JP3908193B2 - マイクロレンズ基板の製造方法 - Google Patents

マイクロレンズ基板の製造方法 Download PDF

Info

Publication number
JP3908193B2
JP3908193B2 JP2003103180A JP2003103180A JP3908193B2 JP 3908193 B2 JP3908193 B2 JP 3908193B2 JP 2003103180 A JP2003103180 A JP 2003103180A JP 2003103180 A JP2003103180 A JP 2003103180A JP 3908193 B2 JP3908193 B2 JP 3908193B2
Authority
JP
Japan
Prior art keywords
light
lens
microlens
microlens array
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103180A
Other languages
English (en)
Other versions
JP2004309794A (ja
Inventor
和也 北村
訓明 岡田
稔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003103180A priority Critical patent/JP3908193B2/ja
Publication of JP2004309794A publication Critical patent/JP2004309794A/ja
Application granted granted Critical
Publication of JP3908193B2 publication Critical patent/JP3908193B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はマイクロレンズ基板及びその製造方法、マイクロレンズ基板を備えた液晶表示素子、投影型液晶表示装置に関するものである。より詳しくは、例えば、2層構成のマイクロレンズアレイを具備した液晶表示素子等を含む投影型液晶表示装置に関するものである。
【0002】
【従来の技術】
投影型液晶表示装置は、投影型ブラウン管表示装置と比較すると、色再現範囲が広い、小型・軽量であるため持ち運びしやすい、地磁気に影響されないのでコンバージェンス調整が不要であるなど、非常に優れた特性を持っている。また、投影型液晶表示装置は、大画面化も容易であることから、今後、家庭用映像表示装置の主流になると考えられる。
【0003】
液晶表示素子を用いたカラーの投影型画像表示方式には、三原色に応じて液晶表示素子を三枚用いる三板式と、一枚のみを用いる単板式とがある。前者の三板式は、白色光を赤・緑・青の三原色ににそれぞれ分割する光学系と、各色光を制御して画像を形成する三枚の液晶表示素子とを備えており、各色の画像を光学的に重畳してフルカラー表示を行うものである。
【0004】
上記の三板式の構成では、白色光源から放射される光を有効に利用することができ、かつ、色の純度も高いという利点があるが、上述のように色分離系と色合成系とが必要なため、光学系が繁雑で部品点数が多くなってしまい、低コスト化、及び、小型化が困難である。
【0005】
これに対して、後者の単板式は、液晶表示素子を一枚のみ用いる構成であり、モザイク状、ストライプ状等の三原色カラーフィルタパターンを備えた液晶表示素子を投影光学系により、投影するものである。単板式は、使用する液晶表示素子が一枚ですみ、かつ、光学系の構成も三板式に比べて単純になるので、低コスト化、及び、小型の投影型システムに好適である。
【0006】
しかしながら、上記単板式の場合には、カラーフィルタによる光の吸収又は反射が起こるため、入射光の約1/3しか利用することができないという問題が生じる。つまり、カラーフィルタを用いる単板式での画面の明るさは、等しい明るさの光源を用いた三板式と比較して約1/3に低下してしまう。
【0007】
上記の問題を解決するため、例えば、特許文献1には、扇形に配置されたダイクロイックミラー(色分解ミラー)を用いて、白色光源から出射された白色光を、赤、緑、青の各光束に分割し、光の利用効率を向上させるようにした、2層構成のマイクロレンズアレイを備えた投影型カラー液晶表示装置が開示されている。
【0008】
上記投影型液晶表示装置に備えられた液晶表示素子には、光入射側の面に第1のマイクロレンズアレイが、光出射側の面に第2のマイクロレンズアレイがそれぞれ設けられている。この投影型液晶表示装置において、上記ダイクロイックミラーにより分割された各光束は、上記第1のマイクロレンズアレイにそれぞれ異なった角度で入射する。第1のマイクロレンズアレイは、第2のマイクロレンズアレイの光出射位置近傍に各色の光束を集光する。上記第1のマイクロレンズアレイを通過した各光束は、第2のマイクロレンズアレイにより、ダイクロイックミラーで分割された赤、緑、青の各光束の主光線がほぼ平行になるように屈折される。第2のマイクロレンズアレイを通過した各色の光束は、各色に対応した色信号が独立して印加される信号電極により駆動される液晶部位に分配照射される。この装置では、吸収型のカラーフィルタを用いないので、光の利用効率が向上するだけでなく、第1及び第2のマイクロレンズアレイ通過後の各色の主光線がほぼ平行になるため、投影レンズに達するまでの各色の主光線の拡がりが小さく、投影レンズでのケラレによる光量低下がないため、極めて明るい画像を提供することができる。
【0009】
【特許文献1】
特開平7−181487号公報(1995年7月21日公開)
【0010】
【発明が解決しようとする課題】
しかしながら、上述のような従来の投影型液晶表示装置では、以下の問題を招来する。
【0011】
即ち、従来の投影型液晶表示装置に備えられている液晶表示素子の、第1及び第2のマイクロレンズアレイを構成する第1レンズ及び第2レンズは、1対1に対応しており、互いに中心軸が一致している位置関係にある。
【0012】
従って、第1レンズと第2レンズとを正確な位置関係にするためには、第1レンズと第2レンズとの中心軸の位置ずれを極力小さくしなければならず、そのために極めて厳密な中心軸調節機構が必要となる。従って、第1レンズと第2レンズとの位置あわせ工程は複雑となり、上記第1及び第2のマイクロレンズアレイを備えるマイクロレンズ基板の生産性が低下するという問題が生じる。
【0013】
また、従来の投影型液晶表示装置における、第1及び第2のマイクロレンズアレイとしては、レンチキュラーレンズ(蒲鉾状のレンズが平行に配列されたもの)をイオン交換法により透明基板に配列したレンチキュラーレンズ基板が用いられている。つまり、第2のマイクロレンズアレイの形状は基板に対して直角の面を有する。これにより、第2のマイクロレンズアレイのエッチング等の製造工程が極めて困難になり、結果として、コストが嵩むこととなる。
【0014】
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、第1レンズと第2レンズとの間の中心軸の調整を簡単にし、位置あわせ工程及び第2レンズの製造工程の簡略化が実現できる2層構成のマイクロレンズ基板及びその製造方法、マイクロレンズ基板を備えた液晶表示素子、投影型液晶表示装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、互いに異なる角度で入射する複数の光束を各波長域毎に収束させる第1のマイクロレンズアレイと、上記複数の光束のそれぞれの主光線を平行化する第2のマイクロレンズアレイとを備えたマイクロレンズ基板の製造方法であって、上記第1のマイクロレンズアレイを有する透明基板と、上記第2のマイクロレンズアレイになる材料からなる材料層とを積層した後、上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成することを特徴としている。
【0016】
上記の構成によれば、第1のマイクロレンズアレイを介して照射された光によって、上記材料層に第2のマイクロレンズアレイを形成することができるので、第1及び第2のマイクロレンズアレイの間で厳密な中心軸調節機構を必要とせずに、第1のマイクロレンズアレイと第2のマイクロレンズアレイとを同一中心軸上に配置することが可能になる。これにより、第1のマイクロレンズアレイと第2のマイクロレンズアレイとの頻雑な位置あわせを必要とせずに、高精度に第1及び第2のマイクロレンズアレイを配置することができる。従って、第1及び第2のマイクロレンズアレイの位置あわせ工程の簡略化が実現し、上記マイクロレンズ基板の生産性を向上させることができるとともに、生産コストを低減させることができる。
【0017】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、互いに異なる角度で入射する複数の光束を各波長域毎に収束させる第1のマイクロレンズアレイと、上記複数の光束のそれぞれの主光線を平行化する第2のマイクロレンズアレイとを備えたマイクロレンズ基板の製造方法であって、上記第2のマイクロレンズアレイになる材料からなる材料層に感光性材料を塗布し、感光性材料層を形成する感光性材料層形成工程と、感光性材料層形成工程後、上記感光性材料層に、第1のマイクロレンズアレイを介して、入射角度を変化させながら光を照射する照射工程と、照射工程により、上記感光性材料層に光の強度分布に沿った形状を形成し、感光性材料を露光,現像する露光工程と、露光工程で形成された形状を用いて、第2のマイクロレンズアレイを形成するレンズ形成工程とを含むことを特徴としている。
【0018】
上記の構成によれば、第1のマイクロレンズアレイを介して入射角度を変化させながら照射された光により、上記感光性材料層に光の強度分布に沿った形状を形成することができる。そして、上記感光性材料層中で形成された形状を用いて、第2のマイクロレンズアレイを形成することにより、第1及び第2のマイクロレンズアレイの間で厳密な中心軸調節機構を必要とせずに、第1のマイクロレンズアレイと第2のマイクロレンズアレイとを同一中心軸上に配置することが可能になる。従って、第1及び第2のマイクロレンズアレイの位置あわせ工程の簡略化が実現し、上記マイクロレンズ基板の生産性を向上させることができるとともに、生産コストの低減させることができる。
【0019】
さらに、上記の構成によれば、従来のように、第2のマイクロレンズアレイが基板に対し垂直な面を有することにより、そのエッチング等の製造工程が極めて困難になるという問題は招来しない。即ち、上記の構成によれば、第1のマイクロレンズアレイを介して照射された光によって、上記材料層に、基板に対し垂直な面ができない形状に第2のマイクロレンズアレイを形成することができる。従って、第2のマイクロレンズアレイの製造工程を簡潔化させることができる。
【0020】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記露光工程では、入射角度0°の光束によって感光性材料を最も強く露光させるを特徴としている。
【0021】
上記の構成によれば、感光性材料層に形成される形状は、強度分布に沿った形状となる。つまり、光軸に対し垂直方向から見ると、光の入射側に長辺を有する形状になる。従って、第2のマイクロレンズアレイのレンズ形状即ち露光形状が、光束の入射方法に対して、アンダーカット形状とならない。このため、第2のマイクロレンズアレイの製造が容易になり、さらに一層、上記マイクロレンズ基板の生産性を向上させることができる。
【0022】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記照射工程では、部分的に光の透過率を変化させたマスクを用いて、感光性材料層に、入射角度を変化させながら光を照射することを特徴としている。
【0023】
上記の構成によれば、部分的に光の透過率を変化させたマスクを用いて感光性材料層に光を照射するので、光の強度に対する感光性材料の特性を利用することにより、所望の形状の第2のマイクロレンズアレイを得ることができる。
【0024】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記露光工程では、感光性材料層に照射される光の入射角度に応じて、露光時間を変化させることを特徴としている。
【0025】
上記の構成によれば、第1のマイクロレンズアレイを介して感光性材料層に照射される光の入射角度に応じて露光時間を変化させることにより、上記感光性材料層を透過する光の強度が変化する。感光性材料において、透過する光の強度が大きい場合、露光される感光性材料層は厚くなり、透過する光の強度が小さい場合、露光される感光性材料層は薄くなる。したがって、光の強度に対する感光性材料の特性を利用することにより、所望の形状の第2のマイクロレンズアレイを得ることができる。
【0026】
本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記照射工程では、照射する光の入射角度を固定し、材料層に感光性材料が塗布された製造途中のマイクロレンズ基板を回転させることで、上記感光性材料層に、入射角度を変化させながら光を照射することを特徴している。
【0027】
また、本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成すようにすることを特徴としている。
【0028】
また、本発明にかかるマイクロレンズ基板の製造方法は、上記の課題を解決するために、上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成す円筒面になるようにすることを特徴としている。
【0029】
本発明にかかるマイクロレンズ基板は、上記の課題を解決するために、上述したマイクロレンズ基板の製造方法により製造されることを特徴としている。
【0030】
上述した製造方法により、第1及び第2のマイクロレンズアレイ間の中心軸調整を簡単にし、位置あわせ工程及び第2レンズの製造工程の簡略化が実現できる。これにより、低コストにて光利用効率が高く、高性能なマイクロレンズ基板を提供することができる。
【0031】
本発明にかかるマイクロレンズ基板は、上記の課題を解決するために、互いに異なる角度で入射する複数の光束を各波長域毎に収束させる第1のマイクロレンズアレイと、上記複数の光束のそれぞれの主光線を平行化する第2のマイクロレンズアレイとを備えたマイクロレンズ基板であって、上記第2のマイクロレンズアレイにおけるレンズ形状は、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成していることを特徴としている。
【0032】
上記の構成によれば、第2のマイクロレンズアレイのレンズ形状が、光入射側に底面を有する略角錐台形状を成しており、第2のマイクロレンズアレイのレンズ形状即ち露光形状が、光束の入射方法に対して、アンダーカット形状とならない.これにより、第2のマイクロレンズアレイの製造工程を安定かつ簡潔化させることができる。さらに、上記の構成によれば、第1のマイクロレンズアレイにより収束された複数の光束は、第2のマイクロレンズアレイで互いに平行になるように屈折される。上記した略角錐台形状のレンズの傾斜面が光入射側に対して凹を成していることから、斜面部における光の強度分布形状と近い形になり、より露光しやすい簡便な製造方法を提供することができる。
【0033】
本発明にかかるマイクロレンズ基板は、上記の課題を解決するために、上記凹を成す傾斜面が円筒面であることを特徴としている。
【0034】
上記の構成によれば、第2のマイクロレンズアレイのレンズ形状は、光出射側にのみ曲面を有する形状になり、その製造が容易になる。
【0035】
本発明にかかる液晶表示素子は、上記課題を解決するため、上記マイクロレンズ基板を備えたことを特徴としている。
【0036】
これにより、より簡便に、光利用効率が高く、輝度ムラ、混色のない高品質な液晶表示素子を実現することができる。
【0037】
さらに、本発明にかかる投影型液晶表示装置は、上記課題を解決するため、上記の液晶表示素子を備えたことを特徴としている。
【0038】
本発明にかかる投影型液晶表示装置は、さらに、白色光源と、該白色光源からの白色光を互いに異なる波長域を有する複数の光束に分割する光束分割手段と、上記投影型液晶表示装置用の液晶表示素子と、上記液晶表示素子から出射された光を投影するための投影手段とを備えていることを特徴としている。
【0039】
これにより、光利用効率が高く、輝度ムラ、混色のない高品質で、かつ、低コストな投影型液晶表示装置を実現することができる。
【0040】
【発明の実施の形態】
本発明の実施の一形態について、図1〜図11に基づいて説明すれば、以下の通りである。
【0041】
本実施の形態にかかる投影型液晶表示装置に備えられる、液晶パネルユニット(液晶表示素子)の概略の構成を図1に示す。同図に示すように、液晶パネルユニット2は、光透過性を有する中間基板6を備えている。中間基板6の光入射面には、高屈折率樹脂からなる第1レンズ5…が複数設けられ、該第1レンズ5…は第1のマイクロレンズアレイを構成している。第1レンズ5…は光入射側に凸をなす非球面レンズである。第1のマイクロレンズアレイの光入射側の表面は、低屈折率樹脂からなる平坦化層4によって、平坦化されている。平坦化層4の光入射側には、光透過性を有する保護板3が備えられている。
【0042】
上記中間基板6の光出射面には、高屈折率樹脂からなる第2レンズ7…が複数設けられている。第2レンズ7…は光入射側に底面7aを配した略角錐台形状のレンズであり、第2のマイクロレンズアレイを構成している。第2のマイクロレンズアレイの光出射側の表面は、低屈折率樹脂からなる平坦化層20によって、平坦化されている。平坦化層20の光出射側には、ブラックマトリクス層8が形成されている。これにより、保護板3からブラックマトリクス層8までの一連のユニットであるマイクロレンズ基板1が構成されている。
【0043】
また、本実施の形態において、第1レンズ5及び第2レンズ7に用いられる高屈折率樹脂の材料としては、例えば、JSR製Z9001、協立化学製WR8740が挙げられる。一方、平坦化層4及び平坦化層20に用いられる低屈折率樹脂の材料としては、協立化学製WR7710が挙げられる。しかしながら、高屈折率樹脂及び低屈折率樹脂の材料は、特にこれに限定されず、高屈折率樹脂と低屈折率樹脂との屈折率差が大きいければよい。
【0044】
さらに、上記液晶パネルユニット2は、光出射側に下部基板12を有している。下部基板12の光入射面には、TFT等を含む電極層11が設けられている。また上記ブラックマトリクス層8の光出射側には、ITO等からなる透明電極9が設けられている。上記透明電極9及び上記電極層11の間に、液晶層10が形成されている。上記した透明電極9、液晶層10、及び電極層11により画素部22が構成されている。上記ブラックマトリクス層8には、画素部22におけるR,G,Bの各絵素に対応して開口部17R,17G,17Bが形成されている。以下、R,G,Bは、それぞれ赤、緑、青の各色を表わす。
【0045】
上記マイクロレンズ基板1について、更に詳細に説明する。第1のマイクロレンズアレイは、図2(a)に示すように、光入射側から見て、非球面レンズの外周部が相互に密接した正六角形の第1レンズ5…を、稠密に配列した構造を有している。例えば、第1レンズ5の縦ピッチは30μm、横ピッチは45μm、曲率半径は15μmRとなっている。第1レンズ5の焦点位置はブラックマトリクス層8付近に設計されている。
【0046】
一方、第2レンズ7は、図3に示すように、光入射面である底面7aに対し、光出射面である上面7cの長辺が短くなった略角錐台形状のレンズである。また、第2のマイクロレンズアレイは、図2(b)に示すように、光入射側に対して、第2レンズ7をレンガ積み状に配列した構造を有している。第2レンズ7の形状を略角錐台形状としたのは、角錐台の傾斜面7b,7bを曲面としたためであり、光入射側に凹を成している。例えば第2レンズ7の形状は、底面7aが15μm×45μm、上面7cが15μm×15μm、高さhが20μmとなっており、傾斜面7b,7bは、円筒面となっている。ここで、第2レンズ7の傾斜面7b・7bを円筒面にするとき、第2レンズ7は底面7aに対し光出射方向にのみ曲面を有する形状となり、その製造が容易になる。また、第2レンズ7の形状は、底面7aのほうが上面7cより面積が大きい略角錐台形状が好ましい。これにより、第2レンズ7は、そのレンズ形状即ち露光形状が、光束の入射方法に対して、アンダーカット形状とならないので、その製造が容易になる。
【0047】
また、第1レンズ5と第2レンズ7との光照射側から見た位置関係は、図2(c)に示すように、第1レンズ5と第2レンズ7とは1対1に対応しており、互いの中心軸が一致している。
【0048】
第2レンズ7と、R、G、Bの各絵素の配列との関係は、図2(d)に示すように、光照射側から見ると、1つの第2レンズ7に対応して、Rの絵素を中央に挟むように、Bの絵素とGの絵素とが配置されている。従って、図1に示すように、第2レンズ7における上面7cがRの絵素に対応する開口部17Rと対向し、傾斜面7b,7bが、B、Gの各絵素に対応する開口部17B,17Gに対向している。
【0049】
本実施の形態にかかる投影型液晶表示装置(背面型)の光学系の概略の構成を図4に示す。以下、液晶パネルユニット2を備えた投影型液晶表示装置100について説明する。
【0050】
投影型液晶表示装置100は、光源として白色光源13を備えている。白色光源13としては、例えば、メタルハライドランプ、ハロゲンランプ、高圧水銀ランプ等を使用することができる。
【0051】
白色光源13の光照射方向には、インテグレータ14が配置されている。インテグレータ14は、白色光源13から出射された白色光束の光源分布及び配向分布を均一化する。インテグレータ14としては、フライアイレンズを用いたものが好ましいが特に限定しない。また、上記のインテグレータ14を配置するかわりに、コンデンサレンズが設けられていてもよい。コンデンサレンズを配置する場合、その焦点が上記白色光源13の発光部の中心と一致するように配置されていることが好ましい。このような配置により、コンデンサレンズからは、略平行な白色光束が得られる。また、白色光源13から平行光束を得る手段としては、上記の構成に限らず、例えば、回転方物面鏡など、公知の方法を採用することができる。
【0052】
上記インテグレータ14の光照射方向には、ミラー16が配置されている。上記インテグレータ14を通過した平行光束の白色光は、上記ミラー16で反射された後、色分解ミラー15B,15R,15Gに照射される。3種の色分解ミラー15B,15R,15Gは、それぞれ異なる角度で配置されており、この順に光軸上に配置されている。色分解ミラー15B,15R,15Gは、それぞれ青、赤、緑の色に対応する各波長域の光を選択的に反射し、他の波長の光は透過する特性を有する。また、インテグレータ14から出射した光束を色分解ミラー15B,15R,15Gに直接照射するような場合、本投影型液晶表示装置100は、ミラー16を備えない構成とすることができる。
【0053】
上記色分解ミラー15B,15R,15Gは、周知の多層薄膜コーティング技術により形成されている。青の色分解ミラー15Bは約500nmより短波長、赤の色分解ミラー15Rは約600nmより長波長の可視光をそれぞれ反射し、緑の色分解ミラー15Gはおよそ570nm〜500nmの範囲の可視光を反射するように、各々形成される多層薄膜の条件が設定されている。
【0054】
三枚の色分解ミラー15B,15R,15Gの中で、白色光源13に最も近い位置に設けられた色分解ミラー15Bは、白色光源13からの光束が所定の角度で入射するように配置されている。このとき、他の2枚の色分解ミラー15R,15Gは、上記色分解ミラー15Bに対して、それぞれ平行な状態から、光軸に対して角度θずつ順次傾けて配置されている。色分解ミラー15B,15R,15Gを上記のように配置すると、B光、R光、及びG光が、液晶パネルユニット2に対してそれぞれ角度2θずつずれて入射する。
【0055】
本投影型液晶表示装置100では、図1に示すように、R光は、液晶パネルユニット2に対し略垂直に、B光は一定角度2θの傾きを持って、G光はB光とは逆方向に角度2θを持って、液晶パネルユニット2に入射する。この赤、青、緑の順番は、白色光源13のスペクトル分布及び色分解ミラー15B,15R,15Gの特性を考慮して決定され、必ずしも上記の順番に限るものではない。また、色分解ミラー15B、15R、15Gそれぞれの配置も変われば、B光、R光及びG光の液晶パネルユニット2に対する入射角度も変化する。従って該入射角度に対応する開口部17B、17R、17Gの配置及びB、R、Gの各絵素の配列も変化する。
【0056】
ここで、図1を用いて各色別の光線について説明すると、R光は第1レンズ5で屈折され、収束光として第2レンズ7に入射する。第1レンズ5の焦点位置は開口部17Rの中心付近に設計されているので、第1レンズ5に入ったR光は、開口部17Rの中心付近に集光する。このとき、R光は、第2レンズ7における底面7aに対し垂直に入射し、上面7cから出射する。
【0057】
一方、B光は、その主光線が色分解ミラー15Bにより、R光の主光線に対して角度2θで液晶パネルユニット2に入射するようになっている。従って、第1レンズ5通過後も同じく角度2θを保ったまま第2レンズ7の底面7aに入射し、底面7aで屈折後、第2レンズ7における傾斜面7bでも屈折され出射される。第2レンズ7を通過することにより、B光の主光線は、R光の主光線とほぼ平行な方向に屈折される。よって、第1レンズ5及び第2レンズ7の作用により、B光はブラックマトリクス層8の開口部17Bの中心付近に集光する。
【0058】
G光は、R光の主光線に対してB光と略対称な関係にあり、その主光線が色分解ミラー15Gにより、R光の主光線に対してB光とは逆方向に角度2θを有し、液晶パネルユニット2に入射するようになっている。従って、G光は第1レンズ5を通過後も同じく角度2θを保ったまま第2レンズ7の底面7aに入射し、底面7aで屈折後、傾斜面7bでも屈折され出射される。第2レンズ7を通過することにより、G光の主光線は、R光の主光線とほぼ平行な方向に屈折される。よって、第1レンズ5及び第2レンズ7の作用により、G光はブラックマトリクス層8の開口部17Gの中心付近に集光する。
【0059】
ブラックマトリクス層8の開口部17R,17G,17Bを通過したR、G、B各色の光は、画素部22で変調を受け、電極層11及び下部基板12を通過し液晶パネルユニット2から出射し、図4に示すように、投影レンズ18を介してスクリーン19に投影される。
【0060】
本投影型液晶表示装置100の構成においては、液晶パネルユニット2の光入射側に設けられた第1レンズ5の集光効果により、より多くの光がブラックマトリクス層8の開口部17を透過し、ひいては画素部22を透過して、光の利用効率の向上に寄与することができる。
【0061】
またG光及びB光は、色分解ミラー15B,15R,15GによりR光の主光線に対して角度2θを持っており、第1レンズ5において多くの光を集光できたとしても、このまま進行するとG光及びB光において、光束の全径がどんどん広がっていき、その後の投影レンズ18によりケラレが生じてしまう。しかしながら、第2レンズ7により、G光及びB光の主光線を、R光の主光線に対してより平行に近い角度、望ましくは平行に補正するので、液晶パネルユニット2を通過後の光束の拡がりが抑えられ、投影レンズ18のケラレにより光の損失が生じることもない。そして、この相乗効果により、光利用効率の大幅な改善を図ることができる。
【0062】
また、上記の効果により、第1レンズ5の焦点距離を小さく設定することができるので、白色光源13からの完全平行でない光線の多くをブラックマトリクス層8の開口部17に透過させることができ、更なる光利用効率の向上が可能となる。
【0063】
また、本実施の形態においては、集光特性を高めるために第1レンズ5を非球面レンズとしたが、これに限定されず、例えば、球面レンズであっても効果は変わることはない。
【0064】
また、第2レンズ7の傾斜面7b・7bの形状は円筒面としたが、これに限らず、球面、球面以外の曲面、あるいは、複数段階にて折曲された多面でもよい。上記傾斜面7b・7bの形状を球面とした場合、高精度な収差補正が可能となり、光利用効率が向上する。また、上記傾斜面7b・7bの形状を球面以外の曲面とした場合、更に高精度な収差補正が可能となり、光利用効率が一層向上する。またさらに、上記傾斜面7b・7bの形状を複数段階にて折曲された多面とした場合、上記傾斜面7b・7bの形状を球面、または、円筒面とする場合に比べ、加工が容易になる。
【0065】
さらに、第2レンズ7の上面7cは平面としたが、球面でも円筒面でも、これら以外の曲面でもよい。但し、加工の容易性からレンズ高さは低いほうが良いので、平面であることが望ましい。
【0066】
また、第2レンズ7の傾斜面7bは光入射側に凹としたが、これに限定されず、台形の傾斜面7b・7bが曲面であれば任意のものでよい。例えば傾斜面7b・7bが、光入射側に対し凸であってもよい。この場合、角度2θで入射する光束、つまりG光及びB光は、R光の主光線と平行となるように傾斜面7b・7bで屈折される。このため、上記傾斜面7bにおいて、G光及びB光の内側と外側との屈折率の差異を小さく抑えることができ、コマ収差及び非点収差の発生を効果的に抑えることができ、光利用効率を高く維持することができる。
【0067】
次に、本実施の形態にかかるマイクロレンズ基板1の製造方法について説明する。図5(a)〜(f)は、マイクロレンズ基板1の製造方法の一例を示す断面図である。
【0068】
まず、図5(a)に示すように、スタンパ型23と、保護板3となる透明基板24との間に、上記した平坦化層4となる低屈折率樹脂25を塗布し、UV光を照射することで、該低屈折率樹脂25を硬化させる。次に、図5(b)に示すように、スタンパ型23を脱離した後、図5(c)に示すように、第1レンズ5となる高屈折率樹脂26を接着層として、中間基板6となる透明基板27を貼着する。
【0069】
ここで、スタンパ型23の突起部分23a…によって、保護板3となる低屈折率樹脂25に形成された窪みに、高屈折率樹脂26が入り、第1レンズ5が形成される。従って、上記突起部分23a…の形状は、第1レンズ5…の形状と一致していなければならない。
【0070】
続いて、図5(d)に示すように、上記透明基板27に、第2レンズ7となる高屈折率樹脂28を塗布する。次に、ネガレジストを塗布することにより、ネガレジスト層29を形成する。次に、第1レンズ5…に入射角度を変化させながら平行光束を照射することにより、ネガレジスト層29を照射光の強度分布に沿った形状でもって露光させる。ネガレジスト層29での露光・現像の詳細に関しては後述する。
【0071】
その後、図5(e)に示すように、ドライエッチング等のエッチングにより、上記ネガレジスト層29に作成された形状を高屈折率樹脂28からなる層に転写して、第2レンズ7を形成する。
【0072】
その後、図5(f)に示すように、平坦化層20となる低屈折率樹脂30で平坦化し、これにて、マイクロレンズ基板1が得られる。
【0073】
上述した製造方法により、傾斜面が、図3に示すように、光入射側に対して凹な円筒面を有する第2レンズ7が得られる。
【0074】
なお、図示していないが、その後、マイクロレンズ基板1における平坦化層20側に、パッシベーション層、ブラックマトリクス層8、透明電極層(図示せず)、配向層(図示せず)等を形成し、電極層11が形成されている下部基板12を対向させて取り付ける。さらに上記電極層11と配向層とにより形成された間隙に液晶層10となる液晶を注入することで、液晶パネルユニット2が完成する。
【0075】
マイクロレンズ基板1を製造するにあたり、例えば、高屈折率樹脂及び低屈折率樹脂について、波長588nmにおける屈折率が、それぞれ1.59、1.41のものを用いることができるが、屈折率差があればその値は異なるものであっても効果は同様である。また、屈折率差は大きいほうが、境界面での屈折力を大きくできるため、斜面の角度を小さく設定でき有利である。
【0076】
次に、第2レンズ7の形成に用いる露光方法について説明する。第2レンズ7を作製するための露光機の概略の構成を図6に示す。露光機101は、平行光束を出射する平行光源31、フライアイレンズ32、コリメータレンズ33、絞り34を備えている。製造途中のマイクロレンズ基板35は、図7に示すように、既に第1レンズ5が形成され、中間基板6となる透明基板27を介して、高屈折率樹脂28及びネガレジスト層29が順に塗布された状態である。
【0077】
上記露光機101により、第1レンズ5への入射角度に対応した光の強度分布に沿った形状でもってネガレジスト層29に露光することができる(図5(d)参照)。上記の形状をエッチングにより高屈折率樹脂28からなる層に転写することで第2レンズ7を形成し、低屈折率樹脂30で埋めて平坦化する(図5(e)参照)。
【0078】
露光光の強度分布は、本実施の形態のようにネガレジストを用いる場合、レンズ厚さを厚くしたい位置では光量を大きく、レンズ厚さを薄くしたい位置では光量を小さくなるように設定すればよい。
【0079】
また、露光光の強度分布は、平行光源31からの平行光束の、ネガレジスト層29への露光時間を変化させることにより光量を調節してもよい。
【0080】
従来、光利用効率の高いマイクロレンズ基板1を製造するためには、上記第1レンズ5と、第2レンズ7とは1対1に対応し、かつ互いの中心軸が一致するように配置しなければならなかった。このため、第1レンズ5と第2レンズ7との中心軸の位置ずれを極力小さくしなければならず、両レンズとの間で、より精密な位置あわせが必要であった。
【0081】
しかしながら、本実施の形態によれば、第1レンズ5に積層された中間基板6に高屈折率樹脂28(第2レンズ7の材料からなる材料層)を塗布した後、第1レンズ5を介して照射された光によって、第2レンズ7を形成するので、第1レンズ5と第2レンズ7とを同一中心軸上に配置することができる。
【0082】
また、平行光束を用いて露光しているため、ウエハサイズが大きくなっても、ウエハ内の露光分布を小さく、均一にできるので、レンズ形状のばらつきが小さく、安定な加工が可能である。
【0083】
さらに、本実施の形態によれば、上記高屈折率樹脂28にネガレジスト層29(感光性材料層)を塗布することにより、上記した第1レンズ5を透過した光の、入射角度に応じた強度分布に沿った形状でもってネガレジスト層29に露光することができる。この強度分布を用いて、第2レンズ7を所望の形状に形成することができる。
【0084】
従って、本実施の形態にかかるマイクロレンズ基板1の製造方法により、第1レンズ5と第2レンズ7との煩雑な位置あわせプロセスを簡略化することができ、第1レンズ5に対応して第2レンズ7の位置が決まるため、第1レンズ5及び第2レンズ7で構成された第1及び第2のマイクロレンズアレイを高精度に配置することができる。この結果、より簡便に光利用効率が高く、輝度ムラ、混色のない高品質な液晶表示素子、並びに投影型液晶表示装置を提供することができる。
【0085】
次に、本実施の形態にかかる露光機101 を用いた露光方法において、ネガレジスト層29中に形成される露光光の強度分布について、より詳しく説明する。図7(a)は上記した製造途中のマイクロレンズ基板35の構成を示す断面図であり、図7(b)は入射角度0°の場合、図7(c)は最大入射角度θiの場合での、第1レンズ5による露光光の集光の様子を示している。なお、矢印は露光光の入射方向を示し、露光光の入射角度とは、露光光の入射方向の上記マイクロレンズ基板35の光照射面に対して垂直方向(図7(c)の一点鎖線)に対する角度を示す。
【0086】
図7(b)・(c)に示すように、入射角度を0°からθiまで変化させながら、露光光を第1レンズ5に入射させると、第1レンズ5の集光機能により、ネガレジスト層29に露光光の強度分布に沿った形状が形成され、ネガレジスト層29が所望の形状に露光される。
【0087】
露光光の第1レンズ5への平行光束の入射角度と、該入射角度に対応する第1レンズ5の集光点での光強度との関係を図8に示す。なお、上記光強度は、入射角度0°に対応する第1レンズ5の集光点の光強度を1としたときの、各入射角度での光強度を相対的に表わした値である。同図に示すように、第1レンズ5の集光点での光強度は、露光光の第1レンズ5への入射角度が大きくなるにつれて、低下している。また、同図には、本実施の形態にかかる第2レンズ7において、上面7cを構成とする平坦部、及び傾斜面7bを構成とする斜面部それぞれに対応する、露光光の強度分布に沿った形状の形成領域を両端の矢印で示している。同図において、上記平坦部と、上記斜面部との境界部Pでの、露光光の入射角度をθp、光強度をDpとする。
【0088】
また、露光光によって形成されたレジスト層の膜厚は、上記した第1レンズ5の集光点での光強度と、レジスト層のレジスト感度とにより決定される。つまり、上記光強度に、上記レジスト感度に応じた係数を乗じることにより、上記したレジスト層の膜厚を求めることができる。本実施の形態で使用したネガレジスト層29における露光感度とレジスト層の膜厚との関係を図9に示す。図8と同様に、本実施の形態における第2レンズ7における平坦部及び斜面部それぞれに対応する、露光光の強度分布に沿った形状の形成領域も矢印で示している。図9において、上記した境界部Pでの光強度Dpに対応するレジスト膜厚をhpとする。レジスト膜厚hpが、図3に示す第2レンズ7の厚さhと等しくなるように、上記境界部Pにおける露光強度(光強度)と露光時間とを設定し、露光・現像する場合、ネガレジスト層29は図9に示すグラフに沿った形状に露光される。
【0089】
上述したマイクロレンズ基板1の製造方法において、あらかじめ、ネガレジスト層29を厚さhで塗布し、入射角度を変化させながら露光光を照射した場合、露光光の入射角度とレジスト膜厚との関係は図10に示すグラフになる。同図に示されるグラフの形状が、ネガレジスト層29に露光される形状に対応する。ここで、上記露光機101を用いた露光光学系において、露光光のコリメータレンズ33への入射角と光強度との関係も、上記した露光強度に影響を与えるため考慮する必要がある。
【0090】
また、レンズ高さhは、マイクロレンズ基板1の各々の層を構成する材料の屈折率及び第2レンズ7の斜面部7bに入射する主光線の角度により決定される。一方、θpは第1レンズの焦点距離及び第2レンズ7のピッチ(サイズ)により決定される。よって、上記の高さh及び角度θpに対して、レジスト膜厚がhとなるように、光強度Dpが決定されるとともに(図9)、レジストの塗布膜厚をh(=hp)に設定する。従って、境界部Pでの入射角度θp、レジスト膜厚hp、及び第2レンズの高さhは、上記の設計により決まるものであれば特に限定しない。
【0091】
また、図11に示すように、透過率分布マスク38をフライアイレンズ32とコリメータレンズ33との間に配置してもよい。透過率分布マスク38は部分的に光の透過率を変化させたマスクである。従って、透過率分布マスク38により露光光の透過率を調整することができ、ネガレジスト層29に所望の形状を露光することができる。
【0092】
また、上述した露光機101を用いた露光方法の他に、露光光の入射角度を固定し、マイクロレンズ基板35を回転させる方法がある。つまり、図6、あるいは、図11において、マイクロレンズ基板35と露光光の中心軸との交点に対して垂直方向の軸を回転軸として回転可能なステージを設け、該ステージ上にマイクロレンズ基板35を保持し、露光光の入射角度が0°からθiになるように、ステージを等速で回転させることにより、ネガレジスト層29は、露光により所望の形状を得ることができる。このとき、露光量の微調整は、上記したステージの回転速度を可変とすることにより可能となる。
【0093】
また、ネガレジスト層29が入射角度0°の露光光によって最も強く露光されていることが好ましい。これは上述した露光方法におけるネガレジスト層29での露光光の強度分布に沿った形状と、図3に示す第2レンズ7の形状とが定性的に一致するためである。つまり、ネガレジスト層29に露光された形状は、入射角度0°の露光光に対してレジスト層の膜厚が最も厚い領域が対応し、また、入射角度が最大になる露光光に対してレジスト層の膜厚が最も薄い領域が対応する。上記のネガレジスト層29に露光された形状は、光入射面に対して直角の面を有さないので、第2レンズ7の製造が容易になる。
【0094】
また、本実施の形態では、光入射側に凹を成した略角錐台形状の第2レンズ7を備えたマイクロレンズ基板1の製造方法を説明したが、これに限定されず、例えば、光入射側に凸を成した略角錐台形状の第2レンズ7を備えたマイクロレンズ基板1に関しても、上述した製造方法を適用することができる。これにより、略角錐台形状の傾斜面7bでのコマ収差及び非点収差の発生を効果的に抑えることができ、光利用効率を高く維持できる第2レンズ7を備えたマイクロレンズ基板1を提供することができる。
【0095】
また、上述した製造方法は、光出射側に底面7aを有する、凸を成す略角錐台形状の第2レンズ7を備えたマイクロレンズ基板1に関しても適用すると以下の通りになる。図5のマイクロレンズ基板1の製造方法を参照して説明すると、第1レンズ5を形成後、中間基板6となる透明基板27を貼着した後、該透明基板27にネガレジスト層29を塗布する。その後、露光機101を用いて、上記ネガレジスト層29中で所望の露光光の強度分布(この場合、入射角度が0°の第1レンズ5への光線に対して、レジスト膜厚が最も薄い領域が対応し、入射角度が最大になる光線に対して、レジスト膜厚が最も厚い領域が対応する形状)を形成する。上記強度分布に沿った形状を、ドライエッチング等のエッチングにより上記透明基板27に形成する。その後、第2レンズ7となる高屈折率樹脂28を埋め、これにて、所望の形状の第2レンズ7を備えたマイクロレンズ基板1が得られる。
【0096】
また、本実施の形態では、感光性材料としてネガレジストを用いたが、これに限定されず、例えば、紫外線硬化樹脂を感光性材料として用いてもよい。紫外線硬化樹脂は直接露光、硬化させることが可能である。これにより、後工程のエッチングが必要なくなり、本露光工程のみで第2レンズを形成できるという利点がある。
【0097】
【発明の効果】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、第1のマイクロレンズアレイを有する透明基板と、第2のマイクロレンズアレイになる材料からなる材料層とを積層した後、第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成する構成である。
【0098】
上記の構成によれば、第1のマイクロレンズアレイを介して照射された光によって、上記材料層に第2のマイクロレンズアレイを形成することにより、第1及び第2のマイクロレンズアレイの間で厳密な中心軸調節機構を必要とせずに、第1のマイクロレンズアレイと第2のマイクロレンズアレイとを同一中心軸上に配置することが可能になる。これにより、第1のマイクロレンズアレイと第2のマイクロレンズアレイとの頻雑な位置あわせを必要とせずに、高精度に第1及び第2のマイクロレンズアレイを配置することができるという効果を奏する。
【0099】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、第2のマイクロレンズアレイになる材料からなる材料層に感光性材料を塗布し、感光性材料層を形成する感光性材料層形成工程と、感光性材料層形成工程後、感光性材料層に、第1のマイクロレンズアレイを介して、入射角度を変化させながら光を照射する照射工程と、照射工程により、上記感光性材料層に光の強度分布に沿った形状を形成し、感光性材料を露光,現像する露光工程と、露光工程で形成された形状を用いて、第2のマイクロレンズアレイを形成するレンズ形成工程とを含む構成である。
【0100】
上記の構成によれば、第1のマイクロレンズアレイを介して入射角度を変化させながら照射された光により、上記感光性材料層に光の強度分布に沿った形状を形成することができる。そして、上記感光性材料層中で形成された形状を用いて、第2のマイクロレンズアレイを形成することにより、第1及び第2のマイクロレンズアレイの間で厳密な中心軸調節機構を必要とせずに、第1のマイクロレンズアレイと第2のマイクロレンズアレイとを同一中心軸上に配置することが可能になる。従って、第1及び第2のマイクロレンズアレイの位置あわせ工程の簡略化が実現し、上記マイクロレンズ基板の生産性を向上させることができるとともに、生産コストの低減させることができるという効果を奏する。
【0101】
また、上記の構成によれば、第2のマイクロレンズアレイを、エッチング等が簡潔な形状にすることが可能になる。従って、第2のマイクロレンズアレイの製造工程をより簡潔化でき、上記マイクロレンズ基板の生産性をさらに向上させることができるという効果も併せて奏する。
【0102】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記露光工程では、入射角度0°の光束によって感光性材料を最も強く露光させる構成である。
【0103】
上記の構成によれば、感光性材料層に形成される形状は、強度分布に沿った形状となる。光軸に対し垂直方向から見ると、光の入射側に長辺を有する形状になる。従って、第2のマイクロレンズアレイのレンズ形状即ち露光形状が、光束の入射方法に対して、アンダーカット形状とならない。このため、第2のマイクロレンズアレイの製造を容易にさせることができるという効果を奏する。
【0104】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記照射工程では、部分的に光の透過率を変化させたマスクを用いて、感光性材料層に、入射角度を変化させながら光を照射する構成である。
【0105】
上記の構成によれば、部分的に光の透過率を変化させたマスクを用いて、感光性材料層に光を照射するので、光の強度に対する感光性材料の特性を利用することにより、所望の形状の第2のマイクロレンズアレイを得ることができるという効果を奏する。
【0106】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記露光工程では、感光性材料層に照射される光の入射角度に応じて、露光時間を変化させる構成である。
【0107】
上記の構成によれば、第1のマイクロレンズアレイを介して感光性材料層に照射される光の入射角度に応じて露光時間を変化させることにより、上記感光性材料層を透過する光の強度が変化する。感光性材料において、透過する光の強度が大きい場合、露光される感光性材料層は厚くなり、透過する光の強度が小さい場合、露光される感光性材料層は薄くなる。したがって、光の強度に対する感光性材料の特性を利用することにより、所望の形状の第2のマイクロレンズアレイを得ることができるという効果を奏する。
【0108】
本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記照射工程では、照射する光の入射角度を固定し、材料層に感光性材料が塗布された製造途中のマイクロレンズ基板を回転させることで、上記感光性材料層に、入射角度を変化させながら光を照射する構成であってもよい。
【0109】
また、本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成すようにする構成であってもよい。
【0110】
また、本発明にかかるマイクロレンズ基板の製造方法は、以上のように、上記第1のマ イクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成す円筒面になるようにする構成であってもよい。
【0111】
本発明にかかるマイクロレンズ基板は、以上のように、上記のマイクロレンズ基板の製造方法により製造される構成である。
【0112】
上述した製造方法により、第1及び第2のマイクロレンズアレイ間の中心軸調整を簡単にし、位置あわせ工程及び第2レンズの製造工程の簡略化が実現できる。これにより、低コストにて光利用効率が高く、高性能なマイクロレンズ基板を提供することができるという効果を奏する。
【0113】
本発明にかかるマイクロレンズ基板は、以上のように、第2のマイクロレンズアレイにおけるレンズ形状は、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成している構成である。
【0114】
上記の構成によれば、第2のマイクロレンズアレイのレンズ形状が、光入射側に底面を有する略角錐台形状を成しており、光入射面に対して垂直な面を有さない。これにより、第2のマイクロレンズアレイの製造工程を簡潔化させることができる。さらに、上記の構成によれば、第1のマイクロレンズアレイにより収束された複数の光束は、第2のマイクロレンズアレイにおける略角錐台形状のレンズの底面で互いに平行になるように屈折される。上記した略角錐台形状のレンズの傾斜面が光入射側に対して凹を成していることから、斜面部における光の強度分布形状と近い形になり、より露光しやすい簡便な製造方法を提供することができるという効果を奏する。
【0115】
本発明にかかるマイクロレンズ基板は、以上のように、上記凹を成す傾斜面が円筒面である構成である。
【0116】
上記の構成によれば、第2のマイクロレンズアレイのレンズ形状は、光出射側にのみ曲面を有する形状になり、その製造が容易になるという効果を奏する。
【0117】
本発明にかかる液晶表示素子は、以上のように、上記のマイクロレンズ基板を備えた構成である。
【0118】
これにより、より簡便に、光利用効率が高く、輝度ムラ、混色のない高品質な液晶表示素子を実現することができるという効果を奏する。
【0119】
さらに、本発明にかかる投影型液晶表示装置は、以上のように、上記の投影型液晶表示装置用の液晶表示素子を備えた構成である。
【0120】
本発明にかかる投影型液晶表示装置は、さらに、白色光源と、該白色光源からの白色光を互いに異なる波長域を有する複数の光束に分割する光束分割手段と、上記投影型液晶表示装置用の液晶表示素子と、上記液晶表示素子から出射された光を投影するための投影手段とを備えている構成である。
【0121】
これにより、光利用効率が高く、輝度ムラ、混色のない高品質で、かつ、低コストな投影型液晶表示装置を実現することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明にかかる実施の一形態を示すもので、投影型液晶表示装置に備えられた液晶パネルユニットの構成を示す断面図である。
【図2】 同図(a)は、上記液晶パネルユニットに備えられたマイクロレンズ基板における、第1のマイクロレンズアレイの平面図、(b)は、第2のマイクロレンズアレイの平面図、(c)は第1及び第2のマイクロレンズアレイの位置関係を示す模式図、(d)は第2のマイクロレンズアレイを構成する第2レンズと絵素との関係を示す模式図である。
【図3】 本実施の一形態にかかる第2のマイクロレンズアレイを構成する第2レンズの斜視図である。
【図4】 本実施の一形態にかかる投影型液晶表示装置の構成を示す模式図である。
【図5】 (a)〜(f)は、上記液晶パネルユニットに備えられているマイクロレンズ基板の製造方法を示す断面図である。
【図6】 上記マイクロレンズ基板の製造の一工程で使用する、露光機の概略構成を示す模式図である。
【図7】 (a)は上記マイクロレンズ基板の製造方法において製造途中のマイクロレンズ基板の概略構成を示す断面図である。(b)及び(c)は入射角度0°の場合、及び最大入射角度θiの場合での、上記製造途中のマイクロレンズ基板に照射される露光光の集光の様子を表わす断面図である。
【図8】 上記製造途中のマイクロレンズ基板に照射される露光光の入射角度と、それに対応する光強度との関係を表わすグラフである。
【図9】 上記製造途中のマイクロレンズ基板に照射される露光光の光強度と、それに対応するレジスト膜厚との関係を表わすグラフである。
【図10】 レジスト膜厚を、図3に示す第2レンズの高さhとしたときの、上記製造途中のマイクロレンズ基板に照射される露光光の入射角度と、それに対応する光強度との関係を表わすグラフである。
【図11】 上記マイクロレンズ基板の製造の一工程で使用する、透過率分布マスクを用いた露光機の構成を示す模式図である。
【符号の説明】
1 マイクロレンズ基板
2 液晶パネルユニット(液晶表示素子)
3 保護板
4 平坦化層
5 第1レンズ(第1マイクロレンズアレイを構成するレンズ)
6 中間基板
7 第2レンズ(第2マイクロレンズアレイを構成するレンズ)
8 ブラックマトリクス層
9 透明電極
10 液晶層
11 電極層
13 白色光源(白色光源)
15G 色分解ミラー(光束分割手段)
15R 色分解ミラー(光束分割手段)
15B 色分解ミラー(光束分割手段)
16 ミラー
17G 開口部(絵素開口部)
17R 開口部(絵素開口部)
17B 開口部(絵素開口部)
18 投影レンズ(投影手段)
19 スクリーン
20 平坦化層
22 画素部
24 透明基板
25 低屈折率樹脂
26 高屈折率樹脂
27 透明基板
28 高屈折率樹脂(第2のマイクロレンズアレイになる材料)
29 ネガレジスト層(感光性材料層)
30 低屈折率樹脂
35 マイクロレンズ基板
38 透過率分布マスク(マスク)
100 カラー液晶投影装置(投影型液晶表示装置)
101 露光機

Claims (8)

  1. 互いに異なる角度で入射する複数の光束を各波長域毎に収束させる第1のマイクロレンズアレイと、上記複数の光束のそれぞれの主光線を平行化する第2のマイクロレンズアレイとを備えたマイクロレンズ基板の製造方法であって、
    上記第1のマイクロレンズアレイを有する透明基板と、上記第2のマイクロレンズアレイになる材料からなる材料層とを積層した後、上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成することを特徴とするマイクロレンズ基板の製造方法。
  2. 互いに異なる角度で入射する複数の光束を各波長域毎に収束させる第1のマイクロレンズアレイと、上記複数の光束のそれぞれの主光線を平行化する第2のマイクロレンズアレイとを備えたマイクロレンズ基板の製造方法であって、
    上記第2のマイクロレンズアレイになる材料からなる材料層に感光性材料を塗布し、感光性材料層を形成する感光性材料層形成工程と、
    感光性材料層形成工程後、上記感光性材料層に、第1のマイクロレンズアレイを介して、入射角度を変化させながら光を照射する照射工程と、
    照射工程により、上記感光性材料層に光の強度分布に沿った形状を形成し、感光性材料を露光,現像する露光工程と、
    露光工程で形成された形状を用いて、第2のマイクロレンズアレイを形成するレンズ形成工程とを含むことを特徴とするマイクロレンズ基板の製造方法。
  3. 上記露光工程では、入射角度0°の光束によって感光性材料を最も強く露光させることを特徴とする請求項2に記載のマイクロレンズ基板の製造方法。
  4. 上記照射工程では、部分的に光の透過率を変化させたマスクを用いて、感光性材料層に、入射角度を変化させながら光を照射することを特徴とする請求項2に記載のマイクロレンズ基板の製造方法。
  5. 上記露光工程では、感光性材料層に照射される光の入射角度に応じて、露光時間を変化させることを特徴とする請求項2に記載のマイクロレンズ基板の製造方法。
  6. 上記照射工程では、照射する光の入射角度を固定し、材料層に感光性材料が塗布された製造途中のマイクロレンズ基板を回転させることで、上記感光性材料層に、入射角度を変化させながら光を照射することを特徴とする請求項2に記載のマイクロレンズ基板の製造方法。
  7. 上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成すようにすることを特徴とする請求項1〜6の何れか1項に記載のマイクロレンズ基板の製造方法。
  8. 上記第1のマイクロレンズアレイを介して照射された光を用いて、上記材料層に第2のマイクロレンズアレイを形成し、そのレンズ形状が、光入射側に底面を有する略角錐台形状を成し、その傾斜面が光入射側に対して凹を成す円筒面になるようにすることを特徴とする請求項1〜6の何れか1項に記載のマイクロレンズ基板の製造方法。
JP2003103180A 2003-04-07 2003-04-07 マイクロレンズ基板の製造方法 Expired - Fee Related JP3908193B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103180A JP3908193B2 (ja) 2003-04-07 2003-04-07 マイクロレンズ基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103180A JP3908193B2 (ja) 2003-04-07 2003-04-07 マイクロレンズ基板の製造方法

Publications (2)

Publication Number Publication Date
JP2004309794A JP2004309794A (ja) 2004-11-04
JP3908193B2 true JP3908193B2 (ja) 2007-04-25

Family

ID=33466405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103180A Expired - Fee Related JP3908193B2 (ja) 2003-04-07 2003-04-07 マイクロレンズ基板の製造方法

Country Status (1)

Country Link
JP (1) JP3908193B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295375B2 (en) * 2005-08-02 2007-11-13 International Business Machines Corporation Injection molded microlenses for optical interconnects
JP5200337B2 (ja) * 2006-06-09 2013-06-05 パナソニック株式会社 ディスプレイ装置
CN101122739B (zh) * 2007-08-31 2011-09-28 中国科学院光电技术研究所 一种基于负折射率透镜的亚波长连续面形微结构制备方法
JP6450965B2 (ja) * 2014-10-07 2019-01-16 セイコーエプソン株式会社 マイクロレンズアレイ基板、マイクロレンズアレイ基板を備えた電気光学装置、及び投写型表示装置
CN111769211B (zh) * 2020-07-01 2023-06-16 视涯科技股份有限公司 一种有机发光显示面板和显示装置
KR102531850B1 (ko) * 2020-12-09 2023-05-12 엠피닉스 주식회사 양측 비구면 형상의 마이크로 렌즈

Also Published As

Publication number Publication date
JP2004309794A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
US7031064B2 (en) Method of microlens array and projection type of liquid crystal display apparatus
JP3970784B2 (ja) マイクロレンズ基板、及びそれを備えた液晶表示素子、並びに投影型液晶表示装置
JP4210070B2 (ja) マイクロレンズ基板の作製方法
US20060232859A1 (en) Micro-lens sheet and projection screen
JP4219645B2 (ja) マイクロレンズアレイの露光方法
US7142366B2 (en) Method of manufacturing microlens substrate, and microlens exposure optical system
JP2005070631A (ja) スクリーン及びプロジェクタ
US6680762B2 (en) Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
US6939008B2 (en) Projection type display device
JP4202221B2 (ja) 光屈折素子アレイ基板、画像表示素子および画像表示装置
JP3932690B2 (ja) レンズアレイ基板の製造方法
JP4096346B2 (ja) 光変調素子および画像投射表示装置
JP2002148603A (ja) 液晶表示素子および投射型液晶表示装置
JP3908193B2 (ja) マイクロレンズ基板の製造方法
JP2006126312A (ja) スクリーン、スクリーンの製造方法及びプロジェクタ
JP4032555B2 (ja) マイクロレンズアレイ
JP2005070666A (ja) マイクロレンズ基板の製造方法
JP4133652B2 (ja) パターン形成方法およびこれを用いた2層構造マイクロレンズ
JP2005148404A (ja) マイクロレンズアレイの露光装置
JP4696503B2 (ja) 画像表示装置
JP2004017324A (ja) 2層マイクロレンズアレイおよびその製造方法
JPH095725A (ja) 透過型表示装置
JP2004226607A (ja) 光屈折素子アレイ基板および画像表示装置
JP2005037686A (ja) 画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees