JP4091695B2 - Underground continuous wall and its construction method - Google Patents

Underground continuous wall and its construction method Download PDF

Info

Publication number
JP4091695B2
JP4091695B2 JP27443798A JP27443798A JP4091695B2 JP 4091695 B2 JP4091695 B2 JP 4091695B2 JP 27443798 A JP27443798 A JP 27443798A JP 27443798 A JP27443798 A JP 27443798A JP 4091695 B2 JP4091695 B2 JP 4091695B2
Authority
JP
Japan
Prior art keywords
water
permeable
groove
wall
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27443798A
Other languages
Japanese (ja)
Other versions
JP2000104275A (en
Inventor
章 大島
健幸 樺澤
上  周史
和善 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Concrete Industries Co Ltd
Tenox Corp
Original Assignee
Nippon Concrete Industries Co Ltd
Tenox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Concrete Industries Co Ltd, Tenox Corp filed Critical Nippon Concrete Industries Co Ltd
Priority to JP27443798A priority Critical patent/JP4091695B2/en
Publication of JP2000104275A publication Critical patent/JP2000104275A/en
Application granted granted Critical
Publication of JP4091695B2 publication Critical patent/JP4091695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透水性を有する地中連続壁およびその施工方法に関する。
【0002】
【従来の技術】
地中連続壁は、地下構造物、護岸の土留め壁、止水壁などに用いられ、その施工方法には、セメントミルクなどのセメント系掘削液を注入しながら地盤を溝状に掘削し、セメント系掘削液と土壌とを混練して、ソイルセメントの柱列壁を築造する工法や、またはベントナイト泥水などの孔壁崩壊防止液を注入しながら地盤を溝状に掘削し、トレミー管などを用いて掘削孔内の泥水とコンクリートとを置換する工法がある。もしくは、掘削孔内のセメント系掘削液などの固化材料中にプレキャスト部材を挿入して、柱列壁を築造する工法が考えられている。
【0003】
地中連続壁を施工する際に用いるセメント系掘削液、ベントナイト泥水、コンクリートなどの固化材料は、凝結前は流動性を有し凝結後は不透水性となる性質であり、施工された地中連続壁の壁自体に後から透水性を持たせることは困難である。
【0004】
例えば、図21に示されるように、プレキャスト部材1に開口部2を穿設したり、その開口部2に砂、砂利などの透水材料3を充填しておいても、開口部2に凝結前のセメント系掘削液などの固化材料4が流入したり、透水材料3と掘削孔5との間に固化材料4の膜4aが生じて、壁全体としての透水性はなくなる。なお、予め固化材料4中に透水材料を混練しておいて固化させた場合は、透水材料が連続せず、同様に透水性がなくなる。
【0005】
このように地中連続壁の透水性が損なわれるため、通常は、次のように対処している。
【0006】
例えば、図22に示される地下構造物を構築する場合、不透水性の地中連続壁6を、地下水脈の水流(以下、この水流を「地下水流」という)が流れる砂、礫質の透水層7を経て、粘土質の不透水層8まで挿入するように施工すると、地中連続壁6により透水層7が分断され、そのままでは、地中連続壁6の下流側で地下水位9の降下9aにより地盤沈下9bが生ずる問題がある。
【0007】
このため、地中連続壁6の上流側と下流側とに井戸10,11をそれぞれ設け、上流側の井戸10に設置した水中ポンプ12により地下水13を汲み上げ、ホース14を経て下流側の井戸11にその水を供給し、地下水流が遮断されないようにしている。
【0008】
また、図23に示されるように、河川15の法面16に沿って斜めに不透水性の地中連続壁17を施工することにより地中式控え護岸を築造する場合は、地中連続壁17の裏面に作用する地下水の水位Lと、地中連続壁17の表面に作用する河川15の水位との間の水位差ΔLにより浮力Fが生じ、地中連続壁17が浮上がる問題があるため、この不透水性の地中連続壁17を施工した後で、法面16からこの地中連続壁17に開口部18を穿設し、この開口部18に透水材料19を充填している。
【0009】
【発明が解決しようとする課題】
このように、いずれの地中連続壁も、その連続壁の施工完了後に、改めて壁側部を掘削し、地下水流を流通させるための井戸を掘ったり、連続壁に開口部を穿設したりする必要があるため、作業が煩雑になるとともに費用がかかる問題がある。
【0010】
本発明は、このような点に鑑みなされたもので、容易かつ安価に施工できる透水性を有する地中連続壁およびその施工方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
請求項1に記載された発明は、地中の透水層からその下側に位置する不透水層にわたって設けられた地中の溝内に不透水性の固化材を注入するとともに、この固化材が凝結する前の柔らかい状態で固化材中にプレキャスト部材を挿入して、前記固化材と前記プレキャスト部材とにより壁部材を連続的に築造する地中連続壁において、地中の前記不透水層と対応する前記プレキャスト部材の下部に設けられた一側面と他側面とを連通する透水穴と、前記プレキャスト部材の一側面および他側面に沿って前記透水穴の上部にて上下方向に連続的に設けられた、地中の前記透水層と対応する透水溝と、これらの透水溝の全長にわたって嵌合されて前記プレキャスト部材とともに地中に設置された通水治具を前記固化材の凝結後に引抜くことにより前記透水溝の全長にわたって前記固化材を切欠くことで前記透水溝を前記透水層に連通開口させた切欠溝とを具備した地中連続壁である。
【0012】
これにより、プレキャスト部材に設けられた透水溝を、固化材に設けられた切欠溝を経て、透水層に連通させ、不透水層に壁部材の透水穴が位置する場合であっても、不透水層の上側に位置する一側の透水層から、この透水層と対面する一側の切欠溝、一側の透水溝、透水穴、他側の透水溝および他側の切欠溝を経て、この他側の切欠溝と対面する他側の透水層へ、地下水流が連通する。
【0013】
請求項2に記載された発明は、請求項1記載の地中連続壁にて、透水溝に透水材料が充填されたものである。
【0014】
これにより、透水溝が崩壊土砂などにより塞がれることがない。
【0015】
求項に記載された発明は、請求項1または2記載の地中連続壁における壁部材が鉛直状に設けられたものである。
【0016】
これにより、透水層を経て不透水層まで鉛直状に施工された壁部材が透水層の地下水流を遮断するおそれを防止する。
【0017】
請求項に記載された発明は、請求項1または2記載の地中連続壁における壁部材が傾斜状に設けられたものである。
【0018】
これにより、透水層を経て不透水層まで傾斜状に施工された壁部材の一側と他側とで水位差が生じないようにし、水位差による浮力が壁部材に作用するおそれを防止する。
【0019】
請求項に記載された発明は、下部に透水穴を設けるとともにこの透水穴の上部に透水溝を連続的に設けた壁部材と、この壁部材の透水溝に嵌合された長尺で中空の通水治具とを、一体的に地中に設置し、壁部材の透水溝に対して通水治具のみを引抜くことにより、通水治具の管状治具本体内に予め装填された透水材料を透水溝に充填し、同時に、管状治具本体の先端部に設けられた溝掘削爪により透水溝から土壁側に切欠溝を開口する地中連続壁の施工方法である。
【0020】
これにより、壁部材と一体的に地中に設置された通水治具を引抜くことにより、壁部材の透水溝に透水材料を充填するとともに、透水溝から土壁側に切欠溝を開口する。
【0021】
請求項に記載された発明は、請求項記載の地中連続壁の施工方法における壁部材が、通水治具の引抜き動作に連動して溝掘削爪を土壁側へ突出させる爪押出部を有するものである。
【0022】
これにより、壁部材の爪押出部が、通水治具の溝掘削爪を土壁側へ突出させて、切欠溝を形成させる。
【0023】
【発明の実施の形態】
以下、本発明の一実施形態を図1乃至図19を参照しながら説明する。
【0024】
図1乃至図3は、本発明に係る地中連続壁を鉛直壁に適用した実施形態を示し、地面21に鉛直に所定深度の溝22を掘削し、この溝22内にセメント系掘削液やベントナイト泥水などの不透水性の固化材23を注入する。コンクリートなどにより矢板形に成形された不透水性のプレキャスト部材24を、凝結する前の柔らかい状態の固化材23中に多数挿入することにより、固化した固化材23とプレキャスト部材24とにより、地中に壁部材25を連続的に施工し、地中連続壁を鉛直状に築造する。
【0025】
図1に示されるように、壁部材25を形成する矢板形のプレキャスト部材24は、一端面にV形の凹溝26を有し、他端面にV形の凸部27を有するので、隣接する各プレキャスト部材24のV形の凹溝26とV形の凸部27とを相互に嵌合させることにより、各プレキャスト部材24間を位置決めする。
【0026】
壁部材25は、図2に示されるように、プレキャスト部材24の下部に透水U字管28が一体に組込まれ、この透水U字管28の内部に、プレキャスト部材24の一側面と他側面とを連通する透水穴29が設けられ、プレキャスト部材24の両側面および固化材23中にてこの透水穴29の上部に透水溝31が連続的に設けられ、これらの透水溝31および透水穴29には砂、砂利などの透水材料32が充填されている。この透水材料32は、透水溝31および透水穴29が崩壊土砂などにより塞がれることを防止する。
【0027】
図3に示されるように、壁部材25に設けられた透水溝31は、壁部材25のうちの固化材23および土壁33に切欠形成された切欠溝34を介して、土壁側の透水層35に連通開口されている。
【0028】
これにより、不透水性の固化材23およびプレキャスト部材24により透水層35を遮断するとともに、この透水層35の下側に位置する不透水層36に壁部材25の透水U字管28すなわち透水穴29が位置する場合であっても、透水層35の地下水流は壁部材25を次のように透過する。
【0029】
すなわち、不透水層36の上側に位置する一側の透水層35から、この透水層35と対面する一側の切欠溝34、一側の透水溝31、透水U字管28内の透水穴29、他側の透水溝31および他側の切欠溝34を経て、この他側の切欠溝34と対面する他側の透水層35へ、地下水流が連通するから、透水層35を経て不透水層36まで鉛直状に施工された壁部材25が透水層35の地下水流を遮断するおそれを防止できる。
【0030】
図4乃至図7は、前記プレキャスト部材24を示し、下部に前記透水U字管28を一体に設けるとともに、この透水U字管28の上側部に爪収納凹部37を形成し、この爪収納凹部37の上側であって、前記透水溝31を形成する半円断面の溝31a の左右両側に爪押出部38が設けられている。これらの爪収納凹部37および爪押出部38の機能は、後で説明する。
【0031】
図8および図9は、前記プレキャスト部材24に一体的に嵌合されて地中に設置される長尺で中空の通水治具41を示す。この通水治具41は、プレキャスト部材24の半円断面の溝31a に嵌合される円形断面のパイプで形成された管状治具本体42と、この管状治具本体42の下端部近傍にピン43により回動自在に軸支された溝掘削爪44とを備えている。
【0032】
この通水治具41の管状治具本体42は、上端部に吊り具45が一体に取付けられ、下端部に前記プレキャスト部材24の透水U字管28の開口内に嵌合される小径部46が設けられ、この小径部46の下端が開口されている。
【0033】
前記溝掘削爪44は、図8および図9に示されるように、くの字形に形成された一対の爪板47を、図10に示されるように、管状治具本体42の一側面および他側面にピン43により回動自在に軸支したものである。
【0034】
図11および図12に示されるように、溝掘削爪44の各爪板47は、前記ピン43と嵌合する軸支部48と、その反対側に設けられた掘削エッジ49と、管状治具本体42の引抜き動作に連動してプレキャスト部材24の爪押出部38により押圧される被押圧部50とを有し、この被押圧部50が押圧されて掘削エッジ49を土壁33側へ突出させるものである。
【0035】
そして、図11に示されるように、下部に前記透水U字管28を設けるとともにこの透水U字管28の上部に前記半円断面の溝31a を連続的に設けたプレキャスト部材24と、このプレキャスト部材24の半円断面の溝31a に嵌合された長尺で中空の通水治具41とを、一体的に地中に設置する。このとき、通水治具41の小径部46は透水U字管28の上向きの開口部28a に嵌合されている。
【0036】
それから、図12に示されるように、油圧ショベルなどにより前記吊り具45に掛けられたワイヤ(図示せず)を引張って、通水治具41の管状治具本体42をプレキャスト部材24の半円断面の溝31a に沿って引抜くことにより、通水治具41の管状治具本体42内に予め装填された砂、砂利などの透水材料32を、透水穴29、および管状治具本体42の引抜跡空間としてプレキャスト部材24および固化材23に形成された透水溝31内に充填し、同時に、管状治具本体42の先端部に設けられた溝掘削爪44を壁部材25の爪押出部38により押出して土壁33側へ突出させ、この溝掘削爪44の掘削エッジ49により固化材23および対向する土壁33を切裂くように、透水溝31から土壁33側に切欠溝34を開口する。
【0037】
次に、図13は、鉛直の地中連続壁により形成された地下構造物を示し、この地下構造物を例に、地中連続壁の透水作用を説明する。
【0038】
例えば、不透水性の壁部材25を、砂、礫質の透水層35を経て粘土質の不透水層36まで構築し、この壁部材25により囲まれた地面を、地下水流51の上側まで掘下げて、一定の空間を持つ作業場床52を形成した場合、左側の壁部材25の上流側に位置する透水層35の地下水流51は、この透水層35と対面する左側の切欠溝34、左側の透水溝31内の透水材料32、透水U字管28内の透水穴29、右側の透水溝31内の透水材料32および右側の切欠溝34を経て、この右側の切欠溝34と対面する作業場床52の下側の透水層35へと流れる。
【0039】
さらに、この作業場床52の下側の透水層35の地下水流は、右側の壁部材25に設けられた左側の切欠溝34、左側の透水溝31内の透水材料32、透水U字管28内の透水穴29、右側の透水溝31内の透水材料32および右側の切欠溝34を経て、右側の壁部材25の下流側に位置する透水層35へと流れる。
【0040】
このように、不透水性の壁部材25が透水層35を経て不透水層36まで鉛直状に施工され、しかも不透水層36内に透水U字管28が位置する場合であっても、透水層35の地下水流は、壁部材25に設けられた透水溝31、透水U字管28内の透水穴29などで形成された迂回経路を経て壁部材25を透過するので、右側の壁部材25の下流側に位置する透水層35における地下水位の降下による地盤沈下を防止できる。
【0041】
次に、図14乃至図19は、本発明に係る地中連続壁を傾斜壁に適用した実施形態を示し、河川53の法面54に沿って地中連続壁を斜めに施工して地中式控え護岸を築造する例である。
【0042】
図14に示されるように、この地中式控え護岸は、地中に傾斜状に壁部材25が設置され、この壁部材25の下部に一側面と他側面とを連通する透水穴29を持つ透水U字管28が設けられ、壁部材25の一側面および他側面にてこの透水穴29の上部には透水溝31が連続的に設けられ、これらの透水溝31から土壁側に切欠溝34が開口されている。さらに、透水溝31には透水材料32が充填され、この透水材料32により透水溝31が崩壊土砂などにより塞がれないようにしている。
【0043】
そして、不透水性の壁部材25が、透水層35を遮断して不透水層36まで傾斜状に施工された場合であっても、上流側の透水層35から、この透水層35と対面する一側の切欠溝34、一側の透水溝31、透水U字管28の透水穴29、他側の透水溝31および他側の切欠溝34を経て、この他側の切欠溝34と対面する下流側の透水層35へと地下水流が流れる。
【0044】
このように、透水層35の地下水流は透水U字管28を経て迂回するように壁部材25を透過するので、この地下水流が壁部材25により遮断された場合に壁部材25を押上げようとする浮力が、壁部材25の上流側の壁面に作用するおそれを防止できる。
【0045】
図15乃至図19は、図14に示された地中式控え護岸を施工する場合の施工例を示し、図15および図16に示されるように、油圧ショベルにより河川に沿って表層溝55を掘削し、掘削・撹拌装置(図示せず)を、この表層溝55から河川53の法面54に沿って斜めに地中へ挿入し、地中に斜めの溝22を連続的に掘削しながら、その溝22にセメントミルク泥水などの不透水性の固化材23を注入し、この固化材23が固化しない柔らかい状態で、油圧ショベルのバケットに代えて取付けられたクランプなどによりプレキャスト部材24を把持して、柔らかい状態の固化材23中にプレキャスト部材24と、このプレキャスト部材24に一体的に取付けられた通水治具41とを挿入する。
【0046】
前記固化材23が凝結するのを待って、図17から図18に示されるように、プレキャスト部材24の半円断面の溝31a に嵌合された通水治具41の管状治具本体42を、油圧ショベルなどでワイヤを介して引抜くことにより、管状治具本体42の引抜跡空間としてプレキャスト部材24および固化材23に透水溝31を形成するとともに、通水治具41の管状治具本体42内に予め装填された透水材料32を、この透水溝31内に充填し、同時に、管状治具本体42の先端部に設けられた溝掘削爪44をプレキャスト部材24の爪押出部38により押出して土壁側へ突出させ、この溝掘削爪44により固化材23および対向土壁を切開いて、透水溝31から土壁側に切欠溝34を開口する。
【0047】
このようにして、図19に示されるように、プレキャスト部材24の両側面にて固化材23に透水材料32が充填された壁部材25を、河川の法面に沿って連続的に施工し、透水性を有する地中控え護岸を構築する。このとき、壁部材25のうちのプレキャスト部材24に設けられた透水溝31は、壁部材25のうちの固化材23および土壁に切欠形成された切欠溝34を介して、土壁側の透水層35に連通開口されている。
【0048】
以上のように、地中連続壁の施工時に掘削溝内に専用のプレキャスト部材24および通水治具41をセットし、固化材23の凝結後に、この通水治具41を引抜き、この際に通水治具41により土壌および不透水性の固化材23に通水可能な切欠溝34を設け、同時にこの通水治具41を引抜いた後の空洞部に透水材料32を充填することで、透水性を有する地中連続壁を容易かつ安価に施工できるようにした。
【0049】
次に、上記実施形態と異なる他の実施形態を説明する。
【0050】
前記通水治具41の溝掘削爪44は、プレキャスト部材24の爪押出部38を必要とするものであったが、これに限定されるものではなく、例えば図20(A),(B),(C)に示される通水治具41a のように、管状治具本体42a にピン43a により逆止爪形の溝掘削爪44a が回動自在に軸支されたものでも良い。
【0051】
この溝掘削爪44a は、ピン43a による軸支部分から突出された側に掘削エッジ49a が設けられ、反対側に溝掘削爪44a の回動範囲を規制する係合溝50a がピン43a と同心状に形成され、この係合溝50a に管状治具本体42a から突設されたピン状のストッパ50b が係合されている。
【0052】
そして、図20(B)に示されるように、通水治具41a の挿入時は、溝掘削爪44a の掘削エッジ49a に土壁から上向きの摺擦抵抗力が作用するとともに、溝掘削爪44a の下側面に凝結前の固化材23から上向きの流体抵抗力がピン43a の左側で右側より多く作用するので、溝掘削爪44a は時計方向に回動し、その掘削エッジ49a は上方へ逃げるようにして管状治具本体42a の外径内に収納されるように閉じ、このとき、係合溝50a の反時計方向端がストッパ50b にて係止される。
【0053】
一方、図20(C)に示されるように、通水治具41a を上方へ引抜く時は、溝掘削爪44a の上側面に固化材23から下向きの抵抗力がピン43a の左側で右側より多く作用するとともに、溝掘削爪44a の掘削エッジ49a に土壁から下向きの摺擦抵抗力が作用するので、溝掘削爪44a は反時計方向に回動し、掘削エッジ49a は管状治具本体42a の外径内より突出するように開き、係合溝50a の時計方向端がストッパ50b により係止された状態で角度が固定された掘削エッジ49a により、固化材23および土壁に切欠溝34を切開くことができる。この逆止爪形の溝掘削爪44a を用いると、前記プレキャスト部材24の爪押出部38は必要なくなる。
【0054】
また、壁部材25は、必ずしもプレキャスト部材24を含まなくても良く、例えば、現場打ちコンクリートまたはソイルセメントの場合は、鉄筋などの補強材に透水U字管28を溶接付けしておき、補強材に通水治具41を取付けておくと良い。
【0055】
さらに、壁部材25は、固化材23とプレキャスト部材24とにより構成するので、透水溝31は、それらの一方のみに設けても良い。例えば、プレキャスト部材24に半円断面の溝31a を形成せずに、固化材23のみに管状治具本体42の引抜跡空間で形成された透水溝を設けるようにしても良い。
【0056】
加えて、壁部材25は、地中に固化材23を注入し、この固化材23の凝結前に、プレキャスト部材24に替えて、補強材が内蔵された袋材を固化材23中に挿入し、この袋材の内部にモルタルまたはコンクリートを注入して、壁部材25を形成するようにしてもよく、その場合は、補強材に溶接付けした透水U字管28の両端部を袋材の外部に開口し、通水治具41を袋材の外部に取付けておくと良い。
【0057】
【発明の効果】
請求項1記載の発明によれば、壁部材のプレキャスト部材に透水穴および両側の透水溝が設けられ、透水溝の全長にわたって嵌合されてプレキャスト部材とともに地中に設置された通水治具を固化材の凝結後に引抜くことにより透水溝の全長にわたって壁部材の固化材に切欠溝が設けられたから、この壁部材を透水層を経て不透水層まで施工する場合であっても、一側の透水層から一側の切欠溝、一側の透水溝、透水穴、他側の透水溝および他側の切欠溝を経て他側の透水層へ地下水流を連通させることができ、透水性を必要とする場所に適する地中連続壁を提供できる。
【0058】
請求項2記載の発明によれば、透水溝に透水材料が充填されたから、透水溝が崩壊土砂などにより塞がれるおそれを防止できる。
【0059】
求項記載の発明によれば、地下水脈を連続壁で分断することが問題となる施工に対応可能の地中連続壁を提供できる。
【0060】
請求項記載の発明によれば、斜め連続壁の表裏の水位差で生じる浮力が問題となる施工に対応可能の地中連続壁を提供できる。
【0061】
請求項記載の発明によれば、壁部材と通水治具とを一体的に地中に設置し、通水治具のみを引抜くことにより、透水材料を充填するとともに切欠溝を開口する施工方法であるから、透水性を必要とする地中連続壁を安価に施工できる。特に、通水治具を引抜くだけで、透水溝に透水材料を容易に充填できるとともに、透水溝から土壁側に切欠溝を容易に開口できる。
【0062】
請求項記載の発明によれば、壁部材の爪押出部により、通水治具の溝掘削爪を土壁側へ確実に突出させて、切欠溝を確実に形成できる。
【図面の簡単な説明】
【図1】 本発明に係る地中連続壁を鉛直壁に適用した実施形態を示す水平方向の断面図である。
【図2】 図1のII−II線断面図である。
【図3】 図1のIII −III 線断面図である。
【図4】 同上連続壁に用いられるプレキャスト部材の平面図である。
【図5】 同上プレキャスト部材の正面図である。
【図6】 図5のVI−VI線断面図である。
【図7】 図5のVII −VII 線断面図である。
【図8】 同上連続壁の施工に用いられる通水治具を示す正面図である。
【図9】 同上通水治具の断面図である。
【図10】 同上通水治具の底面図である。
【図11】 同上通水治具の設置状態を示す断面図である。
【図12】 同上通水治具の引抜き開始状態を示す断面図である。
【図13】 同上連続壁により形成された地下構造物を示す断面図である。
【図14】 本発明に係る地中連続壁を傾斜壁に適用した実施形態を示す断面図である。
【図15】 同上傾斜壁の施工において、固化材中にプレキャスト部材および通水治具を挿入する途中の状態を示す断面図である。
【図16】 同上プレキャスト部材および通水治具の挿入を完了した状態を示す断面図である。
【図17】 同上通水治具の引抜を開始した直後の状態を示す断面図である。
【図18】 同上通水治具の引抜途中と引抜完了した状態を示す断面図である。
【図19】 同上傾斜壁の施工を完了させた状態を示す断面図である。
【図20】 (A)は通水治具の他の実施形態を示す平面図、(B)はその通水治具の挿入時の溝掘削爪閉じ状態を示す正面図、(C)はその通水治具の引抜き時の溝掘削爪開き状態を示す正面図である。
【図21】 従来の地中連続壁の施工例を示す断面図である。
【図22】 従来の地下構造物を構築する場合の地下水流の対策例を示す断面図である。
【図23】 従来の地中式控え護岸を築造する場合の地下水流の対策例を示す断面図である。
【符号の説明】
22 地中の溝
23 固化材
24 プレキャスト部材
25 壁部材
29 透水穴
31 透水溝
32 透水材料
34 切欠溝
35 透水層
36 不透水層
38 爪押出部
41 通水治具
42 管状治具本体
44 溝掘削爪
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underground continuous wall having water permeability and a construction method thereof.
[0002]
[Prior art]
The underground continuous wall is used for underground structures, revetment earth retaining walls, water blocking walls, etc., and its construction method is excavating the ground into a groove shape while injecting cement-based drilling fluid such as cement milk, Cement-based drilling fluid and soil are mixed to build a soil cement column wall, or the ground is excavated into a groove shape while injecting hole wall collapse prevention liquid such as bentonite mud water, There is a construction method that uses the muddy water in the excavation hole to replace concrete. Alternatively, a method of constructing a column wall by inserting a precast member into a solidified material such as cement-based drilling fluid in a drilling hole is considered.
[0003]
Solid materials such as cement-based drilling fluid, bentonite mud, concrete, etc. used when constructing continuous underground walls are fluid before congealing and impervious after congealing. It is difficult to give the continuous wall itself water permeability later.
[0004]
For example, as shown in FIG. 21, even if the opening 2 is formed in the precast member 1 or the opening 2 is filled with a water-permeable material 3 such as sand or gravel, the opening 2 is not condensed. Solidified material 4 such as cement-based drilling fluid flows in or a film 4a of the solidified material 4 is formed between the water-permeable material 3 and the excavation hole 5, and the water permeability of the entire wall is lost. In addition, when the water-permeable material is previously kneaded in the solidified material 4 and solidified, the water-permeable material is not continuous and similarly the water-permeable property is lost.
[0005]
As described above, since the water permeability of the underground continuous wall is impaired, the following measures are usually taken.
[0006]
For example, when the underground structure shown in FIG. 22 is constructed, the impervious underground continuous wall 6 is sand, gravelly permeated water through which the water flow of the underground water vein (hereinafter referred to as “groundwater flow”) flows. When construction is made so that the clay-like impermeable layer 8 is inserted through the layer 7, the permeable layer 7 is divided by the underground continuous wall 6, and the groundwater level 9 descends downstream of the underground continuous wall 6 as it is. There is a problem that land subsidence 9b is caused by 9a.
[0007]
For this reason, the wells 10 and 11 are provided on the upstream side and the downstream side of the underground continuous wall 6, respectively, the groundwater 13 is pumped up by the submersible pump 12 installed in the upstream well 10, and the downstream well 11 is passed through the hose 14. The water is supplied to the ground so that the groundwater flow is not blocked.
[0008]
In addition, as shown in FIG. 23, when the underground revetment is constructed by constructing an impermeable underground continuous wall 17 obliquely along the slope 16 of the river 15, the underground continuous wall 17 Buoyancy F occurs due to the difference in water level ΔL between the groundwater level L acting on the back surface of the river and the water level of the river 15 acting on the surface of the underground continuous wall 17, and there is a problem that the underground continuous wall 17 rises. After the impermeable underground continuous wall 17 is constructed, an opening 18 is formed in the underground continuous wall 17 from the slope 16, and the water permeable material 19 is filled in the opening 18.
[0009]
[Problems to be solved by the invention]
In this way, any underground continuous wall can be excavated again after the construction of the continuous wall is completed, to dig a well for circulating groundwater flow, or to open an opening in the continuous wall. Therefore, there is a problem that the work is complicated and expensive.
[0010]
This invention is made | formed in view of such a point, and it aims at providing the underground continuous wall which has the water permeability which can be constructed | assembled easily and cheaply, and its construction method.
[0011]
[Means for Solving the Problems]
The invention described in claim 1 injects a water-impermeable solidifying material into the underground groove provided from the underground water-permeable layer to the water-impermeable layer positioned below the water-permeable layer, In the underground continuous wall in which a precast member is inserted into the solidified material in a soft state before setting and a wall member is continuously constructed by the solidified material and the precast member, corresponding to the impermeable layer in the ground wherein the permeable holes for communicating the one side and the other side provided at the lower portion of precast members continuously arranged in the hand vertically on top of the permeable holes along one side and the other side surface of the precast members In addition , the water-permeable grooves corresponding to the water- permeable layer in the ground and the water-flowing jig fitted in the whole length of the water-permeable grooves and installed in the ground together with the precast member are pulled out after the solidification material is condensed. Before Is the permeability groove underground continuous wall comprising a cutout groove is communicating opening into the aquifer by notching the solidifying material over the entire length of the permeability groove.
[0012]
Thus, even if the water permeable groove provided in the precast member is communicated with the water permeable layer through the notch groove provided in the solidified material, and the water permeable hole of the wall member is located in the water impermeable layer, From the one side permeable layer located on the upper side of the layer, through one notch groove facing this permeable layer, one side permeable groove, one water permeable hole, the other side permeable groove, and the other side notched groove, The groundwater flow communicates with the other side permeable layer facing the notch on the side.
[0013]
The invention described in claim 2 is the underground continuous wall according to claim 1, in which the water permeable groove is filled with a water permeable material.
[0014]
Thereby, a water-permeable groove is not blocked by collapsed earth and sand.
[0015]
Motomeko invention described in 3, in which the wall member in claim 1 or 2 underground continuous wall according is provided in a vertical shape.
[0016]
Thereby, the possibility that the wall member constructed vertically from the water-permeable layer to the water-impermeable layer blocks the groundwater flow of the water-permeable layer is prevented.
[0017]
According to a fourth aspect of the present invention, the wall member in the underground continuous wall according to the first or second aspect is provided in an inclined shape.
[0018]
Thereby, a water level difference is prevented from occurring between one side and the other side of the wall member constructed in an inclined manner from the water-permeable layer to the water-impermeable layer, and the possibility that buoyancy due to the water level difference acts on the wall member is prevented.
[0019]
The invention described in claim 5 includes a wall member in which a water permeable hole is provided in the lower portion and a water permeable groove is continuously provided in the upper portion of the water permeable hole, and a long and hollow shape fitted in the water permeable groove in the wall member. The water passage jig is installed in the ground integrally, and only the water passage jig is pulled out of the water passage groove of the wall member, so that it is preloaded in the tubular jig body of the water passage jig. This is a method for constructing a continuous underground wall in which a water permeable material is filled into a water permeable groove and at the same time a notch groove is opened from the water permeable groove to the soil wall side by a groove excavation claw provided at the tip of the tubular jig body.
[0020]
Thereby, by pulling out the water passage jig that is installed in the ground integrally with the wall member, the water permeable groove of the wall member is filled with the water permeable material, and the notch groove is opened from the water permeable groove to the soil wall side. .
[0021]
According to a sixth aspect of the present invention, the wall member in the underground continuous wall construction method according to the fifth aspect of the present invention is a claw extrusion that causes the groove excavation claw to protrude toward the earth wall side in conjunction with the drawing operation of the water passage jig. It has a part.
[0022]
Thereby, the nail | claw extrusion part of a wall member makes the groove excavation claw of a water flow jig protrude to the earth wall side, and forms a notch groove.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0024]
FIGS. 1 to 3 show an embodiment in which the underground continuous wall according to the present invention is applied to a vertical wall. A groove 22 having a predetermined depth is excavated vertically on the ground 21, and a cement-based drilling fluid or Impermeable solidified material 23 such as bentonite mud is injected. By inserting a large number of impermeable precast members 24 formed into a sheet pile shape with concrete into the solidified material 23 in a soft state before setting, the solidified material 23 and the precast members 24 The wall member 25 is continuously constructed to build the underground continuous wall vertically.
[0025]
As shown in FIG. 1, the sheet pile-shaped precast member 24 forming the wall member 25 has a V-shaped concave groove 26 on one end surface and a V-shaped convex portion 27 on the other end surface. By positioning the V-shaped concave groove 26 and the V-shaped convex portion 27 of each precast member 24 to each other, the positions of the precast members 24 are positioned.
[0026]
As shown in FIG. 2, the wall member 25 has a permeable U-shaped tube 28 integrally incorporated in the lower part of the precast member 24, and one side surface and the other side surface of the precast member 24 are formed inside the permeable U-shaped tube 28. Water-permeable holes 29 are provided, and water-permeable grooves 31 are continuously provided on both side surfaces of the precast member 24 and in the solidified material 23 at the top of the water-permeable holes 29. The water-permeable grooves 31 and the water-permeable holes 29 Is filled with a water-permeable material 32 such as sand or gravel. The water permeable material 32 prevents the water permeable grooves 31 and the water permeable holes 29 from being blocked by collapsed earth and sand.
[0027]
As shown in FIG. 3, the water permeable groove 31 provided in the wall member 25 is permeable on the soil wall side through a solidified material 23 of the wall member 25 and a notch groove 34 formed in the earth wall 33. A communication opening is formed in the layer 35.
[0028]
Accordingly, the water-permeable layer 35 is blocked by the water-impermeable solidifying material 23 and the precast member 24, and the water-permeable layer 36 located on the lower side of the water-permeable layer 35 has a water-permeable U-shaped tube 28, that is, a water-permeable hole. Even when 29 is located, the groundwater flow in the permeable layer 35 permeates the wall member 25 as follows.
[0029]
That is, from one side of the water-permeable layer 35 located above the water-impermeable layer 36, one side of the cut-out groove 34 facing the water-permeable layer 35, one side of the water-permeable groove 31, and the water-permeable holes 29 in the water-permeable U-shaped pipe 28. Since the groundwater flow is communicated with the other side permeable layer 35 facing the other side cutout groove 34 through the other side permeable groove 31 and the other side cutout groove 34, the impermeable layer through the permeable layer 35. It is possible to prevent the wall member 25 constructed vertically up to 36 from blocking the groundwater flow of the permeable layer 35.
[0030]
4 to 7 show the precast member 24. The water-permeable U-shaped tube 28 is integrally provided at the lower portion, and a claw storage recess 37 is formed on the upper side of the water-permeable U-shaped tube 28. A claw extruding portion 38 is provided on the left and right sides of the groove 31a having a semicircular cross section that forms the water permeable groove 31 above 37. The functions of the nail storage recess 37 and the nail pusher 38 will be described later.
[0031]
FIGS. 8 and 9 show a long and hollow water passing jig 41 which is integrally fitted to the precast member 24 and installed in the ground. The water flow jig 41 includes a tubular jig body 42 formed of a pipe having a circular cross section that is fitted in the semicircular groove 31a of the precast member 24, and a pin near the lower end of the tubular jig main body 42. A groove excavation claw 44 pivotally supported by 43 is provided.
[0032]
The tubular jig main body 42 of the water flow jig 41 has a small-diameter portion 46 with a suspension 45 attached integrally at the upper end and fitted into the opening of the water-permeable U-shaped tube 28 of the precast member 24 at the lower end. And the lower end of the small diameter portion 46 is opened.
[0033]
8 and 9, the groove excavation claw 44 includes a pair of claw plates 47 formed in a U-shape, as shown in FIG. This is pivotally supported by a pin 43 on the side surface.
[0034]
As shown in FIGS. 11 and 12, each claw plate 47 of the groove excavation claw 44 includes a shaft support portion 48 that fits the pin 43, an excavation edge 49 provided on the opposite side, and a tubular jig body. Having a pressed portion 50 pressed by the claw extruding portion 38 of the precast member 24 in conjunction with the pulling operation of 42, and the pressed portion 50 is pressed to project the excavation edge 49 toward the earth wall 33 side. It is.
[0035]
Then, as shown in FIG. 11, the precast member 24 provided with the water-permeable U-shaped tube 28 in the lower portion and the semicircular cross-sectional groove 31a continuously formed in the upper portion of the water-permeable U-shaped tube 28, and the precast A long and hollow water passage 41 fitted in the groove 31a having a semicircular cross section of the member 24 is integrally installed in the ground. At this time, the small diameter portion 46 of the water passage jig 41 is fitted into the upward opening 28 a of the water-permeable U-shaped tube 28.
[0036]
Then, as shown in FIG. 12, by pulling a wire (not shown) hung on the hanger 45 by a hydraulic excavator or the like, the tubular jig body 42 of the water passing jig 41 is made to be a semicircle of the precast member 24. By pulling out along the cross-sectional groove 31a, the water permeable material 32 such as sand and gravel previously loaded in the tubular jig body 42 of the water flow jig 41 is passed through the water permeable holes 29 and the tubular jig body 42. The groove excavation claw 44 provided at the distal end portion of the tubular jig body 42 is filled with the permeable groove 31 formed in the precast member 24 and the solidified material 23 as a drawing trace space, and at the same time, the claw extrusion portion 38 of the wall member 25. The cut groove 34 is opened from the water permeable groove 31 to the dirt wall 33 side so that the solidified material 23 and the opposite earth wall 33 are torn by the excavation edge 49 of the groove excavation claw 44. To do.
[0037]
Next, FIG. 13 shows an underground structure formed by vertical underground continuous walls, and the permeability of the underground continuous wall will be described by taking this underground structure as an example.
[0038]
For example, the impermeable wall member 25 is constructed from the sand and gravel permeable layer 35 to the clayy impermeable layer 36, and the ground surrounded by the wall member 25 is dug down to the upper side of the underground water flow 51. When the work floor 52 having a certain space is formed, the groundwater flow 51 of the permeable layer 35 located on the upstream side of the left wall member 25 has a left notch groove 34 facing the permeable layer 35, Work space floor facing the right notch groove 34 through the water permeable material 32 in the water permeable groove 31, the water permeable hole 29 in the permeable U-shaped pipe 28, the water permeable material 32 in the right permeable groove 31 and the right notch groove 34. It flows to the permeable layer 35 below 52.
[0039]
Further, the groundwater flow in the permeable layer 35 below the work floor 52 is divided into a left notch groove 34 provided in the right wall member 25, a permeable material 32 in the left permeable groove 31, and a permeable U-shaped pipe 28. The water flow hole 29, the water permeable material 32 in the right water permeable groove 31, and the right notch groove 34 flow to the water permeable layer 35 located on the downstream side of the right wall member 25.
[0040]
In this way, even when the impermeable wall member 25 is vertically constructed through the water permeable layer 35 to the water impermeable layer 36 and the water permeable U-shaped pipe 28 is located in the water impermeable layer 36, The groundwater flow in the layer 35 passes through the wall member 25 through a bypass path formed by a water permeable groove 31 provided in the wall member 25, a water permeable hole 29 in the water permeable U-shaped pipe 28, and the like. It is possible to prevent ground subsidence due to a drop in the groundwater level in the permeable layer 35 located on the downstream side.
[0041]
Next, FIGS. 14 to 19 show an embodiment in which the underground continuous wall according to the present invention is applied to an inclined wall, and the underground continuous wall is constructed obliquely along the slope 54 of the river 53. This is an example of building a revetment.
[0042]
As shown in FIG. 14, this underground revetment has a wall member 25 inclined in the ground, and has a water permeable hole 29 in the lower part of the wall member 25 that allows one side and the other side to communicate with each other. A U-shaped pipe 28 is provided, and a water permeable groove 31 is continuously provided above the water permeable hole 29 on one side surface and the other side surface of the wall member 25, and a notch groove 34 extends from these water permeable grooves 31 to the soil wall side. Is open. Further, the water permeable groove 31 is filled with a water permeable material 32, and the water permeable material 32 prevents the water permeable groove 31 from being blocked by collapsed earth and sand.
[0043]
And even if the water-impermeable wall member 25 is constructed in an inclined manner up to the water-impermeable layer 36 by blocking the water-permeable layer 35, the water-permeable layer 35 faces the water-permeable layer 35 from the upstream water-permeable layer 35. It faces the notch groove 34 on the other side through the notch groove 34 on one side, the permeable groove 31 on one side, the permeable hole 29 of the permeable U-shaped tube 28, the permeable groove 31 on the other side, and the notch groove 34 on the other side. A groundwater flow flows to the permeable layer 35 on the downstream side.
[0044]
Thus, since the groundwater flow of the permeable layer 35 passes through the wall member 25 so as to bypass the permeable U-shaped pipe 28, the wall member 25 will be pushed up when the groundwater flow is blocked by the wall member 25. It is possible to prevent the buoyancy described above from acting on the upstream wall surface of the wall member 25.
[0045]
FIGS. 15 to 19 show an example of construction when the underground type revetment shown in FIG. 14 is constructed. As shown in FIGS. 15 and 16, excavation of the surface layer groove 55 along the river is performed by a hydraulic excavator. Then, an excavation / stirring device (not shown) is inserted into the ground obliquely along the slope 54 of the river 53 from the surface groove 55, and the oblique groove 22 is continuously excavated in the ground. The impermeable solidified material 23 such as cement milk mud is injected into the groove 22, and the precast member 24 is gripped by a clamp or the like attached in place of the bucket of the excavator in a soft state where the solidified material 23 does not solidify. Then, the precast member 24 and the water passage jig 41 integrally attached to the precast member 24 are inserted into the solidified material 23 in a soft state.
[0046]
Waiting for the solidifying material 23 to condense, as shown in FIGS. 17 to 18, the tubular jig body 42 of the water passing jig 41 fitted in the groove 31a of the semicircular cross section of the precast member 24 is provided. By pulling through a wire with a hydraulic excavator or the like, a water permeable groove 31 is formed in the precast member 24 and the solidified material 23 as a drawing trace space of the tubular jig body 42, and the tubular jig body of the water passing jig 41 The water permeable material 32 loaded in advance in 42 is filled into the water permeable groove 31, and at the same time, the groove excavation claw 44 provided at the distal end portion of the tubular jig body 42 is extruded by the claw extruding portion 38 of the precast member 24. The solidified material 23 and the opposing soil wall are cut by the groove excavation claw 44, and a notch groove 34 is opened from the water permeable groove 31 to the soil wall side.
[0047]
In this way, as shown in FIG. 19, the wall member 25 in which the solidifying material 23 is filled with the water-permeable material 32 on both sides of the precast member 24 is continuously applied along the slope of the river, Build underground revetment with permeability. At this time, the water permeable groove 31 provided in the precast member 24 of the wall member 25 passes through the solidified material 23 of the wall member 25 and the cutout groove 34 formed in the earth wall, and the water permeability on the dirt wall side. A communication opening is formed in the layer 35.
[0048]
As described above, the dedicated precast member 24 and the water passage jig 41 are set in the excavation groove during the construction of the underground continuous wall, and after the solidification material 23 is condensed, the water passage jig 41 is pulled out. By providing a notch groove 34 through which water can be passed to the soil and the impermeable solidifying material 23 by the water flow jig 41, and simultaneously filling the water permeable material 32 into the cavity after the water flow jig 41 is pulled out, The underground continuous wall with water permeability can be constructed easily and inexpensively.
[0049]
Next, another embodiment different from the above embodiment will be described.
[0050]
Although the groove excavation claw 44 of the water flow jig 41 requires the claw extruding portion 38 of the precast member 24, the present invention is not limited to this. For example, FIG. 20 (A), (B) , (C), a non-return claw-shaped groove excavation claw 44a may be pivotally supported by a tubular jig body 42a by a pin 43a.
[0051]
This groove excavation claw 44a is provided with an excavation edge 49a on the side protruding from the shaft support portion by the pin 43a, and on the opposite side, an engagement groove 50a for restricting the rotation range of the groove excavation claw 44a is concentric with the pin 43a. A pin-shaped stopper 50b formed from the tubular jig body 42a is engaged with the engaging groove 50a.
[0052]
As shown in FIG. 20 (B), when the water flow jig 41a is inserted, an upward rubbing resistance force from the earth wall acts on the excavation edge 49a of the groove excavation claw 44a, and the groove excavation claw 44a. Since the upward fluid resistance from the solidified material 23 before condensing acts on the lower side of the pin 43a more than the right side on the left side of the pin 43a, the groove excavation claw 44a rotates clockwise and its excavation edge 49a escapes upward Then, the tubular jig body 42a is closed so as to be accommodated within the outer diameter, and at this time, the counterclockwise end of the engagement groove 50a is locked by the stopper 50b.
[0053]
On the other hand, as shown in FIG. 20 (C), when the water passing jig 41a is pulled upward, the downward resistance force from the solidified material 23 on the upper side surface of the groove excavation claw 44a is from the right side on the left side of the pin 43a. In addition, since the rubbing resistance force downward from the earth wall acts on the excavation edge 49a of the groove excavation claw 44a, the groove excavation claw 44a rotates counterclockwise, and the excavation edge 49a becomes the tubular jig body 42a. The notch groove 34 is formed in the solidified material 23 and the earth wall by the excavation edge 49a which is opened so as to protrude from the inside diameter of the outer diameter and the angle is fixed in a state where the clockwise end of the engagement groove 50a is locked by the stopper 50b. Can be opened. When the check claw-shaped groove excavation claw 44a is used, the claw extruding portion 38 of the precast member 24 is not necessary.
[0054]
The wall member 25 does not necessarily include the precast member 24. For example, in the case of cast-in-place concrete or soil cement, the permeable U-shaped tube 28 is welded to a reinforcing material such as a reinforcing bar, and the reinforcing material is used. It is good to attach the water flow jig 41 to the front.
[0055]
Furthermore, since the wall member 25 is constituted by the solidifying material 23 and the precast member 24, the water permeable groove 31 may be provided only in one of them. For example, instead of forming the semicircular cross-sectional groove 31a in the precast member 24, only the solidifying material 23 may be provided with a water permeable groove formed in the extraction trace space of the tubular jig body 42.
[0056]
In addition, the wall member 25 injects the solidified material 23 into the ground, and before the solidified material 23 congeals, a bag material containing a reinforcing material is inserted into the solidified material 23 instead of the precast member 24. The wall member 25 may be formed by injecting mortar or concrete into the bag material. In that case, both ends of the permeable U-shaped pipe 28 welded to the reinforcing material are connected to the outside of the bag material. The water passage jig 41 is preferably attached to the outside of the bag material.
[0057]
【The invention's effect】
According to the first aspect of the present invention, the water passage jig and the water permeable grooves on both sides are provided in the precast member of the wall member , and the water permeable jig installed in the ground together with the precast member is fitted over the entire length of the water permeable groove. Since the notch groove is provided in the solidified material of the wall member over the entire length of the water permeable groove by pulling out after the solidified material congeals , even if this wall member is constructed to the impermeable layer through the water permeable layer, It is possible to connect the groundwater flow from the permeable layer to the other permeable layer through the notched groove on one side, the permeable groove on one side, the permeable hole, the permeable groove on the other side, and the notched groove on the other side, and requires water permeability. It is possible to provide a continuous underground wall suitable for the location.
[0058]
According to the second aspect of the present invention, since the water permeable groove is filled with the water permeable material, it is possible to prevent the water permeable groove from being blocked by the collapsed earth and sand.
[0059]
According to the invention Motomeko 3 described can provide underground continuous wall can support construction which can be separated underground water vein in a continuous wall becomes a problem.
[0060]
According to invention of Claim 4, the underground continuous wall which can respond to the construction which the buoyancy produced by the water level difference of the front and back of a diagonal continuous wall becomes a problem can be provided.
[0061]
According to the fifth aspect of the present invention, the wall member and the water passage jig are integrally installed in the ground, and only the water passage jig is pulled out to fill the water-permeable material and open the notch groove. Since it is a construction method, underground continuous walls that require water permeability can be constructed at low cost. In particular, the water-permeable groove can be easily filled with the water-permeable material by simply pulling out the water passage jig, and the notch groove can be easily opened from the water-permeable groove to the soil wall side.
[0062]
According to the sixth aspect of the present invention, the groove excavation claw of the water passage jig can be reliably protruded toward the earth wall side by the claw extruding portion of the wall member, so that the cutout groove can be formed reliably.
[Brief description of the drawings]
FIG. 1 is a horizontal sectional view showing an embodiment in which an underground continuous wall according to the present invention is applied to a vertical wall.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a plan view of a precast member used for the continuous wall.
FIG. 5 is a front view of the precast member.
6 is a cross-sectional view taken along line VI-VI in FIG.
7 is a cross-sectional view taken along line VII-VII in FIG.
FIG. 8 is a front view showing a water passing jig used for the construction of the continuous wall.
FIG. 9 is a cross-sectional view of the water passing jig.
FIG. 10 is a bottom view of the water passing jig.
FIG. 11 is a cross-sectional view showing an installed state of the water passing jig as described above.
FIG. 12 is a cross-sectional view showing a drawing start state of the water passing jig same as above.
FIG. 13 is a cross-sectional view showing an underground structure formed by the continuous wall.
FIG. 14 is a cross-sectional view showing an embodiment in which an underground continuous wall according to the present invention is applied to an inclined wall.
FIG. 15 is a cross-sectional view showing a state in the middle of inserting the precast member and the water passage jig into the solidified material in the construction of the inclined wall.
FIG. 16 is a cross-sectional view showing a state in which insertion of the precast member and the water passage jig is completed.
FIG. 17 is a cross-sectional view showing a state immediately after the extraction of the water passage jig is started.
FIG. 18 is a cross-sectional view showing a state where the water passing jig is being pulled out and in a state where the pulling is completed.
FIG. 19 is a sectional view showing a state in which the construction of the inclined wall is completed.
20A is a plan view showing another embodiment of the water passing jig, FIG. 20B is a front view showing a closed state of the groove excavation claw when the water passing jig is inserted, and FIG. It is a front view which shows the groove excavation nail opening state at the time of extraction of a water flow jig.
FIG. 21 is a cross-sectional view showing a construction example of a conventional underground continuous wall.
FIG. 22 is a cross-sectional view showing an example of countermeasures against groundwater flow when a conventional underground structure is constructed.
FIG. 23 is a cross-sectional view showing an example of countermeasures for groundwater flow when a conventional underground revetment is constructed.
[Explanation of symbols]
22 Underground ditch
23 Solidification material
24 Precast members
25 Wall members
29 Water-permeable hole
31 Permeable groove
32 Water-permeable material
34 Notch groove
35 water permeable layer
36 impermeable layer
38 Claw extruding part
41 Water flow jig
42 Tubular jig body
44 Groove claw

Claims (6)

地中の透水層からその下側に位置する不透水層にわたって設けられた地中の溝内に不透水性の固化材を注入するとともに、この固化材が凝結する前の柔らかい状態で固化材中にプレキャスト部材を挿入して、前記固化材と前記プレキャスト部材とにより壁部材を連続的に築造する地中連続壁において、
地中の前記不透水層と対応する前記プレキャスト部材の下部に設けられた一側面と他側面とを連通する透水穴と、
前記プレキャスト部材の一側面および他側面に沿って前記透水穴の上部にて上下方向に連続的に設けられた、地中の前記透水層と対応する透水溝と、
これらの透水溝の全長にわたって嵌合されて前記プレキャスト部材とともに地中に設置された通水治具を前記固化材の凝結後に引抜くことにより前記透水溝の全長にわたって前記固化材を切欠くことで前記透水溝を前記透水層に連通開口させた切欠溝と
を具備したことを特徴とする地中連続壁。
Injecting a water-impermeable solidifying material into the underground groove formed from the underground water-permeable layer to the impermeable layer located below it, and in the solidified material in a soft state before the solidified material congeals. In the underground continuous wall in which a precast member is inserted into and a wall member is continuously constructed by the solidified material and the precast member,
A water-permeable hole that communicates one side surface provided on the lower part of the precast member corresponding to the water-impermeable layer in the ground and the other side surface;
Said hand vertically on top of the permeable holes along one side and the other side surface of the precast member is continuously provided, and corresponding hydraulic conductivity groove and the ground of the water-permeable layer,
By cutting out the solidification material over the entire length of the water-permeable groove by pulling out the water-flowing jig fitted in the ground together with the precast member after being fitted over the entire length of the water-permeable groove. An underground continuous wall, comprising: a notch groove in which the water permeable groove communicates with the water permeable layer .
透水溝に充填された透水材料
を具備したことを特徴とする請求項1記載の地中連続壁。
The underground continuous wall according to claim 1, further comprising a water-permeable material filled in the water-permeable groove.
壁部材は、鉛直状に設けられた
ことを特徴とする請求項1または2記載の地中連続壁。
Wall member, according to claim 1 or 2 diaphragm wall according to, characterized in that provided in the vertical form.
壁部材は、傾斜状に設けられた
ことを特徴とする請求項1または2記載の地中連続壁。
The underground wall according to claim 1 or 2 , wherein the wall member is provided in an inclined shape.
下部に透水穴を設けるとともにこの透水穴の上部に透水溝を連続的に設けた壁部材と、この壁部材の透水溝に嵌合された長尺で中空の通水治具とを、一体的に地中に設置し、
壁部材の透水溝に対して通水治具のみを引抜くことにより、
通水治具の管状治具本体内に予め装填された透水材料を透水溝に充填し、
同時に、管状治具本体の先端部に設けられた溝掘削爪により透水溝から土壁側に切欠溝を開口する
ことを特徴とする地中連続壁の施工方法。
A wall member in which a water permeable hole is provided in the lower part and a water permeable groove is continuously provided in the upper part of the water permeable hole and a long and hollow water permeable jig fitted in the water permeable groove in the wall member are integrated. In the ground
By pulling out only the water passage jig against the water permeable groove of the wall member,
Fill the water permeable groove with a water permeable material preloaded in the tubular jig body of the water flow jig,
At the same time, the underground continuous wall construction method is characterized in that a notch groove is opened from the permeable groove to the dirt wall side by a groove excavation claw provided at the tip of the tubular jig body.
壁部材は、通水治具の引抜き動作に連動して溝掘削爪を土壁側へ突出させる爪押出部を有する
ことを特徴とする請求項記載の地中連続壁の施工方法。
6. The underground continuous wall construction method according to claim 5 , wherein the wall member has a claw extruding portion that projects the groove excavation claw toward the earth wall side in conjunction with the drawing operation of the water flow jig.
JP27443798A 1998-09-29 1998-09-29 Underground continuous wall and its construction method Expired - Fee Related JP4091695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27443798A JP4091695B2 (en) 1998-09-29 1998-09-29 Underground continuous wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27443798A JP4091695B2 (en) 1998-09-29 1998-09-29 Underground continuous wall and its construction method

Publications (2)

Publication Number Publication Date
JP2000104275A JP2000104275A (en) 2000-04-11
JP4091695B2 true JP4091695B2 (en) 2008-05-28

Family

ID=17541676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27443798A Expired - Fee Related JP4091695B2 (en) 1998-09-29 1998-09-29 Underground continuous wall and its construction method

Country Status (1)

Country Link
JP (1) JP4091695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265330B2 (en) * 2008-05-26 2013-08-14 清水建設株式会社 Groundwater flow conservation method
JP6085861B2 (en) * 2012-09-19 2017-03-01 有限会社フジカ Manhole push-up prevention method

Also Published As

Publication number Publication date
JP2000104275A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP2022502586A (en) Grouting consolidation method of ready-made piles guided by all-casing excavation, and the ready-made piles
JP4358207B2 (en) Ground reinforcement method for excavated bottom
KR20000006650A (en) a pole for mud wall and constrution method of fence for mud
JP4074313B2 (en) Structure of steel sheet pile for water flow and water retaining wall, and its construction method.
JP4485674B2 (en) Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level
JP4091695B2 (en) Underground continuous wall and its construction method
JP2004204581A (en) Water sealing method for controlled revetment
JP2008045352A (en) Landslide prevention construction method of valley-filling banking
KR200362565Y1 (en) Earth Retaining Wall Structure Using Precast Concrete Pile and Construction Method Thereof
JP3245537B2 (en) Method of forming permeable section in continuous underground wall
JP3253868B2 (en) Forming method of water passage section in continuous underground wall
KR100654973B1 (en) Earth Retaining Wall Structure Using Precast Concrete Pile and Construction Method Thereof
JP3355282B2 (en) Construction method of perforated sheet pile and continuous underground wall having permeation section using this sheet pile
JP2842236B2 (en) Grout injection method into back of underground continuous wall and its injection device
JP4589084B2 (en) A retaining wall with a built-in water pipe composed of a plurality of water passages, and a method for ensuring the flow of groundwater using the retaining wall
JP2985736B2 (en) Soil retaining wall with water permeability and construction method
JP2857907B2 (en) Infiltration type simple recharge drainage method
JP2611104B2 (en) Water passing method for continuous underground wall
JP2002348858A (en) Underground water-conveyance device and underground water-conveyance method
JP2000104247A (en) Structural body and installation method thereof
JP2764482B2 (en) Construction method of large depth human hole
JPS62117911A (en) Setting of pipe for well
JP3552925B2 (en) Opening method of groundwater holes in steel pipe column retaining wall
JPH10317367A (en) Water-returning structure using steel-pipe-column-line earth-retaining wall and method for constructing the same
JP2524579B2 (en) Reinforcement method of existing retaining wall under water surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees