JP4485674B2 - Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level - Google Patents

Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level Download PDF

Info

Publication number
JP4485674B2
JP4485674B2 JP2000336909A JP2000336909A JP4485674B2 JP 4485674 B2 JP4485674 B2 JP 4485674B2 JP 2000336909 A JP2000336909 A JP 2000336909A JP 2000336909 A JP2000336909 A JP 2000336909A JP 4485674 B2 JP4485674 B2 JP 4485674B2
Authority
JP
Japan
Prior art keywords
underground wall
continuous underground
groundwater level
lowering
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000336909A
Other languages
Japanese (ja)
Other versions
JP2002138461A (en
Inventor
矢萩秀一
阿部一夫
三井弘一
橋本功
田中賢一
高山暢彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Tokyo Metro Co Ltd
Original Assignee
Taisei Corp
Tokyo Metro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo Metro Co Ltd filed Critical Taisei Corp
Priority to JP2000336909A priority Critical patent/JP4485674B2/en
Publication of JP2002138461A publication Critical patent/JP2002138461A/en
Application granted granted Critical
Publication of JP4485674B2 publication Critical patent/JP4485674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土留め壁等として使用される連続地中壁の構造、及びこの連続地中壁の構造を使用した開削工事等における地下水位の低下方法及び地下水位の回復方法に関するものである。
【0002】
【従来の技術】
従来の連続地中壁を使用した開削工事における地下水位の低下方法は、山留め壁として使用する連続地中壁aの掘削側Aまたは背面側Bにディープウェルbを配置することによっておこなっていた。
連続地中壁aの掘削側Aにディープウェルbを設置する場合は、掘削地盤eより深い位置に予め深井戸を掘っておき、この井戸の内部にポンプcなどを設置して井戸の底部付近から集まる水を汲み上げていた(図5右側参照)。
また、連続地中壁aの背面側Bにディープウェルbを設置する場合は、連続地中壁aの近傍に予め井戸を掘っておき、この井戸の内部にポンプcなどを設置して井戸の全長から集まる水を汲み上げていた(図5左側参照)。
【0003】
【本発明が解決しようとする課題】
前記した従来の連続地中壁を使用した地下水位の低下方法にあっては、次のような問題点がある。
<イ>連続地中壁aの掘削側Aにディープウェルbを設置する場合は、掘削及び構築作業の障害となる。また、防水工の処理やディープウェルの残材の処理が困難で、漏水の一因となる。
<ロ>連続地中壁aの掘削側Aにディープウェルbを設置する場合は、背面側Bの土砂を吸い込むことによって土留め壁の根入れ地盤が緩み、崩壊事故に発展するおそれがある。特に大深度の開削工事において、水頭差が大きく土留め壁の根入れが少ない場合は崩壊の危険性が大きくなる。
<ハ>連続地中壁aの背面側Bにディープウェルbを設置する場合は、ディープウェルの全長で地下水を取り込む。このため、地下水位d低下の影響が広範囲に及ぶ場合が多い。
<ニ>ディープウェルbを設置するためには、開削深度と同じくらいの深さまで井戸用の削孔をおこなう必要がある。
【0004】
【本発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、地下水位を低下又は上昇させる機能を有する連続地中壁の構造と、それを使用した地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。特に、連続地中壁とは別に地下水位の低下又は上昇させる装置を設ける必要がない連続地中壁の構造と、それを使用した地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。
また、連続地中壁の補強と、地下水位の低下又は上昇を同時におこなうことができる連続地中壁の構造と、それを使用した地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。特に、連続地中壁の構造材と地下水位を低下又は上昇させる装置を兼ね備えた連続地中壁の構造と、それを使用した地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。
さらに、地下水位を低下させておこなう開削工事において、周辺地盤に及ぼす影響を抑えることができる連続地中壁の構造及び地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。
