JP4101845B2 - 熱源装置及びその制御方法 - Google Patents

熱源装置及びその制御方法 Download PDF

Info

Publication number
JP4101845B2
JP4101845B2 JP2006127463A JP2006127463A JP4101845B2 JP 4101845 B2 JP4101845 B2 JP 4101845B2 JP 2006127463 A JP2006127463 A JP 2006127463A JP 2006127463 A JP2006127463 A JP 2006127463A JP 4101845 B2 JP4101845 B2 JP 4101845B2
Authority
JP
Japan
Prior art keywords
heat
heating
hot water
valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006127463A
Other languages
English (en)
Other versions
JP2006258416A (ja
Inventor
浩 市川
秀人 小池
貴也 太田
幹雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2006127463A priority Critical patent/JP4101845B2/ja
Publication of JP2006258416A publication Critical patent/JP2006258416A/ja
Application granted granted Critical
Publication of JP4101845B2 publication Critical patent/JP4101845B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、単一の熱源により暖房、給湯、浴槽追焚等の多用途化を実現した熱源装置及びその制御方法に関する。
ガスや石油等の燃焼熱を加熱源とする給湯装置は給湯と浴槽水の追焚に用いられている。また、給湯装置で得られる温水を暖房熱源に用いた暖房装置が実用化されている。給湯と浴槽追焚とを併用する給湯装置として、特開昭57−184850号「風呂追焚き装置を備えた給湯装置」等があり、これは、温水循環させるボイラと、循環管路に分岐してそれぞれ給湯用熱交換器と追焚用熱交換器とを配置し、分配弁を動作させて給湯用もしくは追焚用の熱交換器へ温水を流して、給湯又は暖房を独立して作動させているにすぎない。また、暖房と給湯とを併用したものとして、特開平11−108442号「燃焼装置」等がある。これは、上水を熱交換器によって加熱し、その一部を循環させる給湯装置で、給湯循環路に暖房用熱交換器と追焚用熱交換器を付設して、上水の持つ熱量を利用して暖房及び追焚を行うことができる。
特開昭57−184850号公報 特開平11−108442号公報
ところで、暖房、給湯、浴槽追焚等を実現するには、熱交換器、燃焼部及びファンモータその他の附属機器を設置し、暖房、給湯及び追焚を連動させるための管路が複雑化する。このため、給湯設備が大型化、大重量化し、設置スペースの確保や複数の作業者による作業が必要である。
斯かる要請に対し、本発明者は、熱源の単一化及び配管構成の簡略化とともに単一の熱源で暖房、給湯、浴槽追焚等の多用途、多機能化を実現した熱源装置を提案している。
そこで、本発明の目的は、斯かる熱源装置に関し、単一の熱源を用いて暖房、給湯及び浴槽水の追焚を効率よく行うことにある。
本発明は上記目的を達成するための構成を備えている。即ち、上記目的を達成するため、本発明の第1の側面は、熱源装置であって、熱媒を溜めるタンクと、前記熱媒を循環させる暖房負荷と、第1の開閉弁(開閉弁35)を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、熱源と、前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁(分配弁68)を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁(開閉弁74)を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、前記第1の熱交換手段の入側における前記主回路に設置され、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し前記タンクの前記熱媒を前記主回路側に流すポンプと、前記ポンプに上限回転数を設定し、この上限回転数から段階的に低減させた固定回転数を設定し、暖房要求、給湯要求及び追焚要求の必要熱量を求め、この必要熱量と現在熱量とを比較し、その差分に応じて前記ポンプの回転数を前記上限回転数又は前記固定回転数に制御し、かつ前記熱源を制御する制御部とを備えた構成である。
また、上記目的を達成するためには、上記熱源装置において、給湯運転、暖房運転又は追焚運転が終了した場合、前記給湯与熱回路に前記熱媒を循環させて所定温度に維持する保温運転を行う構成としてもよい。
また、上記目的を達成するため、本発明の第2の側面は、熱媒を溜めるタンクと、前記熱媒を循環させる暖房負荷と、第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、熱源と、前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、前記第1の熱交換手段の入側における前記主回路に設置され、前記タンクの前記熱媒を前記主回路側に循環させるポンプとを備える熱源装置の制御方法であって、前記ポンプに上限回転数を設定し、この上限回転数から段階的に低減させた固定回転数を設定する工程と、暖房要求により、前記第1の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流す工程と、給湯要求により、前記第2の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、給湯回路の給水を加熱する工程と、追焚要求により、前記第3の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流し、浴槽水を加熱する工程と、前記暖房要求、前記給湯要求及び前記追焚要求の必要熱量を求める工程と、前記必要熱量と現在熱量とを比較し、その差分によって前記ポンプの回転数を前記上限回転数又は前記固定回転数に増減させ、必要熱量に前記熱媒の熱量を制御する工程とを含む構成である。
以上説明したように、本発明によれば、次の効果が得られる。
a 燃焼熱や電熱、排熱等の単一の熱源を用いて熱媒を加熱し、その熱媒の熱を暖房負荷、上水加熱、浴槽水の追焚等の多用途化、多機能化を実現できる。
b 燃料ガス等の燃焼熱を熱源に用いた場合、燃焼時間を縮小して高効率化を図ることができる。
c ポンプの回転数を制御することで、熱媒加熱を制御することができ、加熱需要に即応することができ、温水需要の変動に伴い、循環温水量を可変するため、各温水需要に対して適切な温水量を供給できる。
d タンク内の熱媒を保温することで、その熱量を給湯、暖房、浴槽追焚に利用することができ、給湯の加熱速度を高めることができ、給湯の迅速化を図ることができ、浴槽水の追焚、暖房等の温水需要が生じても給湯温度変動を抑制でき、安定給湯を行うことができる。
e 給湯需要と暖房用の放熱又は浴槽水の追焚との熱分配により、熱的損失の抑制とともに、高効率化が図られる。
本発明の実施の形態を図面に示した実施例を参照して詳細に説明する。
図1は、本発明の熱源装置及びその制御方法の実施例を示している。この熱源装置には、熱源機2が備えられるとともに、暖房負荷3に熱を供給する暖房回路4と、一般給湯等の給湯加熱を行う給湯回路6と、浴槽94の浴槽水(=BR、BG)の加熱を行う風呂回路8とを備えている。この実施例の暖房回路4は、熱媒としての温水10(=KW、OW)を循環させる循環路であって、この循環路を流れる温水10の持つ熱が給湯回路6及び風呂回路8側の熱源となっている。
熱源機2には、単一の熱源11が設置され、この熱源11には、例えば、石油、燃料ガスを燃焼させるバーナの燃焼熱、電熱、エンジンや燃料電池の排熱が用いられる。例えば、熱源11にバーナを用いた場合には、燃料ガスの燃焼量はその供給によって調整することができる。
そして、暖房回路4には、熱源11の熱と温水10との熱交換を行う第1の熱交換手段として暖房用熱交換器21が設置されているとともに、蓄熱手段として膨張タンク26、圧送手段としての循環ポンプ28が設置されている。熱交換器21は燃焼ガスの顕熱回収用熱交換器に潜熱回収用熱交換器を併用してもよい。循環ポンプ28は、加熱需要に応じて段階的又は連続的にポンプ回転数が制御される。
この暖房回路4は、暖房負荷3側に温水10を流す主回路30、給湯用の上水Wを加熱する給湯与熱回路32、浴槽水を加熱する追焚与熱回路34等を備えている。主回路30から温水10の供給を受ける暖房負荷3には、高温水HDの供給を受ける高温暖房負荷3A、低温水LDの供給を受ける低温暖房負荷3Bが設置され、これら高温暖房負荷3A、低温暖房負荷3Bは、単一又は複数の負荷構成である。高温暖房負荷3Aには、高温水HDが開閉弁35を介して直送されるが、低温暖房負荷3Bには、バイパス管44を通じて流れる膨張タンク26側の温水10と分岐管48を通じて分配された高温水HDとを合流させて得られる低温水LDが開閉弁37を通じて供給される。バイパス管44には、温水10の供給量を調整する低温調整弁62が設けられている。そして、暖房負荷3を循環した温水DBは膨張タンク26に戻される。
給湯与熱回路32は、熱交換器21の出口側管路から分岐されて第2の熱交換手段である給湯用熱交換器66を循環させて高温水HDを膨張タンク26に流す回路であって、高温水HDの分配ないし切換手段としての分配弁68等を備えている。
また、追焚与熱回路34は、熱交換器21の出口側管路から分岐されて第3の熱交換手段である追焚用熱交換器72を循環させて膨張タンク26に戻す回路であって、高温水HDの分配ないし切換手段としての開閉弁74等を備えている。熱交換器72は螺旋状の一次側管路を二次側管路が接続された筒状容器に設置した熱交換器であって、この螺旋管路に熱媒としての温水10を流し、その周囲を流れる浴槽水と熱交換する。即ち、分配弁68、開閉弁74は、暖房回路4、給湯回路6又は風呂回路8への熱供給を切り換える切換手段を構成している。
また、給湯回路6は、暖房回路4と独立した回路であって、上水Wを熱交換器66に流して熱媒としての高温水HDとの熱交換により加熱し、高温水HWとして給湯栓等から給湯させる。
また、風呂回路8は、暖房回路4と独立した回路を構成し、浴槽94に溜められている浴槽水を循環ポンプ100を運転して浴槽94から熱交換器72に導き、熱媒としての高温水HDとの熱交換により加熱した後、浴槽94に戻す回路である。また、風呂回路8と給湯回路6との間には、切換弁106を介して給湯管108が接続されており、給湯回路6から浴槽94への給湯が行われる。
この熱源装置の動作及び特徴事項を列挙すれば、次の通りである。
a 熱源装置の基本動作
図2のフローチャートに示すように、運転要求があると(S201)、現熱量演算を行い(S202)、次に、必要熱量演算を行い(S203)、現熱量と必要熱量との間に差があるか否かを判定する(S204)。この熱量差に応じて循環ポンプ28に必要なポンプ回転数が設定された後(S205)、熱源11の熱量制御として例えば、燃焼制御を行う(S206)。
b 給湯単独動作
入水温度、給湯流量及び設定温度から必要熱量を演算し、図3に示すように、給湯必要熱量を実現する必要流量が得られる循環ポンプ28のポンプ回転数を求め、そのデータを記憶手段に記憶する。そのデータに基づき、給湯必要熱量に必要なポンプ回転数に制御し、連続燃焼中も、常に入水温度、流量、出湯温度を監視し、必要な熱量を得るためのポンプ回転数を維持する。
そして、給湯受熱側は、出湯温度等が設定温度に到達するように、流量調整を行う。
また、この場合、膨張タンク26内の温水10を高温水化して一定温度に保っておけば、これを熱媒として利用でき、給湯の加熱速度の向上(即湯性)を図ることができる。即ち、燃焼を開始してから熱交換器66内の水温上昇を待つと、所定温度の給湯を得るためにある程度の時間を要するのに対し、膨張タンク26の温水温度を高く保持しておけば、その熱量を利用して所望の給湯温度までの立上げ時間を短縮できる。
c 暖房単独動作
図4は、暖房要求端末個数、暖房必要熱量と循環ポンプ28の回転数を示している。そこで、暖房端末、即ち、暖房負荷3側のリモコン装置等からの暖房の動作要求個数、暖房必要熱量を確認し、その熱量データから、循環ポンプ28の回転数を変更する。
d 追焚単独動作
追焚要求があった場合、開閉弁74を開いて温水10(OW)を熱交換器72側に流し、温水10と浴槽水との熱交換を行う。この場合、循環ポンプ28の回転数は所定熱量が得られる所定回転数に維持する。この場合、施工条件によって、熱交換量が低い場合には、例えば、制御手段で循環ポンプ28の回転数を変化させ、熱交換量を上昇させてもよい。
e 給湯、暖房及び追焚の同時運転動作
給湯、暖房、追焚の同時運転動作では、その場合の必要熱量に対して必要なポンプ回転数データを予め求めておき、例えば、図5に示すように、必要熱量が得られるようにポンプ回転数を制御する。この場合の必要熱量の演算は、例えば、後述の式(1)で求めることができる。
f 保温動作
膨張タンク26内の温水10の保温は、図6のフローチャートに示すように、循環ポンプ28の運転を行い(S301)、熱交換器21の出側温度が所定温度、例えば、80℃以下か否かを判定し(S302)、所定温度以下の場合には熱源11を燃焼させて暖房燃焼制御を実行し(S303)、再び、出側温度が所定温度、例えば、80℃以上か否かを判定し(S304)、所定温度、例えば、80℃以上に到達したとき、熱源11の熱量制御として例えば、燃焼停止とする(S305)。このような動作の繰返しにより、膨張タンク26及び暖房回路4内の温水10の温度を所定温度に保温させることができ、放熱による温度低下を防止でき、給湯、暖房又は追焚の移行時の昇温特性を高めることができる。
次に、図7及び図8は本発明の熱源装置の具体的な実施例を示し、図7は熱源機側の構成、図8は制御部及び暖房負荷側の構成を示している。
この熱源装置には、単一のケーシングで構成される熱源機2が備えられるとともに、前記実施例と同様に、暖房回路4、給湯回路6及び風呂回路8が構成されている。
熱源機2には、単一の熱源として例えば、バーナ12が設置されている。このバーナ12には、燃料元弁14及び比例弁16を備えた燃料供給管18を通じて燃料ガスGが供給されているとともに、給気ファン20によって燃焼用空気が供給されている。燃料ガスGの燃焼、燃焼停止は燃料元弁14の開閉、燃料ガスGの燃焼量は比例弁16の開度調整による供給調整で行われる。暖房回路4に流れる温水10の循環量の増減が温度センサ60の検出温度に生じるので、熱交換器22の出口側温度を例えば、80℃になるようにバーナ12の燃焼量を調整すれば、熱量供給の最適化を図ることができる。
そして、暖房回路4には、バーナ12を熱源とする第1の熱交換手段として暖房用熱交換器22、24が設置されているとともに、蓄熱手段として膨張タンク26、圧送手段としての循環ポンプ28が設置されている。熱交換器22は燃焼ガスの顕熱回収用、熱交換器24は潜熱回収用である。循環ポンプ28はその駆動手段に例えば、直流モータが用いられ、加熱需要に応じて段階的又は連続的に回転数を制御することができる。
この暖房回路4は、暖房負荷側に温水10を流す主回路30、給湯用の上水Wを加熱する給湯与熱回路32、浴槽水を加熱する追焚与熱回路34等を備えている。即ち、膨張タンク26の温水10は、循環ポンプ28を通して矢印A、B方向に主回路30を流れ、熱交換器24及び熱交換器22を経て例えば、80℃程度に加熱された後、高温水回路36を通じてヘッダ38からファンコンベクタ等の高温放熱器40、42に流れるとともに、矢印C方向にバイパス管44を通して低温水回路46に流れる。膨張タンク26は暖房回路4への温水10を供給するとともに、温水10を以て蓄熱し、暖房回路4内の圧力を大気へ開放する手段である。そして、高温水回路36と低温水回路46との間には、分岐管48が設けられ、バイパス管44を通じて流れる温水10と高温水HDとを合流させて得た低温水LDが低温水回路46からヘッダ47を経て床暖房パネル等の低温放熱器49、50、52に流れる。高温放熱器40、42及び低温放熱器49、50、52に循環して合流した温水DBは、ヘッダ54を経て主回路30の一部である暖房水戻し回路56で合流し、膨張タンク26に戻る。主回路30には熱交換器24の入口側温度を検出する温度センサ58、熱交換器22の出口側温度を検出する温度センサ60、低温水回路46には温度センサ61、バイパス管44には流量制御手段として低温調整弁62、分岐管48には膨張タンク26側の温水10(低温水)が高温水HD側に混じり込むのを防止する手段として逆止弁64が設けられている。また、低温水回路46と膨張タンク26との間には、低温水戻し回路65が設けられて低温水LDが矢印D方向に膨張タンク26に戻される。
給湯与熱回路32は、熱交換器22の出口側管路から分岐されて第2の熱交換手段である給湯用熱交換器66を経て矢印E方向に高温水HDを膨張タンク26に流す回路であって、高温水HDの分配手段である分配弁68、循環流量を検出する循環流量センサ70等を備えている。熱交換器66には、例えば、プレートを交互に配置して異なる2液を通水させることにより熱交換を行うプレート式熱交換器が用いられている。また、追焚与熱回路34は、熱交換器22の出口側管路から分岐されて第3の熱交換手段である追焚用熱交換器72を経て矢印F方向に高温水HDを暖房水戻し回路56で合流させ、膨張タンク26に戻す回路であって、高温水HDの分配手段である開閉弁74等を備えている。熱交換器72は螺旋状の一次側管路を二次側管路が接続された筒状容器に設置した熱交換器であって、この螺旋管路に熱媒としての温水10を流し、その周囲を流れる浴槽水と熱交換する。即ち、分配弁68、開閉弁74は、暖房回路4、給湯回路6又は風呂回路8への熱供給を切り換える切換手段を構成している。
また、給湯回路6は、暖房回路4と独立した回路であって、上水Wを矢印G、H、I方向に熱交換器66に流して熱媒としての高温水HDとの熱交換により加熱し、高温水HWとして給湯栓76等から給湯管78を通じて給湯させる。この給湯回路6には、給水温度を検出する温度センサ80、水流検出及び水量検出をする水量センサ82、熱交換器66の出口側温度を検出する温度センサ84、出湯量を制御する水量制御弁86、出湯温度を検出する温度センサ88が設置され、低温側の上水Wと高温水HWとを混合して出湯温度を調整する手段としてバイパス管90が設けられているとともに、このバイパス管90には低温側の上水W及び高温水HWの混合比率を調整する混合弁92が設けられている。
また、風呂回路8は、暖房回路4と独立した回路を構成し、浴槽94に溜められている浴槽水96を浴槽94の循環口98から矢印J方向に流し、熱交換器72で熱媒としての高温水HDとの熱交換により加熱した後、矢印K方向に流して浴槽94に戻す手段であって、浴槽水96を熱交換器72を通して強制的に循環させる循環ポンプ100、追焚温度を検出する温度センサ102、浴槽94内の水位を検出する水位センサ104等が設けられている。BRは追焚往き、BGは追焚戻しの各温水である。また、風呂回路8と給湯回路6との間には、切換弁106を介して給湯管108が接続されており、給湯回路6から浴槽94への給湯が行われる。この給湯管108には、給湯量を検出する水量センサ110、上水W側と浴槽水96とを分離する分離手段として縁切り装置112が設けられている。
また、給湯管108と膨張タンク26との間には、給湯管108側から温水10を補給する補給管114が設けられ、この補給管114には開閉弁116が設けられている。膨張タンク26には、温水10の水位を検出するレベルセンサ118、120、122が設けられ、レベルセンサ118は中立電極で、レベルセンサ120で低レベルL1 、レベルセンサ122で高レベルL2 が検出される。
そして、熱源機2側には主制御部124及び外部制御部126が設けられ、これら主制御部124及び外部制御部126はコンピュータで構成され、制御演算動作を行う手段としてCPU、制御プログラムや制御情報を記憶する記憶手段としてRAM、ROM、EEPROM等を備えており、主制御部124側には追焚熱量変更スイッチ128の他、液晶、蛍光表示管、LED、ブラウン管よりなる表示部130、運転指令、温度設定情報等を入力するためのスイッチ群131が設けられている。主制御部124には、温度センサ58、60、61、80、84、88、102、レベルセンサ118、120、122、水量センサ82、110、水位センサ104等の検出信号が制御情報として取り込まれ、この主制御部124から燃料元弁14、比例弁16、循環ポンプ28、100、分配弁68、開閉弁74、116、低温調整弁62、水量制御弁86、混合弁92、切換弁106、給気ファン20の駆動モータ等に対して制御出力が加えられる。また、主制御部124には、給湯用のリモコン装置132が接続されているとともに、浴槽94側に設置されたリモコン装置134が接続されている。リモコン装置132には、スイッチ群131の中、又は他のスイッチとして暖房スイッチが設けられており、この暖房スイッチの操作によって暖房運転に移行するか否かが切り換えられる。この暖房スイッチの操作は、特定の放熱器40〜52を選択するものではなく、全暖房負荷の暖房運転に入る準備としてバーナ12を燃焼させ、熱交換器22、24による熱交換によって熱媒としての温水10を加熱するものであるのに対し、リモコン装置134や後述のリモコン装置142、144、146の暖房スイッチによる個別負荷の暖房運転の指令又はその切換えを行うものであるが、リモコン装置132側の暖房スイッチが操作されていなくても、各リモコン装置134等は個別の暖房負荷を選定して暖房運転に移行させることができるものである。リモコン装置132側の暖房スイッチの操作と、リモコン装置134等の暖房スイッチの操作との相違は、前者が全体暖房負荷、後者が個別暖房負荷に対応していることである。
主制御部124と外部制御部126とは通信ケーブル136を介して接続され、外部制御部126には放熱器40、42に設置された高温暖房制御部138、140、放熱器49に無線又は有線で連係されたリモコン装置142が設けられているとともに、各制御部138、140にはリモコン装置144、146が設けられている。この実施例では、放熱器50、52の操作には浴室側に設置されたリモコン装置134が用いられ、その動作又は動作停止がリモコン装置134によって切り換えられる。
次に、制御動作を総括的に説明すると、膨張タンク26の温水10は循環ポンプ28によって熱交換器22及び熱交換器24に圧送され、バーナ12の燃焼によって得た燃焼ガスの顕熱及び潜熱を以て加熱される。バーナ12の燃焼開始時には、温度センサ58の検出温度Ti、設定温度Ts及び循環ポンプ28の回転数Rに相当する流量Qを主制御部124の記憶手段から読み出し、燃焼号数を演算する。比例弁16は演算号数に相当する開度に調整され、燃焼量に調整される。即ち、フィードフォワード制御が実行される。ここで、周知のように、燃焼号数は、式(1)で求められる。
号数=(Ts−Ti)×Q/25 ・・・(1)
熱交換器22の出口側温度は温度センサ60で検出され、その検出温度が例えば80℃付近に到達したとき、温度センサ60の検出温度が所定温度例えば、80℃になるように比例弁16の開度が調整される。即ち、フィードフォワード制御からフィードバック制御に切り換えられる。
熱交換器22で得られた高温水HDは、高温水回路36を通じて放熱器40、42側に供給されるとともに、分岐管48を通じて低温水回路46側にも流れる。この低温水回路46側には、バイパス管44側から加熱前の温水10が流れ込んでいるので、低温水LDが放熱器49、50、52側に供給される。この場合、温度センサ61によって低温水LD側の温度が検出され、その検出温度が例えば、60℃になるように、水量制御弁としての低温調整弁62の開度が調整される。そして、各放熱器40〜52を通過した温水10は、暖房水戻し回路56を通じて膨張タンク26に帰還する。
また、熱交換器66の二次側に給湯回路6を通じて流れる上水Wは、熱交換器66で高温水HDとの熱交換により加熱され、給湯管78を通じて給湯される。この場合、給水温度は温度センサ80で検出され、その給水量即ち、給湯量は水量センサ82で検出され、また、出湯温度は温度センサ88で検出され、その出湯温度に応じてバーナ12の燃焼量が制御される。
また、循環ポンプ100によって熱交換器72に流れる浴槽水96は、熱媒としての温水10と熱交換が行われながら、風呂回路8に循環して加熱される。この場合、浴槽水96の水位は水位センサ104、その温度は温度センサ102で検出される。
そして、膨張タンク26の水位はレベルセンサ118〜122で検出され、低レベルL1 が検出された場合には開閉弁116を開いて給湯回路6から上水Wが供給され、高レベルL2 まで補給される。
次に、高温暖房運転、低温暖房運転、給湯運転、追焚運転及び保温運転の各動作について説明する。
(1)高温暖房運転
例えば、高温暖房制御部138のリモコン装置144の運転スイッチが投入されると、高温暖房運転モードに移行する。即ち、放熱器40内に熱媒である高温水HDを通過させる開閉弁が開くとともに、図示しないファンが回転を開始する。このとき、高温暖房制御部138から外部制御部126に暖房運転指令が発せられ、外部制御部126からその暖房運転指令を表す命令コードが主制御部124に転送されると、主制御部124は暖房動作を開始する。
循環ポンプ28及び給気ファン20が運転され、燃料元弁14、比例弁16を開いてバーナ12の燃焼を開始し、温度センサ60の検出温度が例えば、80℃となるように比例弁16の開度を調整する。高温水HDは放熱器40に循環した後、低温度の温水DBとなって膨張タンク26に戻る。室温が設定温度に到達すると、主制御部124は放熱器40の内部にある開閉弁を閉止して高温水HDの循環を停止し、室温が所定温度まで低下したとき、再び、その開閉弁を開いて再び高温水HDの循環を開始し、所定温度の暖房を行う。
(2)低温暖房運転
この実施例では、低温暖房に必要な放熱器49、50、52が設置されているが、リモコン装置134、142側の運転スイッチによって低温暖房運転モードに移行する。即ち、放熱器49と、放熱器50、52とは独立して低温水LDの供給が開始され、この場合、放熱器49への低温水LDの供給切換えはリモコン装置142側の暖房スイッチによって操作され、放熱器50、52への低温水LDの供給切換えは、リモコン装置134側の暖房スイッチの切換えによって操作される。
この低温暖房運転では、リモコン装置134、142より暖房指令があると、外部制御部126又は主制御部124によりヘッダ47側の開閉弁148、150が選択的に開かれ、主制御部124は循環ポンプ28及び給気ファン20の運転を開始し、バーナ12の燃焼動作及びその制御が行われる。この場合、高温暖房運転と異なり、バイパス管44にある低温調整弁62が開かれ、温度センサ60の検出温度が例えば、80℃となるように比例弁16の開度が調整される。そして、温度センサ61により低温水LDの温度が検出され、その検出温度が例えば、60℃となるように低温調整弁62の開度が調整される。放熱器49、50、52を循環した温水DBは暖房水戻し回路56から膨張タンク26に戻る。
(3)給湯運転
リモコン装置132又はリモコン装置134の運転スイッチの操作の後、カランやシャワー等を開栓したとき、浴槽94への湯張りを行うときの動作である。給湯栓76を開くと、水流が発生するが、この水流は水量センサ82で検出される。このとき、循環ポンプ28、給気ファン20等を動作させてバーナ12の燃焼を開始し、リモコン装置132又はリモコン装置134に記憶された設定温度と、温度センサ88の検出温度、水量センサ82の検出水量により、要求出湯号数が式(1)から演算される。この演算号数分の熱量を温水KWから上水Wに与えるため、熱交換器66が必要な温水KWの流量を確保する必要がある。そこで、分配弁68を演算号数に対応する開度にして流量を確保し、暖房運転、追焚運転の併用による温度変動の影響を受けずに、給湯温度が設定温度になるように制御する。
この場合、熱交換器66からの出湯温度は温度センサ88により検出され、温度センサ88の検出温度が設定温度に一致するように混合弁92の開度を調整する。また、出湯量が過剰となる場合には水量制御弁86の開度を絞り、適正出湯量に制御する。
(4)追焚運転
リモコン装置134より追焚指令が発せられると、追焚運転モードに移行する。開閉弁74を開き、循環ポンプ28、給気ファン20等を運転し、バーナ12を燃焼させる。温度センサ60の検出温度が例えば、80℃になるように比例弁16の開度を調整する。追焚与熱回路34を通して温水OWが熱交換器72に流れ、循環ポンプ100の運転を開始すると、浴槽水96が熱交換器72に循環されるので、温水OWで浴槽水96が加熱されて浴槽94内に循環する。浴槽水96の温度は温度センサ102により検出され、その検出温度が設定温度と一致したときには循環ポンプ100を停止し、開閉弁74を閉じて追焚動作を終了する。
(5)保温運転
給湯運転、追焚運転、暖房運転の温水需要がないとき、保温運転モードに移行する。即ち、温水需要が生じたとき、加熱温度の上昇効率を高める必要から、所定時間だけ膨張タンク26及び暖房回路4内の温水10を所定温度、例えば、80℃に高める保温動作を行う。給湯需要が生じたとき、バーナ12が燃焼を開始するまで、暖房回路4及び膨張タンク26内に蓄積された温水熱量を給湯運転、追焚運転、暖房運転に使用することができる。
この場合、給湯、追焚、暖房の各運転動作が終了しても、引き続き循環ポンプ28の運転を維持し、熱交換器24、22によって所定温度、例えば、80℃まで高められた温水10は給湯与熱回路32の管路を通じて膨張タンク26に循環し、膨張タンク26内の温水10が高温水HDの温度例えば、80℃に高められる。この温度は温度センサ60で検出し、その検出温度が例えば、80℃を越えるとき、燃料元弁14を閉止してバーナ12の燃焼を停止し、その検出温度が例えば78℃まで低下したとき、燃料元弁14を開いてバーナ12の燃焼を開始し、暖房回路4の管路内の温水温度を例えば、80℃付近に保温維持する。この保温運転は、その開始から所定時間の経過後、バーナ12の燃焼を停止し、循環ポンプ28を停止する。
次に、図9に示すフローチャートを参照して基本的制御動作を説明すると、ステップS1〜S5は給湯、追焚、暖房指令によって温水循環加熱が行われるルーチン、ステップS6〜S11は、給湯、追焚、暖房動作が終了して保温動作に移行し、温水循環加熱が停止するまでのルーチンである。
ステップS1では、リモコン装置132、134、142、144、146より給湯、湯張り、追焚、暖房等の制御指令を受けたか否かを判定する。ステップS2では、リモコン装置134、142、144、146にて予約された運転開始時間が到来したか否かを判定する。ステップS3では、循環ポンプ28を運転し、バーナ12の燃焼を開始して、温水循環を行う。
そして、ステップS4では熱交換器22、24によって加熱された温水を熱交換器66、熱交換器72、放熱器40、42、49、50、52の何れか1つ、又は2以上に供給する。熱交換器66に流れる温水KWは上水Wを加熱して高温水HWを出湯する。また、熱交換器72に流れる温水OWは浴槽水BRを加熱し、加熱された浴槽水BGとして浴槽94に流れ、浴槽94の浴槽水96を攪拌して昇温される。また、高温水HDは放熱器40、42、低温水LDは放熱器49、50、52に流れ、その放熱によって暖房が行われる。そして、ステップS5では、各リモコン装置等の指令により給湯、追焚、暖房等の動作の総てが停止したか否かを判定する。
ステップS6では、保温待機時間tのタイマー計測を開始し、ステップS7では、循環ポンプ28の運転とバーナ12の燃焼を継続させ、膨張タンク26及び暖房回路4に流れる温水を所定温度、例えば、80℃に加熱する制御を行う。そして、ステップS8では、各リモコン装置等から給湯、追焚、暖房等の何れかの指令が出されたか否かを判定する。指令が出されたとき、ステップS9に移行して保温待機時間tの計測を終了し、ステップS4へ移行する。ステップS4では、保温循環された温水は、バーナ12の燃焼により所定の出湯温度として例えば、80℃に昇温するまでの間、給湯、追焚又は暖房加熱に供される。
そして、ステップS10では保温待機時間tを経過したか否かが判定され、保温待機時間tが経過したとき、ステップS11では燃料元弁14と比例弁16とを閉止し、循環ポンプ28を停止して温水加熱循環を停止する。
次に、図10〜図15に示すフローチャートを参照して給湯運転、暖房運転、追焚運転等の制御動作に伴う循環ポンプ28の回転数制御を説明する。a〜fは各フローチャート間の連結子を示す。
この熱源装置では、温水需要に応じてポンプ回転数を変更し、この回転数の変更に伴うバーナ12の燃焼量を増減させて、各熱交換器22、24、66、72等に適切な温水熱量を供給し、特に、給湯動作では設定温度との誤差を低減する必要から、上水Wを加熱するに必要な温水流量を確保し、残余の温水熱量を追焚、暖房等に分配している。即ち、暖房運転や追焚運転等で熱量不足が生じても、給湯側には給湯加熱に必要な温水熱量を確保している。
ステップS21〜S25、S47〜S49は、給湯要求号数に応じて分配弁68の開度を変更して熱交換器66へ上水Wの加熱に必要な量の温水10を供給するルーチンである。給湯号数が12号未満であればステップS21〜S25を実行し、12号以上であればステップS47〜S49を実行する。
また、ステップS26、S29、S30、ステップS50、S53、S54は、追焚動作、あるいは給湯、追焚が同時に動作したときのポンプ回転数の制御ルーチンである。
また、ステップS26〜S28のルーチン、ステップS26、S29、S31、S28へと続くルーチン、あるいはステップS50〜S52のルーチン、ステップS50、S53、S55、S52へ続くルーチンは、リモコン装置134の暖房スイッチの投入によって行う暖房時のポンプ回転数を示すルーチンである。
また、ステップS32〜S41は、暖房運転、あるいは12号未満の給湯と暖房が運転されている場合、リモコン等からの指令数から判定した低温暖房端末あるいは高温暖房端末の稼働数に基づき、ポンプ回転数を変更するルーチンであり、ステップS42〜S46は、給湯、追焚、暖房運転が行われるとき、暖房端末の稼働数に応じてポンプ回転数を変更するルーチンである。
また、ステップS56〜S60は、12号以上の給湯と暖房が運転されているときに、低温暖房端末あるいは高温暖房端末の稼働数に基づき、ポンプ回転数を変更するルーチンであり、また、ステップS61〜S63は、12号以上の給湯、追焚、暖房運転が行われるとき、暖房端末の稼働数に応じてポンプ回転数を変更するルーチンである。
次に、この制御動作を順を追って説明すると、ステップS21では、給湯運転要求の有無を判定する。この給湯運転要求の有無は水量センサ82の検出流量により判断する。給湯運転要求がある場合には、ステップS22に移行し、設定温度、入水温度及び入水量から必要な給湯要求号数、即ち、ガス燃焼量を演算する。この給湯要求号数は式(1)から演算することができる。この給湯要求号数によって分配弁68の開度が決定され、分配弁68の開度はその号数により所定段階例えば、2段階であって、12号未満は12号を得られる最低の所定流量となる弁開度、12号以上は24号まで得られる最高所定流量となる弁開度であり、両者共に実験値から求められたものである。また、給湯要求号数の演算値から、段階的ではなく各々の要求号数を連続的に制御してもよい。その際、給湯要求号数の演算値に対して、循環流量センサ70の循環量を予め実験で求めた給湯要求能力を確保できる最低循環流量になるように分配弁68の開度を連続的に調整する。分配弁68を連続的に調整することにより、余剰能力を風呂給湯や暖房に分配できるので、連続的開度調整は、段階的開度調整に比べて合理的な給湯、暖房運転が可能である。
ステップS22で給湯能力を例えば、12号以上と判断した場合には、図13に示すフローチャートのステップS47に移行し、分配弁68を24号の給湯が得られる循環流量となる弁開度Cに調整し、また、ステップS22で給湯能力が12号未満と判断した場合には、ステップS23に移行し、分配弁68を12号の給湯を得るに必要な循環流量となる弁開度Bに調整する。
ここで、弁開度と給湯能力及び循環流量の関係は、表1の通りである。
Figure 0004101845
この表1において、各弁開度A〜Cは、給湯入水温度が30℃まで上昇しても、上記号数を確保できる循環流量(与熱流量)に相当するものである。
ステップS24では、追焚運転、暖房運転の要求があるか否かを外部制御部126や各リモコン装置134、142、144、146の出力から判断する。これらの要求がない場合には、ステップS25に移行し、ポンプ回転数を所定回転数、例えば、3300rpmに固定する。この場合、12号未満の給湯で出湯しているか、又はプリポンプ、ポストポンプの状態が考えられ、ポンプ回転数は固定値となる。
また、追焚運転又は暖房運転の要求がある場合、ステップS26に移行し、追焚運転要求か否かをリモコン装置134の出力から判断する。追焚運転要求がない場合には、ステップS27に移行し、暖房要求が個別暖房負荷か否かを判断する。ここで、個別暖房負荷とは、特定の放熱器40、42、49、50、52の1又は2以上であって、これらの暖房負荷が特定されない場合を個別以外、即ち、全体暖房負荷として判断する。この実施例では、放熱器50、52は独立した負荷ではなく、制御側からみれば単独負荷である。個別暖房負荷の場合は、全体暖房負荷からみれば要求熱量が小さくなるので、12号未満の給湯とし、出湯運転と暖房運転、又は暖房運転単独の状態となる。このとき、暖房要求が個別暖房負荷でない場合、その要求暖房個数が判断できないので、ステップS28に移行し、最大の要求熱量を想定してポンプ回転数を上限値、例えば、4100rpmに固定する。
ステップS27で個別運転要求の場合には、図11に示すフローチャートのステップS32に移行する。この場合の回転数選定は図11に示すフローチャートの通りである。
そして、ステップS26で追焚運転要求があった場合にはステップS29に移行し、ステップS29では、暖房運転要求の有無を外部制御部126や各リモコン装置134、142、144、146等から判断し、暖房運転要求がない場合には、ステップS30に移行し、ポンプ回転数を所定回転数、例えば、3500rpmに固定する。この場合、12号未満の給湯とし、出湯運転及び追焚運転、又は追焚運転単独の状態である。追焚運転の場合には、ポンプ回転数を変化させず、固定値とする。追焚運転(風呂側の熱交換)は、沸上げ開始から終了の間にポンプ回転数を増減させる必要がなく、固定回転とする。この固定回転数は、沸上げに必要な所定熱量に対応するポンプ回転数を実験値から求めたものである。
ステップS29で暖房運転要求があった場合には、ステップS31でその暖房要求が個別暖房負荷であるか否かを判断し、個別負荷要求でない場合には、上述の通り、要求暖房個数が判断できないため、ステップS28に移行し、ポンプ回転数は上限値として例えば、4100rpmに固定される。
そして、ステップS27で個別運転要求の場合には、図11に示すステップS32に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS34に移行し、ポンプ回転数を下限値、例えば、3300rpmに設定し、また、暖房要求が1系統以外の場合にはステップS35に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS36に移行し、ポンプ回転数を下限値、例えば、3300rpmに設定し、また、暖房要求が2系統以外の場合にはステップS37に移行し、暖房要求が3系統以外があるか否かを判断し、3系統の場合にはステップS38に移行し、ポンプ回転数を所定値、例えば、3500rpmに設定し、また、暖房要求が3系統以外の場合にはステップS39に移行し、暖房要求が4系統以外があるか否かを判断し、4系統の場合にはステップS40に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が4系統以外の場合にはステップS41に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。
また、ステップS31で個別運転要求の場合には、図12に示すステップS42に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS43に移行し、ポンプ回転数を所定値、例えば、3600rpmに設定し、また、暖房要求が1系統以外の場合にはステップS44に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS45に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が2系統以外の場合にはステップS46に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。
また、図10のステップS22で給湯能力が12号以上と判断した場合には、図13のステップS47で分配弁68を24号の給湯を得るに必要な循環流量となる弁開度Cに調整した後、ステップS48に移行する。ステップS48では、追焚運転、暖房運転の要求があるか否かを外部制御部126や各リモコン装置134、142、144、146の出力から判断する。これらの要求がない場合には、ステップS49に移行し、ポンプ回転数を所定回転数、例えば、3500rpmに固定する。この場合、12号以上で出湯しているので、ポンプ回転数は固定値となる。
また、追焚運転又は暖房運転の要求がある場合、ステップS50に移行し、追焚運転要求か否かをリモコン装置134の出力から判断する。追焚運転要求がない場合には、ステップS51に移行し、暖房要求が個別運転要求か否かを判断し、個別要求運転でない場合にはステップS52に移行する。ステップS52では、12号以上の給湯とし、出湯運転と暖房運転の状態となり、個別要求運転でない場合には要求暖房個数が判断できないため、ポンプ回転数を上限値、例えば、4100rpmに固定する。
ステップS51で個別運転要求の場合には、図14に示すフローチャートのステップS56に移行する。この場合の回転数選定は図14のフローチャートの通りである。
ステップS50では、追焚運転要求があるか否かをリモコン装置134の出力から判定し、追焚運転要求があった場合には、ステップS53に移行し、暖房運転要求か否かを外部制御部126や各リモコン装置142、144、146の出力から判断する。暖房運転要求がない場合には、ステップS54に移行する。ステップS54では、12号以上の給湯とし、出湯運転及び追焚運転の状態となり、この場合、回転数を変化させることなく、固定値となる。追焚運転(風呂側の熱交換)は、沸上げ開始から終了の間にポンプ回転数を増減させる必要がないため固定回転数とする。このとき、この固定回転数は、所定熱量を得るに必要な回転数を実験値から求めたものである。
また、ステップS53で暖房運転要求があった場合にはステップS55に移行し、ステップS55では、暖房運転要求が個別運転要求か否かを判断する。この場合、12号以上の給湯として出湯運転、暖房運転及び追焚運転の状態である。そのとき、暖房要求が個別運転要求でない場合には、要求暖房個数が判断できないため、ステップS52に移行し、ポンプ回転数を上限値、例えば、4100rpmに固定する。
そして、ステップS51で個別要求運転の場合には、図14に示すステップS56に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS57に移行し、ポンプ回転数を所定値、例えば、3500rpmに設定し、また、暖房要求が1系統以外の場合にはステップS58に移行し、暖房要求が2系統以外があるか否かを判断し、2系統の場合にはステップS59に移行し、ポンプ回転数を所定値、例えば、3800rpmに設定し、また、暖房要求が2系統以外の場合にはステップS60に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。
そして、ステップS55で個別運転要求の場合には、図15に示すステップS61に移行し、暖房要求が1系統以外があるか否かを判断し、1系統の場合にはステップS62に移行し、ポンプ回転数を所定値、例えば、4000rpmに設定し、また、暖房要求が1系統以外の場合にはステップS63に移行し、ポンプ回転数を上限値、例えば、4100rpmに設定する。この場合、12号以上の給湯として出湯運転、暖房運転及び追焚運転の状態である。
なお、図11、図12、図14、図15に示す各フローチャートは、リモコン装置等から暖房要求個数(要求系統数)を判断し、各個数に応じた回転数を選定するものである。暖房要求個数は低温/高温両者共に1系統と判断する。各々に応じた回転数は実験値から求められたものであるが、これは1系統に必要な機外揚程を満足できる回転数であって、具体的値はガス供給会社等の基準を満足できるものである。
次に、図16〜図19に示すフローチャートを参照して給湯制御動作を説明する。g、hは各フローチャートの連結子を示している。
ステップS71〜S76は給湯開始前の混合弁92の故障検出ルーチンであり、ステップS71、S78〜S81は、上水Wの流水が検出されたときに、要求号数を演算して分配弁68の開度を変更するルーチンである。要求号数を満足する熱量を熱交換器66へ供給して、給湯HWの温度を安定化させる。また、ステップS82は、温水が循環されているか否かを判断するルーチンである。
ステップS82〜S83、S86〜S90は所定温度例えば、80℃の温水10が循環中の給湯動作である。温水が循環中であれば、熱交換器66の付近に滞留していた上水Wが加熱保温されている。この滞留水と上水Wの混合により迅速な出湯が可能となり、かつ、循環中の温水KWによって即座に上水Wを昇温することができる。このルーチンでは、即時出湯のために混合弁92、水量制御弁86を制御して、上水Wを設定温度に調整する。
ステップS73〜S76は、混合弁92の故障時の処理ルーチンを示す。給湯温度の調整は混合弁92の開度調整に依存する。混合弁92の故障によって、高温給湯がなされるおそれがあるので、給湯準備中あるいは給湯停止時に混合弁92が正常か否かを判定し、異常が検出されたときには、給湯を禁止する。
また、ステップS85は、温水が循環していないときの給湯のコールドスタート時の給湯処理ルーチンを示す。即ち、温水を昇温させ、この温水の熱量により熱交換器66を加熱するため、設定温度の給湯HWの出湯までにタイムラグが生じる。そこで、温水KWの昇温を早めるためにポンプ回転数を制御し、かつ熱交換器66での給湯HWの昇温を高めるため、混合弁92を一時的に閉鎖する。
各動作をステップに沿って説明すると、この給湯運転制御において、水量制御弁86は、出湯量を最大規制値に移行させ、混合弁92は、出湯温度を設定温度に移行させる。また、水量制御弁86は常時最大規制値になるように出湯量を規制し、混合弁92は出湯温度が設定温度範囲内になるまで混合動作をする。
ステップS71では、水量センサ82が流水を検出したか否かを判断し、流水がない場合には、ステップS72に移行して水量制御弁86を開動作させ、ステップS73に移行して混合弁92の開度を全開位置まで開いた後、ステップS74に移行し、全開リミットを検出したか否かを判断し、全開リミットを検出しない場合、ステップS75に移行し、所定時間、例えば、10秒間だけ待機し、その時間内に全開リミットを検出しない場合、ステップS76に移行して混合弁92に異常があるとして異常アラームを発生させる。
所定時間内に全開リミットを検出した場合には、ステップS77に移行してステップS71に戻る。即ち、燃焼停止時は混合弁92を全開にして待機し、弁動作開始後所定時間内にリミット検出で動作を終了する。
また、ステップS78では、給水温度、流量、設定温度等から給湯要求号数を演算し、ステップS79に移行して給湯要求号数を判断する。即ち、ステップS79では、給湯要求号数が所定号数未満例えば、12号未満か否かを判断し、所定号数未満の場合にはステップS80に移行して分配弁68を所定弁開度として弁開度Bに設定し、給湯号数未満でない場合にはステップS81に移行して分配弁68を所定弁開度として弁開度Cに設定する。この場合、各給湯能力にあった弁開度を選定しており、給湯要求号数に対して分配弁68の開度は連続的に動かしてもよく、分配弁68の弁開度は予め実験値で求めた要求号数を満足する最低循環流量を確保できる弁開度とする。
そして、ステップS82では、暖房温水循環制御(他動作等)が開始されているか否かを判断し、暖房温水循環制御が開始されている場合にはステップS83に移行し、混合弁92を動作させる。また、暖房温水循環制御が開始されていない場合には、ステップS84に移行して暖房温水循環制御を開始し、その開始の後、ステップS85に移行してコールドスタート制御を行い、ステップS83に移行する。
ステップS83では、混合弁92を動作させて給湯温度に一致させる。このとき、混合弁92は温度センサ88、温度センサ80の検出出力、入水量、設定温度から予め実験で求められた弁開度に調整する。この場合、ステップS83では、混合弁92をステップS78で求めた要求号数を基に予め実験等で求めた基礎データを記憶手段であるROMから読み出して所定温度になるように混合弁92を動作する制御即ち、フィードフォワード制御を行う。
また、ステップS86では水量制御が最大流量以上か否かを判断し、最大流量以上である場合にはステップS87に移行して水量を最大値に規制する。即ち、ステップS86、S87では、給湯量が水量制御弁86で給湯可能な最大流量を超えているとき、最大流量までに弁開度を規制する。但し、給湯量が最大流量未満なら弁開度を維持する。この場合、最大流量は、
最大流量=
{(給湯温度−給水温度)/(設定温度−給水温度)}×検出流量
・・・(2)
で与えられる。
そして、ステップS88では温水温度が設定温度±αの温度範囲に到達したか否かを判定し、この温度範囲に到達していない場合にはステップS89に移行し、温水温度が設定温度になるように混合弁92の開度を微調節し、温水温度を設定温度±αの温度範囲に到達させる。この場合、ステップS88の動作だけでは設定温度に達しない場合、温度センサ88の検出温度が設定温度範囲内になるように混合弁92を動作させる制御即ち、フィードバック制御を行う。
ステップS88で出湯温度が設定温度範囲内に達したと判断されたとき、ステップS90に移行して水量制御弁86及び混合弁92の開度を維持し、ステップS71に戻る。
次に、ステップS84の暖房温水循環制御は、図18に示すように、ステップS91で熱交換器24の入側温度を温度センサ58で検出した後、ステップS92に移行し、ポンプ回転数を演算した後、ポンプ運転を開始する。この場合、予め基礎実験で求めたポンプ回転数から流量を演算し、熱交換器22の出側温度が所定温度、例えば、80℃となるようなポンプ回転数で運転し、温水温度を例えば、80℃に迅速に到達させることができる。
ステップS93では燃焼制御を開始し、ステップS94では熱交換器22の出側温度を温度センサ60で検出し、その検出温度が所定温度以上か否かを判定し、所定温度に温水温度が到達したとき、ステップS95に移行してポンプ回転数制御から演算した回転数で運転を行う。この場合、熱交換後の温水温度が所定温度まで達したら、通常のポンプ回転数の決定制御で決定したポンプ回転数で運転を行う。
また、図17に示すフローチャートのステップS85のコールドスタート制御では、図19に示すように、ステップS101で混合弁92の湯側を全開状態にした後、ステップS102に移行して出湯温度が所定温度に到達したか否かを判定する。出湯温度が所定温度に到達するまで、混合弁92の湯側を開き、出湯温度が所定温度に到達したとき、コールドスタート制御を終了する。この場合、コールドスタート時、所定温度、例えば、37℃までは混合弁92の湯側を全開にして立上りを向上させた後、所定温度に到達したとき、通常制御に移行させる。
次に、本発明の熱源装置の他の実施例について説明する。
図20は、本発明の熱源装置の危険防止制御の実施例を示している。この熱源装置において、危険防止制御は、混合弁92が故障した場合に最高設定温度以上の高温出湯を防止する制御である。給湯回路6に流れる上水Wを熱媒である温水10を用いて加熱する熱交換は、間接熱交換であるため、熱交換器66が沸騰するおそれがない低流量出湯が可能であるが、混合弁92が故障して閉じられると、低流量出湯となり、バイパス管90を通過する上水(冷水)Wが混合しないため、出湯温度が高温化し、温水10の温度と同等の最大80℃程度の高温出湯になるおそれがある。
この高温出湯を防止するには、混合弁92が閉故障であることを検知した場合、分配弁68を閉止することにより、熱量移動の遮断、即ち、熱湯を遮断し、給湯及び熱交換を停止すれば、上水Wに対する与熱熱量がないので、給湯温度の高温化を回避できるものの、給湯回路6がバイパス管90を用いているため、給湯与熱を停止しても、暖房回路4側を沸騰させるおそれがある。そこで、風呂回路8側の開閉弁74を開き、破線で示すように、追焚与熱回路34をバイパス迂回路として用いれば、暖房回路4の沸騰を回避できる。この場合、循環ポンプ100を運転しない限り、浴槽94側の浴槽水96が熱くなることはない。
また、他の制御として、混合弁92の閉故障を検知した場合、水量制御弁86を閉じて出湯を強制的に停止する。この場合、水量制御弁86の閉止機能が故障した場合を想定し、水量制御弁86の故障時は、バーナ12の燃焼を停止させれば、安全性をより高めることができる。
この危険防止制御を図21に示すフローチャートを参照して説明すると、ステップS401で混合弁92に異常があるか否かを検出する。即ち、混合弁92の異常検出方法は、通常ならば閉又は開リミット(限界角度)に到達できる十分な所定時間後、何れかのリミットを主制御部124側で検知できない場合を異常ありと判断する。他の検出方法として、水量センサ82の検出出力や、リモコン装置の運転要求等から給湯運転停止と判断した場合には、混合弁92は全開方向へ動作することになる。そのとき、所定時間経過後、混合弁92から開リミットを検出できない場合には同様に異常ありと判断する。
ステップS401で混合弁92に異常があると判断した場合には、ステップS402で熱源の動作、この実施例では、燃焼を一時停止させる。そして、ステップS403では、水量制御弁86を閉止させ、給湯出湯を停止することにより高温出湯を防止する。この結果、利用者が高温出湯に晒されることがない。
また、ステップS404、S405では、水量制御弁86の故障を検出する。即ち、ステップS404では水量制御弁86の閉止動作から所定時間、例えば、10秒が経過したか否かを判定し、10秒以内ではステップS405に移行し、ステップS405では、水量制御弁86が故障により出湯を閉止できない場合には高温出湯をする危険があるので、水量制御弁86の閉リミット検出を行い、水量制御弁86の閉止の有無を確認する。その閉止動作開始から10秒以内に閉止が確認されない場合、ステップS406に移行し、水量制御弁86及び混合弁92の双方の故障(ダブル故障)と判断して燃焼完全停止とし、その故障アラームを発生して異常を告知する。熱源の燃焼の停止により、確実に高温出湯を回避できる。
そして、ステップS407では、開閉弁74を開くことで、追焚与熱回路34をバイパス迂回路として機能させ、ステップS408では、分配弁68を所定の開度、この場合、熱交換器66側を閉止(弁開度A)とすることにより流量を零にし、熱交換器66への熱量搬送を遮断し、ステップS409では表示部130にアラーム点灯を行い、混合弁92の異常を告知する。また、ステップS410では給湯運転以外の暖房及び追焚運転の再開が可能となり、燃焼を再開させる。
このような制御を行えば、図7に示す熱源装置の構成を利用して高温出湯を防止でき、安全性を高めることができる。なお、ステップS407、408は、ステップS402とステップS403との間に設けて同様の処理を行ってもよい。
次に、図22は、本発明の熱源装置の低温往き温度の安定化制御の実施例を示している。高温暖房負荷及び低温暖房負荷に対応する高低二温度の暖房装置では、膨張タンク26の温水温度が支配的であるため、低温負荷に対する温水LDの低温往き温度が要求温度から大幅にずれることを防止するため、低温往き温度の安定性を向上させる制御を行う。
熱交換器22、24で発生させた高温水HDと、この高温水HDに膨張タンク26側の温水10を混合して低温水LDとが得られ、高温水HDは高温暖房負荷、低温水LDは低温暖房負荷に供給される。ここで、低温往き温度は、高温水HDと温水10の混合によって得ているが、温水10と、高温水HDとを混合させる際に、高温水HDより膨張タンク26側の温水10の圧力が高いため、圧力不均衡が両者の混合比に影響を与え、低温往き温度が温水10側の温水温度によって変化し、ばらつくおそれがある。例えば、膨張タンク26側の温水温度を50℃、高温水HD側の温度を80℃とすると、圧力均衡を図るための固定オリフィスを設置しても、膨張タンク26の温水温度が10℃だけ下がると、低温往き温度は50℃となり、低温水LDを所定温度として例えば60℃に設定することができないおそれがある。
そこで、この実施例では固定オリフィスに代えて低温調整弁62を設置したものである。このような低温調整弁62を設置すれば、膨張タンク26の温水温度が低い場合には低温調整弁62の開度を絞って流量を抑え、膨張タンク26の温水温度が高い場合には低温調整弁62の開度を開いて流量を増大させれば、低温水LDを設定温度60℃に制御することができる。
この低温調整弁62を用いた低温往き温度の安定化制御を図23に示すフローチャートを参照して説明すると、ステップS501では、低温往き温度が、設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断する。このとき、低温往き温度は温度センサ61から読み取り、設定温度は各リモコン装置、外部制御部126に設定されている。低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内の場合には、ステップS502に移行して現在の弁開度を維持し、設定温度の所定温度範囲外の場合には、ステップS503に移行する。
ステップS503では、低温往き温度が設定温度以下か否かを判断し、低温往き温度が設定温度より低い場合にはステップS504に移行し、低温往き温度が設定温度より高い場合にはステップS505に移行する。ステップS504では、低温調整弁62の開度を閉方向に調整し、より高温側の温水量を増やすことで設定温度に近付ける。そして、ステップS506では、再び、低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断し、その範囲内にある場合には、ステップS508に移行して現在の弁開度を維持し、ステップS501に戻る。また、低温往き温度が設定温度の所定温度範囲外、例えば、±1℃以外の場合には、ステップS507に移行し、低温調整弁62の閉リミットを検出したか否かを判断し、ステップS503に戻る。
また、ステップS505では、低温調整弁62の開度を開方向に調整し、より高温側の温水量を減らすことで設定温度に近付ける。そして、ステップS509では、再び、低温往き温度が設定温度の所定温度範囲内、例えば、±1℃以内か否かを判断し、その範囲内にある場合には、ステップS511に移行して現在の弁開度を維持し、ステップS501に戻る。また、低温往き温度が設定温度の所定温度範囲外、例えば、±1℃以外の場合には、ステップS510に移行し、低温調整弁62の閉リミットを検出したか否かを判断し、ステップS501に戻る。
そして、ステップS507で低温調整弁62の閉リミット、ステップS510でその開リミットを検出した場合には開度調整が困難であるので、調整動作を停止させ、ステップS507ではステップS508、ステップS510ではステップS511に移行して現状の開度を維持する。
このような安定化制御を行えば、低温暖房負荷に対する低温水LDの温度を所定温度に安定化させることができ、温度変化による不都合を回避することができる。
なお、実施例では、暖房回路4に流す熱媒として水を例に取って説明したが、不凍液、その他の液体等を用いてもよい。
以上説明したように、上記実施の形態の熱源装置によれば、次の効果が得られる。
a 燃焼熱や電熱、排熱等の単一の熱源を用いて熱媒を加熱し、その熱媒の熱を暖房負荷、上水加熱、浴槽水の追焚等の多用途化、多機能化を実現できる。単一の熱源で加熱した熱媒が持つ熱を暖房負荷、第2の熱交換手段又は第3の熱交換手段側に選択的に切り換えて供給するので、熱交換の高効率化、配管路の簡略化、設備の軽量化、コンパクト化とともに、設備コストの低減や設置作業の簡略化を実現することができる。配管路の簡略化により、暖房、給湯及び追焚回路の低圧損化を図ることができる。
b 燃料ガス等の燃焼熱を熱源に用いた場合、燃焼時間を縮小して高効率化を図ることができるとともに、低Nox化、ポンプ消費電力の低減を図ることができる。
c ポンプの回転数を制御することで、熱媒加熱を制御することができ、加熱需要に即応することができる。温水需要の変動に伴い、循環温水量を可変するため、各温水需要に対して適切な温水量を供給できる。
d 潜熱回収による熱交換で熱媒の加熱を高効率化することができる。
e タンク内の熱媒を保温することで、その熱量を給湯、暖房、浴槽追焚に利用することができ、給湯の加熱速度を高めることができ、給湯の迅速化を図ることができる。給湯に必要な温水量を予め確保できるので、浴槽水の追焚、暖房等の温水需要が生じても給湯温度変動を抑制でき、安定給湯が可能である。
f 給湯需要と暖房用の放熱又は浴槽水の追焚との熱分配により、熱的損失を抑制でき、高効率化を実現できる。
本発明は、単一の熱源により暖房、給湯、浴槽追焚等の多用途化を実現した熱源装置及びその制御方法を提供でき、有用である。
本発明の熱源装置及びその制御方法の実施例を示す図である。 基本動作を示すフローチャートである。 給湯必要熱量−ポンプ回転数を示す特性図である。 給湯必要熱量、暖房要求端末個数−ポンプ回転数を示す特性図である。 給湯、暖房、追焚必要熱量−ポンプ回転数を示す特性図である。 保温動作を示すフローチャートである。 本発明の熱源装置の実施例における熱源機側の構成を示す図である。 本発明の熱源装置の実施例における制御系及び暖房負荷側の構成を示す図である。 本発明の熱源装置の基本的な制御動作を示すフローチャートである。 ポンプ回転数決定制御を示すフローチャートである。 図10に続くポンプ回転数決定制御を示すフローチャートである。 図10に続くポンプ回転数決定制御を示すフローチャートである。 図10に続くポンプ回転数決定制御を示すフローチャートである。 図13に続くポンプ回転数決定制御を示すフローチャートである。 図13に続くポンプ回転数決定制御を示すフローチャートである。 給湯運転動作を示すフローチャートである。 図16に続く給湯運転動作を示すフローチャートである。 暖房温水循環制御を示すフローチャートである。 コールドスタート制御を示すフローチャートである。 危険防止制御の実施例を示す図である。 危険防止制御を示すフローチャートである。 低温調整制御の実施例を示す図である。 低温調整制御を示すフローチャートである。
符号の説明
3 暖房負荷
3A 高温暖房負荷
3B 低温暖房負荷
4 暖房回路
10 温水(熱媒)
11 熱源(加熱手段)
12 バーナ(加熱手段)
21、22、24 熱交換器(第1の熱交換手段)
26 膨張タンク
28 循環ポンプ
30 主回路
32 給湯与熱回路
34 追焚与熱回路
35 開閉弁(第1の開閉弁)
40、42、49、50、52 放熱器(暖房負荷)
66 熱交換器(第2の熱交換手段)
68 分配弁(第2の開閉弁)
72 熱交換器(第3の熱交換手段)
74 開閉弁(第3の開閉弁)

Claims (3)

  1. 熱媒を溜めるタンクと、
    前記熱媒を循環させる暖房負荷と、
    第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、
    熱源と、
    前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、
    前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、
    前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、
    前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、
    前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、
    前記第1の熱交換手段の入側における前記主回路に設置され、前記第1の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流し、前記第2の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、前記第3の開閉弁が開かれた場合に前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流して前記タンクに戻し前記タンクの前記熱媒を前記主回路側に流すポンプと、
    前記ポンプに上限回転数を設定し、この上限回転数から段階的に低減させた固定回転数を設定し、暖房要求、給湯要求及び追焚要求の必要熱量を求め、この必要熱量と現在熱量とを比較し、その差分に応じて前記ポンプの回転数を前記上限回転数又は前記固定回転数に制御し、かつ前記熱源を制御する制御部と、
    を備えたことを特徴とする熱源装置。
  2. 給湯運転、暖房運転又は追焚運転が終了した場合、前記給湯与熱回路に前記熱媒を循環させて所定温度に維持する保温運転を行うことを特徴とする請求項1記載の熱源装置。
  3. 熱媒を溜めるタンクと、前記熱媒を循環させる暖房負荷と、第1の開閉弁を備え、該第1の開閉弁が開かれた場合に前記タンクから前記熱媒を前記暖房負荷に循環させ、前記タンクに戻す主回路と、熱源と、前記主回路に接続されて前記熱媒を循環させ、前記熱源の熱を前記熱媒に熱交換する第1の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第2の開閉弁を備え、該第2の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す給湯与熱回路と、前記給湯与熱回路に接続され、前記給湯与熱回路に流れる前記熱媒の熱を給湯水に熱交換する第2の熱交換手段と、前記主回路の前記第1の熱交換手段の出側から分岐され且つ前記タンクに直結されて第3の開閉弁を備え、該第3の開閉弁が開かれた場合に前記主回路から前記熱媒を流し、前記タンクに戻す追焚与熱回路と、前記追焚与熱回路に接続され、前記追焚与熱回路に流れる前記熱媒の熱を浴槽水に熱交換する第3の熱交換手段と、前記第1の熱交換手段の入側における前記主回路に設置され、前記タンクの前記熱媒を前記主回路側に循環させるポンプとを備える熱源装置の制御方法であって、
    前記ポンプに上限回転数を設定し、この上限回転数から段階的に低減させた固定回転数を設定する工程と、
    暖房要求により、前記第1の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記暖房負荷に流す工程と、
    給湯要求により、前記第2の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第2の熱交換手段に流し、給湯回路の給水を加熱する工程と、
    追焚要求により、前記第3の開閉弁を開くとともに、前記熱源及び前記ポンプを駆動し、前記タンクの前記熱媒を前記主回路にある前記第1の熱交換手段を通して前記第3の熱交換手段に流し、浴槽水を加熱する工程と、
    前記暖房要求、前記給湯要求及び前記追焚要求の必要熱量を求める工程と、
    前記必要熱量と現在熱量とを比較し、その差分によって前記ポンプの回転数を前記上限回転数又は前記固定回転数に増減させ、必要熱量に前記熱媒の熱量を制御する工程と、
    を含むことを特徴とする熱源装置の制御方法。
JP2006127463A 2006-05-01 2006-05-01 熱源装置及びその制御方法 Expired - Lifetime JP4101845B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127463A JP4101845B2 (ja) 2006-05-01 2006-05-01 熱源装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127463A JP4101845B2 (ja) 2006-05-01 2006-05-01 熱源装置及びその制御方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001319870A Division JP3833511B2 (ja) 2001-10-17 2001-10-17 熱源装置

Publications (2)

Publication Number Publication Date
JP2006258416A JP2006258416A (ja) 2006-09-28
JP4101845B2 true JP4101845B2 (ja) 2008-06-18

Family

ID=37097869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127463A Expired - Lifetime JP4101845B2 (ja) 2006-05-01 2006-05-01 熱源装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP4101845B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221237A (zh) * 2010-10-25 2011-10-19 中华电信股份有限公司 热水供给装置与方法及其制造与供给热水控制方法
CN101396896B (zh) * 2007-09-27 2012-10-10 富士胶片株式会社 感光性层叠体的制造系统
WO2020110336A1 (ja) * 2018-11-27 2020-06-04 株式会社ノーリツ 暖房給湯装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811080B1 (ko) 2007-03-13 2008-03-07 한국지역난방공사 윗목과 아랫목의 분리난방이 가능한 바닥 복사 난방시스템
JP2009052813A (ja) * 2007-08-28 2009-03-12 Noritz Corp 即湯制御装置及びこの即湯制御装置を備えた即湯システム
KR101033050B1 (ko) * 2008-09-30 2011-05-06 린나이코리아 주식회사 1관 3수로 가스 보일러
JP5869549B2 (ja) * 2013-11-09 2016-02-24 リンナイ株式会社 熱源機
JP6513986B2 (ja) * 2015-03-18 2019-05-15 パーパス株式会社 熱源装置、熱交換方法および熱交換器
JP2018084395A (ja) * 2016-11-25 2018-05-31 株式会社ノーリツ 暖房給湯装置
JP6939190B2 (ja) * 2017-07-26 2021-09-22 株式会社ノーリツ 暖房給湯装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396896B (zh) * 2007-09-27 2012-10-10 富士胶片株式会社 感光性层叠体的制造系统
CN102221237A (zh) * 2010-10-25 2011-10-19 中华电信股份有限公司 热水供给装置与方法及其制造与供给热水控制方法
CN103471173A (zh) * 2010-10-25 2013-12-25 中华电信股份有限公司 制造与供给热水控制方法
CN102221237B (zh) * 2010-10-25 2014-09-10 中华电信股份有限公司 热水供给装置与方法
CN103471173B (zh) * 2010-10-25 2016-04-13 中华电信股份有限公司 制造与供给热水控制方法
WO2020110336A1 (ja) * 2018-11-27 2020-06-04 株式会社ノーリツ 暖房給湯装置
JP2020085352A (ja) * 2018-11-27 2020-06-04 株式会社ノーリツ 暖房給湯装置
JP7153192B2 (ja) 2018-11-27 2022-10-14 株式会社ノーリツ 暖房給湯装置
US11946655B2 (en) 2018-11-27 2024-04-02 Noritz Corporation Heating and hot-water supply apparatus

Also Published As

Publication number Publication date
JP2006258416A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4101845B2 (ja) 熱源装置及びその制御方法
JP4101843B2 (ja) 熱源装置及びその制御方法
JP3833511B2 (ja) 熱源装置
JP2008275182A (ja) 排熱回収システム及び副蓄熱タンク
JP2010276220A (ja) 給湯システム
JP4752347B2 (ja) 貯湯式給湯装置
JP2005098628A (ja) 熱源水供給システム
JP5192778B2 (ja) 給湯暖房装置
JP5140634B2 (ja) 貯湯式給湯システムとコージェネレーションシステム
JP2008045841A (ja) 貯湯式給湯システムとコージェネレーションシステム
JP2006125722A (ja) ヒートポンプ給湯暖房システム
WO2016042312A1 (en) A domestic water and space heating system
JP5921416B2 (ja) コージェネレーションシステム及び給湯設備
JP4875948B2 (ja) 貯湯式給湯システムとコージェネレーションシステム
JP2005273958A (ja) 給湯暖房装置
JP2007040553A (ja) 貯湯式給湯装置
JP5638480B2 (ja) 熱源装置
JP2017072345A (ja) 暖房装置
JP3887754B2 (ja) 貯湯式給湯装置及びその制御方法
JP5982238B2 (ja) 貯湯式給湯機
KR102599726B1 (ko) 연료 전지 시스템
JP7310690B2 (ja) 貯湯式給湯装置
JP2019117010A (ja) 給湯暖房システム
JP2019219156A (ja) 貯湯式給湯装置
JP2006162101A (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250