JP4095077B2 - トランスインピーダンスアンプ - Google Patents

トランスインピーダンスアンプ Download PDF

Info

Publication number
JP4095077B2
JP4095077B2 JP2005129203A JP2005129203A JP4095077B2 JP 4095077 B2 JP4095077 B2 JP 4095077B2 JP 2005129203 A JP2005129203 A JP 2005129203A JP 2005129203 A JP2005129203 A JP 2005129203A JP 4095077 B2 JP4095077 B2 JP 4095077B2
Authority
JP
Japan
Prior art keywords
gain
circuit
gain switching
transimpedance amplifier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005129203A
Other languages
English (en)
Other versions
JP2006311033A (ja
Inventor
誠 中村
洋太郎 楳田
潤 遠藤
祐史 赤津
祐記 今井
正俊 十林
義和 卜部
初史 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2005129203A priority Critical patent/JP4095077B2/ja
Priority to PCT/JP2005/014211 priority patent/WO2006013893A1/ja
Priority to CN2005800264259A priority patent/CN1993885B/zh
Priority to US11/658,688 priority patent/US7868701B2/en
Publication of JP2006311033A publication Critical patent/JP2006311033A/ja
Application granted granted Critical
Publication of JP4095077B2 publication Critical patent/JP4095077B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

本発明は、光受信回路において、受光素子が光電気変換した電流信号を受信し電圧信号に変換増幅するトランスインピーダンスアンプにかかり、特に、ダイナミックレンジの大きな入力電流に対応できるトランスインピーダンスアンプに関する。
高速データ伝送を可能とする光伝送システム、光インターコネクション、パッシブオプティカルネットワーク(以下、PONという:Passive Optical Network)システム等の光伝送回路では、光信号を電気信号に変換する光受信回路において、トランスインピーダンスアンプを用いる。
トランスインピーダンスアンプは、受信した光信号を受光素子により光電気変換して得られた入力電流Iinを入力とし、帰還抵抗の値に比例するトランスインピーダンス利得によって、出力電圧Voutに変換して出力するものである。
この種のトランスインピーダンスアンプでは、入力電流Iinが大きくなると出力電圧Voutの振幅が飽和し波形歪が生じる。
したがって、従来のトランスインピーダンスアンプは、高感度と広ダイナミックレンジ特性を両立させるために、入力電流Iinが大きくなった場合に帰還抵抗の値を小さくしてトランスインピーダンス利得を下げることで、大電流入力時も歪の少ない出力電圧Voutを得るようにしている。
図15に、従来のトランスインピーダンスアンプ300の基本構成を示す(例えば、非特許文献1など参照)。このトランスインピーダンスアンプ300は、増幅回路311と利得切替回路312とを有し、受光素子100から出力された入力電流Iinを電圧変換して信号増幅を行い出力電圧Voutを得る回路である。利得切替回路312は、帰還抵抗RFとダイオードD1を並列に接続した構成である。
このトランスインピーダンスアンプ300では、入力電流Iinが大きくなった場合、増幅回路311の入力端子と出力端子との電圧差が大きくなって、帰還抵抗RFと並列に挿入したダイオードD1がオンする。これにより、等価的に帰還抵抗の値が下がるため、トランスインピーダンス利得が下がり、大電流が入力された場合でも出力電圧Voutの飽和を回避できる。
図16に、利得切替回路として、ダイオードのオン/オフにより1つの帰還抵抗RFの値を切り替えるだけでなく、複数の帰還抵抗を切替接続するよう構成した従来の他のトランスインピーダンスアンプ400の基本構成を示す(例えば、特許文献1など参照)。このトランスインピーダンスアンプ400は、トランスインピーダンスアンプコア回路410と、利得切替判断回路420とを備えている。トランスインピーダンスアンプコア回路410は、増幅回路411と利得切替回路412とを有し、受光素子100から出力された入力電流Iinを電圧変換して信号増幅を行う。利得切替判断回路420は、トランスインピーダンスアンプコア回路410からの出力電圧Voutに応じて利得切替回路412での利得切り替えを制御する。
このトランスインピーダンスアンプ400は、スイッチが直列接続された複数の帰還抵抗で利得切替回路412を構成し、増幅回路411からの出力電圧Voutの直流レベルを利得切替判断回路420によりモニタして得た利得切替信号SELによって、利得切替回路412のスイッチをオン/オフして帰還抵抗の値を切り替えるものである。
なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
特許第3259707号(特開2000−252774)公報 猿渡、菅原、井辺、著「156Mbpsバースト信号対応光受信器」、電子情報通信学会総合大会、予稿集、1997年、B−10−128
通常、高速データ伝送を可能とする光伝送システム、特にPONシステムにおいては、高感度で広入力ダイナミックレンジ、かつバースト応答性が要求される。図17にPONシステムの構成を示す。このPONシステムは、1台の局側装置(OLT:Optical Line Terminal)501と複数台の宅側装置(ONU:Optical Network Unit)511〜51nとからなり、光カプラ502などのパッシブデバイスと光ファイバ503を介して接続されている。
この際、各宅側装置511〜51nからの上り(ONUからOLTへ)のデータすなわちパケット521〜52nは、それぞれの経路の違いにより、局側装置501への到達時の光パワーが異なってくる。このため、局側装置501の光受信回路で用いられるトランスインピーダンスアンプ(TIA:TransImpedance Amp)には広いダイナミックレンジが要求される。
図17のPONシステムでは、ある宅側装置がパケットを送出している間(パケット期間)は、他の宅側装置はパケットを送出できないので、伝送効率を高めるには、パケット間の時間を短くする必要がある。図18に示すように、パケット520の先頭には、プリアンブル531と呼ばれる特定ビットが用意され、局側装置501でパケットの同期に使用される。
前述したように、局側装置501への到達時の光パワーの差Pdに起因して、各パケット520の信号振幅はパケットごとに異なっている。また、伝送効率を高めるためには、短いプリアンブル531でパケットを同期させて後続のペイロード532を受信しなければならず、短いプリアンブル531で、瞬時に利得を切り替えることができる光受信回路が必要となる。このため、光受信回路には、瞬時応答が可能で、広ダイナミックレンジを有するトランスインピーダンスアンプが要求される。
しかしながら、前述した従来技術では、例えば、図15で説明した従来のトランスインピーダンスアンプ300によれば、帰還抵抗RFに並列にダイオードD1を挿入する構成であるため、入力電流Iinが大きくなった場合、出力電圧Voutの直流伝達特性に大きな歪が生じてしまい、出力電圧Voutの波形のデューティが悪化してしまう。デューティ特性が悪くなると符号誤りが生じ伝送特性の劣化を引き起こすという問題があった。
また、図16で説明した従来のトランスインピーダンスアンプ400によれば、直流伝達特性の歪の問題は解決できるが、利得切替判断回路420での利得切替の判断は、通常、トランスインピーダンスアンプ400の出力電圧Voutの高レベルと低レベルを、ハイレベルホールド回路、ローレベルホールド回路でそれぞれホールドし、その電位差が一定以上になったことをコンパレータ423等で識別することで切替判断を行うため、ホールドに時間がかかり、瞬時応答性に劣ってしまうという問題があった。
すなわち、ハイレベルホールド回路は、オペアンプ421、コンデンサC1、ダイオードD2で構成され、またローレベルホールド回路は、オペアンプ422、コンデンサC2、ダイオードD3で構成され、ホールド性を確保するには、コンデンサC1,C2に大きな容量を持たせることが必要であるが、その場合、コンデンサC1,C2に充電するまでの時間がかかるため瞬時応答が難しくなる。また、LSI内にコンデンサC1、C2を構成した場合はレイアウト面積が大きくなってしまう。
さらに、高感度で広ダイナミックレンジを実現するために、利得切替回路412の帰還抵抗の本数が2本以上に増えた場合、利得切替判断アルゴリズムで利得の状態を把握しておく必要があり、回路構成の複雑化とともに瞬時応答性を下げる要因となる。なお、利得状態を把握する回路例としては、例えば図19に示すようなSRラッチ回路431,432とアンド回路43を使用した論理回路によって状態を保持する保持回路430が知られている。
また、トランスインピーダンスアンプでは、その利得切り替えを高速に行う必要があるだけでなく、その利得切り替え動作に安定性が必要とされる。
図16の利得切替判断回路420では、トランスインピーダンスアンプコア回路410の出力電圧Voutの振幅を、オペアンプ421とダイオードD2、およびオペアンプ422とダイオードD3により、常に1つの基準で比較し、その比較結果に応じて利得切替回路412の切り替えを制御している。
このため、従来のトランスインピーダンスアンプ400によれば、例えば入力電流Iinに雑音が混入した場合、その雑音により利得切替回路412が誤動作して利得切り替えが行われ、出力振幅が不安定になる。特に、図18に示すパケット520のプリアンブル531に続くペイロード532の期間において、雑音により利得切り替えが行われた場合、入力電流Iin自体が変化していないにもかかわらずその利得切り替えが行われるため、出力電圧Voutが変化して、ペイロード532のデータビットを正常に受信できなくなる場合もあった。
以上のように、従来の高感度で広入力ダイナミックレンジを実現するトランスインピーダンスアンプでは、バーストデータに対応した瞬時応答を実現するとともに、利得切り替えの安定性を得ることが困難という課題があった。
本発明はこのような課題を解決するためのものであり、高感度および広入力ダイナミックレンジを実現でき、バーストデータに対応した瞬時応答を実現するとともに、利得切り替えの安定性を得ることができるトランスインピーダンスアンプを提供することを目的としている。
このような目的を達成するために、本発明にかかるトランスインピーダンスアンプは、入力端子へ入力された電流を所望の利得で増幅し電圧信号として出力する第1のトランスインピーダンスアンプコア回路と、この第1のトランスインピーダンスアンプコア回路と同じ構成で入力端子が開放された第2のトランスインピーダンスアンプコア回路と、第1および第2のトランスインピーダンスアンプコア回路からの出力信号を差動増幅して出力する中間段バッファ回路と、この中間段バッファ回路から出力された差動出力信号を比較入力電圧とし、この比較入力電圧に基づき第1および第2のトランスインピーダンスアンプコア回路の利得を切り替える利得切替信号を出力する利得切替判断回路とを備えるトランスインピーダンスアンプであって、第1および第2のトランスインピーダンスアンプコア回路に、利得切替信号に基づき利得を切り替える利得切替回路をそれぞれ備え、利得切替判断回路で、比較入力電圧を第1のヒステリシス特性で比較判定した結果に基づき利得切替信号を出力することにより第1および第2のトランスインピーダンスアンプコア回路の利得を切り替える利得切替動作を行い、比較入力電圧を第1のヒステリシス特性より低い電圧検出レベルの第2のヒステリシス特性で比較判定した結果に基づき利得切替動作を停止して第1および第2のトランスインピーダンスアンプコア回路の利得を固定するようにしたものである。
この際、利得切替判断回路に、比較入力電圧が差動入力端子に入力され、この比較入力電圧を第1のヒステリシス特性で比較判定した結果に応じて利得切替信号を出力端子から出力する利得切替コンパレータと、比較入力電圧が差動入力端子に入力され、この比較入力電圧を第2のヒステリシス特性で比較判定した結果に応じてデータ検出信号を出力端子から出力するデータ検出コンパレータと、データ検出信号が入力端子に入力され、このデータ検出信号を所定時間遅延させることにより利得切替動作の停止を指示する利得固定信号を出力端子から出力する遅延回路とを備え、利得切替コンパレータに、利得固定信号に応じて利得切替動作を停止して利得切替信号を固定する利得固定回路を備えてもよい。
また、利得切替回路に、帰還抵抗の値を切り替えるスイッチとしてMOSトランジスタを備えてもよい。
この際、MOSトランジスタとして、その基板端子がソース電位より低い接地に接続されたNMOSトランジスタを用いてもよい。
また、利得切替コンパレータおよびデータ検出コンパレータに、外部制御信号によりその出力を初期化するリセット回路を設けてもよい。
また、利得切替回路で、利得切替信号に応じて帰還抵抗の値を切り替えるとともに、これに連動して開ループ利得を切り替えるようにしてもよい。
本発明によれば、利得切替判断回路により、中間段バッファ回路からの差動出力信号である比較入力電圧が第1のヒステリシス特性で比較判定された結果に基づき利得切替信号が出力されて、第1および第2のトランスインピーダンスアンプコア回路の利得が切り替えられる利得切替動作が行われ、比較入力電圧が第1のヒステリシス特性より低い電圧検出レベルの第2のヒステリシス特性で比較判定された結果に基づき利得切替動作が停止されて、第1および第2のトランスインピーダンスアンプコア回路の利得が固定される。
これにより、比較入力電圧に基づき利得切替要否を判断するためにヒステリシス特性が利用されるため、利得切替判断のための比較入力電圧を応答時間の遅いレベルホールド回路で保持する必要がなくなり、入力電流に応じて変化する比較入力電圧に基づき瞬時に利得切替判断が可能となり、バーストデータに対応した瞬時応答を実現できる。また、第1のヒステリシス特性より電圧検出レベルの低い第2のヒステリシス特性を用いて利得の固定要否を判断するようにしたので、必要に応じて利得切替要の判断が下される前に、第1および第2のトランスインピーダンスアンプコア回路の利得を固定することができ、利得切り替えの安定性を得ることができる。
次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
まず、図1を参照して、本発明の第1の実施の形態にかかるトランスインピーダンスアンプについて説明する。図1は、本発明の第1の実施の形態にかかるトランスインピーダンスアンプの構成を示すブロック図である。
このトランスインピーダンスアンプ200は、高速データ伝送を可能とする光伝送システム、光インターコネクション、パッシブオプティカルネットワーク(PON)システム等の光伝送回路において、受光素子100で受信した光ファイバからの光信号を電気信号に変換する光受信回路で用いられる。
図1に示すように、トランスインピーダンスアンプ200は、主な回路構成として、第1のトランスインピーダンスアンプコア回路210、第2のトランスインピーダンスアンプコア回路220、中間段バッファ回路230、出力バッファ回路240、および利得切替判断回路250を備えている。
第1のトランスインピーダンスアンプコア回路210は、入力端子が受光素子100の出力端子に接続されて、受光素子100から出力された入力電流Iinを電圧変換して信号増幅を行い、入力電流Iinに応じて変化する出力電圧V1を出力端子から出力する増幅回路211と、この増幅回路211の入力端子と出力端子との間に接続されて、利得切替判断回路250からの利得切替信号SELに応じて増幅回路211のトランスインピーダンス利得を切り替える利得切替回路212とを有している。
第2のトランスインピーダンスアンプコア回路220は、第1のトランスインピーダンスアンプコア回路210の増幅回路211と同様であるものの入力端子が開放されており、出力電圧V1の参照電圧として入力電流Iinに応じて変化しない一定の出力電圧V2を出力端子から出力する増幅回路221と、第1のトランスインピーダンスアンプコア回路210の利得切替回路212と同様の利得切替回路222を有している。
中間段バッファ回路230は、第1および第2のトランスインピーダンスアンプコア回路210,220の出力端子が差動入力端子に接続されて、この差動入力端子に入力された出力電圧V1,V2を差動増幅し(例えば、利得=1)、出力電圧V3(非反転出力)および出力電圧V4(反転出力)からなる差動出力信号として差動出力端子から出力するバッファ回路である。
出力バッファ回路240は、中間段バッファ回路230の差動出力端子が差動入力端子に接続されて、この差動入力端子に入力された出力電圧V3,V4を差動増幅し(例えば、利得=1)、出力電圧Voutp(非反転出力)およびVoutn(反転出力)を、トランスインピーダンスアンプ200の出力電圧Voutとして出力するバッファ回路である。
利得切替判断回路250は、中間段バッファ回路230の出力電圧V3,V4からなる比較入力電圧Vc(=V4−V3)を入力として、第1および第2のトランスインピーダンスアンプコア回路210,220の利得切替回路212,222に利得切替信号SELを出力することにより、受光素子100からの入力電流Iinに応じて第1および第2のトランスインピーダンスアンプコア回路210,220の利得を切り替える判断回路である。
本実施の形態では、利得切替判断回路250で、中間段バッファ回路230からの差動出力信号である比較入力電圧Vcを第1のヒステリシス特性で比較判定した結果に基づき利得切替信号を出力することにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得を切り替える利得切替動作を行い、差動出力信号である比較入力電圧Vcを第1のヒステリシス特性より低い電圧を検出する第2のヒステリシス特性で比較判定した結果に基づき利得切替動作を停止して、第1および第2のトランスインピーダンスアンプコア回路の利得を固定するようにしたものである。
[利得切替判断回路]
次に、図2を参照して、本発明の第1の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路について詳細に説明する。図2は、本発明の第1の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路の構成を示すブロック図である。
利得切替判断回路250は、利得切替コンパレータ251、データ検出コンパレータ252、および遅延回路253から構成されている。
利得切替コンパレータ251は、中間段バッファ回路230の差動出力端子が差動入力端子に接続されて、この差動入力端子に入力された比較入力電圧Vcを第1のヒステリシス特性で比較判定し、その結果に応じた利得切替信号SELを出力端子から出力することにより、トランスインピーダンスアンプコア回路210,220の利得を切り替える利得切替動作を行うヒステリシスコンパレータである。
データ検出コンパレータ252は、中間段バッファ回路230の差動出力端子が差動入力端子に接続されて、この差動入力端子に入力された比較入力電圧Vcを第2のヒステリシス特性で比較判定して、その結果に応じたデータ検出信号DETを出力端子から出力することによりデータ受信の有無を検出するヒステリシスコンパレータである。
遅延回路253は、データ検出コンパレータ252の出力端子が入力端子に接続され、この入力端子に入力されたデータ検出コンパレータ252からのデータ検出信号DETを所定の遅延時間Tdだけ遅延させることにより、利得切替コンパレータ251での利得切替動作の停止を指示する利得固定信号HOLDを出力端子から出力する回路である。
この遅延時間Tdとして、各宅側装置からの上り(ONUからOLTへ)のパケットの先頭に設けられているプリアンブルに相当する時間長を用いることにより、プリアンブルでの利得切り替えのみを許可し、その後続のペイロードでの利得切り替えを禁止できる。
図3は、遅延回路の具体例を示す回路図である。ここでは、抵抗素子Rおよび容量素子Cからなる積分回路と、この積分回路の前後に接続されたゲート(バッファゲートやインバータ)とから遅延回路を構成した例が示されている。なお、遅延回路の構成については、図3に限定されるものではなく、いずれの公知技術を用いてもよい。
[第1の実施の形態の動作]
次に、図4〜図7を参照して、本発明の第1の実施の形態にかかるトランスインピーダンスアンプの動作について説明する。図4は、本発明の第1の実施の形態にかかるトランスインピーダンスアンプの各部における信号波形例である。図5は、利得切替コンパレータおよびデータ検出コンパレータが持つヒステリシス特性例である。図6は、利得切替コンパレータおよびデータ検出コンパレータの動作特性例である。図7は、本発明の第1の実施の形態にかかるトランスインピーダンスアンプの動作例を示すタイミングチャート図である。
まず、図4を参照して、第1のトランスインピーダンスアンプコア回路210、第2のトランスインピーダンスアンプコア回路220、中間段バッファ回路230、および出力バッファ回路240の動作について説明する。
光ファイバを介して宅側装置(ONU)から局側装置(OLT)へ到達した光信号は、局側装置の光波長分割多重回路(WDM:Wavelength Division Multiplex)で分離された後、光受信回路の受光素子100により光電気変換され、入力電流Iinとしてトランスインピーダンスアンプ200へ入力される。
トランスインピーダンスアンプ200の第1のトランスインピーダンスアンプコア回路210は、入力された入力電流Iinを増幅回路211で電圧変換して信号増幅を行い、この入力電流Iinに応じて変化する出力電圧V1を出力する。
一方、第2のトランスインピーダンスアンプコア回路220は、常時、出力電圧V1の参照電圧として入力電流Iinに応じて変化しない一定の出力電圧V2を出力している。
中間段バッファ回路230には、これら第1のトランスインピーダンスアンプコア回路210の出力電圧V1と、第2のトランスインピーダンスアンプコア回路220の出力電圧V2が入力され、入力電流Iinが大きくなると出力電圧V3,V4との間の電位差(V4−V3)が大きくなるような差動出力信号が得られる。これら出力電圧V3,V4は、所定の中心電位V0を中心として上下に対称な振幅を持つ信号波形となる。
中間段バッファ回路230の差動出力信号は、出力バッファ回路240に入力され、出力電圧Voutp(非反転出力)およびVoutn(反転出力)からなるトランスインピーダンスアンプ200の出力電圧Voutとして出力される。
次に、図5〜図7を参照して、利得切替判断回路250の動作について説明する。
中間段バッファ回路230の差動出力信号は、比較入力電圧Vcとして利得切替判断回路250へ供給され、利得切替判断回路250の利得切替コンパレータ251およびデータ検出コンパレータ252へ入力される。
図5に示すように、利得切替コンパレータ251は、所定の電圧検出レベルVh1からなるヒステリシス特性(第1のヒステリシス特性)を有し、データ検出コンパレータ252は、所定の電圧検出レベルVh2からなるヒステリシス特性(第2のヒステリシス特性)を有している。ここでは、ヒステリシスコンパレータの立ち上がり動作が行われる差動入力端子の入力電圧すなわち比較入力電圧を電圧検出レベルという。
本実施の形態にかかるトランスインピーダンスアンプ200の構成では、常に、受光素子100から入力電流Iinが入力されるため、出力電圧V2>出力電圧V1となり、比較入力電圧Vc(=V4−V3)>0である。
このような比較入力電圧Vcを差動入力とする利得切替コンパレータ251では、比較入力電圧Vcが電圧検出レベルVh1と比較されることになる。したがって、比較入力電圧Vcが電圧検出レベルVh1を超えた時点で、利得切替コンパレータ251からの出力すなわち利得切替信号SELの論理が反転する。
この際、一度反転した場合、そのヒステリシス特性の立ち下がり動作まで比較入力電圧Vcが変化しない限り、出力論理はリセットされない。本実施の形態では、比較入力電圧Vc>0であるため、ヒステリシス特性の立ち下がり動作まで比較入力電圧Vcが変化せず、結果として一度反転した場合には、その論理が保持される。したがって、入力信号Iinがゼロの場合の比較入力電圧Vcを基準電圧Vnとした場合、利得切替コンパレータ251では、基準電圧Vnより高い比較入力電圧Vcに対するヒステリシス特性(立ち上がり動作領域)しか利用されていない。
本実施の形態では、パケットを受信する前に、利得切替信号SELの論理を「利得大」に初期化しておき、利得切替コンパレータ251のヒステリシス特性における立ち上がり動作に応じて、利得切替信号SELの論理を「利得大」から「利得小」へ切り替えている。なお、利得切替信号SELの初期化については、後述するリセット機能を利用すればよい。
データ検出コンパレータ252では、比較入力電圧Vcが電圧検出レベルVh2と比較されることになる。したがって、利得切替コンパレータ251と同様に、比較入力電圧Vcが電圧検出レベルVh2を超えた時点で、データ検出コンパレータ252からの出力すなわちデータ検出信号DETの論理が反転する。また、データ検出コンパレータ252でも、基準電圧Vnより高い比較入力電圧Vcに対するヒステリシス特性(立ち上がり動作領域)しか利用されていない。
本実施の形態では、パケットを受信する前に、データ検出信号DETの論理を「データ無」に初期化しておき、データ検出コンパレータ252のヒステリシス特性における立ち上がり動作に応じて、データ検出信号DETの論理を「データ無」から「データ有」へ切り替えている。なお、データ検出信号DETの初期化については、後述するリセット機能を利用すればよい。
また、本実施の形態では、図5に示すように、データ検出コンパレータ252の電圧検出レベルVh2は、利得切替コンパレータ251の電圧検出レベルVh1より低い電圧に設定されている。
パケットを受信していない期間は入力電流Iinが小さいため比較入力電圧Vcの電圧値も小さく、パケットの受信開始に応じて入力電流Iinが増加して比較入力電圧Vcの電圧値も上昇する。
このため、図6に示すように、入力電流Iinが電流値I1に到達した時点で、比較入力電圧Vcが電圧検出レベルVh2へ到達し、データ検出コンパレータ252が立ち上がり動作して、データ検出信号DETの論理が「データ無」から「データ有」へ切り替えられる。その後、入力電流Iinがさらに増加して電流値I2に到達した時点で、比較入力電圧Vcが電圧検出レベルVh1へ到達し、利得切替コンパレータ251が立ち上がり動作して、利得切替信号SELの論理が「利得大」から「利得小」へ切り替えられる。これにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得が小さくなり、結果としてトランスインピーダンスアンプの出力電圧Voutや比較入力電圧Vcは小さくなる。
したがって、図7に示すように、パケットの受信が開始されて入力電流Iinが増加し、時刻T1において比較入力電圧Vcが電圧検出レベルVh2へ到達した場合、データ検出コンパレータ252からのデータ検出信号DETが「データ無」から「データ有」に反転する。このデータ検出信号DETは、データ検出コンパレータ252から遅延回路253へ入力され、ここで遅延時間Tdだけ遅延した後、時刻T3において利得固定信号HOLDとして利得切替コンパレータ251へ入力される。この場合は、利得切替コンパレータ251での利得切替動作が停止され、その後、比較入力電圧Vcが電圧検出レベルVh1に到達した場合でも、利得切替信号SELは反転しない。
このことから、時刻T1の後、入力電流Iinがさらに増加し、時刻T3となる前の時刻T2において比較入力電圧Vcが電圧検出レベルVh1に到達した場合、利得切替コンパレータ251からの利得切替信号SELが「利得大」から「利得小」へ反転する。これにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得が小さくなる。
一方、時刻T3より後の時刻T4において、比較入力電圧Vcが電圧検出レベルVh1に到達した場合、利得切替コンパレータ251は、時刻T3において利得固定信号HOLDが入力されていることから、利得切替信号SELは「利得大」から「利得小」へは反転しない。これにより、入力電流Iinが時刻T3以降に増加した場合でも、第1および第2のトランスインピーダンスアンプコア回路210,220の利得は保持され、安定した出力電圧Voutが出力される。
このように、本実施の形態では、利得切替判断回路250で、中間段バッファ回路230からの差動出力信号である比較入力電圧Vcを第1のヒステリシス特性で比較判定した結果に基づき利得切替信号SELを出力することにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得を切り替える利得切替動作を行い、比較入力電圧Vcを第1のヒステリシス特性より低い電圧検出レベルの第2のヒステリシス特性で比較判定した結果に基づき利得切替動作を停止して、第1および第2のトランスインピーダンスアンプコア回路の利得を固定するようにしたものである。
より具体的には、利得切替判断回路250に、比較入力電圧Vcを第1のヒステリシス特性で比較判定した結果に応じた利得切替信号SELを出力する利得切替コンパレータ251と、比較入力電圧Vcを第2のヒステリシス特性で比較判定した結果に応じたデータ検出信号DETを出力するデータ検出コンパレータ252と、データ検出信号DETを所定時間Tdだけ遅延させることにより利得切替動作の停止を指示する利得固定信号HOLDを出力する遅延回路253とを設け、利得切替コンパレータ251で、利得固定信号HOLDに応じて利得切替動作を停止して利得切替信号SELを固定するようにしたものである。
したがって、比較入力電圧Vcに基づき利得切替要否を判断するためにヒステリシス特性が利用されるため、利得切替判断のための比較入力電圧Vcを応答時間の遅いレベルホールド回路で保持する必要がなくなり、入力電流Iinに応じて変化する比較入力電圧Vcに基づき瞬時に利得切替判断が可能となり、バーストデータに対応した瞬時応答を実現できる。
また、第1のヒステリシス特性より電圧検出レベルの低い第2のヒステリシス特性を用いて利得の固定要否を判断するようにしたので、必要に応じて利得切替要の判断が下される前に、第1および第2のトランスインピーダンスアンプコア回路210,220の利得を固定することができ、利得切り替えの安定性を得ることができる。
また、遅延回路253により、データ検出信号DETを所定時間Tdだけ遅延させることにより利得切替動作の停止を指示する利得固定信号HOLDを出力するようにしたので、この遅延時間を調整することにより、パケットデータの受信開始すなわちプリアンブルの先頭から、任意の時間経過した時点で利得を固定できる。特に、この遅延時間Tdとして、各宅側装置からの上り(ONUからOLTへ)のパケットの先頭に設けられているプリアンブルに相当する時間長を用いることにより、プリアンブルでの利得切り替えのみを許可し、その後続のペイロードでの利得切り替えを禁止できる。
[第2の実施の形態]
次に、図8を参照して、本発明の第2の実施の形態にかかるトランスインピーダンスアンプについて説明する。図8は、本発明の第2の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路の構成を示すブロック図であり、前述の図2と同じまたは同等部分には同一符号を付してある。
前述した第1の実施の形態では、トランスインピーダンスアンプコア回路210,220での利得切り替えが「利得大」と「利得小」の1段切り替えの場合を例として説明した。本実施の形態では、利得切り替えが複数段の場合について、具体的には、トランスインピーダンスアンプコア回路210,220での利得切り替えが「利得大」、「利得中」、および「利得小」の2段切り替えの場合を例として説明する。なお、本実施の形態にかかるトランスインピーダンスアンプのうち、利得切替判断回路以外の構成については、前述した第1の実施の形態と同等であり、ここでの詳細な説明は省略する。
前述した第1の実施の形態で説明した利得切替判断回路250と比較して、本実施の形態で用いる利得切替判断回路250Aには、前述した利得切替コンパレータ251、データ検出コンパレータ252、および遅延回路253からなる個別判断回路261に加えて、利得切替コンパレータ254、データ検出コンパレータ255、および遅延回路256からなる個別判断回路262とスイッチ257とが追加されている。このうち、利得切替コンパレータ254、データ検出コンパレータ255、および遅延回路256については、前述した利得切替コンパレータ251、データ検出コンパレータ252、遅延回路253と同等である。
スイッチ257は、中間段バッファ回路230の差動出力端子と、利得切替コンパレータ254の差動入力端子およびこれに並列接続されたデータ検出コンパレータ255の差動入力端子との間に設けられたスイッチ回路である。スイッチ257の切替制御入力端子には、利得切替コンパレータ251の出力端子が接続されており、利得切替コンパレータ251から出力される第1の利得切替信号SEL1の論理が「利得大」から「利得中」へ反転した時点で「オフ」から「オン」へ動作して、比較入力電圧Vcを利得切替コンパレータ254およびデータ検出コンパレータ255の差動入力端子へ供給する。
利得切替コンパレータ254は、差動入力端子がスイッチ257を介して中間段バッファ回路230の差動出力端子に接続されて、この差動入力端子に入力された比較入力電圧Vcを第1のヒステリシス特性で比較判定し、その結果に応じた利得切替信号SEL2を出力端子から出力することにより、トランスインピーダンスアンプコア回路210,220の利得を「利得中」から「利得小」へ切り替える利得切替動作を行うヒステリシスコンパレータである。
データ検出コンパレータ255は、差動入力端子がスイッチ257を介して中間段バッファ回路230の差動出力端子に接続されて、この差動入力端子に入力された比較入力電圧Vcを第2のヒステリシス特性で比較判定し、その結果に応じたデータ検出信号DET2を出力端子から出力することにより、利得切替コンパレータ254での利得切替動作の停止要否を検出するヒステリシスコンパレータである。
遅延回路256は、データ検出コンパレータ255の出力端子が入力端子に接続され、この入力端子に入力されたデータ検出コンパレータ255からのデータ検出信号DET2を所定の遅延時間Tdだけ遅延させることにより利得切替コンパレータ254での利得切替動作の停止を指示する利得固定信号HOLD2を出力端子から出力する回路である。遅延回路256の具体例については、前述した図3のなど、いずれの公知技術を用いてもよい。
この遅延時間Tdとして、各宅側装置からの上り(ONUからOLTへ)のパケットの先頭に設けられているプリアンブルに相当する時間長を用いることにより、プリアンブルでの利得切り替えのみを許可し、その後続のペイロードでの利得切り替えを禁止できる。
[第2の実施の形態の動作]
次に、図9を参照して、本発明の第2の実施の形態にかかるトランスインピーダンスアンプの動作について説明する。図9は、利得切替コンパレータおよびデータ検出コンパレータの動作特性例である。
図9に示すように、入力電流Iinが電流値I1に到達した時点で、比較入力電圧Vcが電圧検出レベルVh2へ到達し、データ検出コンパレータ252が立ち上がり動作して、データ検出信号DET1の論理が「データ無」から「データ有」へ切り替えられる。その後、入力電流Iinがさらに増加して電流値I2に到達した時点で、比較入力電圧Vcが電圧検出レベルVh1へ到達し、利得切替コンパレータ251が立ち上がり動作して、利得切替信号SEL1の論理が「利得大」から「利得中」へ切り替えられる。
これにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得が小さくなり、結果としてトランスインピーダンスアンプの出力電圧Voutや比較入力電圧Vcは小さくなる。
また、利得切替信号SEL1の論理が「利得大」から「利得中」へ切り替えられた場合、スイッチ257がオンし、比較入力電圧Vcが利得切替コンパレータ254とデータ検出コンパレータ255に供給される。
その後、入力電流Iinがさらに増加して電流値I3に到達した時点で、比較入力電圧Vcが電圧検出レベルVh2へ再び到達し、データ検出コンパレータ255が立ち上がり動作して、データ検出信号DET2の論理が「データ無」から「データ有」へ切り替えられる。その後、入力電流Iinがさらに増加して電流値I4に到達した時点で、比較入力電圧Vcが電圧検出レベルVh1へ再び到達し、利得切替コンパレータ254が立ち上がり動作して、利得切替信号SEL2の論理が「利得中」から「利得小」へ切り替えられる。
これにより、第1および第2のトランスインピーダンスアンプコア回路210,220の利得がさらに小さくなり、結果としてトランスインピーダンスアンプの出力電圧Voutや比較入力電圧Vcはさらに小さくなる。
また、実際には、データ検出信号DET1,DET2の論理反転から遅延時間Td1,Td2だけ遅延して、遅延回路253,256から利得切替コンパレータ251,254に対してそれぞれ利得固定信号HOLD1,HOLD2が出力される。したがって、比較入力電圧Vcが電圧検出レベルVh2へ到達するまでに、これら利得固定信号HOLD1,HOLD2が利得切替コンパレータ251,254へ入力された場合、利得切替コンパレータ251,254での利得切替動作が停止される。これにより、利得切替信号SEL1,SEL2の論理は固定され、第1および第2のトランスインピーダンスアンプコア回路210,220の利得は固定される。
このように、本実施の形態では、前述した第1の実施の形態の利得切替判断回路250を構成する利得切替コンパレータ251、データ検出コンパレータ252、および遅延回路253に加えて、これらと同等の利得切替コンパレータ254、データ検出コンパレータ255、および遅延回路256を設け、スイッチ257で、利得切替コンパレータ251から出力される第1の利得切替信号SEL1の論理が反転した時点で「オフ」から「オン」へ動作して、比較入力電圧Vcを利得切替コンパレータ254およびデータ検出コンパレータ255の差動入力端子へ供給するようにしたので、前述した第1の実施の形態の作用効果が得られるとともに、第1および第2のトランスインピーダンスアンプコア回路210,220の利得を複数段で切り替えることができる。
なお、本実施の形態では、「利得大」、「利得中」、および「利得小」の2段切り替えを行う場合を例として説明したが、これに限定されるものではなく、3段以上の場合には、スイッチを介して個別判断回路を必要な段数だけ直列接続し、前段の個別判断回路から出力される利得切替信号で当該スイッチのオン/オフを制御すればよい。
また、本実施の形態では、各個別判断回路で、同一のヒステリシス特性すなわち電圧検出レベルを用いる場合を例として説明したが、これに限定されるものではなく、それぞれ個別のヒステリシス特性すなわち電圧検出レベルを用いてもよい。
[第3の実施の形態]
次に、図10〜図12を参照して、本発明の第3の実施の形態にかかるトランスインピーダンスアンプで用いられるトランスインピーダンスアンプコア回路の具体例について説明する。図10は、本発明の第3の実施の形態にかかるトランスインピーダンスアンプで用いられるトランスインピーダンスアンプコア回路の主要部構成例を示す回路図である。図11は、本発明の第3の実施の形態にかかるトランスインピーダンスアンプで用いられるトランスインピーダンスアンプコア回路の主要部構成例を示す他の回路図である。図12は、トランスインピーダンスアンプコア回路の利得切替制御を示す説明図である。
図10のトランスインピーダンスアンプコア回路210,220には、利得を「利得大」、「利得中」、および「利得小」の2段切り替えを行う利得切替回路212,222として、トランスインピーダンス利得を決める帰還抵抗RF1,RF2,RF3、開ループ利得を決める負荷抵抗RL1,RL2,RL3が設けられており、それら帰還抵抗および負荷抵抗をNMOSトランジスタMN1〜MN4をスイッチとして所望の抵抗値に切り替える。なお、帰還抵抗および負荷抵抗を切り替えるスイッチとしてのNMOSトランジスタMN1〜MN4は切替信号の論理を反転すればPMOSトランジスタでも実現可能である。
一方、図11のトランスインピーダンスアンプコア回路210,220は、図10のうち、NMOSトランジスタMN4のソースを、NMOSトランジスタMN3のソースではなくドレインへ接続したものである。このようにすることで、最大負荷抵抗時のNMOSトランジスタMN4の寄生容量の影響を低減することが可能である。
図12には、利得切替信号とNMOSトランジスタMN1〜MN4のゲート電位(H=HIGHレベル、L=LOWレベル)の関係が示されている。この場合、利得切替回路212,222のNMOSトランジスタMN1,MN3のゲート端子に、例えば前述の図8に示した利得切替判断回路250Aで生成された利得切替信号SEL1が供給されるとともに、NMOSトランジスタMN2,MN4のゲート端子に利得切替信号SEL2が供給される。これにより、帰還抵抗RF1,RF2,RF3さらには負荷抵抗RL1,RL2,RL3の切り替えが行われ、利得を「利得大」、「利得中」、および「利得小」に切り替えることができ、さらに選択したトランスインピーダンス利得に適切な開ループ利得が自動的に選択される。
また、図10および図11では、帰還抵抗を切り替えるスイッチに使用するNMOSトランジスタMN1、MN2の基板端子を、ソースではなく接地電位(GND)へ接続し、基板電位をソース電位より低電位としている。このようにすることで、空乏層が広がり、NMOSトランジスタのドレイン・ソース間の寄生容量を減らして、トランスインピーダンスアンプの帯域を改善できるため、高速動作が可能となる。
[第4の実施の形態]
次に、図13および図14を参照して、本発明の第4の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路の具体例について説明する。図13は、本発明の第4の実施の形態にかかるトランスインピーダンスアンプの利得切替判断回路で用いられる利得切替コンパレータの構成例を示す回路図である。図14は、本発明の第4の実施の形態にかかるトランスインピーダンスアンプの利得切替判断回路で用いられるデータ検出コンパレータの構成例を示す回路図である。
本実施の形態では、利得切替判断回路250で利得切替コンパレータ251,254および利得切替コンパレータ252,255として用いられるヒステリシスコンパレータのリセット機能と、利得切替コンパレータ251,254として用いられるヒステリシスコンパレータの出力固定機能とについて詳細に説明する。
まず、利得切替コンパレータおよびデータ検出コンパレータのリセット機能について説明する。
各実施の形態で説明したように、利得切替判断回路250の利得切替コンパレータ251,254およびデータ検出コンパレータ252,255では、それぞれのヒステリシス特性のうち立ち上がり動作のみを利用しているため、次のパケットを受信する際に、これらヒステリシスコンパレータの動作状態を初期化する必要がある。本実施の形態では、これら利得切替コンパレータおよびデータ検出コンパレータに、外部入力されるリセット信号RESETに基づき動作状態を初期化するリセット回路270を設けている。
図13の利得切替コンパレータ251A,254Aにおいて、R1〜R6は抵抗、Q3〜Q8はNPNトランジスタ、MP1,MP2はPMOSトランジスタ、Ia,Ibは電流源である。このうち、リセット回路270は、リセット信号RESETが入力されるリセット端子にゲート端子が接続され、比較回路を構成するQ3のコレクタ端子に電源電位VCCを印可するPMOSトランジスタMP1と、ゲート端子がリセット端子に接続され、比較回路を構成するQ4への電流供給用抵抗R4を短絡するPMOSトランジスタMP2とから構成されている。これらPMOSトランジスタMP1,MP2は、外部から与えられるリセット信号RESETによってオンし、トランジスタQ3,Q4のコレクタ電位を強制的に初期値に戻す。これにより、利得切替コンパレータ251A,254Aの動作状態が初期化される。
図14のデータ検出コンパレータ252A,255Aについても、図13の利得切替コンパレータ251A,254Aと同様に、外部から与えられるリセット信号RESETによってヒステリシスコンパレータ出力を初期値に戻すために、ヒステリシスコンパレータの電位を強制的に初期値に戻すリセット回路270として、PMOSトランジスタMP1,MP2が付加されており、前述と同様の動作を行う。なお、図13,図14のPMOSトランジスタMP1,MP2はリセット信号RESETの論理を反転すればNMOSトランジスタでも実現可能である。
利得切替コンパレータやデータ検出コンパレータとして用いるヒステリシスコンパレータでは、反転入力端子INの電圧V4が、非反転入力端子IPの電圧V3に対して所定の電位差を超えると、非反転出力端子OPが反転出力端子ONに対して高い電圧を出力する。逆に、非反転入力端子IPの電圧V3が反転入力端子INの電圧V4に対してある電位差を超えると、反転出力端子ONが非反転出力端子OPに対して高い電圧を出力する。
第1の実施の形態で説明したように、中間段バッファ回路230の差動出力信号は反転しないため(Vc>0)、差動出力信号の反転により、反転出力端子ONの電圧が非反転出力端子OPの電圧に対して高い電圧(初期状態)へ自動的に復帰することはない。
本実施の形態では、リセット端子にリセット信号RESETを与えることで、強制的に反転出力端子ONが非反転出力端子OPに対して高い電圧になるように内部電圧を与えるリセット回路(PMOSトランジスタMP1,MP2)270を追加してある。これにより両出力端子OP,ONの電圧をした初期値に戻すことが可能である。
特に、PONシステムでは、パケットごとに信号振幅が異なるため各々のパケットの振幅に対応してトランスインピーダンスアンプコア回路210,220の利得を頻繁に切り替える必要がある。このため、利得切替判断回路250の利得切替コンパレータ251,254および利得切替コンパレータ252,255では、パケットごとに初期化する必要があるが、これらヒステリシスコンパレータに入力される比較入力電圧Vcは反転しないので初期化できない。本実施の形態のリセット回路270によれば、外部からのリセット信号RESETでヒステリシスコンパレータを強制的に初期状態に戻し初期化を行うことができる。なお、外部リセット信号については、公知の技術を利用して、網側からパケットごとに送られているリセット信号を検出して得ることができる。
次に、利得切替コンパレータの出力固定機能について説明する。
各実施の形態で説明したように、利得切替判断回路250の利得切替コンパレータ251,254では、遅延回路253,256からの利得固定信号HOLDに基づき、比較入力電圧Vcに基づく利得切替動作を停止して、利得切替信号を固定する必要がある。本実施の形態では、これら利得切替コンパレータに、外部入力される利得固定信号HOLDに基づき比較動作を停止して出力を固定する出力固定回路271を設けている。
図13の利得切替コンパレータ251A,254Aにおいて、出力固定回路271は、利得固定信号HOLDが入力されるホールド端子にゲート端子が接続されて、トランジスタQ3,Q4への電流供給用抵抗R1,R2を短絡するPMOSトランジスタMP3,MP4から構成されている。これらPMOSトランジスタMP3,MP4は、外部から与えられる利得固定信号HOLDによってオンし、トランジスタQ3,Q4のコレクタ電位を固定して比較動作を停止する。なお、PMOSトランジスタMP3,MP4は利得固定信号の論理を反転すればNMOSトランジスタでも実現可能である。
このように、本実施の形態の出力固定回路271によれば、外部からの利得固定信号HOLDでヒステリシスコンパレータの比較動作を強制的に停止でき、入力電流Iinの変化に応じて比較入力電圧Vcが変化した場合でも、この比較入力電圧Vcに応じた利得切替コンパレータ251A,254Aでの利得切替動作を停止させて、利得切替信号SELを固定することができ、利得切り替えの安定性を得ることができる。
なお、リセット回路270や出力固定回路271の具体的構成については、前述した図13,図14に限定されるものではなく、他の回路構成を用いてもよい。
本トランスインピーダンスアンプは、高速データ伝送を可能とする光伝送システム、光インターコネクション、パッシブオプティカルネットワーク,(以下、PONと称する)システム等の光伝送回路において、光信号を電気信号に変換する光受信回路に好適である。
本発明の第1の実施の形態にかかるトランスインピーダンスアンプの構成を示すブロック図である。 本発明の第1の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路の構成を示すブロック図である。 遅延回路の具体例を示す回路図である。 本発明の第1の実施の形態にかかるトランスインピーダンスアンプの各部における信号波形例である。 利得切替コンパレータおよびデータ検出コンパレータが持つヒステリシス特性例である。 利得切替コンパレータおよびデータ検出コンパレータの動作特性例である。 本発明の第1の実施の形態にかかるトランスインピーダンスアンプの動作例を示すタイミングチャート図である。 本発明の第2の実施の形態にかかるトランスインピーダンスアンプで用いられる利得切替判断回路の構成を示すブロック図である。 利得切替コンパレータおよびデータ検出コンパレータの動作特性例である。 本発明の第3の実施の形態にかかるトランスインピーダンスアンプで用いられるトランスインピーダンスアンプコア回路の主要部構成例を示す回路図である。 本発明の第3の実施の形態にかかるトランスインピーダンスアンプで用いられるトランスインピーダンスアンプコア回路の主要部構成例を示す他の回路図である。 トランスインピーダンスアンプコア回路の利得切替制御を示す説明図である。 本発明の第4の実施の形態にかかるトランスインピーダンスアンプの利得切替判断回路で用いられる利得切替コンパレータの構成例を示す回路図である。 本発明の第4の実施の形態にかかるトランスインピーダンスアンプの利得切替判断回路で用いられる利得切替コンパレータの構成例を示す回路図である。 従来のトランスインピーダンスアンプの回路図である。 従来別の例のトランスインピーダンスアンプの回路図である。 一般的なPONシステムの構成例である。 一般的なPONシステムの上りデータとして送信されるパケットの構成例である。 従来のトランスインピーダンスアンプで用いられる保持回路の構成例を示す回路図である。
符号の説明
100…受光素子、200…トランスインピーダンスアンプ、210…第1のトランスインピーダンスアンプコア回路、211…増幅回路、212…利得切替回路、220…第2のトランスインピーダンスアンプコア回路、221…増幅回路、222…利得切替回路、230…中間段バッファ回路、240…出力バッファ回路、250,250A…利得切替判断回路、251,251A,254,254A…利得切替コンパレータ、252,252A,255,255A…データ検出コンパレータ、253,256…遅延回路、257…スイッチ、261,262…個別判断回路、270…リセット回路、271…出力固定回路、501…局側装置(OLT)、502…光カプラ、503…光ファイバ、511〜51n…宅側装置(ONU)、521〜52n…パケット、Iin…入力電流、V1,V2…出力電圧、V3…出力電圧(非反転出力)、V4…出力電圧(反転出力)、Vc…比較入力電圧、Vh,Vh1,Vh2…検出レベル電圧、DET,DET1,DET2…データ検出信号、HOLD,HOLD,HOLD2…利得固定信号、SEL,SEL1,SEL2…利得切替信号、Vout…出力電圧、Voutp…出力電圧(非反転出力)、Voutn…出力電圧(反転出力)。

Claims (6)

  1. 入力端子へ入力された電流を所望の利得で増幅し電圧信号として出力する第1のトランスインピーダンスアンプコア回路と、この第1のトランスインピーダンスアンプコア回路と同じ構成で入力端子が開放された第2のトランスインピーダンスアンプコア回路と、前記第1および第2のトランスインピーダンスアンプコア回路からの出力信号を差動増幅して出力する中間段バッファ回路と、この中間段バッファ回路から出力された差動出力信号を比較入力電圧とし、この比較入力電圧に基づき前記第1および第2のトランスインピーダンスアンプコア回路の利得を切り替える利得切替信号を出力する利得切替判断回路とを備えるトランスインピーダンスアンプであって、
    前記第1および第2のトランスインピーダンスアンプコア回路は、前記利得切替信号に基づき利得を切り替える利得切替回路をそれぞれ備え、
    前記利得切替判断回路は、前記比較入力電圧を第1のヒステリシス特性で比較判定した結果に基づき前記利得切替信号を出力することにより前記第1および第2のトランスインピーダンスアンプコア回路の利得を切り替える利得切替動作を行い、前記比較入力電圧を前記第1のヒステリシス特性より低い電圧検出レベルの第2のヒステリシス特性で比較判定した結果に基づき前記利得切替動作を停止して前記第1および第2のトランスインピーダンスアンプコア回路の利得を固定する
    ことを特徴とするトランスインピーダンスアンプ。
  2. 請求項1に記載のトランスインピーダンスアンプにおいて、
    前記利得切替判断回路は、
    前記比較入力電圧が差動入力端子に入力され、この比較入力電圧を第1のヒステリシス特性で比較判定した結果に応じて前記利得切替信号を出力端子から出力する利得切替コンパレータと、
    前記比較入力電圧が差動入力端子に入力され、この比較入力電圧を第2のヒステリシス特性で比較判定した結果に応じて前記データ検出信号を出力端子から出力するデータ検出コンパレータと、
    前記データ検出信号が入力端子に入力され、このデータ検出信号を所定時間遅延させることにより前記利得切替動作の停止を指示する利得固定信号を出力端子から出力する遅延回路とを備え、
    前記利得切替コンパレータは、前記利得固定信号に応じて前記利得切替動作を停止して前記利得切替信号を固定する利得固定回路を備える
    ことを特徴とするトランスインピーダンスアンプ。
  3. 請求項1または2に記載のトランスインピーダンスアンプにおいて、
    前記利得切替回路は、帰還抵抗の値を切り替えるスイッチとしてMOSトランジスタを備えることを特徴とするトランスインピーダンスアンプ。
  4. 請求項3に記載のトランスインピーダンスアンプにおいて、
    前記MOSトランジスタは、その基板端子がソース電位より低い接地に接続されたNMOSトランジスタからなることを特徴とするトランスインピーダンスアンプ。
  5. 請求項1または2に記載のトランスインピーダンスアンプにおいて、
    前記利得切替コンパレータおよび前記データ検出コンパレータは、外部制御信号によりその出力を初期化するリセット回路を有することを特徴とするトランスインピーダンスアンプ。
  6. 請求項1〜4のいずれか1つに記載のトランスインピーダンスアンプにおいて、
    前記利得切替回路は、前記利得切替信号に応じて帰還抵抗の値を切り替えるとともに、これに連動して開ループ利得を切り替えることを特徴とするトランスインピーダンスアンプ。
JP2005129203A 2004-08-03 2005-04-27 トランスインピーダンスアンプ Active JP4095077B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005129203A JP4095077B2 (ja) 2005-04-27 2005-04-27 トランスインピーダンスアンプ
PCT/JP2005/014211 WO2006013893A1 (ja) 2004-08-03 2005-08-03 トランスインピーダンスアンプ
CN2005800264259A CN1993885B (zh) 2004-08-03 2005-08-03 跨导放大器
US11/658,688 US7868701B2 (en) 2004-08-03 2005-08-03 Transimpedance amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129203A JP4095077B2 (ja) 2005-04-27 2005-04-27 トランスインピーダンスアンプ

Publications (2)

Publication Number Publication Date
JP2006311033A JP2006311033A (ja) 2006-11-09
JP4095077B2 true JP4095077B2 (ja) 2008-06-04

Family

ID=37477428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129203A Active JP4095077B2 (ja) 2004-08-03 2005-04-27 トランスインピーダンスアンプ

Country Status (1)

Country Link
JP (1) JP4095077B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833124B2 (ja) * 2007-03-22 2011-12-07 日本電信電話株式会社 トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法
JP5272021B2 (ja) * 2009-01-19 2013-08-28 株式会社日立製作所 トランスインピーダンスアンプおよびponシステム
JP5588814B2 (ja) * 2010-10-04 2014-09-10 株式会社日立製作所 バースト受信機,バースト受信制御方法、およびシステム
KR101854054B1 (ko) 2013-08-07 2018-05-02 미쓰비시덴키 가부시키가이샤 전류 전압 변환 회로, 광 수신기 및 광 종단 장치
JP6980164B2 (ja) * 2019-08-09 2021-12-15 三菱電機株式会社 光受信器および局側装置

Also Published As

Publication number Publication date
JP2006311033A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
US7868701B2 (en) Transimpedance amplifier
JP4870806B2 (ja) トランスインピーダンスアンプ
JP4165829B2 (ja) トランスインピーダンスアンプ
Wang et al. A 0.18-$\mu {\hbox {m}} $ CMOS 1.25-Gbps Automatic-Gain-Control Amplifier
JP4927664B2 (ja) 前置増幅回路
CN1993885B (zh) 跨导放大器
US7809285B2 (en) Receiving circuit and optical signal receiving circuit
JP4833124B2 (ja) トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法
US8023835B2 (en) Optical receiver, optical audio apparatus, optical communication apparatus and optical reception method
JP4095077B2 (ja) トランスインピーダンスアンプ
US20100272448A1 (en) Optical burst signal receiving device
JP5013321B2 (ja) 光バースト受信器及び方法
US8433206B2 (en) Burst-mode optical receiver and timing control method
JP2007005968A (ja) バースト先頭検出回路
JP2007036329A (ja) 増幅回路およびトランスインピーダンスアンプ
CN114389550A (zh) 用于接收突发光信号的跨阻抗放大电路
US10312873B2 (en) Split cascode circuits and related communication receiver architectures
JP4546348B2 (ja) トランスインピーダンスアンプ
JP2001144552A (ja) バーストモード光受信システム及び方法
JP4497480B2 (ja) 光受信回路
Yoon et al. Front-end CMOS chipset for fiber-based gigabit Ethernet
JP4771767B2 (ja) Mosトランジスタの制御方法
JPH10313222A (ja) 光受信回路
Aznar et al. A 0.18 μm CMOS linear-in-dB AGC post-amplifier for optical communications
JP2011155699A (ja) トランスインピーダンスアンプ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4095077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250