そして、効率的に掘削・構築作業がおこなえる連続地中壁の構造及び地下水位の低下方法及び地下水位の回復方法を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の連続地中壁の構築方法は、連続地中壁の構築に際し、連続地中壁内には、あらかじめ、その内部に切削しやすい材料の棒状体を配置し、連続地中壁を構築した後に、掘削予定位置に配置した棒状体を切削して削孔を形成し、この削孔内に、連続地中壁を深度方向に貫通する中空の管材を、下方にウエル部が突出する状態で配置して構築することを特徴としたものである。
また本発明の地下水位の低下方法は、上記の連続地中壁を使用し、前記ウェル部に設置した汲水装置で地下水を汲み上げることによって地下水位を低下させることを特徴とする方法である。
また本発明の地下水位の低下方法は、上記の地下水位の低下方法において、
特定した地層に前記ウェル部を配置して、特定した地層から地下水を汲み上げることによって地下水位を低下させることを特徴とする方法である。
また本発明の、地下水位の回復方法は、前記の連続地中壁を使用し、前記管材に水を注入することによって周辺地盤の地下水位を上昇させることを特徴とする方法である。
【0006】
【本発明の実施の形態】
以下図面を参照しながら本発明の実施の形態について説明する。
【0007】
<イ>連続地中壁の構造
連続地中壁の構造は、連続地中壁1と管材2とウェル部3とからなる。
連続地中壁1は、地中に構築する壁体である。
連続地中壁1には、鉄筋コンクリート壁、泥水固化壁、ソイルセメント壁などがある。
鉄筋コンクリート壁は、現地地盤に掘削した深い溝に鉄筋籠及びコンクリートを打設して構築する。また、泥水固化壁は、泥水を使用して掘削した溝に、固化材を投入して泥水を固化させることによって構築する。さらに、ソイルセメント壁は、セメントミルクなどを注入しながら現地地盤を混合・攪拌してソイルセメントとし、その中に鋼材等の芯材を挿入して構築する。
連続地中壁1は、土留め壁、止水壁、地下構造物の側壁などに使用できる。
【0008】
<ロ>管材
管材2は、連続地中壁1内部を深度方向に貫通する中空の管体である。
管材2には、円筒形、多角筒形の鋼管などを使用する。
管材2は、連続地中壁1の厚さ及び深さ方向と直交する方向に間隔をおいて複数設置する(図3参照)。例えば、連続地中壁1に囲まれた範囲を開削する場合は、開削範囲の外周に複数本の管材2が配置されることになる。
設置した場合に連続地中壁1の下方に突出する管材2の部分には、スリットなどの透水孔21を設ける。ここで、透水孔を設ける部分は、連続地中壁1の下方に突出するすべてではなく、集水をおこなうウェル部3に該当する部分だけでもよい。
また、透水孔21として、管材2に公知の集水用のストレーナを取り付けてもよい。
【0009】
管材2の設置は、連続地中壁1を構築した後に、地上から連続地中壁1及びその下方の地盤を連続して切削した削孔22に管材2を挿入することによっておこなう。
ここで、連続地中壁1に形成した削孔22と管材2との隙間にはセメントミルク等の固着材4を充填して、連続地中壁1と管材2を一体化させることが好ましい。
なお、連続地中壁1の削孔予定位置には、予め中空管を配置したり、エアモルタルや発泡スチロールなどの切削しやすい材料の棒材を配置したりすることもできる。この結果、連続地中壁1を切削する必要がなくなる、簡易な削孔機で容易に切削できるなどの効果が得られる。
また、連続地中壁1として泥水固化壁又はソイルセメント壁を使用する場合は、固化する前に管材2を挿入して設置することもできる。この場合、連続地中壁1を切削する作業を省略することができる上に、連続地中壁1と管材2は一体化する。
管材2に鋼材などの引張材料を使用し、上述したように連続地中壁1と管材2を一体化させた場合は、管材2を連続地中壁1の構造材として考えることができる。この結果、連続地中壁の鉄筋や鋼管などの芯材を削減することができる。
【0010】
<ハ>ウェル部
ウェル部3は地盤中の地下水を集水する部分をいう。
ウェル部3は、連続地中壁1の下方の地盤を掘削した削孔22に構築する。ウェル部3には、管材2の透水孔21を設けた部分を配置する。
管材2と削孔22の隙間には、砂利などのフィルター材31を充填する。フィルター材31の上方にはパッカー41を設置して、固着材4がフィルター材に流れ込まないようにする。
ウェル部3は、透水性地盤からなる透水層7に設ける。特に、地下水位を低下させたい特定の地盤に設けるのが好ましい。
ここで、地下水位とは、地下水の水位又は地下水の水頭をいう。例えば、不透水層8の下層となる被圧水層71から地下水を集水した場合に地下水の水頭が低下するが、このことも地下水位の低下とここではいう。
【0011】
<ニ>汲水装置
汲水装置5は、例えば水中ポンプ及び排水用ホースで構成する。
汲水装置5は、連続地中壁1に設置した管材2の内部に、連続地中壁1の上方から挿入して設置する。
連続地中壁1の上方から挿入された汲水装置5は、管材2の内部を通ってウェル部3に到達する。
汲水装置5の水中ポンプなどがウェル部3に配置された状態で、汲水装置5を固定する。
【0012】
<ホ>地下水位の低下方法
本発明の連続地中壁の構造を使用した開削工事において、地下水位を低下させる方法について説明する。
開削工事をおこなう場合は、連続地中壁1の背面の地下水位を低下させて、連続地中壁1に作用する側圧を低減させるのが好ましい。
地下水を低減させる効果は、山留め壁に作用する側圧が低下するばかりでなく、ボイリングやヒービング対策となり、山留めの安定性が向上する。
そこで、透水層7から流れ込み、ウェル部3を通って管材2内部に集まった地下水を汲水装置5で汲み上げる。
この結果、連続地中壁1の背面の地下水位は低下して、安全に開削工事をおこなうことができる。
地下水を汲み上げる地層を特定すれば、地下水位低下の影響の広がりを抑えることもできる。
【0013】
<ヘ>地下水位の回復方法
本発明の連続地中壁の構造を使用して、地下水位を回復させることもできる。
連続地中壁1を使用して開削工事をおこなった場合、周辺地盤の地下水位が低下して地中の環境が変化することがある。
このような場合に、地下水を地中に戻すことによって周辺地盤に及ぼす影響を少なくすることができる。
そこで、管材2に水を注入し、透水孔21及びフィルター材31経由で水を地中に浸透させる。
地下水位を回復させる地盤の地下水位に比べて管材2内の水位が高ければ、水頭差によって水は地中に浸透する。ここで、管材2の途中にパッカーなどで蓋をして、その下方に圧力水を注入すれば、効率的に水を地中に戻すことも可能となる。
【0014】
<ト>その他の実施例
上記では連続地中壁1の躯体内部に管材2を配置した場合について説明したが、管材2aの一部を連続地中壁1から突出させることも可能である。
図4に管材2aの一部を連続地中壁1から突出させた場合の斜視図を示す。
管材2aの設置方法は上記した実施の形態と同様の方法で行う。
管材2aには、全長にわたり透水孔21を設けることができる。ここで、透水孔21は、透水層に接する部分にだけ設けても、限定して集水又は復水したい地層にのみ設けてもよい。
連続地中壁1に接する位置に透水孔21を設ける場合は、使用する管材2aに例えば仕切材23を設ける。
そして、削孔22の仕切材23より連続地中壁1側に固着材4を注入し、地盤側にフィルター材31を充填する。この結果、固着材4がフィルター材側に流れ出すのを防止できる。
管材2aの一部を連続地中壁1から突出させた場合は、上記した実施の形態の効果に加え、効率的に地下水位の低下又は地下水位の回復を行うことができる。
さらに、連続地中壁1に接する任意の地層からの集水又は任意の地層に水を戻すことも可能になる。
【0015】
【本発明の効果】
本発明の連続地中壁の構造及び地下水位の低下方法及び地下水位の回復方法は以上説明したようになるから次のような効果を得ることができる。
<イ>地下水位を低下又は上昇させるための管材を連続地中壁の内部に設ける。このため、地下水位を低下又は上昇させるための装置が掘削・構築作業の障害になることがなく、効率的に掘削・構築作業をおこなうことができる。また、掘削側にディープウェルを設置した場合のように、掘削が進むにつれてディープウェルの処理を行う必要がなく、効率的である。
<ロ>管材に引張材料を使用して連続地中壁と一体化した場合は、管材を連続地中壁の構造材又は補強材とすることができる。この結果、連続地中壁の鉄筋又は芯材を削減することができる。さらに、管材は地下水位を低下又は上昇させるための装置の一部を兼ねるため、材料費及び別途ディープウェルなどを設ける費用を削減でき、経済的である。
<ハ>特定の地盤に限定して地下水を汲み上げることができる。このため、周辺地盤に及ぼす影響を抑えることができる。
<ニ>地下水位を低下又は上昇させるための管材を連続地中壁の内部に設ける。このため、連続地中壁の背面側にディープウェルを設置する場合のように、設置のための用地を確保する必要がない。
【図面の簡単な説明】
【図1】本発明の連続地中壁の構造及び地下水位の低下方法の実施例の説明図
【図2】連続地中壁の構造の実施例の断面図
【図3】連続地中壁の構造の実施例の平面図
【図4】連続地中壁の構造及び地下水位の低下方法のその他の実施例の説明図
【図5】従来の地下水位の低下方法の実施例の説明図
【符号の説明】
1・・・連続地中壁
2・・・管材
3・・・ウェル部
4・・・固着材
5・・・汲水装置
6・・・地下水位
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a continuous underground wall used as a retaining wall and the like, and a groundwater level lowering method and a groundwater level recovery method in excavation work using the structure of the continuous underground wall.
[0002]
[Prior art]
The conventional method for lowering the groundwater level in the excavation work using the continuous underground wall has been performed by arranging the deep well b on the excavation side A or the back side B of the continuous underground wall a used as the retaining wall.
When installing the deep well b on the excavation side A of the continuous underground wall a, a deep well is dug in advance at a position deeper than the excavation ground e, and a pump c or the like is installed inside the well and near the bottom of the well. (See the right side of Fig. 5).
In addition, when installing the deep well b on the back side B of the continuous underground wall a, a well is dug in the vicinity of the continuous underground wall a, and a pump c or the like is installed inside the well to The water collected from the entire length was pumped up (see the left side of Fig. 5).
[0003]
[Problems to be solved by the present invention]
The above-described conventional groundwater level lowering method using the continuous underground wall has the following problems.
<A> When the deep well b is installed on the excavation side A of the continuous underground wall a, it becomes an obstacle to excavation and construction work. In addition, it is difficult to process waterproofing and the remaining material of the deep well, which causes water leakage.
<B> When the deep well b is installed on the excavation side A of the continuous underground wall a, the ground of the retaining wall is loosened by sucking the earth and sand on the back side B, which may cause a collapse accident. Particularly in deep excavation work, the risk of collapse increases when the head difference is large and the earth retaining wall is not deeply embedded.
<C> When installing the deep well b on the back side B of the continuous underground wall a, the groundwater is taken up by the full length of the deep well. For this reason, there are many cases where the influence of the lowering of the groundwater level d reaches a wide range.
<D> In order to install the deep well b, it is necessary to drill holes for wells to the same depth as the cutting depth.
[0004]
[Object of the present invention]
The present invention was made in order to solve the conventional problems as described above, and has a structure of a continuous underground wall having a function of lowering or raising the groundwater level, a method for lowering the groundwater level, and a groundwater level using the same. It aims to provide a recovery method. In particular, to provide a continuous underground wall structure that does not require a device for lowering or raising the groundwater level separately from the continuous underground wall, and a method for lowering the groundwater level and a method for recovering the groundwater level using the same. Objective.
Also, to provide a continuous underground wall structure that can reinforce the continuous underground wall and reduce or increase the groundwater level at the same time, and a method for lowering the groundwater level and a method for recovering the groundwater level using the same. Objective. In particular, an object is to provide a continuous underground wall structure having a structure material for a continuous underground wall and a device for lowering or raising the groundwater level, and a method for lowering the groundwater level and a method for recovering the groundwater level using the same. And
It is another object of the present invention to provide a continuous underground wall structure, a groundwater level lowering method, and a groundwater level recovery method capable of suppressing the influence on the surrounding ground in excavation work performed by lowering the groundwater level.
And it aims at providing the structure of the continuous underground wall which can perform excavation and construction work efficiently, the fall method of groundwater level, and the recovery method of groundwater level.
The present invention achieves at least one of these objects.
[0005]
[Means for Solving the Problems]
In order to achieve the above-described object, the construction method of the continuous underground wall of the present invention is such that when the continuous underground wall is constructed, the continuous underground wall has a rod-like shape that is easy to cut in advance. After the body is placed and the continuous underground wall is constructed, the rod-shaped body placed at the planned excavation position is cut to form a hole, and a hollow hole penetrating the continuous underground wall in the depth direction is formed in the hole. It is characterized in that the tube material is arranged and constructed with the well portion protruding downward.
The groundwater level lowering method of the present invention is a method characterized in that the groundwater level is lowered by using the above-mentioned continuous underground wall and pumping up the groundwater with a pumping device installed in the well portion.
The groundwater level lowering method of the present invention is the above groundwater level lowering method,
In this method, the well portion is arranged in a specified formation and the groundwater level is lowered by pumping up groundwater from the specified formation.
The groundwater level recovery method of the present invention is a method characterized in that the groundwater level of the surrounding ground is raised by using the continuous underground wall and injecting water into the pipe.
[0006]
[Embodiments of the Invention]
Embodiments of the present invention will be described below with reference to the drawings.
[0007]
<A> Structure of the continuous underground wall The structure of the continuous underground wall is composed of the continuous underground wall 1, the pipe material 2, and the well portion 3.
The continuous underground wall 1 is a wall body constructed in the ground.
The continuous underground wall 1 includes a reinforced concrete wall, a muddy water solidified wall, and a soil cement wall.
Reinforced concrete walls will be constructed by placing reinforced concrete and concrete in deep grooves excavated in the local ground. The muddy water solidification wall is constructed by putting a solidifying material into a groove excavated using muddy water to solidify the muddy water. Furthermore, the soil cement wall is constructed by mixing and stirring the ground while injecting cement milk, etc. into soil cement, and inserting a core material such as steel into it.
The continuous underground wall 1 can be used for earth retaining walls, water blocking walls, side walls of underground structures, and the like.
[0008]
<B> Tube material tube material 2 is a hollow tube body penetrating the inside of continuous underground wall 1 in the depth direction.
As the pipe member 2, a cylindrical or polygonal tubular steel pipe or the like is used.
A plurality of pipes 2 are installed at intervals in a direction orthogonal to the thickness and depth direction of the continuous underground wall 1 (see FIG. 3). For example, when excavating a range surrounded by the continuous underground wall 1, a plurality of pipes 2 are arranged on the outer periphery of the excavation range.
A water-permeable hole 21 such as a slit is provided in a portion of the tube material 2 that protrudes below the continuous underground wall 1 when installed. Here, the portion where the water permeable holes are provided is not all that protrudes below the continuous underground wall 1 but may be only the portion corresponding to the well portion 3 that collects water.
Further, a known water collection strainer may be attached to the pipe member 2 as the water permeable hole 21.
[0009]
Installation of the pipe material 2 is performed by inserting the pipe material 2 into the drilled hole 22 obtained by continuously cutting the continuous underground wall 1 and the ground below the continuous underground wall 1 after constructing the continuous underground wall 1.
Here, it is preferable that the gap between the bore 22 formed in the continuous underground wall 1 and the tube material 2 is filled with a fixing material 4 such as cement milk so that the continuous underground wall 1 and the tube material 2 are integrated.
In addition, a hollow tube can be previously arranged at the planned drilling position of the continuous underground wall 1, or a bar made of a material that can be easily cut, such as air mortar or polystyrene foam, can be arranged. As a result, it is not necessary to cut the continuous underground wall 1, and effects such as easy cutting with a simple drilling machine can be obtained.
Moreover, when using a muddy water solidified wall or a soil cement wall as the continuous underground wall 1, the pipe material 2 can be inserted and installed before solidifying. In this case, the operation of cutting the continuous underground wall 1 can be omitted, and the continuous underground wall 1 and the pipe material 2 are integrated.
When a tensile material such as a steel material is used for the pipe material 2 and the continuous underground wall 1 and the pipe material 2 are integrated as described above, the pipe material 2 can be considered as a structural material of the continuous underground wall 1. As a result, it is possible to reduce the core material such as reinforcing bars and steel pipes of the continuous underground wall.
[0010]
<C> Well part The well part 3 is a part for collecting groundwater in the ground.
The well portion 3 is constructed in a drilling hole 22 excavated from the ground below the continuous underground wall 1. In the well portion 3, a portion provided with the water permeable holes 21 of the pipe material 2 is arranged.
A filter material 31 such as gravel is filled in the gap between the tube material 2 and the hole 22. A packer 41 is installed above the filter material 31 so that the fixing material 4 does not flow into the filter material.
The well part 3 is provided in the water-permeable layer 7 which consists of a water-permeable ground. In particular, it is preferably provided on a specific ground where it is desired to lower the groundwater level.
Here, the groundwater level refers to the water level of the groundwater or the head of the groundwater. For example, when the groundwater is collected from the pressurized water layer 71 which is the lower layer of the impermeable layer 8, the head of the groundwater is lowered, which is also referred to as a drop in the groundwater level here.
[0011]
<D> Water-flushing device The water-flushing device 5 is composed of, for example, a submersible pump and a drain hose.
The flushing device 5 is installed by inserting it from above the continuous underground wall 1 into the pipe 2 installed on the continuous underground wall 1.
The water pumping device 5 inserted from above the continuous underground wall 1 reaches the well portion 3 through the inside of the pipe material 2.
The pumping device 5 is fixed in a state where the submersible pump of the pumping device 5 is disposed in the well portion 3.
[0012]
<E> Groundwater level lowering method In the excavation work using the structure of the continuous underground wall of the present invention, a method for lowering the groundwater level will be described.
When performing excavation work, it is preferable to lower the groundwater level on the back surface of the continuous underground wall 1 to reduce the lateral pressure acting on the continuous underground wall 1.
The effect of reducing groundwater not only lowers the lateral pressure acting on the mountain retaining wall, but also serves as a countermeasure against boiling and heaving, improving the stability of the mountain retaining.
Therefore, the groundwater that flows from the water permeable layer 7 and collects in the pipe member 2 through the well portion 3 is pumped up by the pumping device 5.
As a result, the groundwater level on the back surface of the continuous underground wall 1 is lowered, and the excavation work can be performed safely.
By identifying the geological formation that pumps up the groundwater, the spread of the effects of lowering the groundwater level can be suppressed.
[0013]
<F> Groundwater level recovery method The structure of the continuous underground wall of the present invention can be used to recover the groundwater level.
When excavation work is performed using the continuous underground wall 1, the groundwater level of the surrounding ground may decrease and the underground environment may change.
In such a case, the influence on the surrounding ground can be reduced by returning the groundwater to the ground.
Therefore, water is injected into the tube material 2 and water is infiltrated into the ground via the water permeable holes 21 and the filter material 31.
If the water level in the pipe material 2 is higher than the ground water level of the ground that restores the ground water level, the water penetrates into the ground due to the head difference. Here, if the tube material 2 is covered with a packer or the like and the pressure water is injected below the tube material 2, the water can be efficiently returned to the ground.
[0014]
<G> Other Embodiments In the above description, the case in which the pipe material 2 is disposed inside the housing of the continuous underground wall 1 has been described. However, a part of the pipe material 2a can be protruded from the continuous underground wall 1.
FIG. 4 shows a perspective view when a part of the pipe material 2a is protruded from the continuous underground wall 1.
The pipe 2a is installed in the same manner as in the above embodiment.
The pipe material 2a can be provided with water-permeable holes 21 over its entire length. Here, the water permeable hole 21 may be provided only in a portion in contact with the water permeable layer, or may be provided only in a ground layer to be collected or condensed.
When providing the water permeable hole 21 in the position which touches the continuous underground wall 1, the partition material 23 is provided in the pipe material 2a to be used, for example.
And the fixing material 4 is inject | poured into the continuous underground wall 1 side from the partition material 23 of the hole 22, and the filter material 31 is filled into the ground side. As a result, it is possible to prevent the fixing material 4 from flowing out to the filter material side.
When a part of the pipe material 2a protrudes from the continuous underground wall 1, in addition to the effects of the above-described embodiment, the groundwater level can be efficiently lowered or the groundwater level can be recovered.
Furthermore, it becomes possible to collect water from an arbitrary formation in contact with the continuous underground wall 1 or return water to an arbitrary formation.
[0015]
[Effect of the present invention]
Since the structure of the continuous underground wall, the method for lowering the groundwater level, and the method for recovering the groundwater level according to the present invention are as described above, the following effects can be obtained.
<I> A pipe for lowering or raising the groundwater level is provided inside the continuous underground wall. For this reason, the apparatus for lowering or raising the groundwater level does not become an obstacle to excavation / construction work, and excavation / construction work can be performed efficiently. Further, unlike the case where a deep well is installed on the excavation side, it is not necessary to perform the deep well treatment as the excavation proceeds, which is efficient.
<B> When a tensile material is used for the pipe and integrated with the continuous underground wall, the pipe can be used as a structural material or a reinforcing material for the continuous underground wall. As a result, it is possible to reduce the reinforcing bars or core material of the continuous underground wall. Furthermore, since the pipe material also serves as a part of a device for lowering or raising the groundwater level, the material cost and the cost for providing a separate deep well can be reduced, which is economical.
<C> Groundwater can be pumped only to specific ground. For this reason, the influence which acts on a surrounding ground can be suppressed.
<D> A pipe for lowering or raising the groundwater level is provided inside the continuous underground wall. For this reason, it is not necessary to secure the site for installation like the case where a deep well is installed in the back side of a continuous underground wall.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an embodiment of the structure of the continuous underground wall and the method of lowering the groundwater level according to the present invention. FIG. 2 is a cross-sectional view of the embodiment of the structure of the continuous underground wall. Fig. 4 is a plan view of an embodiment of the structure. Fig. 4 is an explanatory diagram of another embodiment of the structure of the continuous underground wall and the method of lowering the groundwater level. Explanation of]
DESCRIPTION OF SYMBOLS 1 ... Continuous underground wall 2 ... Pipe material 3 ... Well part 4 ... Adhesive material 5 ... Flushing device 6 ... Groundwater level

Claims (4)

連続地中壁の構築に際し、
連続地中壁内には、あらかじめ、その内部に切削しやすい材料の棒状体を配置し、
連続地中壁を構築した後に、
掘削予定位置に配置した棒状体を切削して削孔を形成し、
この削孔内に、連続地中壁を深度方向に貫通する中空の管材を、下方にウエル部が突出する状態で配置して構築する、
連続地中壁の構築方法。
When building a continuous underground wall,
Inside the continuous underground wall, place a rod-shaped body of material that is easy to cut in advance,
After building the continuous underground wall,
Cutting the rod-shaped body placed at the planned drilling position to form a hole,
In this drilling hole, a hollow tube material penetrating through the continuous underground wall in the depth direction is arranged and constructed with the well portion protruding downward,
Construction method of continuous underground wall.
請求項1記載の連続地中壁を使用し、
前記ウェル部に設置した汲水装置で地下水を汲み上げることによって地下水位を低下させることを特徴とする、
地下水位の低下方法。
Use the continuous underground wall according to claim 1,
The groundwater level is lowered by pumping up groundwater with a pumping device installed in the well part,
How to lower the groundwater level.
請求項2記載の地下水位の低下方法において、
特定した地層に前記ウェル部を配置して、
特定した地層から地下水を汲み上げることによって地下水位を低下させることを特徴とする、
地下水位の低下方法。
In the method for lowering the groundwater level according to claim 2,
Place the well part in the identified formation,
Characterized by lowering the groundwater level by pumping groundwater from the identified strata,
How to lower the groundwater level.
請求項1記載の連続地中壁を使用し、
前記管材に水を注入することによって周辺地盤の地下水位を上昇させることを特徴とする、
地下水位の回復方法。
Use the continuous underground wall according to claim 1,
The groundwater level of the surrounding ground is raised by injecting water into the pipe material,
How to recover the groundwater level.
JP2000336909A 2000-11-06 2000-11-06 Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level Expired - Lifetime JP4485674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000336909A JP4485674B2 (en) 2000-11-06 2000-11-06 Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000336909A JP4485674B2 (en) 2000-11-06 2000-11-06 Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level

Publications (2)

Publication Number Publication Date
JP2002138461A JP2002138461A (en) 2002-05-14
JP4485674B2 true JP4485674B2 (en) 2010-06-23

Family

ID=18812380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000336909A Expired - Lifetime JP4485674B2 (en) 2000-11-06 2000-11-06 Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level

Country Status (1)

Country Link
JP (1) JP4485674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107386308A (en) * 2017-07-26 2017-11-24 浙江省工程勘察院 A kind of side slope slopes automate precipitation method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867731B2 (en) * 2007-03-15 2012-02-01 株式会社大林組 Underground structure construction method, underground structure constructed by the method, and tubular member
JP5338064B2 (en) * 2007-11-12 2013-11-13 株式会社大林組 Method for preventing oxidation of groundwater in well and well, method for constructing emergency well and emergency well constructed by the method
JP5320728B2 (en) * 2007-11-12 2013-10-23 株式会社大林組 Common well, construction method of regular well, and structure of regular well
JP5218004B2 (en) * 2008-12-12 2013-06-26 株式会社大林組 Well and construction method of well
JP5212070B2 (en) * 2008-12-12 2013-06-19 株式会社大林組 Common well and construction method of regular well
JP2014012981A (en) * 2012-06-08 2014-01-23 Ohbayashi Corp Liquefaction countermeasure structure
CN107090842A (en) * 2017-05-18 2017-08-25 甘肃省地震局 A kind of processing method of the big thickness collapsible loess foundation in subway station
CN109898534B (en) * 2019-03-05 2020-10-02 东南大学 Multi-gradient pressure reduction and precipitation control method for deep and large foundation pit in high confined water stratum
CN112523207B (en) * 2020-12-10 2022-06-24 中交(广州)建设有限公司 Prestressed pipe pile used as dewatering well and construction method thereof
CN113216325A (en) * 2021-06-01 2021-08-06 中铁四局集团有限公司 Water replenishing and anti-settling method for peripheral stratum of underground station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107386308A (en) * 2017-07-26 2017-11-24 浙江省工程勘察院 A kind of side slope slopes automate precipitation method

Also Published As

Publication number Publication date
JP2002138461A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
JP4485674B2 (en) Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level
JP2009179945A (en) Well conduit for road and its construction method
JP2017186783A (en) Construction method of continuous underground wall
CN103088836A (en) Sedimentation control method for pumping water and performing reinjection in well casing simultaneously
KR20070036244A (en) Pit working method forr undergrund floor railroad operation of elevator
JP4727718B2 (en) Retaining method for retaining wall
KR100803921B1 (en) Pit working method forr undergrund floor railroad operation of elevator
JP4358207B2 (en) Ground reinforcement method for excavated bottom
JP2008045352A (en) Landslide prevention construction method of valley-filling banking
JP2005273293A (en) Excavating method
JP2002206232A (en) Groundwater drainage well and execution method therefor
KR100823980B1 (en) Drain combination paker type pressurization grouting equipment and the upward method using the same
JP4252070B2 (en) Ground stabilization method
JP2002242580A (en) Construction method for tunnel, drainage method and tunnel
JPH08184058A (en) Landslide protection construction
KR100284857B1 (en) Gathering Method of Underground Water
JP2607966B2 (en) Expanded connecting wall construction method
CN110284506A (en) A kind of foundation pit enclosure method for the expansion construction that deep basal pit is cheated to shallow foundation
KR20070059766A (en) A soil nailing reinforcement member using wood
JPS61211414A (en) Reduction well construction method
JPH11158861A (en) Method for draining underground water
JP3264437B2 (en) Water shielding device and method of measuring water permeability
JP2857907B2 (en) Infiltration type simple recharge drainage method
KR200410602Y1 (en) A soil nailing reinforcement member using wood

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Ref document number: 4485674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term