない。
【0038】
また、他の実施の形態として、寄生npnトランジスタそのものを動作し難くすることによっても正帰還が起こり難くなり、それによって、SEB耐量を高める効果がある。このことについて、図1および図6を用いて説明する。図6は、図1のN+ソース領域24のゲート絶縁膜25側での端部とP+ベース領域23aのゲート絶縁膜25側での端部との距離、すなわちチャネル領域の表面での距離ΔLと素子定格耐圧に対するSEB耐量の関係を示した特性図である。
【0039】
図6に示すように、ΔL≦0.6μmで、SEB耐量は素子定格耐圧まで確保できる。つまり、チャネル領域の表面での距離ΔLが0.6μm以下であれば、基板近傍でのダイナミックアバランシェで発生した正孔がPおよびP+ベース領域23および23a に流れ込むことによるN+ソース領域24とPおよびP+ベース領域23および23a 間の順バイアスが浅くなり、寄生npnトランジスタが動作し難くなり、結果としてSEB耐量が素子定格耐圧まで確保できる。
【0040】
他の実施の形態として、図9に耐圧VBR、SEB耐量VSEBとエピ層厚さの関係を示す。図9において、直線Iは、前記(3)式で与えられる耐圧VBRをベースに得られる実際の耐圧V1とその時の最大空乏層幅d(dmax)との関係で、
V1(V)=12.5x ・・・・・ (5)
の直線式で与えられる。直線IIは、第2のNベース層3の平均不純物濃度が1×1015/cm3の時のSEB耐量VSEBとNベース層3の厚さd2のシミュレーションと実測結果である。Nベース層3の厚さd2(μm)が厚くなるとSEB耐量VSEBは増大する。この直線IIは、
SEB(V)=8x ・・・・・(6)
直線式で近似できる。ここで、xの単位はμmである。
【0041】
そこで、Nベース層3の厚さは次のように決定される。まず、必要な素子耐圧V1を与えることで、直線IからN-ベース層22からPベース領域23を除いた厚さdmax(最大空乏層幅で図1に図示)が決まる。次に、この必要な素子耐圧V1の時の直線IIからNベース層3の厚さd2(μm)が求まる。d2(μm)は、必要な素子耐圧V1の時の直線 II による厚さx 2 (μm)から直線Iによる厚さx 1 (μm)を差し引いた厚さである。この、それぞれに求まる厚さ 2 (μm)とx 1 (μm)の差の1/2以上のd2厚さとすれば実用的レベルに達する。なお、N-ベース層22とNベース層3の各不純物量と厚さによって、オン抵抗Ronが決まるので、それぞれの厚さの上限は、得ようとするオン抵抗Ronの関係で決定される。このような方法で決定されたNベース層3の厚さを用いることにより、必要な素子耐圧V1の範囲内でSEB耐量VSEBを向上させつつ、オン抵抗Ronを損なわせることのない、実用的な宇宙用MOSFETを実現することができる。
【0042】
【発明の効果】
本発明によれば、寄生npnトランジスタのラッチアップと基板近傍でのダイナミックアバランシェとの間の正帰還が起こり難くなり、SEB耐量を高めることができるので、宇宙用として用いるのに十分なSEB耐量を具えたパワーMOSFETを構成する半導体装置が得られる。
【図面の簡単な説明】
【図1】 本発明にかかる縦型パワーMOSFETの構成の一例を示す断面図である。
【図2】 本発明にかかる横型パワーMOSFETの構成の一例を示す断面図である。
【図3】 本発明にかかるトレンチ型パワーMOSFETの構成の一例を示す断面図である。
【図4】 シミュレーションにより求めたトータルエピタキシャル成長層の厚さとSEB耐量との関係を示す特性図である。
【図5】 絶縁ゲート型バイポーラトランジスタの構成を示す断面図である。
【図6】 素子定格耐圧に対するSEB耐量とチャネル領域の距離との関係を示す特性図である。
【図7】 従来のnチャネルパワーMOSFETの構成を示す断面図である。
【図8】 シミュレーションにより求めたSEB破壊が起こるときと起こらないときの電流波形の一例を示す特性図である。
【図9】 耐圧VBR、SEB耐量VSEBとエピ層厚さとの関係を示す関係線図である。
【符号の説明】
22,42,62 第1のN-ベース層(第1の半導体領域)
23,43,63 Pベース領域(第2の半導体領域)
23a P+ベース領域(第2の半導体領域)
24,44,64 N+ソース領域(第3の半導体領域)
3,7 第2のNベース層(第4の半導体領域)
5 第2のNベース領域(第4の半導体領域)
21,61 N+ドレイン層(第5の半導体領域)
41 N+ドレイン領域(第5の半導体領域)
25,45,65 ゲート絶縁膜(絶縁膜)
26,46,66 ゲート電極(第1の電極)
27,47,67 ソース電極(第2の電極)
28,48,68 ドレイン電極(第3の電極)

Claims (2)

  1. 相対的に不純物濃度が低い第1導電型の第1の半導体領域と、
    前記第1の半導体領域の表面部分に選択的に設けられた第2導電型の第2の半導体領域と、
    前記第2の半導体領域の表面部分に選択的に設けられた第1導電型の高不純物濃度の第3の半導体領域と、
    前記第2の半導体領域内に第1導電型の高不純物濃度の第3の半導体領域の一部を覆う第2導電型の高不純物領域と、
    前記第1の半導体領域に接し、かつ前記第2の半導体領域から離れ、前記第1の半導体領域よりも不純物濃度が高い第1導電型の第4の半導体領域と、
    前記第4の半導体領域に接し、かつ前記第1の半導体領域から離れ、前記第4の半導体領域よりも不純物濃度が高い第1導電型の第5の半導体領域と、
    前記第2の半導体領域の、前記第1の半導体領域と前記第3の半導体領域との間にできるチャネル領域の表面に沿って設けられた絶縁膜と、
    前記チャネル領域との間に前記絶縁膜を挟む第1の電極と、
    前記第3の半導体領域および前記第2の半導体領域に共通に接した第2の電極と、
    前記第5の半導体領域に接した第3の電極と、
    を具備し、
    前記第1の半導体領域から第2の半導体領域を除いた厚さdmaxと耐圧V1に関しての直線式V1=12.5xと、SEB耐量V SEB の直線式SEB=8x(ここで、V1,VSEBは[V]で、xは[μm]で表す)の2つの直線式を用いV1(x1)=VSEB(x2)でのxの差, x2−x1の半分より大きく、かつ、その平均不純物濃度が1×1015/cm3以上3×1017/cm3以下であることを特徴とする宇宙線破壊耐量を有する半導体装置。
  2. 前記チャネル領域の表面部分の第1導電型の高不純物濃度の第3の半導体領域端部と第2の半導体領域内に第1導電型の高不純物濃度の第3の半導体領域の一部を覆う第2導電型の高不純物領域端部間の距離ΔLが0.6μm以下であることを特徴とする請求項1に記載の宇宙線破壊耐量を有する半導体装置。
JP2002145902A 2002-05-21 2002-05-21 宇宙線破壊耐量を有する半導体装置 Expired - Lifetime JP4117385B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002145902A JP4117385B2 (ja) 2002-05-21 2002-05-21 宇宙線破壊耐量を有する半導体装置
US10/366,946 US6885063B2 (en) 2002-05-21 2003-02-14 Semiconductor device having an SEB voltage suitable for use in space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145902A JP4117385B2 (ja) 2002-05-21 2002-05-21 宇宙線破壊耐量を有する半導体装置

Publications (2)

Publication Number Publication Date
JP2003338624A JP2003338624A (ja) 2003-11-28
JP4117385B2 true JP4117385B2 (ja) 2008-07-16

Family

ID=29545101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145902A Expired - Lifetime JP4117385B2 (ja) 2002-05-21 2002-05-21 宇宙線破壊耐量を有する半導体装置

Country Status (2)

Country Link
US (1) US6885063B2 (ja)
JP (1) JP4117385B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002065B4 (de) 2006-01-16 2007-11-29 Infineon Technologies Austria Ag Kompensationsbauelement mit reduziertem und einstellbarem Einschaltwiderstand
JP4935789B2 (ja) * 2008-10-06 2012-05-23 トヨタ自動車株式会社 半導体装置の放射線照射試験方法
US8283213B2 (en) * 2010-07-30 2012-10-09 Alpha And Omega Semiconductor Incorporated Method of minimizing field stop insulated gate bipolar transistor (IGBT) buffer and emitter charge variation
JP6221436B2 (ja) * 2013-07-10 2017-11-01 富士電機株式会社 超接合mosfetとその製造方法およびダイオードを並列接続させた複合半導体装置
CN103928338B (zh) * 2014-04-04 2016-09-14 哈尔滨工程大学 一种功率半导体器件抗单粒子烧毁方法
US9318587B2 (en) 2014-05-30 2016-04-19 Alpha And Omega Semiconductor Incorporated Injection control in semiconductor power devices
JP6696166B2 (ja) * 2015-08-19 2020-05-20 富士電機株式会社 半導体装置および製造方法
CN107356856B (zh) * 2017-06-26 2021-02-09 中国空间技术研究院 一种三通道电压反馈式vdmos器件单粒子效应高精度检测装置
CN108615768B (zh) * 2018-05-02 2019-07-30 深圳吉华微特电子有限公司 一种抗辐射vdmos器件及其制备方法
JP7145826B2 (ja) * 2019-08-27 2022-10-03 三菱電機株式会社 Seb耐性評価方法およびseb耐性評価装置
IT201900021204A1 (it) * 2019-11-14 2021-05-14 St Microelectronics Srl Dispositivo mosfet in 4h-sic e relativo metodo di fabbricazione
CN114551574B (zh) * 2022-02-28 2023-09-15 电子科技大学 一种高压单粒子加固ldmos器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5674766A (en) * 1994-12-30 1997-10-07 Siliconix Incorporated Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
US6239463B1 (en) * 1997-08-28 2001-05-29 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes

Also Published As

Publication number Publication date
US20030218210A1 (en) 2003-11-27
JP2003338624A (ja) 2003-11-28
US6885063B2 (en) 2005-04-26

Similar Documents

Publication Publication Date Title
TWI383497B (zh) 具有雙閘極之絕緣閘雙極性電晶體
EP2497116B1 (en) Power semiconductor devices having selectively doped jfet regions and related methods of forming such devices
US6576935B2 (en) Bidirectional semiconductor device and method of manufacturing the same
US20210066496A1 (en) Semiconductor device
JP3704007B2 (ja) 半導体装置及びその製造方法
US20090289690A1 (en) Semiconductor device with switch electrode and gate electrode and method for switching a semiconductor device
US11049941B2 (en) Semiconductor device
JP4117385B2 (ja) 宇宙線破壊耐量を有する半導体装置
JP2016115847A (ja) 半導体装置
JP2017195224A (ja) スイッチング素子
JP2009059949A (ja) 半導体装置、および、半導体装置の製造方法
US20100193837A1 (en) Semiconductor Device
JP2008021981A (ja) 絶縁ゲートバイポーラトランジスタ及びその製造方法
JP7246983B2 (ja) 半導体装置
US7504692B2 (en) High-voltage field-effect transistor
US6563193B1 (en) Semiconductor device
JP2005175416A (ja) 宇宙用半導体装置
CN113130650B (zh) 功率半导体器件及其制备工艺
JP3522887B2 (ja) 高耐圧半導体素子
JP2008147318A (ja) 高耐圧半導体装置及びその製造方法
KR100533687B1 (ko) 이중 게이트 트랜지스터
JP4761011B2 (ja) サイリスタを有する半導体装置及びその製造方法
KR20190124894A (ko) 반도체 소자 및 그 제조 방법
JP3991803B2 (ja) 半導体装置
JP3120440B2 (ja) 半導体双方向スイッチ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Ref document number: 4117385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term