JP4096346B2 - 光変調素子および画像投射表示装置 - Google Patents

光変調素子および画像投射表示装置 Download PDF

Info

Publication number
JP4096346B2
JP4096346B2 JP37298098A JP37298098A JP4096346B2 JP 4096346 B2 JP4096346 B2 JP 4096346B2 JP 37298098 A JP37298098 A JP 37298098A JP 37298098 A JP37298098 A JP 37298098A JP 4096346 B2 JP4096346 B2 JP 4096346B2
Authority
JP
Japan
Prior art keywords
light
liquid crystal
incident
microlens
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37298098A
Other languages
English (en)
Other versions
JP2000193928A (ja
Inventor
喜久夫 貝瀬
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP37298098A priority Critical patent/JP4096346B2/ja
Publication of JP2000193928A publication Critical patent/JP2000193928A/ja
Application granted granted Critical
Publication of JP4096346B2 publication Critical patent/JP4096346B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像信号に応じて画素ごとに光を変調して画像表示を可能とする光変調素子およびこの変調光変調素子を用いた画像投射表示装置に関する。
【0002】
【従来の技術】
液晶素子等の光変調素子を用いた画像表示装置には、直視型表示装置のほかに、画像をスクリーンに投影して表示を行う液晶プロジェクタ等の画像投射表示装置がある。この画像投射表示装置は、カラー表示に用いられる3つの色光を光変調素子の各色に対応する画素に導き、ここで画像信号に応じた光変調を行ったのちスクリーン上に投影させてカラー画像の表示を行うものである。このような光変調素子として液晶表示素子(以下、液晶パネルという。)を用いた画像投射表示装置は、赤(Red =R),緑(Green =G),青(Blue=B)の3色の色分離手段を備えた液晶パネルを1枚用いて構成した単板方式と、色分離手段を備えていない液晶パネルをR,G,Bの各色光路ごとにそれぞれ配置し全体で3枚の液晶パネルを用いて構成した3板方式とに大別される。また、このような画像投射表示装置の使用形態としては、スクリーンの裏面から画像を投射するリア式と、スクリーンの前面から画像を投射するフロント式とがある。
【0003】
一般的に、液晶パネルは、規則的に2次元配置された画素電極が形成された画素基板と、この画素基板と対向するようにして配置された対向基板と、画素基板と対向基板との間を満たすように配置された液晶層とを含んで構成されるものである。
【0004】
近年では、このような液晶パネルを用いた画像投射表示装置の高輝度、高画質化が進んでいる。例えば、フロント式の画像投射表示装置においては、その表示規格がVGA(Video Graphics Array)からSVGA(Super VGA)、更にはXGA(Extended Graphics Array)からSXGA(Super XGA)等と高解像度化している。また、リア式の画像投射表示装置としてリア式プロジェクションTV(テレビジョン)においては、NTSCまたはPAL方式等からデータ表示可能化(Multi-Scan)、更には、HDTV(高品位テレビジョン)からHD対応デジタルTV対応化と高画素数化、高解像度化が必至となっている。また更に、近年では、このような高画素数化および高解像度化の要求の他に液晶パネルの小型化の要求も伴っていることが多い。
【0005】
上述のような画素密度の向上や高輝度化の要求に応えるために、近年では、対向基板にマイクロレンズアレイを設置した液晶パネルが盛んに開発されている。マイクロレンズアレイは、複数のマイクロレンズからなるものである。個々のマイクロレンズは、1つまたは複数の画素に対応して設けられ、液晶パネルに入射した光を対応する画素に集光させるようなっている。このマイクロレンズは、集光性能の極大化を達成するために数10μmの大きさの画素部に集光させる必要があり、対向基板内に内蔵されているものが多い。
【0006】
図14は、マイクロレンズを用いた従来の液晶パネルの一構成例を示す断面図である。なお、以下の説明で、前面側とは光の入射面側をいい、後面側とは光の出射面側をいうものとする。この図に示した液晶パネルは、画素基板110と、この画素基板110の前面側(入射光100の入射面側)に所定距離を隔てて対向配設された対向基板120と、画素基板110と対向基板120とによって挟まれた液晶層130とを備えている。液晶層130には、シール部140によって画素基板110と対向基板120との間に液晶が封止されている。
【0007】
画素基板110は、ガラス基板111と、このガラス基板111の前面側に液晶層130と接するようにして規則的に(周期的に)配置された多数の画素電極部113と、これらの各画素電極部113に対して画像信号電圧をそれぞれ印加するためのスイッチング素子や配線等が形成されたブラックマトリクス部112とを備えている。ここで、スイッチング素子としては、例えば、薄膜トランジスタ(Thin Film Transistor;以下、TFTという)が使用される。このブラックマトリクス部112は、図示しない金属膜等で遮光され、光照射によってTFTが誤動作しないようになっている。各画素電極部113は、例えば、単板方式用の液晶パネルの場合には、それぞれがB,R,Gのいずれかの色光用に割り当てられている。
【0008】
対向基板120は、画素電極部113に対向配設された対向電極125と、一方の面側が対向電極125に接着されたカバーガラス121と、このカバーガラス121の他方の面側に形成された複数のマイクロレンズ122と、このマイクロレンズ122の凸面側に透明な樹脂層123を介して配置されたガラス基板124とを備えている。マイクロレンズ122は、例えば、対向基板120の一部をウェットエッチングまたはドライエッチング等によりレンズ形成されたものである。樹脂層123は、マイクロレンズ122をエッチング等によりレンズ形成した後、屈折率の異なる樹脂(例えば、レジスト、アクリル系樹脂、シリコン系樹脂またはフッ素系樹脂等)を充填することにより形成された層である。これら複数のマイクロレンズ122および樹脂層123によりマイクロレンズアレイが形成される。
【0009】
図15は、マイクロレンズを用いた従来の液晶パネルの他の構成例を示す断面図である。なお、この図で、図14に示した液晶パネルと同一構成要素には同一符号を付し、説明を省略するものとする。この図に示した液晶パネルは、画素基板210と、この画素基板210の前面側(入射光100の入射面側)に所定距離を隔てて対向配設された対向基板220と、画素基板210と対向基板220とによって挟まれた液晶層130とを備えている。
【0010】
画素基板210には、各画素電極部113に対して画像信号電圧をそれぞれ印加するためのスイッチング素子や配線等からなるトランジスタ部212を備えている。対向基板220は、カバーガラス221を備えている。カバーガラス221には、液晶層130側にブラックマトリクス部213が内蔵されている。ブラックマトリクス部213は、光を遮断するための金属膜等からなものであり、トランジスタ部212に対応するようにして設けられている。また、対向基板220において、ガラス基板124とカバーガラス221との間には、マイクロレンズ222が複数配置されている。このマイクロレンズ222は、樹脂層123とは異なる屈折率の少なくとも一つの樹脂を用いて形成されたものである。これら複数のマイクロレンズ222および樹脂層123によりマイクロレンズアレイが形成される。
【0011】
これらの図に示した液晶パネルは、マイクロレンズアレイが内蔵された対向基板と画素基板とを、有効画素を除いた部分で接着樹脂(紫外線硬化型樹脂、熱硬化型樹脂またはエポキシ樹脂等)によってギャップ調整(液晶層の厚さの調整)をしながらシールし、その中に液晶を封止することによって製造される。
【0012】
【発明が解決しようとする課題】
ところで、通常、液晶パネルにおいて、液晶を封止するためのシール部には、たとえ紫外線硬化型樹脂であっても、硬化を完全にするために熱が加えられる。また、液晶パネルのその他の製造工程でも、100〜200℃くらいまで加熱されることが多い。このように製造に伴って液晶パネルが加熱されると、液晶層のギャップ厚が面内で不均一になり易いという問題点がある。
【0013】
ここで、例えば、3板方式の画像投射表示装置の場合には、3枚の液晶パネルのうち1枚でもギャップむら(液晶層の厚さの不均一性)があると、各色光の合成後の表示画像に輝度むらが生じてこれが色むらとして表れてしまうという問題点がある。また、単板方式の画像投射表示装置の場合には、表示画像に輝度むらが生じてしまうという問題点がある。このように、液晶パネルにおけるギャップむらは、液晶透過率のむらとなってあらわれ、液晶プロジェクター等に応用した場合には、輝度むらや色むらになって、画質劣化に結びつく。このため、液晶パネルではギャップ厚の均一性が保たれていることが望ましい。
【0014】
なお、上述したギャップ厚の不均一性の発生は、対向基板の内部に樹脂等の異物質を内蔵したことによる熱膨張率や弾性率の変化によって生ずると考えられる。従って、通常の液晶パネルの組立て時に生ずる昇温や降温時の熱ストレスがギャップ厚の不均一性の発生の起因となっていると思われる。よって、このギャップ厚の不均一性の問題に対する対策としては、マイクロレンズアレイにおける樹脂層をできるだけ薄くして、熱ストレスの影響を低減させることが望ましい。
【0015】
ところで、特開昭62−94826号(特許番号第2754529号)公報には、一対の基板間に液晶を挟持すると共に、マトリクス状の画素を有した液晶装置において、一対の基板のうちの光入射側の基板の液晶側の面に、マトリクス状の画素の各画素部分に対してそれぞれ光入射側の基板を透過して入射する入射光を集光するマイクロレンズをマトリクス状に設けたことを特徴とする液晶装置についての発明が記載されている。この液晶装置では、液晶層内にマイクロレンズの凸面が形成されている。しかしながら、通常、マイクロレンズの凸面の実効深さは10数μmにもなるので、凸面を液晶層内に形成すると、ギャップ厚を制御することが難しくなり、実際に実用的な液晶パネルを製造することは難しいという問題点がある。従って、この発明による液晶パネルは、現実的な装置とは言い難い。
【0016】
本発明はかかる問題点に鑑みてなされたもので、その目的は、ギャップ厚の制御をし易くすると共に、高品質な画像表示を行うことを可能とする光変調素子および画像投射表示装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明による光変調素子は、カラーフィルタを用いない透過型の光変調素子であって、少なくとも一つの色光の各々に対応付けられて2次元的に配列された複数の画素電極を有する画素基板と、画素基板に対向するように配置され、所定の角度分布を有する光が入射する対向基板と、画素基板と対向基板との間に配置され、画素電極に印加される画像信号に応じて、入射した色光を変調する光変調手段とを備えている。対向基板は、光の入射側に配置されたガラス基板と、光変調手段側に配置された対向電極と、ガラス基板と対向電極との間に配置された複数のマイクロレンズとを有している。複数のマイクロレンズは、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置されると共に、各々が曲率の異なる複数のレンズ面または分割された複数のレンズ面を有すると共に各々の中央部が平坦化され、かつ、各マイクロレンズが、対向基板に入射する光の角度分布に応じた設計とされ、対向基板に所定の角度分布を持って入射した光のうち少なくとも各マイクロレンズの平坦部に入射した光がすべて、対応する画素電極に入射するように構成されている。
【0018】
また、本発明による画像投射表示装置は、複数の色光を生成する色光生成手段と、カラーフィルタを用いない透過型の構成とされ色光生成手段からの各色光に対して画像信号に応じた光変調処理を行う少なくとも一つの光変調素子と、光変調素子で変調された各色光をスクリーン上に投射する投射手段とを備えた画像投射表示装置であって、光変調素子は、少なくとも一つの色光の各々に対応付けられて2次元的に配列された複数の画素電極を有する画素基板と、画素基板に対向するように配置され、所定の角度分布を有する光が入射する対向基板と、画素基板と対向基板との間に配置され、画素電極に印加される画像信号に応じて、入射した色光を変調する光変調手段とを備えている。複数のマイクロレンズは、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置されると共に、各々が曲率の異なる複数のレンズ面または分割された複数のレンズ面を有すると共に各々の中央部が平坦化され、かつ、各マイクロレンズが、対向基板に入射する光の角度分布に応じた設計とされ、対向基板に所定の角度分布を持って入射した光のうち少なくとも各マイクロレンズの平坦部に入射した光がすべて、対応する画素電極に入射するように構成されている。
【0019】
本発明による光変調素子および画像投射表示装置では、入射した少なくとも一つの色光が、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置された複数のマイクロレンズによって、集光される。マイクロレンズに入射した色光は、光変調手段において、画素電極に印加される画像信号に応じて変調される。複数のマイクロレンズの各々は、曲率の異なる複数のレンズ面または分割された複数のレンズ面を有しており、レンズ全体の薄型化が図られている。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0021】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る画像投射表示装置の光学系の概略構成を表すもので、装置を真上から見下ろした状態を示している。なお、この図では、煩雑さを避けるために、主たる光線の経路のみを描き、他を省略している。この画像投射表示装置は、モノクロの液晶パネルを3枚使用する3板方式の液晶プロジェクタとして構成されたものであり、白色光を発する光源201と、この光源201から発せられた白色光に含まれる紫外(UV)および赤外(IR)領域の光を除去するUV/IRカットフィルタ202と、このUV/IRカットフィルタ202を透過した光を拡散させて光の照度分布が均一化された平行光を出射するインテグレータ203と、このインテグレータ203から出射された平行光を集光して光源像を形成するリレーレンズ204と、このリレーレンズ204と共にテレセントリック光学系を形成してリレーレンズ204により集光された光を再び所定幅の平行光として出射するコリメータレンズ205とを備えている。
【0022】
光源201は、発光体と、回転対称な凹面鏡とを含んで構成される。発光体としては、例えばメタルハライド系のランプが用いられる。凹面鏡としてはできるだけ集光効率のよい形状のものがよく、例えば回転楕円面鏡や回転放物面鏡等が用いられる。インテグレータ203は、光源201から出射した白色光を拡散させて後述する液晶パネル210における面内照度分布を均一化するためのものであり、例えば、多数のマイクロレンズを配列して形成した1対のレンズアレイ(フライアイレンズ)、またはグラスロッド等によって構成される。
【0023】
本実施の形態に係る画像投射表示装置は、また、同一光路上に、所定間隔を空けて設けられ、コリメータレンズ205から出射された平行光を、それぞれ色表示の基本となるR,G,Bの3色の色光に選択的に分離するダイクロイックミラー20R,206G,206Bと、ダイクロイックミラー206Rにより反射されたR色光を更に後述の液晶パネル210R側に反射する反射ミラー207と、ダイクロイックミラー206Bにより反射されたB色光を更に後述の液晶パネル210B側に反射する反射ミラー208とを備えている。
【0024】
本実施の形態に係る画像投射表示装置は、更に、ダイクロイックミラー206R,206G,206Bにより分離されたR,G,Bの各色光を直線偏光させる入射側偏光板209R,209G,209Bと、これらの入射側偏光板209R,209G,209Bにより直線偏光された各色光を、それぞれ表示する画像に応じて空間的に変調するモノクロの液晶パネル210R,210G,210Bと、これらの液晶パネル210R,210G,210Bにより空間的に変調された光のうち所定の方向に偏光された光のみを透過させる出射側偏光板211R,211G,211Bと、これらの出射側偏光板211R,211G,211Bを透過した各色光を合成する色合成用ダイクロイックプリズム212と、この色合成用ダイクロイックプリズム212により合成された光をスクリーン111に投射する投射レンズ213とを備えている。
【0025】
ここで、投射レンズ213が本発明における「投射手段」に対応する。
【0026】
色合成用ダイクロイックプリズム212は立方体形状をしている。この色合成用ダイクロイックプリズム212は、それぞれR,G,Bの各色光が入射する3つの入射面212R,212G,212Bを有している。入射側偏光板209R,液晶パネル210Rおよび出射側偏光板211Rは、この色合成用ダイクロイックプリズム212の一つの入射面212Rに対向するように配置されている。また、入射側偏光板209G,液晶パネル210Gおよび出射側偏光板211Gは、ダイクロイックプリズム212における入射面212Rと直交する他の入射面212Gに対向するように配置されている。一方、入射側偏光板209B,液晶パネル210Bおよび出射側偏光板211Bは、色合成用ダイクロイックプリズム212における入射面212Rと平行な他の入射面212Bに対向するように配置されている。
【0027】
液晶パネル210R,210G,210B(以下、これらを総称して液晶パネル210と記す。)は、カラーフィルタを用いない透過型のマイクロレンズ方式の液晶表示素子であり、入射した各色光に対して画像信号に応じた選択的な変調を行うようになっている。この液晶パネル210は、規則的に2次元配置された画素電極(本図では図示せず)が形成された画素基板(図示せず)と、この画素基板と対向するようにして配置された対向基板と(図示せず)、画素基板と対向基板との間を満たすように配置された液晶層(図示せず)とを含んで構成される。
【0028】
ここで、液晶パネル210が本発明における「光変調素子」に対応する。
【0029】
図2は、図1における液晶パネル210の一構成例である液晶パネル210aの要部構造を示す断面図である。なお、以下の説明で、前面側とは光の入射面側をいい、後面側とは光の出射面側をいうものとする。この図に示した液晶パネル210aは、画素基板10と、この画素基板10の前面側(入射光1の入射面側)に所定距離を隔てて対向配設された対向基板20と、画素基板10と対向基板20とによって挟まれた液晶層30とを備えている。液晶層30には、シール部40によって画素基板10と対向基板20との間に液晶が封止されている。
【0030】
ここで、主として液晶層40が本発明における光変調手段に対応する。
【0031】
画素基板10は、ガラス基板11と、このガラス基板11の前面側に液晶層30と接するようにして規則的に(周期的に)配置された多数の画素電極部13と、これらの各画素電極部13に対して画像信号電圧をそれぞれ印加するためのスイッチング素子や配線等が形成されたブラックマトリクス部12とを備えている。ここで、スイッチング素子としては、例えば、TFTが使用される。このブラックマトリクス部12は、図示しない金属膜等で遮光され、光照射によってTFTが誤動作しないようになっている。
【0032】
対向基板20は、画素電極部13に対向配設された対向電極21と、1つの画素電極部13毎に画素電極部13に対して対向配置された複数のマイクロレンズ22と、このマイクロレンズ22の凸面側に透明な樹脂層23を介して配置されたガラス基板24とを備えている。マイクロレンズ22は、例えば、対向基板20の一部をウェットエッチングまたはドライエッチング等によりレンズ形成されたものである。樹脂層23は、マイクロレンズ22をエッチング等によりレンズ形成した後、屈折率の異なる樹脂(例えば、レジスト、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂またはフッ素系樹脂等)を充填することにより形成された層である。これら複数のマイクロレンズ22および樹脂層23によりマイクロレンズアレイが形成される。このマイクロレンズアレイの後面側は、例えばCMP法(化学機械研磨法)等を用いて研磨されており、その上に対向電極21が形成される。この場合、マイクロレンズアレイに対する対向電極21の密着性を高めるために、マイクロレンズアレイの上に透明な2酸化シリコン膜等を形成してからその上に対向電極21を形成するようにしてもよい。対向電極21は、例えばITO(Indium Tin Oxide)等の透明導電膜で形成され、一定の電位(例えば接地電位)に固定されている。この対向電極21は、例えば、スパッタリング法によりマイクロレンズアレイに蒸着される。
【0033】
マイクロレンズ22は、1つの画素電極部13に対して複数のレンズを有している。例えば、マイクロレンズ22は、1つの画素電極部13に対して、正方格子状に配置された4つのレンズによって構成される。図では、1つの画素電極部13について、正方格子状に配置された4つのレンズのうち、2つのマイクロレンズ22a,22bの断面のみが示されている。このように図2に示した例では、マイクロレンズ22が、1つの画素電極部13に対して複数のレンズで構成されているので、1つの画素電極部13に対して複数に分割された曲面が形成されることになる。このマイクロレンズ22の各曲面は、球面または球面に近い形状の非球面からなるものである。なお、1つの画素電極部13に対して、4つのレンズを配置する構成に限らず、1つの画素電極部13に対して、4つより少ないまたは多い数のレンズを配置するようにしてもよい。
【0034】
図3は、図2に示したマイクロレンズ22による集光特性を示す平面図である。この図は、マイクロレンズ22によって、1つの画素電極部13に集光する集光像を模式的に示したものである。なお、図における点線51は、マイクロレンズ22を構成する複数のレンズの分割線(境界線)に相当するものである。この図に示したように、マイクロレンズ22によって、1つの画素電極部13には、正方格子状に複数の円形の集光像50a,50b,50c,50dが形成される。
【0035】
図4は、図2に示した液晶パネル210aにおけるマイクロレンズ22と従来の液晶パネルにおけるマイクロレンズとを比較するための説明図である。この図では、1画素に対応するマイクロレンズのみを示している。この図において、二点鎖線で示した部分は、従来のマイクロレンズ52を示している。3板方式の画像投射表示装置に適用される液晶パネルの場合、従来では、マイクロレンズ52が、1画素に対して1つの割合で配置されている。これに対し、図2に示した本実施の形態のマイクロレンズ22は、上述のように、1つの画素電極部13に対して複数のレンズにより構成されている。これにより、集光性能を同等にしつつ、マイクロレンズ22の全体の厚みt1を従来のマイクロレンズ52の厚みt2に対して小さくすることができる。従って、図2に示した液晶パネル210aは、従来に比べて薄型化が図られている。
【0036】
次に、図1に示した液晶パネル210の他の構成例について説明する。図5は、液晶パネル210の他の構成例としての液晶パネル210bの要部構造を示す断面図である。この図において、図2に示した液晶パネル210aと同一構成要素には同一符号を付し、適宜説明を省略するものとする。この図に示した液晶パネル210bは、図2に示した液晶パネル210aにおける複数のマイクロレンズ22に代えて、複数のマイクロレンズ60を備えたものである。このマイクロレンズ60は、1つの画素電極部13に対して1つのレンズが形成されたものである。各マイクロレンズ60は、1つの画素電極部13に対して複数の曲率を有したレンズによって構成されている。各マイクロレンズ60は、例えば、中央部61と周辺部62とで曲率が異なっている。この図の例では、中央部61が平坦化され、周辺部62に入射光1を集光するための曲面が形成されている。周辺部62の曲面は、球面または球面に近い形状の非球面からなるものである。このように、マイクロレンズ60の中央部61を平坦化することにより、レンズの厚みを従来の液晶パネルにおけるマイクロレンズの厚みに対して小さくすることができる。従って、図5に示した液晶パネル210bは、従来に比べて薄型化が図られている。
【0037】
図6は、図5に示したマイクロレンズ60による集光特性を示す平面図である。この図は、マイクロレンズ60によって、1つの画素電極部13に集光する集光像を模式的に示したものである。この図に示したように、マイクロレンズ60の周辺部62に形成された曲面の作用によって、1つの画素電極部13には、環状の集光像63が形成される。なお、中央部61に入射した光は、そのまま画素電極部13の中央部に到達する。
【0038】
なお、図5に示したマイクロレンズ60において、中央部61を完全に平坦化せず、周辺部62とは異なる曲率の曲面によって構成してもよい。また、図2に示したマイクロレンズ22において、1つの画素電極部13に対して複数に分割されたレンズの各々の中央部を、マイクロレンズ60と同様に平坦化して構成するようにしてもよい。これにより、液晶パネル210の更なる薄型化を図ることができる。
【0039】
次に、液晶パネル210のより具体的な構成例を説明する。通常、3板方式の液晶プロジェクタでその使用形態がフロント方式の場合、液晶パネルに入射する光の角度成分は、±10°程度である。従って、例えば、図5に示したマイクロレンズ60における中央部61の平坦化された部分においても、光の入射成分は約±10°の角度分布を持つことになる。
【0040】
図7は、液晶パネル210に入射する光の角度依存性の例を説明するための特性図である。この図において、縦軸は液晶パネル210に入射する入射光の相対強度を示しており、横軸は入射角度を示している。この図では、特に、液晶パネル210として図2に示した構成の液晶パネル210aにおける入射光の強度分布例を示している。なお、この強度分布例は、画素電極部13上の対向基板20に投射される光の強度分布に対応する。液晶パネル210aに入射する光の強度分布は、符号71で示した曲線のように、例えば、約±10°の角度成分を有している。従って、液晶パネル210におけるマイクロレンズは、この角度分布を考慮して設計する必要がある。なお、図では、角度成分が約±8°である例(符号72で示した曲線)を同時に示している。
【0041】
ここで、図8を参照して、本実施の形態における液晶パネル210について、光の角度成分を考慮した具体的な設計手法を説明する。ここでは、図5に示したマイクロレンズ60と同様に、1つの画素電極部13に1つのレンズが配置されていると共に、レンズの中心部に平坦部73が形成されたマイクロレンズ70を有する液晶パネルを設計する場合を例に説明する。なお、図8において、図5に示した液晶パネル210bと同一構成要素には同一符号を付している。また、この図において、(A)は、図5と同様に液晶パネルの断面構造を示し、(B)は、マイクロレンズ70部分を光の入射側から見た平面図を示している。ここで、図に示したように、1つのマイクロレンズ70の大きさをD1,隣り合うマイクロレンズ70との境界部74における液晶層30との間の距離をdc,ブラックマトリクス部12間の距離をD2,1つのブラックマトリクス部12の大きさをD3,マイクロレンズ70の平坦部73から、画素電極部13の底部までの距離をdとする。また、マイクロレンズ70の平坦部73の周端部(曲率変化点75)とブラックマトリクス部12との間の水平方向の距離をx,入射角度θで入射した入射光2と曲率変化点75との間の水平方向の距離をyとする。
【0042】
この図に示した液晶パネルにおいて、x/d<tanθの関係が成り立つ。このとき、入射角度θが10°であったとすると、tan10°は、約0.176であるから、x/0.176<dの関係が成り立つ。ここで、距離dが20μmであるとすると、x<3.5μmとなる。更に、ブラックマトリクス部12の大きさD3が4μmであるとすると、距離y<x+2μm=5.5μmとなる。
【0043】
また、仮に画素電極部13の一辺の長さに相当する距離D1が20μmであると共に、マイクロレンズ70の基本的な形状が球であるとすると、このレンズの球半径rは、20√2/2であり約14μmである。ここで、更に、入射光2が±10°の角度成分まで持ち、x=3.5μm,d=20μmであると仮定すれば、距離dcは、約6μmで良くなる。
【0044】
図9は、以上のような設計手法による一設計例である液晶パネル210cの要部構造を示す構成図である。この図において、(A)は、液晶パネル210cの断面構造を示し、(B)は、マイクロレンズ80部分を光の入射側から見た平面図を示している。なお、この図において、図8に示した液晶パネルと同一構成要素には同一符号を付している。この液晶パネル210cの各部の設計値は、以下の通りである。なお、距離daは、マイクロレンズ80の平坦部73と境界部74との間の距離である。距離y1は、マイクロレンズ80の曲率変化点75と境界部74との間の水平方向の距離であり、距離y2は、マイクロレンズ80の曲率変化点75とレンズ中心Oとの間の水平方向の距離である。角度αは、マイクロレンズ80の曲率変化点75と境界部74との間のレンズ中心Oを基準とした角度である。マイクロレンズ80および樹脂層23は、それぞれ屈折率の異なる樹脂(例えば、レジスト、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂またはフッ素系樹脂等)により形成されている。樹脂層23は、マイクロレンズ80をエッチング等によりレンズ形成した後、この屈折率の異なる樹脂を充填することにより形成される。なお、マイクロレンズ80の屈折率n2は、樹脂層23の屈折率n1よりも大きい。
【0045】
マイクロレンズ80の半径r=14.1μm
距離da=11.2μm
距離dc=4μm
距離y1=5.5μm
距離y2=8.6μm
角度α=52°
【0046】
図10は、以上のような設計手法による他の設計例である液晶パネル210dの要部構造を示す構成図である。この図において、(A)は、液晶パネル210dの断面構造を示し、(B)は、マイクロレンズ280部分を光の出射側(後面側)から見た平面図を示している。なお、この図において、図9に示した液晶パネル210cと同一構成要素には同一符号を付している。この液晶パネル210dにおいて、マイクロレンズ280は、1つの画素電極部13に対して複数のレンズを有している。より具体的には、図の(B)に示したように、マイクロレンズ280は、1つの画素電極部13に対して、正方格子状に配置された4つのレンズ280a,280b,280c,280dによって構成されている。但し、このマイクロレンズ280は、図2に示したマイクロレンズ22とは異なり、レンズが光の出射側に凸な形状となっていると共に、レンズ全体の中央部に図9に示したマイクロレンズ80と同様に平坦部73が形成されている。すなわち、この図の例では、マイクロレンズ280が、1つの画素電極部13に対して、レンズの分割化と平坦化の双方が行われた構成となっている。このマイクロレンズ280の平坦化により、レンズの薄型化に寄与することができると共に、液晶層30に対してレンズの凸面の深さが深くなり過ぎ、ギャップ厚の制御が難しくなるような事態を防止することができる。
【0047】
液晶パネル210dの各部の設計値の基本的な部分については図9に示した液晶パネル210cと同様である。例えば、距離da,dc,y1,y2については、液晶パネル210cと同様である。なお、ここでの距離dcは、マイクロレンズ280の平坦部73と液晶層30との間の距離である。マイクロレンズ280および樹脂層23は、それぞれ屈折率の異なる樹脂により形成されている。マイクロレンズ280および樹脂層23の形成方法については図9に示した液晶パネル210cと同様である。
【0048】
次に、上記のような構成の画像投射表示装置の作用について説明する。
【0049】
まず、図1を参照して、画像投射表示装置の全体の作用を説明する。光源201から発せられた白色光は、UV/IRカットフィルタ202により紫外線および赤外線が除去される。そして、このUV/IRカットフィルタ202を透過した光は、インテグレータ203において拡散され、光の照度分布が均一化されたほぼ平行な光として出射される。このインテグレータ203から出射された平行光は、リレーレンズ204により、一旦集光された後、リレーレンズ204と共にテレセントリック光学系を形成したコリメータレンズ205により、所定幅の平行光として出射される。
【0050】
コリメータレンズ205から出射した平行光は、ダイクロイックミラー206R,206G,206Bの作用により、色表示の基本となるR,G,Bの3色の色光に選択的に分離される。分離されたR,G,Bの各色光は、入射側偏光板209R,209G,209Bにより直線偏光された後、それぞれ液晶パネル210R,210G,210Bに入射する。液晶パネル210R,210G,210Bは、入射した光を空間的に変調して出射する。液晶パネル210R,210G,210Bを出射した光は、出射側偏光板211R,211G,211Bに入射する。出射側偏光板211R,211G,211Bを透過した各色光は、それぞれ色合成用ダイクロイックプリズム212の入射面212R,212G,212Bに入射する。色合成用ダイクロイックプリズム212の入射面212R,212G,212Bに入射した各色光は、色合成用ダイクロイックプリズム212の作用により色合成された後、投射レンズ213により、スクリーン111に投射される。
【0051】
次に、液晶パネル210の作用について説明する。まず、図2および図3を参照して、液晶パネル210の一構成例である液晶パネル210aの作用について説明する。なお、以下では特に、1つの画素電極部13に入射する入射光1が受ける作用について説明する。
【0052】
図2に示したように、液晶パネル210aに入射した入射光1は、対向基板20のガラス基板24を透過し、マイクロレンズ22によって集光作用を受けて液晶層30、画素電極部13を通過し、画素基板10のガラス基板11の内部で焦点を結ぶ。なお、マイクロレンズ22による光の集光位置は、ガラス基板11の内部ではなく、画素電極部13上であっても構わない。入射光1は、液晶層30を通過する間に、画素電極部13に印加された画像信号電圧に応じて空間的な変調を受ける。
【0053】
1つの画素電極部13に対しては、マイクロレンズ22として、例えば、正方格子状に4つのレンズが分割配置されている。液晶パネル210aに入射した入射光1は、この4つのレンズのそれぞれによって、1つの画素電極部13に入射するように集光される。より具体的には、分割配置された4つのレンズによって、画素電極部13上には、図3に示したように、正方格子状に複数の円形の集光像50a,50b,50c,50dが形成される。以上の作用は、マイクロレンズ22に入射する全ての光について同様である。
【0054】
次に、図5および図6を参照して、液晶パネル210の他の構成例である液晶パネル210bの作用について説明する。この液晶パネル210bによる作用は、マイクロレンズ60による作用を除いて上述の液晶パネル210aによる作用と同様である。マイクロレンズ60は、1つの画素電極部13に対して1つのレンズが配置されていると共に、例えば、中央部61と周辺部62とで曲率が異なっている。このため、レンズの中央部61と周辺部62とで光の集光作用が異なる。図5に示した例では、中央部61が平坦化され、周辺部62に入射光1を集光するための曲面が形成されおり、この周辺部62に形成された曲面の作用によって、1つの画素電極部13には、図6に示したように環状の集光像63が形成される。なお、中央部61に入射した光は、そのまま画素電極部13の中央部に到達する。
【0055】
なお、図9および図10に示した液晶パネル210c,210dについても、その全体的な作用は液晶パネル210a,210bと同様である。
【0056】
以上説明したように、本実施の形態によれば、液晶パネル210におけるマイクロレンズの各々が、曲率の異なる複数のレンズ面(例えば、図5に示したマイクロレンズ60)または分割された複数のレンズ面(例えば、図2に示したマイクロレンズ22)を有するようにして構成されているので、マイクロレンズ部分の薄型化を図ることができ、マイクロレンズを構成する基板の熱膨張率、弾性率の変化によるギャップ厚の制御がし易くなる。これにより、ギャップ厚の均一化を図ることができるので、ギャップ厚のばらつきによる色むらを少なくして高品質な画像表示を行うことが可能となる。特に、図10に示したマイクロレンズ280では、レンズ中央部の平坦化を図ってレンズの凸面を液晶層30側に配置するようにしたので、レンズの凸面が液晶層30側に配置されているにも関わらず、液晶層30に対してレンズの境界部分の深さが深くなり過ぎることがなく、ギャップ厚の制御がし易くなっている。
【0057】
また、本実施の形態によれば、従来のように、マイクロレンズを単一の曲率のレンズのみで構成すると共に、1つの画素電極部13に1つのレンズを対応させるような構成を採っていないので、従来に比べて、焦点距離や厚さ等を含めたレンズの設計自由度を向上させることができる。
【0058】
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本発明は、3板方式のみならず、単板方式の画像投射表示装置にも適用可能である。本実施の形態では、本発明を単板方式の画像投射表示装置に適用した場合について説明する。
【0059】
図11は、本発明の第2の実施の形態に係る画像投射表示装置の光学系の概略構成を表すもので、装置を真上から見下ろした状態を示している。なお、この図では、煩雑さを避けるために、主たる光線の経路のみを描き、他を省略している。この画像投射表示装置は、カラーフィルタを用いない単板方式の液晶プロジェクタとして構成されたものであり、白色光を発する光源1と、この光源1から発せられた白色光に含まれる紫外および赤外領域の光を除去するUV/IRカットフィルタ302と、このUV/IRカットフィルタ302を透過した光を拡散させて光の照度分布が均一化された平行光を出射するインテグレータ303と、このインテグレータ303から出射された平行光を集光して光源像を形成するリレーレンズ304と、このリレーレンズ304と共にテレセントリック光学系を形成してリレーレンズ304により集光された光を再び所定幅の平行光として出射するコリメータレンズ305とを備えている。
【0060】
光源301は、発光体と、回転対称な凹面鏡とを含んで構成される。発光体としては、例えばメタルハライド系のランプが用いられる。凹面鏡としてはできるだけ集光効率のよい形状のものがよく、例えば回転楕円面鏡や回転放物面鏡等が用いられる。インテグレータ303は、光源301から出射した白色光を拡散させて後述する液晶パネル308における面内照度分布を均一化するためのものであり、例えば、多数のマイクロレンズを配列して形成した1対のレンズアレイ(フライアイレンズ)、またはグラスロッド等によって構成される。
【0061】
この画像投射表示装置は、また、コリメータレンズ305から出射された平行光を、色表示の基本となるB,R,Gの3色の色光に選択的に分離して出射するダイクロイックミラー306と、このダイクロイックミラー306により分離されたB,R,Gの3色の色光の各々を直線偏光させる入射側偏光板307と、この入射側偏光板307により直線偏光されたB,R,Gの3色の色光を、表示する画像に応じて空間的に変調する液晶パネル308と、この液晶パネル308により空間的に変調された光のうち所定の方向に偏光された光のみを透過させる出射側偏光板309と、この出射側偏光板309を透過した光をスクリーン311に投射する投射レンズ310とを備えている。
【0062】
ここで、投射レンズ310が本発明における「投射手段」に対応する。また、液晶パネル308が本発明における「光変調手段」に対応する。
【0063】
ダイクロイックミラー306は、それぞれB,R,Gの各色光を選択的に反射するB用ミラー306B,R用ミラー306RおよびG用ミラー306Gの3枚のミラーを有している。また、ミラー306B,306R,306Gは、液晶パネル308にそれぞれ異なる方向から入射するR,G,Bの各色光の入射角を設定するための色調整保持機構(図示せず)を有している。
【0064】
液晶パネル308は、カラーフィルタを用いない透過型のマイクロレンズ方式の液晶表示素子であり、ダイクロイックミラー306で反射された各色光に対して画像信号に応じた選択的な変調を行うようになっている。この液晶パネル308は、B,R,Gの各色に対応して規則的に2次元配置された画素電極(本図では図示せず)が形成された画素基板(図示せず)と、この画素基板と対向するようにして配置された対向基板と(図示せず)、画素基板と対向基板との間を満たすように配置された液晶層(図示せず)とを含んで構成される。
【0065】
図12は、図11における液晶パネル308の一構成例を示す断面図である。なお、以下の説明では、図2に示した液晶パネル210aにおける構成要素と同一の部分には同一の符号を付し、適宜説明を省略する。この図に示した液晶パネル308は、画素基板101と、この画素基板101の前面側(入射光R,G,Bの入射面側)に所定距離を隔てて対向配設された対向基板102とを備えている。
【0066】
画素基板101は、ガラス基板11の前面側に液晶層30と接するようにして規則的に(周期的に)配置された多数の画素電極部91を備えている。画素電極部91は、B,R,Gのいずれかの色光用に割り当てられている。ここで、B,R,Gの各色光用の画素電極部91をそれぞれ91B,91R,91Gと記すことにすると、各画素電極部91は、1つの方向(図では右から左に向かう方向)に沿って91B,91R,91Gという順序で繰り返し配列がなされている。なお、以下では、3つの画素電極部91B,91R,91Gの組を総称して1群の画素電極部91と呼ぶ。
【0067】
対向基板102は、1群の画素電極部91毎に画素電極部91に対して対向配置された複数のマイクロレンズ90を備えている。このマイクロレンズ90には、ダイクロイックミラー306B,306R,306G(図11)によって白色光から色分離して得られたB,G,Rの3つの光束が互いに異なる方向から入射するようになっている。このマイクロレンズ90に入射したB,R,Gの各色光は、それぞれ画素電極部91B,91R,91Gに入射するようになっている。各マイクロレンズ90は、1群の画素電極部91に対して複数の曲率を有したレンズによって構成されている。各マイクロレンズ90は、例えば、中央部と周辺部とで曲率が異なっている。この図の例では、中央部に対して周辺部のレンズ面の曲率が小さくなっている。すなわち、各マイクロレンズ90は、周辺部のレンズ面の方が大きなパワーを有している。なお、このマイクロレンズ90が、入射した光に与える作用については後に図13を参照して詳述する。
【0068】
なお、液晶パネル308におけるマイクロレンズとして、上記第1の実施の形態の液晶パネル210におけるマイクロレンズの構成と同様のレンズを使用することも可能である。また、逆に、上記第1の実施の形態の液晶パネル210におけるマイクロレンズとして、本実施の形態の液晶パネル308におけるマイクロレンズの構成と同様のレンズを使用することも可能である。
【0069】
次に、上記のような構成の画像投射表示装置の作用について説明する。
【0070】
まず、図11を参照して、画像投射表示装置の全体の作用を説明する。光源301から発せられた白色光は、UV/IRカットフィルタ302により紫外線および赤外線が除去される。そして、このUV/IRカットフィルタ302を透過した光は、インテグレータ303において拡散され、光の照度分布が均一化されたほぼ平行な光として出射される。このインテグレータ303から出射された平行光は、リレーレンズ234により、一旦集光された後、リレーレンズ304と共にテレセントリック光学系を形成したコリメータレンズ305により、所定幅の平行光として出射される。
【0071】
コリメータレンズ305から出射した平行光は、ダイクロイックミラー306R,306G,306Bの作用により、色表示の基本となるR,G,Bの3色の色光に選択的に分離される。ダイクロイックミラー306R,306G,306Bは、分離した各色光を互いに異なる角度方向に反射する。このようにダイクロイックミラー306R,306G,306Bによって分離され互いに異なる角度方向に反射されたR,G,Bの各色光は、入射側偏光板307により直線偏光された後、液晶パネル308にそれぞれ異なる方向から入射する。液晶パネル308は、入射した光を空間的に変調して出射する。液晶パネル308を出射した光は、出射側偏光板309に入射する。出射側偏光板309を透過した各色光は、投射レンズ310により、スクリーン311に投射される。
【0072】
次に、図12を参照して液晶パネル308の作用について説明する。なお、以下では特に、1群の画素電極部91に入射する入射光が受ける作用について説明する。
【0073】
図12に示したように、液晶パネル308に異なる方向から入射したB,R,Gの各入射光は、対向基板102のガラス基板24を透過し、マイクロレンズ90によって集光作用を受けて液晶層30、画素電極部91を通過し、画素基板101のガラス基板11の内部でそれぞれの色毎に異なる位置に焦点を結ぶ。なお、マイクロレンズ90による光の集光位置は、ガラス基板11の内部ではなく、画素電極部91上であっても構わない。マイクロレンズ90に入射したB,R,Gの各入射光は、それぞれの色用の画素電極部91B,91R,91Gに入射する。また、B,R,Gの各入射光は、液晶層30を通過する間に、それぞれの色用の画素電極部91B,91R,91Gに印加された画像信号電圧に応じて空間的な変調を受ける。
【0074】
次に、図13を参照してマイクロレンズ90の作用について詳述する。なお、図では、入射光としてR光の経路のみを代表して示している。また、図において、符号90で示した部分は、マイクロレンズ90の中央部の円弧をその曲率を変えずに中央部から延長して示したものであり、マイクロレンズ90の比較例としての従来のレンズに相当する部分である。
【0075】
マイクロレンズ90は、1群の画素電極部91に対して1つのレンズが配置されていると共に、中央部と周辺部とで曲率が異なっている。このため、レンズの中央部と周辺部とで光の集光作用が異なる。この図に示した例では、中央部に対して曲率変化点90bを境に周辺部のレンズ面の曲率が小さくなっており、周辺部のレンズ面の方が大きなパワーを有している。このマイクロレンズ90によれば、焦点距離自身はあまり変化させることなく、周辺部に入った入射光3cを、いわば球面収差のようにレンズ中央部に曲げる効果がある。このため、従来のように単一の曲率で構成したレンズでは、画素電極部91に有効に入射させることのできなかった周辺部の入射光3bについても、中央部の入射光3aと同様に有効に入射させることができる。このため、周辺部から画素電極部91に入射する光量を従来より有効に使用することが可能となる。更に、このマイクロレンズ90によれば、特に、本実施の形態のように単板式の液晶パネルに対する光量増大の効果と共に、隣接する画素電極部91への漏れ光を低減する効果があり、混色を少なくして色純度の向上にも寄与するという効果がある。
【0076】
以上説明したように、本実施の形態によれば、単板方式の画像投射表示装置に対しても、液晶パネル308におけるマイクロレンズ部分の薄型化を図ることができ、マイクロレンズを構成する基板の熱膨張率、弾性率の変化によるギャップ厚の制御がし易くなる。これにより、ギャップ厚の均一化を図ることができるので、ギャップ厚のばらつきによる輝度むらを少なくして高品質な画像表示を行うことが可能となる。
【0077】
なお、本実施の形態におけるその他の構成、作用および効果は、上記第1の実施の形態と同様である。
【0078】
なお、本発明は、上記各実施の形態に限定されず種々の変形実施が可能である。例えば、本発明の画像投射表示装置の使用形態としては、スクリーンの裏面から画像を投射するリア方式と、スクリーンの前面から画像を投射するフロント方式のいずれの形態であってもよい。また、本発明は、透過型の液晶パネルのみならず、反射型の液晶パネルにも適用することが可能である。更に、液晶パネルの構成については、例えば、液晶層とマイクロレンズが設けられた層との間にカバーガラスが配置された構成であってもよい。
【0079】
【発明の効果】
以上説明したように、本発明の光変調素子または画像投射表示装置によれば、少なくとも一つの色光の各々に対応付けられて2次元的に配列された複数の画素電極と、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置されると共に、各々が曲率の異なる複数のレンズ面または分割された複数のレンズ面を有すると共に各々の中央部が平坦化された複数のマイクロレンズと、画素電極に印加される画像信号に応じて、入射した色光を変調する光変調手段とを備えるようにしたので、マイクロレンズの薄型化を図ることができ、ギャップ厚の制御がし易くなる。これにより、ギャップ厚の均一化を図ることができるので、輝度むらや色むらの少ない高品質な画像表示を行うことが可能となるという効果を奏する。
【0080】
また、特に、複数のマイクロレンズ部分の各々の中央部を平坦化すると共に、この平坦化された面を、光変調手段を構成する液晶層側に配置するようにした場合には、更に、マイクロレンズの凸側を液晶層側に配置したとしても、液晶層に対してレンズの凸面の深さが深くなり過ぎることがなく、ギャップ厚の制御がし易くなるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る画像投射表示装置の全体構成を表す平面図である。
【図2】図1に示した画像投射表示装置における液晶パネルの一構成例を表す断面図である。
【図3】図2に示した液晶パネルにおけるマイクロレンズによる集光特性を示す平面図である。
【図4】図2に示した液晶パネルにおけるマイクロレンズと従来の液晶パネルにおけるマイクロレンズとを比較するための説明図である。
【図5】図1に示した画像投射表示装置における液晶パネルの他の構成例を示す断面図である。
【図6】図5に示した液晶パネルにおけるマイクロレンズによる集光特性を示す平面図である。
【図7】図1に示した画像投射表示装置における液晶パネルに入射する光の角度依存性の例を示す特性図である。
【図8】図1に示した画像投射表示装置における液晶パネルを光の角度成分を考慮して具体的に設計するための設計手法を説明するための説明図である。
【図9】図8を用いて説明した設計手法による一設計例である液晶パネルの要部構造を示す構成図である。
【図10】図8を用いて説明した設計手法による他の設計例である液晶パネルの要部構造を示す構成図である。
【図11】本発明の第2の実施の形態に係る画像投射表示装置の全体構成を表す平面図である。
【図12】図11に示した画像投射表示装置における液晶パネルの要部構造を表す断面図である。
【図13】図12に示した液晶パネルにおけるマイクロレンズの集光特性を説明するための説明図である。
【図14】従来の液晶パネルの一構成例を表す断面図である。
【図15】従来の液晶パネルの他の構成例を表す断面図である。
【符号の説明】
10…画素基板,12…ブラックマトリクス部,20,20a…対向基板,22,60…マイクロレンズ,30…液晶層,61…平坦部,210a,210b,210c,210d,210R,210G,210B…液晶パネル,213,310…投射レンズ、111,311…スクリーン。

Claims (4)

  1. カラーフィルタを用いない透過型の光変調素子であって、
    少なくとも一つの色光の各々に対応付けられて2次元的に配列された複数の画素電極を有する画素基板と、
    前記画素基板に対向するように配置され、所定の角度分布を有する光が入射する対向基板と、
    前記画素基板と前記対向基板との間に配置され、前記画素電極に印加される画像信号に応じて、入射した色光を変調する光変調手段と
    を備え、
    前記対向基板は、光の入射側に配置されたガラス基板と、前記光変調手段側に配置された対向電極と、前記ガラス基板と前記対向電極との間に配置された複数のマイクロレンズとを有し、
    前記複数のマイクロレンズは、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置されると共に、各々が曲率の異なる複数のレンズ面または分割された複数のレンズ面を有すると共に各々の中央部が平坦化され、かつ、前記各マイクロレンズが、前記対向基板に入射する光の角度分布に応じた設計とされ、前記対向基板に前記所定の角度分布を持って入射した光のうち少なくとも前記各マイクロレンズの平坦部に入射した光がすべて、前記対応する前記画素電極に入射するように構成されている
    ことを特徴とする光変調素子。
  2. 前記画素基板において、隣接する前記画素電極間にはブラックマトリクス部が形成されており、
    前記マイクロレンズの平坦部から前記画素電極の底部までの距離をd、前記マイクロレンズの平坦部の周端部(曲率変化点)と前記ブラックマトリクス部との間の水平方向の距離をx,前記所定の角度分布を持つ光の入射角度をθとするとき、
    x/d<tanθの関係が成り立つように構成されている
    ことを特徴とする請求項1に記載の光変調素子。
  3. 複数の色光を生成する色光生成手段と、カラーフィルタを用いない透過型の構成とされ前記色光生成手段からの各色光に対して画像信号に応じた光変調処理を行う少なくとも一つの光変調素子と、前記光変調素子で変調された各色光をスクリーン上に投射する投射手段とを備えた画像投射表示装置であって、
    前記光変調素子は、
    少なくとも一つの色光の各々に対応付けられて2次元的に配列された複数の画素電極を有する画素基板と、
    前記画素基板に対向するように配置され、所定の角度分布を有する光が入射する対向基板と、
    前記画素基板と前記対向基板との間に配置され、前記画素電極に印加される画像信号に応じて、入射した色光を変調する光変調手段と
    を備え、
    前記対向基板は、光の入射側に配置されたガラス基板と、前記光変調手段側に配置された対向電極と、前記ガラス基板と前記対向電極との間に配置された複数のマイクロレンズとを有し、
    前記複数のマイクロレンズは、1つの画素電極または複数の色光に対応付けられた一群の画素電極毎に対向配置されると共に、各々が曲率の異なる複数のレンズ面または分割された複数のレンズ面を有すると共に各々の中央部が平坦化され、かつ、前記各マイクロレンズが、前記対向基板に入射する光の角度分布に応じた設計とされ、前記対向基板に前記所定の角度分布を持って入射した光のうち少なくとも前記各マイクロレンズの平坦部に入射した光がすべて、前記対応する前記画素電極に入射するように構成されている
    ことを特徴とする画像投射表示装置。
  4. 前記画素基板において、隣接する前記画素電極間にはブラックマトリクス部が形成されており、
    前記マイクロレンズの平坦部から前記画素電極の底部までの距離をd、前記マイクロレンズの平坦部の周端部(曲率変化点)と前記ブラックマトリクス部との間の水平方向の距離をx,前記所定の角度分布を持つ光の入射角度をθとするとき、
    x/d<tanθの関係が成り立つように構成されている
    ことを特徴とする請求項3に記載の画像投射表示装置。
JP37298098A 1998-12-28 1998-12-28 光変調素子および画像投射表示装置 Expired - Fee Related JP4096346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37298098A JP4096346B2 (ja) 1998-12-28 1998-12-28 光変調素子および画像投射表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37298098A JP4096346B2 (ja) 1998-12-28 1998-12-28 光変調素子および画像投射表示装置

Publications (2)

Publication Number Publication Date
JP2000193928A JP2000193928A (ja) 2000-07-14
JP4096346B2 true JP4096346B2 (ja) 2008-06-04

Family

ID=18501370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37298098A Expired - Fee Related JP4096346B2 (ja) 1998-12-28 1998-12-28 光変調素子および画像投射表示装置

Country Status (1)

Country Link
JP (1) JP4096346B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970784B2 (ja) * 2003-02-10 2007-09-05 シャープ株式会社 マイクロレンズ基板、及びそれを備えた液晶表示素子、並びに投影型液晶表示装置
JP4495917B2 (ja) * 2003-04-03 2010-07-07 株式会社リコー 画像表示装置
JP4400110B2 (ja) * 2003-06-27 2010-01-20 株式会社日立製作所 光学ユニットおよびそれを用いた投射型映像表示装置
JP4806169B2 (ja) * 2004-06-04 2011-11-02 株式会社リコー 反射型液晶空間光変調素子及び画像表示装置
JP4285373B2 (ja) * 2004-09-01 2009-06-24 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ及びマイクロレンズアレイ、並びに電気光学装置及び電子機器
JP2006284984A (ja) * 2005-04-01 2006-10-19 Seiko Epson Corp マイクロレンズ、空間光変調装置及び画像表示装置
JP2008242238A (ja) * 2007-03-28 2008-10-09 Hitachi Via Mechanics Ltd 露光装置
JP4858577B2 (ja) * 2009-06-18 2012-01-18 株式会社日立製作所 光学ユニットおよびそれを用いた投射型映像表示装置
JP5569013B2 (ja) * 2010-02-02 2014-08-13 ソニー株式会社 液晶表示素子及び液晶表示素子を備える投射型液晶表示装置
JP2013167748A (ja) * 2012-02-15 2013-08-29 Canon Inc 照明光学系および画像投射装置
JP2014194472A (ja) * 2013-03-28 2014-10-09 Seiko Epson Corp マイクロレンズアレイ、光変調装置、及びプロジェクター
JP6237070B2 (ja) 2013-10-01 2017-11-29 セイコーエプソン株式会社 マイクロレンズアレイ基板、電気光学装置、および電子機器
JP2015138165A (ja) 2014-01-23 2015-07-30 セイコーエプソン株式会社 マイクロレンズアレイ、マイクロレンズアレイの製造方法、電気光学装置、及び電子機器
JP2015203744A (ja) * 2014-04-14 2015-11-16 セイコーエプソン株式会社 電気光学装置および電子機器
JP6318947B2 (ja) * 2014-07-24 2018-05-09 セイコーエプソン株式会社 マイクロレンズアレイ基板、電気光学装置、および電子機器

Also Published As

Publication number Publication date
JP2000193928A (ja) 2000-07-14

Similar Documents

Publication Publication Date Title
TW482919B (en) Projection type color image display apparatus
JP2942129B2 (ja) 投影型カラー液晶表示装置
JP3344635B2 (ja) カラー液晶表示装置
US5754260A (en) Projection type color liquid crystal optical apparatus
US5381187A (en) Image display apparatus
US5990992A (en) Image display device with plural planar microlens arrays
JP4096346B2 (ja) 光変調素子および画像投射表示装置
JP2002182008A (ja) 光学レンズシステム、画像表示装置、マイクロレンズアレイ、液晶表示素子および投影型液晶表示装置
JP2951858B2 (ja) 投影型カラー液晶表示装置
JPH03140920A (ja) 投写型表示装置及び該投写型表示装置に用いる液晶表示装置
US7339638B2 (en) Micro-lens substrate, liquid crystal display element having same, and projection-type liquid crystal display device
EP1780560B1 (en) Spatial light modulator and projector
JP4202221B2 (ja) 光屈折素子アレイ基板、画像表示素子および画像表示装置
US6104458A (en) Liquid crystal modulation element and projection-type liquid crystal display apparatus having intercepting filters and microlenses
JP2002229125A (ja) 投射型画像表示装置および画像表示システム
JP2000147500A (ja) 画像プロジェクタ
JP2008097032A (ja) マイクロレンズアレイ、液晶表示素子および投影型液晶表示装置
JP3908193B2 (ja) マイクロレンズ基板の製造方法
JPH08227103A (ja) 投射型表示装置
JPH1184337A (ja) 液晶装置および投写型表示装置
JPH11295652A (ja) 画像表示装置とそれを用いた投写型画像表示装置
JPH08304606A (ja) 反射光吸収板および表示パネルとそれを用いた表示装置
JP4534443B2 (ja) 光学ユニット及び投射型表示装置
JP2000047137A (ja) 反射型表示素子および投写型表示装置
JP2002148617A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees